Journal of Global Optimization (2024) 89:435-455
https://doi.org/10.1007/510898-023-01354-0

®

Check for
updates

Single-lot, lot-streaming problem for a 1 + m hybrid flow
shop

Sanchit Singh' - Subhash C. Sarin'® - Ming Cheng?

Received: 8 October 2022 / Accepted: 5 December 2023 / Published online: 12 January 2024
© The Author(s) 2024

Abstract

In this paper, we consider an application of lot-streaming for processing a lot of multiple
items in a hybrid flow shop (HFS) for the objective of minimizing makespan. The HFS that
we consider consists of two stages with a single machine available for processing in Stage
1 and m identical parallel machines in Stage 2. We call this problem a 1 + m TSHFS-LSP
(two-stage hybrid flow shop, lot streaming problem), and show it to be NP-hard in general,
except for the case when the sublot sizes are treated to be continuous. The novelty of our
work is in obtaining closed-form expressions for optimal continuous sublot sizes that can
be solved in polynomial time, for a given number of sublots. A fast linear search algorithm
is also developed for determining the optimal number of sublots for the case of continuous
sublot sizes. For the case when the sublot sizes are discrete, we propose a branch-and-bound-
based heuristic to determine both the number of sublots and sublot sizes and demonstrate
its efficacy by comparing its performance against that of a direct solution of a mixed-integer
formulation of the problem by CPLEX®.

Keywords Scheduling - Lot-streaming - 1 + m hybrid flow shop

1 Introduction

In this paper, we consider the problem of scheduling a single lot over a hybrid flow shop.
Depending upon the application, the lot is said to either have a size U or consist of U
identical items. The hybrid flow shop that we consider has two stages with a single machine
in Stage 1 and m parallel and identical machines in Stage 2. We implement the process of

B Subhash C. Sarin
sarins @vt.edu

Sanchit Singh
sanchit@vt.edu

Ming Cheng

mchengl @suda.edu.cn

Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061,
USA

School of Rail Transportation, Soochow University, Suzhou, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-023-01354-0&domain=pdf
http://orcid.org/0000-0002-1744-2281

436 Journal of Global Optimization (2024) 89:435-455

lot-streaming, thereby allowing the lot to be split into multiple sub-lots for simultaneous
processing over parallel machines in Stage 2. Upon processing over the Stage 1 machine,
each sublot incurs a fixed removal time in Stage 1 before its transfer to one of the machines
in Stage 2. We determine an optimal schedule for the objective of minimizing makespan. As
such, we obtain the number of sublots, sublot sizes, and sublots’ assignment to the machines
in Stage 2. We consider two cases for sublot sizes-continuous and discrete (integer). We
designate this problem as a 1 + m Two-Stage Hybrid Flow Shop Lot-streaming Problem (1
+ m TSHFS-LSP).

The Hybrid Flow Shops (HFS) have important applications in flexible manufacturing sys-
tems that work on the principle of agile manufacturing. Devor et al. [4] mention the view
shared by industrial executives that a competitive advantage in the future lies in strategies
promoting speed to market and adherence to changing customer demands. Agile manufactur-
ing is a collective expression for all such strategies geared towards thriving in a continuously
changing production environment, and therefore it is becoming a system of increasing impor-
tance currently because of its ability to effectively respond to changing customers’ demands.
Flexible manufacturing systems have attracted a significant amount of attention from the
research community in the past. The HFSs are the physical entities that define the core of
such systems. They have been employed for producing discrete products in the electronics,
furniture and steel industries Tang et al. [21], and also, have been used in continuous process-
ing industries such as textile Jungwattanakit et al. [11], food-processing Yaurima-Basaldua
et al. [25], and chemical and pharmaceutical Gholami et al. [5].

Some specific examples of 1 + m HFSs include the scheduling problem encountered
at the blade line for Pratt and Whitney Inc. Li [14], where various part types are grouped
into part families or batches in Stage 1 for processing on the machines in Stage 2, and the
scheduling of a program on a parallel-task computer, where a single machine in Stage 1
performs sequential data loading from external memory. Subsequently, the program is split
into tasks that are performed concurrently on parallel CPUs in Stage 2 Carpov et al. [1].
Wittrock [24] and Jin et al. [10] present a related problem for the assembly of printed circuit
boards (PCB), where the lots of different sizes of PCBs move sequentially through a three-
stage HFS, with each stage having several insertion machines in parallel to insert electronic
components on PCBs.

An extensive overview of research on the HFSs has been presented by Ribas et al. [16] and
Ruiz and Vazquez-Rodriguez [17]. The scheduling of jobs or lots on a two-stage HFS (having
a single machine at Stage 1) with varied constraints and objectives has been addressed by
Gupta [6], Sriskandarajah and Sethi [20], Kusiak [13], Gupta and Tunc [7], Gupta and Tunc
[8], Hoogeveen et al. [9] and Carpov et al. [1]. However, their work does not consider lot-
streaming. Gupta [6] has shown that the two-stage HFS scheduling problem is NP-hard for
a given number of jobs and the objective of minimizing makespan. We claim that the 1 + m
TSHFS-LSP is an NP hard problem as well, since it is a generalization of the problem studied
by Gupta [6]. If we fix the number and sizes of sublots in 1 + m TSHFS-LSP, the resulting
sublots have a role similar to that of the jobs that require scheduling over the two-stage HFS.
Although, the 1 + m TSHFS-LSP is NP hard in the general sense, yet we will show later that
there exists a special case for which this problem presents itself with a pseudo-polynomial
time solution.

Even though lot-streaming promises benefits while minimizing completion time-based
measures for flow shop configurations and its variants (including HFS), its application in
the HFS-based problems has been rather limited in the literature, due to the added modeling
and computational complexity. Notably, the studies in this regard include those by Tsubone
et al. [22], Zhang et al. [27], Zhang et al. [28], Liu [15], Cheng et al. [2], and, more recently,

@ Springer

Journal of Global Optimization (2024) 89:435-455 437

by Zhang et al. [26] and Shao et al. [19]. Tsubone et al. [22] studied the impact of using
lot-streaming in a 1 + m hybrid flow shop on makespan, total flow time, maximum work-in-
process, and capacity utilization, by using a simulation model. Zhang et al. [28] considered
the 1 + m HFES problem for the objective of minimizing mean completion times of the sublots.
They study the case of equal sublot sizes and have presented two heuristics together with
specifying a lower bound on the solution value. The case of a single lot m + 1 hybrid flow
shop for the criterion of minimizing makespan is presented in Zhang et al. [27]. The problem
is solved assuming equal sublot sizes, which are then modified to obtain an integer solution.
Liu [15] studied the m + 1 HFS problem for the objective of minimizing makespan by treating
sublot sizes to be continuous. They proved a property of an optimal solution, in which the
sublots can be assigned to Stage 1 machines following a round-robin assignment rule. Even
though they specified sublot assignment decisions, sublot sizes were obtained using a linear
program for a given number of sublots. A heuristic method was presented to determine the
number of equal-sized sublots. Cheng et al. [2] made an important contribution towards
reducing the complexity of the algorithm for obtaining an optimal schedule of a special case
of the 1 + m HFS problem (where they studied m = 2). They not only determined an optimal
number of sublots, but also determined their sizes for both continuous and discrete cases. Their
key contribution lies in the development of closed-form expressions for continuous sublot
sizes when the number of sublots is specified. In this paper, we have generalized this result
to 1 + m two-stage HFS (where m > 2). Moreover, we have developed an efficient method
to determine an optimal number as well as sizes of sublots for both continuous and discrete
cases. Zhang et al. [26] present a collaborative variable descent neighborhood algorithm for
a hybrid flow shop problem where a lot is split into consistent sublots for processing, while
Shao et al. [19] address a distributed heterogeneous hybrid flow shop problem in which a job
is split into sublots for assignment to factories (machines) having different capacities for the
objective of minimizing the makespan.

The problem that we address in this paper can be stated as follow: Given a lot of size U
(parts) to be processed in a 1 + m hybrid flow shop consisting of one machine in Stage 1 and
m parallel machines in Stage 2 (all available at time zero), determine the number of sublots
and sublot sizes where each sublot is processed first on the machine in Stage 1 and then on
one of the machines in Stage 2, so as to minimize the makespan. A sublot-attached removal
time is incurred for each sublot on the machine in Stage 1. We consider instances of both
continuous and discrete sublot sizes. We have already presented above real-life examples of
such a problem for both continuous Jungwattanakit et al. [11], Yaurima-Basaldua et al. [25],
and Gholami et al. [5] and discrete Tang et al. [21], Jin et al. [10], and Wittrock et al. [24]
sublot sizes. A sublot-attached removal time is incurred because of preparation of a sublot
before its transfer to a machine at the second stage.

For a multi-stage production process, it is well-known that splitting a lot of a job into
sublots and then processing them in an overlapping fashion over the available machines can
improve a regular measure of performance Kalir and Sarin [12]. A key question that arises
in implementing this idea is how to split the lot, i.e., determination of number of sublots
and sublot sizes. For the problem on hand, because of the presence of parallel machines in
Stage 2, the allocation of sublots to the machines in that stage is another issue that must be
addressed. However, it has been shown that for the case of continuous sublot sizes Liu [15],
it is optimal to allocate the sublots in rotation to the machines in Stage 2. Still, the makespan
is impacted by the number of sublots and sublot sizes, which is what we determine in this
paper. To that end, first, we assume the number of sublots to be given and sublot sizes to be
continuous. Then, the resulting problem is only to determine sublot sizes in order to minimize
makespan. Subsequently, we address the problem of determining both the number of sublots

@ Springer

438 Journal of Global Optimization (2024) 89:435-455

and continuous sublot sizes for the objective of minimizing makespan. Finally, we address
the general problem of determining number of sublots, discrete sublot sizes and allocation
of sublots to the machines in Stage 2 for the same objective function.

The contributions made by the paper can be summarized as follows:

1. A closed-form expression to determine continuous sublot sizes for a given number of
sublots for a new hybrid flow shop lot streaming problem with applications in flexi-
ble manufacturing systems and agile manufacturing, among others, for the objective of
minimizing makespan.

2. A polynomial time algorithm to determine both the number of sublots and continuous
sublot sizes.

3. A method to determine both the number of sublots and discrete sublot sizes that performs
better than the direct solution of a mathematical model of the problem by the commercial
solver CPLEX.

Organization of the paper The remainder of this paper is organized as follows. Section 2
contains the notation used along with a model formulation for the 1+m TSHFS-LSP. Section 3
addresses the case of continuous sublot sizes. Here, we obtain closed-form expressions for
sublot sizes when the number of sublots, n is specified. We also present an algorithm to
determine an optimal value of n in this section besides determination of sublot sizes that
minimize makespan. The case of discrete sublot sizes is addressed in Sect. 4, wherein a
branch-and-bound-based heuristic is developed to obtain the number and sizes of sublots as
well as the assignment of sublots to the machines in Stage 2 for the objective of minimizing
makespan. The performance of this method is compared with that of directly solving the
proposed model formulation for the 1 + m TSHFS-LSP by CPLEX® for which the results
are presented in Sect. 5. Concluding remarks are then made in Sect. 6.

Keeping in view that we are studying a HFS, it is assumed that m > 1 for the material
presented in Sects. 3 and 4. For the case when m = 1 (i.e., we have a two-machine flow shop)
with multiple sublots, we refer to Vickson [23].

2 Model formulation

Consider the following notation.
Parameters:

U Lot size (u is used as an index for lot size, 1 <u < U).

t Removal time for a sublot at the Stage 1 machine incurred before transferring it to any
machine in Stage 2 (note that the unit processing time of the machine in Stage 1 is
fixed at unity; other parameter values, p and ¢, and variables measuring time are scaled
accordingly).

p Time to process one part at any machine at Stage 2.

m Number of machines available at Stage 2 (note that j is used to represent an index of a
machine and k is used to represent number of machines at Stage 2,1 < j, k < m).

7 Maximum number of sublots allowed, for both continuous and integer-sized sublots
(note that i is used to represent indices of a sublot and n is used to represent number of
sublots, 1 < i, n < n).

p=({@+1)/p.

Decision Variables:

M(u, n, k) Makespan value of an optimal schedule, for a given u, n and k, where the lot of

size u is split into n sublots and processed on precisely k£ machines in Stage 2.

@ Springer

Journal of Global Optimization (2024) 89:435-455 439

Note that when the number of sublots (k) is less than m, then these sublots will
be processed on k machines in Stage 2 because these machines will be available
when the sublots finish processing on the machine in Stage 1. However, when
k > m, the sublots will be processed on m machines. Consequently, we use the
notation as indicated.

Mu) Makespan value of an optimal schedule for a given lot size u. The number of
sublots in such a schedule is designated by 7 (1), and these sublots are assigned
to k(1) machines in Stage 2 (1 < k(u) < m, 1 < A(u) < 7).

M (u, n,) Makespan value of an optimal schedule, for a given u and n,. An optimal
number of sublots in such a schedule is designated by n(u, n,), and these
sublots are assigned to Iz(u, n,) machines in Stage 2 (1 < Ig(u, ny) < m,
1 <au, no) <no, <n.

Si(u, n, k) Sublot size for theith sublot (sublots are numbered in order of their sequence
on Stage 1 machine) in a schedule, where the lot of size u is split into
n sublots and processed on precisely k machines at Stage 2. We also use
sublots numbered in the reverse order in which case s; (1, n, k) represents
size of the ith sublot from the end of a schedule in Stage 1; i.e. 5;(u, n,
k) = sp—i+1(u, n, k). Note that the sublot sizes need not be equal. They are
appropriately determined for the continuous and discrete cases.

C1,i(u, n, k) Completion time of the ith sublot in Stage 1 when the lot of sizeu is split
inton sublots and processed on precisely k machines in Stage 2.

Cy,i,j(u, n, k) Completion time of the ith sublot on the jth machine in Stage 2 when the
lot of size u is split inton sublots and processed on precisely k machines at
Stage 2 (1 < j <k).

We now present a mixed integer program (MIP) model for the 1 + m TSHFS-LSP, and
designate it as Model TSHFS-LSP. We also define three sets of binary variables:v; = 1, if
sublot i is used, and = 0, otherwise, Vi = 2, ...7; x; ; = 1, if sublot i is assigned to machine
J in Stage 2, and = 0, otherwise, Vi =1, ...n, Vj =1, ...m; and h; = 1, if jth machine
is used for scheduling any sublot in Stage 2, and = 0, otherwise, Vj = 1, ...m. We use an
upper bound on the number of sublots. Since all of these sublots need not be used, variable
v captures this fact.

2.1 Model TSHFS-LSP

m
Minimize: M + ¢ Zl hj
]:

M>cy,j, Vi=1...m 1)

c11=s81+1)

cri>cri—1+si+ty, Vi=2,...10 3)
crijzeLi+psi—0(1—xi ;). Vi=1,...0,j=1...m 4
crij =it j+psi—0(l—x;;),Vi=2,...0,j=1...m 5)
€,0j>¢i1,j,Vi=2,...0,j=1,...m (6)

@ Springer

440 Journal of Global Optimization (2024) 89:435-455

m
> oxij=1Vi, W @)
j=1
n
5=U ®)
i=1
S,‘SUU,‘,Vi:l,...ﬁ)
v;i <vi_1, Vi =2, . (10)
n n
oxij <Y xijuVi=1,.m (11)
i=1 i=1
si>0, Vj=2,...m (12)
cLi =0, v €{0, 1}, nj € {0, 1}},\7’1' =1, j=1...m (13)
2,i,j =20, x;,; €{0, 1}

The objective is to minimize the makespan of the schedule, along with a small penalty
proportional to the total number of machines used in Stage 2 (we use a small enough value
of € in order to minimize the number of machines used without compromising the makespan
value; here, we use €). Constraints (1) enforce the makespan value to be at least as large as the
last sublot’s completion time on each machine in Stage 2. Note that, it is not necessary for the
last sublot (or any other sublot) to have non-zero size for its completion time to be defined.
The relationships among sublots’ completion times are captured by Constraints (2) and (3)
over the Stage 1 machine, and by Constraints (4), (5), and (6) over the machines in Stage 2.
Constraints (7) assert unique assignment for each sublot in the second stage. Constraint (8)
ensures all sublot sizes to add up to the lot size U. Constraints (9) ensure that the sublot size
is zero when a sublot is not used. Constraints (10) strengthen the model by adding symmetry-
breaking conditions. Constraints (11) ensure that no sublot is assigned to a machine when
that machine is not used. Constraints (12) strengthen the model by adding another symmetry-
breaking condition that enforces the number of sublots assigned to the machines to be in the
non-increasing order of their indices. Constraints (13) define the domains of the variables. A
standard value of 6 for use in constraints (4) and (5) is taken as pU.

2.2 Solution methodology for continuous sublot sizes

In this section, we determine an optimal schedule for the 1+m TSHFS-LSP for the case when
the sublot sizes can take on continuous values. It is further divided into two sub-sections.
Sect. 3.1 addresses the determination of sublot sizes S; (U, n, m) (or S; (U, n, m)), Vi = 1,
...n, allocation of sublots to the Stage 2 machines, and makespan value M (U, n, k) when
the number of sublots is fixed to n(<), while in Sect. 3.2, some key results are derived for
use in the determination of an optimal schedule when the number of sublots is not specified.

2.3 Determination of optimal schedule when the number of sublots is fixed

Theorem 1 For a given lot of size U, number of machines, m (> 2), and number of sublots,
n,

@ Springer

Journal of Global Optimization (2024) 89:435-455 441

1. if n < m, the optimal continuous sublot sizes can be obtained by only utilizing n number
of machines, and assigning each sublot to a different machine in Stage 2. The sublot sizes
are thus obtained by solving the following expressions.

Ei:pEi,1+t/p,Vi:2,...n (14)

ifi =U (15)
i=1

2.if n > m, the optimal continuous sublot sizes are obtained by solving the following
expressions.

Ei:pgi,1+l/[),\7’i:2,...m (16)

Si=@Gi—1...+Si—m)/p+mt/p,¥Yi=m+1,...n (17)

anf,- =U (18)
i=1

Sublots are assigned to the machines in Stage 2 following the ‘round robin assignment’

rule; i.e., sublots 81, Sy, Sama+1, - . . are assigned to machine 1, sublots S», Sy42, Som+2,
... are assigned to machine 2, and so on.

Note that S; is used as a shorthand for S;(U, n, m) here. In order to minimize the
makespan, the completion times of the last sublots assigned to the machines in Stage 2
should be as close to each other as possible. Starting backward, Expressions (14), (16) and
(17) specity sublot sizes such that the processing of a sublot overlaps those of the requisite
number of subsequent sublots without creating an idle time on any machine in Stage 2.

The proof of Theorem 1 and those of other results in the sequel are presented in the
Appendix section in order not to detract the reader.

Remark 1 For the case, n < m, M(U, n, m) is equivalent to M(U, n, n); similarly, S; (U,
n,m)=8;U,n,n),Vi=1,...n.

Determination of S; (when n < m). The value of S| is obtained by straight-forward
substitutions using Eqgs. (14) and (15) as follows.
Up-1)—t(p"—np+n—1
5, = (=1 —1(p" —np+n—1) (19)
pt—=1
5 :pi—1§1+t<p"—1 —1),Vi =2,...n (20)

Determination of S| (when n > m). In matrix notation, Egs. (16)—(18) can be represented
in the form, Ax = b, where x denotes a vector of unknown sublot sizes of dimension n.
As such, various established exact methods can be used to obtain X, or equivalently, Si,
Vi = 1, ...n. These include ‘Gaussian Elimination’, which is known to have arithmetic
complexity of O(n?). At best, the inverse operation takes O(n>37®) order of complexity
using the Coppersmith-Winograd algorithm Coppersmith and Winograd [3], which involves
performing ‘LU decomposition” of matrix A. Our aim is to further improve upon the time
complexity of obtaining S;, Yi = 1, ...n, by utilizing the inherent structure present in
(16)—(18).

By using Theorem 1 and the results from linear algebra pertaining to recurrence sequences,
the value of S is obtained by the expression given in (21) when p # m and by (22) when

@ Springer

442 Journal of Global Optimization (2024) 89:435-455

p = m (for the derivation of these expressions and generation of these two conditions, please
refer to Appendix EC.2).

— ((wn —e—nc)+ 1(22"1_21 Bk — bk)(p"‘1 - 1)))
o Bk — bk)
U = ((@n —ne’ —nn+ 1)’ /2)+;(z (B, k/—nbk/)(1-1)))

Zznz_l (lgn,k/ - I’lbk/)pk*1

Among the scalars, of particular interest are 8, ; and w,, Vi = 1, ...m — 1, when p # m,

2D

51 =

(22)

51 =

and B, ; and w,, Vi = 1, ...m — 1 when p = m. These are obtained as follows.
[Bu1 Bu2 - Bum—t]T =B R, (23)
w, =W, Rm mm (24)
[ﬂn,l’ﬁn,zhnﬂn,mq/] =Bu,m-1/ Rm s and (25)
o, = wyR,L e, (26)

where By, -1, Ry, and By, 1 are scalar matrices, and r?,, w,, and w',, are scalar
vectors. Note that the calculations in Egs. (23)—(26) involve computation for the inverse of
matrix Ry, ,», which has an order of complexity, O(m?>37°) based on the method described
in Coppersmith and Winograd [3]. Also, it takes O(mn) time to obtain rJ,, thus requiring
O(m2'376 + mn) time to obtain S| alone. Finally, we can determine sizes of the remaining
n-1 sublots in no more than O(n) time, after having computed the value of S, as shown
next. Overall, the complete schedule can be obtained in polynomial time, O(m*37 + mn +
n) or O(m*37). Since, m < < n typically, our approach offers a significant reduction
in time complexity over the conventional approach as discussed earlier; i.e., compare O
(m2'376) v/s O(n2'376), respectively.

The rest of the sublot sizes, S;, Vi = 2, ...m, follow from the S| value, and they can be
obtained using (16) as follows.

5 =o' ls H(pf—l - 1)w =2, ..m 27)

The value of S,,41 can be obtained by using (17). Fori = m +2, ...n, S; is obtained as
follows.

Si = pSi—1 —Si—m—1/p, YVi=m+2,...n (28)

Equations (16)—(18) do not guarantee attainment of non-negative values for all sublot
sizes. The next result provides necessary and sufficient conditions that ensure the schedule
obtained using Theorem 1 is feasible; i.e. all the sublot sizes are non-negative.

Corollary 1 If the last sublot size is non-negative, then all other sublot sizes are strictly
positive; i.e.,S; > 0= 8§; > 0, Vi =2, ..., n, and the complete schedule is a feasible one.

Corollary 2 The schedule given by the sublots is critical (i.e., no sublot waits for processing
over the machines in Stage 2, once it starts processing on the machine in Stage 1, and there
is no idle time on the machines in Stage 2), and the completion times of the last sublots on
Stage 2 machines are the same. In such a case, the makespan value, M (U, n, m)is given by,

MU, n,m)=U +nt+ ps;(U, n, m) 29)

@ Springer

Journal of Global Optimization (2024) 89:435-455 443

The next question of interest is: how does S| vary with U and n, and when in fact can
it become negative? Indeed, we show in Theorem 3 below that S| decreases monotonically
with increment in n, and thus it can become negative beyond certain value of » that we call
ny, for n feasible. This result is helpful in determining optimal #, a topic that we address in
Sect. 3.2. We present a result in Theorem 4 that directly aids in the determination of optimal
n as well. We also present below an algorithm to findns. But first, we show in Theorem 2
how sublot sizes vary with variation in U for a given n.

Theorem 2 For a given number of machines, m(> 2), and the number of sublots, n, the
values of S;(U, n, m), ¥i = 1, ..., n, increase (decrease) with increment (decrement) in
lot size, U.

Theorem 3 For a given lot of size, U, and number of machines, m(> 2),

1. S1(U, n, m) decreases monotonically with increment in the number of sublots, n.
2. There exists an integer, n;i, s.t.Nn > nj, the solution given by Theorem lis infeasible; i.e.,
S1(U, n, m) is negative (we designate by nsthe smallest of all such n; values and n.)

Corollary 3 For a given U, noand m(> 2),

1. if §1 (U, ny, m) < 0, then a solution given by Theorem 1 is not feasible Vi > n,,.
2. it S1(U, n,, m) > 0, then a solution given by Theorem 1 is feasible Vn < n,.

Remark 2 The definition of n together with Corollary 3 imply that S1(U, n, m) > 0,
Vn < ny and thatif ny # 7, then S{(U, n, m) <0, Vn > ny.

‘We now present an algorithm to obtain ny, based on the binary search method.
Algorithm 1 Determination of n ¢, for a given U and m(> 2).

Initialize n; = 2, and n,, = n, at the start.

If S| (U, ny, m) <0, go to Step 3, else if S1 (U, ny, m) > 0,letny = n, and stop.

If S| (U, n;, m) >0, go to Step 4, else if S1(U, n;, m) <0, letny =n; — 1 and stop.
Letn, = [(n;+ny)/2],if S| (U, n;, m) < Othenn, =n, —1,else,n; = n,+ 1. Return
to Step 2.

Ll S

Theorem4 Fora given U,n(< nf)and m(> 2), there exists an integer, ng, s.t. the makespan
for the lot of size U obtained using the number of sublots larger than ngs, where ng = n +
LpSl U, n, m)/tJ, does not improve over the makespan obtained using n sublots.

Another interesting question to investigate is how does s (and accordingly other sublot
sizes) vary with p. To understand this behavior, consider the case of n < m. We can re-write
Expression 19 for 51, as follows:

51 =

Up=1) _ [, _ne=D
ot —1 ot —1
Recall p = 2 Note that as p — 00, p — 1,and when p — 0, p — o0. These values

of p represent the situations where the processing time on the machines in Stage 2 is very
large or very small. Note that

lim s; = —¢, and also lim s; = —¢
p—>00 p—0

That is, in the limit, the solution becomes infeasible basically due to the presence of
removal time ¢. The expression for 51, for the case when n > m, albeit more complex, has a
similar structure, and will lead to infeasible solutions as well under these conditions.

@ Springer

444 Journal of Global Optimization (2024) 89:435-455

2.4 Determination of an optimal schedule when the number of sublots is
not specified

By Remark 1, we have the following expression for optimal makespan value,

M(U) = min MU, n, k) = min MU, n, k) (30)
1nn 1nn
lkm 1k min(n, m)

Note that, for 1 < m < my < n, MU, n, my) < M(U, n, mp), since we can always
transfer mo — m1 sublots from the optimal schedule on m; machines to each one of the
extra my — m1 machines in Stage 2 that become available when using m, machines in total.
Therefore, Expression (30) reduces to the following.

MU) = min M(U, n. min(z, m)) (31)

For a given set of problem parameters, U, i, m, t, and p, we next present an algorithm
to determine the optimal makespan value, M(U), following (31), which leverages upon the
results given in Remark 2 and Theorem 4 in order to reduce the search space for n. Even
though, an overwhelming number of experimental results show that the optimal makespan
value for a specified number of sublots, 7, is a convex function of z (in the discrete sense), we
only state this as a conjecture at this point and do not use it in the design of the algorithm. As
such, in the worst-case scenario, we perform a linear search from 1 to 7 to determine optimal
n. We designate the algorithm as Linear Search Algorithm (LSA). We also determine, M U,
n), V1 < n < n, within this algorithm, which will be used later in Heuristic 1. Algorithm LSA
has a pseudo-polynomial time complexity of order (’)(m2'376 + mﬁ) (note that the parameter,
7, is usually expressed as a linear function of U). The steps of LSA are as follows.

Algorithm LSA Determination of best makespan value (continuous sublot sizes).

1. Let M(U) < MU, 1,1) < U+t+pU, A(U) < 1,andm(U) < LMU, 1) « M
U, 1, 1). Letk < 2.

2. If k < m, continue, else go to Step 5.

Letn < k.Ifn <nygU, m), contmue else go to Step 7.

4. Obtain M(U, n, k) by (29). If M(U)e > M(U, n, k), then let M(U) < M(U, n,

k), n(U) < n, and m(U) < k. Let M(U) <« mm{/\/l(U, n—1), MU, n, k)}. Let

k < k + 1. Return to Step 2.

Letn < m.Ifn <ns(U, m), letn < ny(U, m), and continue, else ¢ g0 to Step 7.

6. Obtain M (U, n, m) by (29).If M(U)e > MU, n, m), then let M(U) < MU, n,
m), n(U) <« n,and m(U) <« m. LetM(U n) < mln{/\/l(U n—1), MU, n, m)}.
Letn <« rmn(n ng(U, n, m)) Letn <— n+ 1. If n < &, then repeat Step 6, else go to
Step 7.

7. Ifn <, let M(U, n') < M(U, n— 1), Va' = n, ...7. Stop.

e

e

3 Case of discrete sublot sizes

In this section, we present a Branch-and-Bound-based Heuristic (B&BH) to solve the 1 +m
TSHFS-LSP, for the case when the sublot sizes are discrete (integer). However, for compar-
ative purposes, we also solve Model 1 + m TSHFS-LSP directly by using a state-of-the-art
commercial solver, for a given U, n, m, t and p, after imposing the integrality restrictions

@ Springer

Journal of Global Optimization (2024) 89:435-455 445

on sublot sizes. The results of an experimental investigation on the performance of these
methods that provide information on the makespan value, M(U) = M* —¢ ZT:] hj, num-

ber of sublots, A(U) = Z?: 1 vF, and the number of machines required,7(U) = Z;”: 1 h’]f,
corresponding to the best MIP solution, are presented in Sect. 5. Although we describe
the proposed B&BH in detail in Appendix EC.9, we briefly discuss here some of its key
features. It is a constructive procedure, wherein a tree structure evolves for a given set of
problem parameters, Ui, m, t, and p, starting from a single root node. At any time during
the procedure, the tree structure may contain multiple nodes with each node in the proposed
branch-and-bound scheme representing a partial schedule (note that we use the word ‘partial’
in a general sense to encompass a complete schedule as well). Using the results derived for
the case of continuous sublot sizes, we impose the following at every node generated in the
tree: (1) the maximum number of sublots in a schedule to be smaller than 7 (because of which
we call it a heuristic method), and (2) a tight lower bound on the makespan value attained by
using a sublot-based bound and a machine-based bound, which helps in reducing the size of
the search tree. During the course of this procedure, a node corresponding to the incumbent
solution is maintained, which yields the best schedule so far for the 1 + m TSHFS-LSP at its
termination.

4 Computational investigation

In this section, we investigate the performances of methods LSA and B&BH against the
direct solution of the MIP Model 1 + m TSHFS-LSP (the sublot integrality constraints are
relaxed for comparing its performance with that of LSA) using CPLEX®. Both LSA and
B&BH were implemented and solved using C++ on Xcode (v10.0), whereas the MIP model
was solved using C++ Concert library of CPLEX® (v12.8) in multi-thread mode. All tests
were conducted on a 2.6 GHz Intel Core i5 processor, with a maximum available RAM of
8GB.

We present six tables of comparative results—Table 1 for the continuous case, and Tables 2,
3,4, 5, 6 and 7 for the discrete case, one for each unique pair of U and ¢ values. In all of
these tables, the maximum number of sublots,z, is fixed at half of the lot size, U, which is
fixed at 1000 for the continuous case, and it takes the value of either 100 or 1000 for the
discrete case. For both cases, the value of 7 is fixed at either 0.20, 1.00, or 5.00 secs, whereas
the value of p is varied. A tolerance value of T = 0.1% is set for the optimality gap for the
direct solution method CPLEX® as well as for B&BH. As such, a test run was terminated
either when the allowable CPU time limit of 1800.00 secs was reached, or when the lower
bound on the makespan value and the best incumbent solution’s makespan value fell within
the tolerance value set for the optimality gap.

For the continuous case, we observe that the best makespan values obtained by the direct
solution method and LSA are comparable in almost all the test cases. However, the striking
difference is in the time taken by the two methods before termination. In all the test cases,
LSA achieves an optimal solution in a matter of milliseconds, amounting to nearly a 100.00%
drop compared to the time taken by the direct solution method.

For the discrete case, first, we make remarks on the general trends observed for the 1 + m
TSHFS-LSP based on the results presented in Tables 2, 3, 4, 5, 6 and 7: (1) For a given U
and m, the computational difficulty (time taken to achieve optimality within the prescribed
tolerance value) increases for both methods either with an increment in the value of p for a
fixed ¢ value, or with a decrement in the value of ¢ for a fixed p value. This is attributed to

@ Springer

Journal of Global Optimization (2024) 89:435-455

446

PIOQ UT POSyIBW dI8 UOHBUIULIS) 910Joq
own pue uedsayew 1s9q JO SAN[EA JOMO]) ‘spoylowl ay) yioq Suowry ‘9, 1:0 < ded Aewmndo yiim A[Iee 91eUNILIY) 0} PIJIOJ Sem POYIAUW UOTINJOS JOIIP Y} ‘SASLD ASAY) IO, 4

0 0001 S 93 0°6LIT 6’1 v'Tl S 9¢ 80811 #0"0081 0
00 0°001 S L €'8¢01 8T 00 S L €'8€01 6'70€1 o1
00 6'66 € € L8101 6'C 10 € € L8101 s T0
00 0°001 (4 €9 §TIST 0T 098 T 9¢ $TIST £0°0081 0
00 07001 z 8 €rr0l 6’1 00 T 8 €0l 1°0S 01
00 666 T € 88101 9'¢ 00 4 € 88101 9 T0 0
0 0001 S 8L 9'8L0T LT TL S 8 L'T801 £0"0081 0
00 0001 S o1 00101 9'¢ 90 S 01 00101 #0"0081 01
00 0001 4 4 94001 €€ 10 14 14 94001 €L T0
00 0001 T YL §'T0ST €€ 9'6S T 9% §'T0ST #0"0081 0
00 0001 T Tl 12101 (14 10 T (4 12101 8°TL o1
00 6'66 T 4 04001 8 10 T 14 0'+001 IS T0 01
00 0°001 S 8¢l Torol I'e 8¢ S 8¢l T0ov0l %0"0081 0
00 0°001 S Tl $'T001 | &4 0 S Tl $2001 £0°0081 01
00 0°001 v 9 1001 e 10 14 9 71001 '8 T0
00 07001 T s $°00ST 8T 6°6S T ¢e $00ST £0°0081 0
00 07001 T S1 1°€001 9T 1'0 4 S1 1°€001 9'1CT 01
00 6°66 T S 11001 e 1'0 4 S 1'1001 Ts T0 0
uedsoyen swn (nMw (mu 000)2% (o9sTyqIur) own %des3 (nMw (nu 000)3% (00s) auu,
VST i doip 9 VS @XA1dD £q uonnjos 30911 d)

SOZIS 10[qNS SNONUNU0—JST-SIHS.L ¥ + | 9y 10J S)nsay | a|qel

pringer

As

447

Journal of Global Optimization (2024) 89:435-455

PIOQ UI pasJeul 21 UONBUIULI) 210Joq W) pue uedsoyew 1s9q JO SaN[eA JOMO[Y} ‘SPoyIaw Y} yjoq Suoury Juiod uoneuruLa) 1e pajiodar anfea punoq Iomof 3y} pue
(9) de3 Krewndo oy (A1) pue ‘uni e SULINP PAAIISQO SBM UOTIN[OS JUQUINDUIT JSAQ Y} UdYM W) Y SIUsaIdar ($09s) awin pue ‘UonNNos JUQUINDUI 1S9q Y} 03 3uo[aq pajiodal
()w pue “(11)u (/1) W uedsaxyew jo sanfea oy (1) ‘91" < Sem uoneuruid) Je ded Anpewndo oy (11) ‘5995 ()" (0] 18 AJLUIULIA) 0] PIJIOJ SeM UNI 153 B (T) ‘SISBI 9SaY) IO

0 099 (6'801) 1°0 01 0T 0601 9719 TroneL o1 1T «T60I x0TE9T 0S 0I SI
0 €'es (Lson 1o 01 €l 0901 €00€ (8°001) 6 L 71 0901 %0009 0€ 0l 71
T0— €96 (s'zoD 1°0 L L 9701 099 (9:001) 81 14 L «b"T0T x0°09 0T 01 €l
70— 686 6101 1°0 S S 0201 6l (900D T'1 4 9 %0201 «0°9T 90 01 4!
70— T'16 Tron 1o € € 101 9'ST (600D 10 I 14 0101 0Ll AV 1
L0 6'S8 (TSI 00 S LE TSI 0'pST (T10D 8°C1 S 8y x09I1 «0'8PLT 0'S S 01
T0 6'S6 ('901) 1°0 S 91 9'901 9€L (8°001) 9°S S LT %8901 x0"00L 0°¢ S 6
70— 886 (ST0D 10 S 8 9701 T'1c ((ALKA 14 L «C0T 4 01 S 8
70— 866 D10 S S 0201 (187 (910D T0 4 9 #0201 #0'8% 90 S L
TO0— 699 (T'101) 00 4 € 101 9'€ (0'101) 0°0 I ¥ 0101 011 0 S 9
00 786 (TS 10 4 4! ¥'TST Tee (0°€01) T'6S 4 € «¥'TST #0°ST 0S T S
00 8'86 TS 00 4 T ¥'T81 §Te (8201) 9'CE T 9T «¥'TSI x0°0C 0¢ 4 ¥
00 106 (Lzon 10 4 6 8201 ST LoD 10 4 6 8201 S'S1 01 4 €
00 LT (8'101) 00 4 9 8101 Al L1010 4 9 8101 Sl 90 4 T
00 €yl — 0101 00 4 ¥ 0101 I (6:001) T°0 I ¥ 0101 01 0 4 I
uedsoyeur oum (gD Rdd (Dw (Dy (Dy E®eum (gDdd (Mw (DY (D (09s)oum
Ha»d
i doip 9 Ha»4 @XA1dO £q uonnjos 10911 d W moy

(8095 07°0 = 4 001 = /2) S9ZIS 10[qNS JIOSIP—JST-SAHS.L W + [U JoJ SINSIY Z d|qeL

pringer

Qs

Journal of Global Optimization (2024) 89:435-455

448

PIOQ UI pasJeul 21 UONBUIULI) 210Joq W) pue uedsoyew 1s9q JO SaN[eA JOMO[Y} ‘SPoyIaw Y} yjoq Suoury Juiod uoneuruLa) 1e pajiodar anfea punoq Iomof 3y} pue
(9) de3 Krewndo oy (A1) pue ‘uni e SULINP PAAIISQO SBM UOTIN[OS JUQUINDUIT JSAQ Y} UdYM W) Y SIUsaIdar ($09s) awin pue ‘UonNNos JUQUINDUI 1S9q Y} 03 3uo[aq pajiodal
()w pue “(11)u (/1) W uedsaxyew jo sanfea oy (1) ‘91" < Sem uoneuruid) Je ded Anpewndo oy (11) ‘5995 ()" (0] 18 AJLUIULIA) 0] PIJIOJ SeM UNI 153 B (T) ‘SISBI 9SaY) IO

v'T €98 0€TD 00 01 9 0°€CT Loy (050D L9T 0T 1T %0921 #0091 0S 0I 9
00 L'16 6¥ID 10 01 1 0°STI L'SPT (0501 L'8 L T «0°STI #0"80€ 0¢ 01 ¥1
00 786 (690D 10 9 9 0°L0T €€ (0eomD L€ € 9 #0°LOT #0061 0T 01 €1
00 $'66 (9°501) 0°0 S S 9501 6'8 00D ST 4 S %9'G0T %09 90 Ol 4!
00 T09 (€01 0°0 € € v'€0T 89 (r'€01) 0°0 4 € ¥€01 'L To 01 1
€T €L6 (6°L2D) T0 S 44 0°8C1 9°6v (0801 9°LT S 81 #0'T€T 00191 0°¢ S o1
60 8'86 (0911) 00 S 4! 0911 1'7C (0°801) 69 S [T VAR %09 0¢ S 6
60— 0L6 (0801 0°0 S S 0801 98 (690D 1°0 € 9 0°L0T S'18C 01 S 8
00 9°L6 (950D 1°0 S S 9601 61 (ss0D 1°0 4 S 9501 708 90 S L
00 1S9 (€€0D 10 € € 7'€01 61 (€e0D 1°0 4 € 7'€01 'S 0 S 9
00 €66 (8€SD 10 4 4! 05T (44! (s8¢ v'61 4 Il =07ST #S'T 0§ 4 S
00 L'66 (69D 10 4 St 0°LST 9 (TozD e 4 W #0'LST «0°TT 0°¢ 4 14
00 S8 — (0801 0°0 4 9 0'801 80 (0801 0°0 4 L 0'80T L0 0T 4 €
00 L'0g (9°501) 0°0 4 S 9601 S0 (9°501) 0°0 4 S 9601 80 90 4 4
00 9'T¢ (#'€01) 0°0 4 € v'€0T €0 (r'€01) 0°0 4 € v'€0T S0 T0 4 I
uedsoyey ownl (gD pded (Mw (MY (D E®eum (gD Rdd (Dw (DY (Dypy (99s)oum
Ha®d
yia doxq 9 Ha»4 @XA1dO £q uonnjos 10211 d W moy

(8095 00'T = 4001 = /2) S9ZIS 10[qNS JAIOSIP—JST-SAHS.L W + [U} JoJ SINSY € d|qel

pringer

As

449

Journal of Global Optimization (2024) 89:435-455

PIOQ UI pasJeul 21 UONBUIULI) 210Joq W) pue uedsoyew 1s9q JO SaN[eA JOMO[Y} ‘SPoyIaw Y} yjoq Suoury Juiod uoneuruLa) 1e pajiodar anfea punoq Iomof 3y} pue
(9) de3 Krewndo oy (A1) pue ‘uni e SULINP PAAIISQO SBM UOTIN[OS JUQUINDUIT JSAQ Y} UdYM W) Y SIUsaIdar ($09s) awin pue ‘UonNNos JUQUINDUI 1S9q Y} 03 3uo[aq pajiodal
()w pue “(11)u (/1) W uedsaxyew jo sanfea oy (1) ‘91" < Sem uoneuruid) Je ded Anpewndo oy (11) ‘5995 ()" (0] 18 AJLUIULIA) 0] PIJIOJ SeM UNI 153 B (T) ‘SISBI 9SaY) IO

00 606 (6°5S1) 0°0 o1 01 0961 Se91 (00€T) L'91 01 o1 x0'9G1 «0€PC 0§ 0l SI
00 €16 6P 10 8 8 oerl 0201 (0°621) 8°6 S 8 %0 €F1 =0°ST 0e 01 vl
00 ¥'€9 (6Tc 10 14 14 0€et 00T (0€T1) 00 14 14 0Tl LS 0T 0l €l
00 0'LS (81D T°0 € € 9811 6's (9°811) 00 € € 9811 Lel 90 0l 4!
00 968 (TTID 00 T (4 el (137 (TTID 00 (4 T Tl S'LT 0 0l 1
90 €86 679D 10 S 1 0°€91 TIE oD I'v1 S 1 #0191 #00L 0 S 01
L0— (Y (6'erD 10 S L (1R%2! €81 6TrD 10 S 8 (1X%48 I'sor 0¢ S 6
00 6'6v (6'cTD 10 ¥ 14 0°€Cl 8¢ (0°€ZD 00 ¥ ¥ 0'€Cl SL 01 S 8
00 $'69 (811 10 € € 9811 ST (9°811) 0°0 € € 9811 8 90 S L
00 018 azinro 4 4 Tl Tl (T2 00 4 T TTIl €9 0 S 9
00 9'66 (8'€90) 1'0 T 1 0'v9T '8 (S€sD) 0¥ 4 1T «0%9¢C x0TI 0s T S
00 $'T6 0€L1) 00 T 1 0€LT 8'€ 8TLD 10 4 4! 0°€LT L0S 0¢ T ¥
00 61 6+ 10 T 14 0sel S0 0°sT1) 00 4 14 0TI S0 01 4 €
00 L9¢ (6811 T°0 T € 0611 €0 0°611) 00 4 € 0611 S0 90 4 T
70— £ee azinro T 4 (448! 0 0TI 00 4 4 0CIT €0 40 T I

uedsoyey swiy (gD %D (MWw (MY (Dyy G®eun (gDRdd (Dw (MY (D (09s)swn

Ha®d
yia doip 9, Ha»d @XHT1dD £q uonnjos 10211 d W moy

(8095 00°S = 4001 = /2) S9ZIS 10[qNS JAIOSIP—JST-SAHS.L W + [U} J0J SHNSIY d|qeL

pringer

Qs

Journal of Global Optimization (2024) 89:435-455

450

PIOQ UI payJew 9Je UONBUIULI) 210Joq W) pue uedsoyew)s9q JO san[eA JOMO[Y} ‘Spoylow Y} yjoq Suoury Juiod uoneururio) 1e pajiodar anfea punoq Iomoj 3y} pue
(9) ded Kpewndo oy (A1) pue ‘uni & SULINp PIAIISQO SEM UONN]OS JUIQUUNIUIT IS) UAYM N 9y} SJusAIdal (S99S) dwil) pue ‘uonnjos JuaquIndul 3s2q 3y} 03 Suofeq partodar
()w pue “(11)u ‘(12) W uedsaew jo sanfea ayl (1) ‘910 < Sem uoneuruid) Je ded Apewndo oy (11) ‘5995 00" QOS] 18 AILUIULIA) 0 PIJIOJ SeM UNI 153 B (1) ‘SISBI ASaY) IO

Se 00 (F'1001) T'1 01 €€ =9€I01 %0'SECT (9'8) T'66 01 10l %C0S01 «0"9EP 0s 01 Sl
€Tl 00 (S'2001) 8°0 o1 81 0101 x0°L0T1 T1 666 9 9€ x9'ISIIT %0°L68 0¢ 0l 71
10 €Ll (#'200D) 10 01 01 P'E00T €6871 (#'0001) +'0 01 91 T 001 +0°698 01 01 €l
00 €6L (9'700D 10 L L 9001 6'Ebb (#"0001) T°0 € 01 %9'7001 x0'€CIT 90 Ol 4!
00 009 (I'100D 10 14 ¥ 91001 €'TEE (#0001 T°0 € S 71001 00€8 T0 Ol 1
S9 00 (€€¥01) 80 S €8 %TISOL +0°0bbI (86) 1'66 S 6L At x0'68LT 0°S S 01
0 ¥'€T (8°010D 10 S ST $II0T I'8LEI (9°6+0) 8'SL S €S *8°€101 «0T0IT 0°€ S 6
I'o— €¥8 (6°€001) 0°0 S 6 Y001 L'T8C (9°0001) €0 S 1 «C'€00T %0'SY9 01 S 8
00 (3 (0'2001) 0°0 S 8 72001 L'PEL (8°0001) 10 ¥ 8 %C'C001 %0'60S 90 S L
00 414 (€1001) 00 14 ¥ 91001 16 (S°0001) 10 [4 9 ¥'1001 09L1 0 S 9
00 $'99 (T°0052) 10 4 L1 ¥'20ST TT09 (9°1001) 6°6S 4 €L #"C0ST #0"TPL 0s 4 S
o— L8 (L'€0SD) 00 4 w@ 0v0ST S'TIE (T¥001) T'€€ (4 06 «"T0ST x0'LT6 0¢ (4 12
00 616 (T°€001) 0°0 T €l 900l 8'6E (82001 1°0 4 71 8°€001 0°€8L 01 4 €
00 6L (2001 0°0 4 8 87001 €€ (100D 10 4 6 ¥'2001 068 90 4 4
00 9601 — (60001) T°0 4 ¥ 91001 +'81 (9°000D) 10 4 S 71001 88 0 4 I
uedsoyey owny, (gD Rden (Mw (Nu Dy es)ouny (g DRdd (Dw (DY (Myy (999) swy
Ha®d wis doip 9 Ha»d @Xd1dD £q uonnjos 1021 d W moy

(8935 07°0 = 70001 = /2) SIS 10[qNS JIAISIP—JST-SAHSL W + [9 Joj SHNSY § d|qel

pringer

As

451

Journal of Global Optimization (2024) 89:435-455

PIOQ UI pasJeul 21 UONBUIULI) 210Joq W) pue uedsoyew 1s9q JO SaN[eA JOMO[Y} ‘SPoyIaw Y} yjoq Suoury Juiod uoneuruLa) 1e pajiodar anfea punoq Iomof 3y} pue
(9) de3 Krewndo oy (A1) pue ‘uni e SULINP PAAIISQO SBM UOTIN[OS JUQUINDUIT JSAQ Y} UdYM W) Y SIUsaIdar ($09s) awin pue ‘UonNNos JUQUINDUI 1S9q Y} 03 3uo[aq pajiodal
()w pue “(11)u (/1) W uedsaxyew jo sanfea oy (1) ‘91" < Sem uoneuruid) Je ded Anpewndo oy (11) ‘5995 ()" (0] 18 AJLUIULIA) 0] PIJIOJ SeM UNI 153 B (T) ‘SISBI 9SaY) IO

06 00 (L¥€01) 9°0 o1 9T +0'THOT +0°L88 (S€1D 106 8 Ly #0PPIT «008LT 0§ Of 9
80 00 (LL10D) S0 01 LT «0°€201 x0'9201 (0°S001) +'C o1 ¥T x0'TE0T x0°€T6 0¢ 0l 71
10 €'¢€e (€°6001) T°0 6 6 00101 80021 (0°T001) 6°0 8 6 x0'TTOT x091LT 0T 0l €l
00 08 (12001 T°0 L L 8,001 0°88C (02001 9°0 L L %9°L00T x0'0LY 90 0l 4!
00 L'88 (€001 10 12 ¥ 84001 v€0T (07001 €0 12 12 x9'7001 %0'8LS 70 01 1
1'S1 601 (9'8801) 0°0 S €S 06801 €091 (8'89¢) €'1L S 85T x0°€8CI 01991 0°C S o1
€1 Ley (F'L2oD 10 S (44 08201 8°CI01 L) €66 S ¥C #0'T¥01 «00vLT O°€ S 6
00 8'88 (00101) 10 S 6 01101 020C (0°€001) 8°0 4 o1 #0 1101 #0869 01 S 8
10— §¢€6 (L°2001) 10 S 9 #8001 9'88 (L9001) 10 4 L 9°L001 06SET 90 S L
00 €L (T¥001) 10 4 14 87001 v'79 (8°€001) T'0 € 4 94001 05T 0 S 9
00 1'8L (8°€052) 0°0 4 LT 0405 6'16€ (0°0T0T) L'6S 4 18% #070ST %0961 0§ 4 S
8¢ 768 (9°50ST) 10 4 €2 0°L0ST S'061 (0°6001) T'€€ 4 6T #0°L9ST #0°SL9T 0°€¢ 4 4
00 L'89 (1'z10m) 10 4 01 0°€T101 TLT (120D 1°0 T 4! 0101 0'L8 01 4 €
00 61L— (TLOOT) T'0 4 L 78001 €T (€L00D 10 4 L 78001 0°€l 90 4 T
00 96— (L¥001) 00 14 ¥ 84001 9Tl (6°€00D) 10 4 12 84001 v'9 0 14 I
uedsoyely ouny (gDRdd (Dw (¥ (D ©E®ewL (gDRdd (Dw (DY (Dyy (99s)oum
Ha®d
i doip 9 Ha»d @XA1dD £q uonnjos 10911 d W moy

(8995 00'T = #0001 = /2) SZIS 10[qNS ANIOSIP—JST-SAHS.L W + [U 10 SINSIY 9 d|qel

pringer

Qs

Journal of Global Optimization (2024) 89:435-455

452

PIOQ UI pasJeul 21 UONBUIULI) 210Joq W) pue uedsoyew 1s9q JO SaN[eA JOMO[Y} ‘SPoyIaw Y} yjoq Suoury Juiod uoneuruLa) 1e pajiodar anfea punoq Iomof 3y} pue
(9) de3 Krewndo oy (A1) pue ‘uni e SULINP PAAIISQO SBM UOTIN[OS JUQUINDUIT JSAQ Y} UdYM W) Y SIUsaIdar ($09s) awin pue ‘UonNNos JUQUINDUI 1S9q Y} 03 3uo[aq pajiodal
()w pue “(11)u (/1) W uedsaxyew jo sanfea oy (1) ‘91" < Sem uoneuruid) Je ded Anpewndo oy (11) ‘5995 ()" (0] 18 AJLUIULIA) 0] PIJIOJ SeM UNI 153 B (T) ‘SISBI 9SaY) IO

9°€l 00 111D ¥'0 01 0T «0°STIT #8°L0O0T (09) 9°66 9 8T x0'16CT «0T6LT 0SS 0l S1
€8 00 '¥L0T) TO 01 vT %0°LLOT #0'T0T (S°9) $°66 S e «OPLIT #0'L86 0€ 0l 4!
00 'z (6'8€01) 00 L L 0'6£01 S708 (o's101) €T L L #0'6€0T #0T9ST 0T 0l €1
00 706 (8'8T01) 10 S S 8'620T V'LLY (00101 6'1 9 9 #8'6201 #0968 90 0l 4!
10— L6 (H8I01) 10 € € ¥'6101 v 0TI (0'8101) T°0 € € 8'8T0T 08€9T TO Ol 1
9C €9y (6T8ID 10 S €€ 0p8II 1996 (F"LT0D) ¥'ST S Lz «0SITI «09SLL 0§ S o1
00 L9 (0L801) 10 S SI 08801 1'06S (0'0g01) €S S LT %0'8801 «0SP9T 0°€ S 6
00 g6 (#'8¢0D 1°0 S L 0°6£01 LTIT (1'8€01) 10 4 L 0°6€01 0SELT O S 8
00 008 (L6201) 00 S S 8'6201 (%44 (6'8201) 10 S S 86201 05T 90 S L
o— g6L (0610000 € € 76101 TrE (8'8101) 0°0 € € 8'8T0T 0591 70 S 9
00 698 (LTISDTO 4 ! 015 S'gee (0°5901) 9°LS 4 ST «0¥IST #0"PL 0 4 S
00 €16 (@T¥IsD 10 4 (%4 0°5TST 6'9ST (0'9901) T°0¢ 4 S€ «0'STST #0019 0°€¢ 4 14
00 L (vvon 10 4 8 0°S¥01 791 I¥%01) 10 4 8 0°S¥0T 0TL 0T 4 €
70— v'6S (STTE0T) 0°0 4 9 8'1€0T €6 (€6201) 10 4 9 T0E0T 0°€C 90 4 4
00 89S (S810DT0 4 € T6101 TL (0°6101) 0°0 4 € 0°6T0T L91 40 4 I
uedsoyey owny (gD Rded (Mw (¥ (D s)eum (gD Rded (Dw (MY (Dpy (99s) L
Ha»d
i doip 9 Ha»d @XA1dD £q uonnjos 10911 d W moy

(8995 00°G = 70001 = /2) 9IS 10[qNS JAIOSIP—JST-SAHS.L W + [U JoJ SINSAY £ d|qel

pringer

As

Journal of Global Optimization (2024) 89:435-455 453

an increment in the value of the ratio p/z, which, in turn, has a direct correlation with the
number of sublots, n(U), specified in an optimal schedule, and the number of machines, m
(U), used for allocating these sublots in Stage 2,71. (2) For a given U and m, the makespan
value, M(U), corresponding to an optimal schedule increases for both methods either with
an increment in the value of p for a fixed ¢ value, or with an increment in the value of ¢ for
a fixed p-value, as expected. It also decreases with an increment in the number of machines
available in Stage 2, m, for a given U, p and t. Regarding comparative performances of the
two methods: (i) B&BH is able to achieve optimality in 83 out of the 90 total cases tested. In
the remaining 7 cases, it terminates with the maximum optimality gap of only 1.20% from
its lower bound value. Even so, in such cases, it reports a better makespan value than that for
the direct solution method. (ii) The direct solution method is not able to achieve optimality
in 50 out of the 90 cases tested, with the maximum optimality gap of as high as 99.89%
(note that the direct solution method struggles with ramping up the lower bound value for
higher values of any combination of U, m, p, or 1/t in general). Still, in 20 such cases,
the makespan value matches that obtained using the B&BH, and in only 8 of these cases,
it reports an improvement of 0.13% on an average over B&BH in makespan value (note
that even though the B&BH achieved optimality within the set tolerance of 0.1% in all of
these 8 cases, the lower bound reported for the B&BH is slightly higher than the makespan
value observed for the direct solution method in 6 out of these 8 cases, which is due to the
fact that B&BH is actually a heuristic method, therefore the lower bounds observed for the
two methods are not directly comparable). However, in the remaining 22 cases, the B&BH
reports a smaller makespan value compared with that obtained by the direct solution method
by an average of 3.84% with a maximum as high as 15.12%. In fact, the standard deviation
in the improvement is 4.67% which points to a strong positive skewness in the distribution
of makespan improvement percentage for these 22 cases. (iii) For all the 90 test cases, the
B&BH reports an improvement in makespan value of 0.90% on average compared with that
obtained by the direct solution method. Even though, this improvement in the makespan value
is not relatively large, the difference in time required before termination by both methods is a
clear indication of the superiority of the B&BH, where the CPLEX requires close to 1095.00
secs compared to 315.00 secs for the B&BH on average.

5 Concluding remarks

In this paper, we addressed scheduling of a production lot over a two-stage HFS with 1 + m
configuration using lot-streaming, for the objective of minimizing the makespan. A HFS
configuration is encountered in a variety of practical situations such as continuous processing
industries, flexible manufacturing systems and parallel computing environments. We have
generalized the work of Cheng et al. [2] to an 1 + m HFS. The novelty of our work is in
obtaining an optimal schedule in polynomial time, O(m2'376 + mn), where n is the specified
number of sublots the lot is to be split into for scheduling over m machines in Stage 2, for the
case when the sublot sizes are relaxed to be continuous. A branch-and-bound-based heuristic
is also developed for the case in which sublot sizes are discrete; it relies on the use of a tight
lower bound on makespan. Its efficacy is revealed after testing its performance against that of
the direct solution of a MIP formulation for the 1+m TSHFS-LSP by CPLEX®. The former is
able to obtain solutions within a 0.10% optimality gap in 83 out of 90 instances, and requires
an average of 315.00 secs before termination, whereas the latter obtains solutions within
0.10% optimality gap in only 40 out of 90 instances, and requires as much as 1095.00 s on

@ Springer

454 Journal of Global Optimization (2024) 89:435-455

average before termination. The results clearly show the superiority of our proposed method
over the direct solution approach.

Having analyzed the application of lot streaming to a 1 + m hybrid flow shop problem,
a potential direction for further research includes consideration of more than one parallel
machine in Stage 1, both for the case of continuous and discrete sublot sizes. In particular,
it would be interesting to investigate if the alternate assignment rule applies to the Stage 1
machines as well. Another interesting situation to consider is the one obtained by relaxing
the assumption of parallel machines in Stage 2 and instead considering uniform or unrelated
machines. In the same vein, this situation can be considered for the machines in Stage 1 as
well.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s10898-023-01354-0.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Carpov, S., Carlier, J., Nace, D., Sirdey, R.: Two-stage hybrid flow shop with precedence constraints and
parallel machines at second stage. Comput. Oper. Res. 39(3), 736-745 (2012)

2. Cheng, M., Sarin, S.C., Singh, S.: Two-stage, single-lot, lot streaming problem for a 1+2 hybrid flow
shop. J. Global Optim. 66, 263-290 (2016)

3. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3),
251-280 (1990)

4. Devor, R., Graves, R., Mills, J.J.: Agile manufacturing research: accomplishments and opportunities. ITE
Trans. 29(10), 813-823 (1997)

5. Gholami, M., Zandieh, M., Alem-Tabriz, A.: Scheduling hybrid flow shop with sequence-dependent setup
times and machines with random breakdowns. Int. J. Adv. Manuf. Technol. 42(1-2), 189-201 (2009)

6. Gupta, J.N.: Two-stage, hybrid flowshop scheduling problem. J. Oper. Res. Soc. 39(4), 359-364 (1988)

7. Gupta, J.N., Tunc, E.A.: Schedules for a two-stage hybrid flowshop with parallel machines at the second
stage. Int. J. Prod. Res. 29(7), 1489-1502 (1991)

8. Gupta, J.N., Tunc, E.A.: Scheduling a two-stage hybrid flowshop with separable setup and removal times.
Eur. J. Oper. Res. 77(3), 415-428 (1994)

9. Hoogeveen, J., Lenstra, J.K., Veltman, B.: Preemptive scheduling in a two-stage multiprocessor flow shop
is np-hard. Eur. J. Oper. Res. 89(1), 172-175 (1996)

10. Jin,Z., Ohno, K., Ito, T., Elmaghraby, S.E.: Scheduling hybrid flow shops in printed circuit board assembly
lines. Prod. Oper. Manag. 11(2), 216-230 (2002)

11. Jungwattanakit, J., Reodecha, M., Chaovalitwongse, P., Werner, F.: Algorithms for flexible flow shop
problems with unrelated parallel machines, setup times, and dual criteria. Int. J. Adv. Manuf. Technol.
37(3-4), 354-370 (2008)

12. Kalir, A.A., Sarin, S.C.: Evaluation of the potential benefits of lot streaming in flow shop systems. Int. J.
Prod. Econ. 66, 131-142 (2000)

13. Kusiak, A.: Aggregate scheduling of a flexible machining and assembly system. IEEE Trans. Robot.
Autom. 5(4), 451-459 (1989)

14. Li, S.: A hybrid two-stage flow shop with part family, batch production, major and minor set-ups. Eur. J.
Oper. Res. 102(1), 142-156 (1997)

15. Liu, J.: Single-job lot streaming in m- 1 two-stage hybrid flow shops. Eur. J. Oper. Res. 187(3), 1171-1183
(2008)

@ Springer

https://doi.org/10.1007/s10898-023-01354-0
http://creativecommons.org/licenses/by/4.0/

Journal of Global Optimization (2024) 89:435-455 455

16.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Ribas, I., Leisten, R., Framifian, J.M.: Review and classification of hybrid flow shop scheduling problems
from a production system and a solutions procedure perspective. Comput. Oper. Res. 37(8), 1439-1454
(2010)

Ruiz, R., Vizquez-Rodriguez, J.A.: The hybrid flow shop scheduling problem. Eur. J. Oper. Res. 205(1),
1-18 (2010)

Sedgewick, R., Wayne, K.: Algorithms (Deluxe): Book and 24-Part Lecture Series. Addison-Wesley
Professional (2015)

Shao, W., Shao, Q., Pi, D.: Modeling and optimization of distributed heterogeneous hybrid flow shop lot
streaming scheduling problem. Expert Syst. Appl. 214, 119151 (2023)

Sriskandarajah, C., Sethi, S.P.: Scheduling algorithms for flexible flow shops: worst and average case
performance. Eur. J. Oper. Res. 43(2), 143-160 (1989)

Tang, L., Liu, W., Liu, J.: A neural network model and algorithm for the hybrid flow shop scheduling
problem in a dynamic environment. J. Intell. Manuf. 16(3), 361-370 (2005)

Tsubone, H., Ohba, M., Uetake, T.: The impact of lot sizing and sequencing on manufacturing performance
in a two-stage hybrid flow shop. Int. J. Prod. Res. 34(11), 3037-3053 (1996)

Vickson, R.: Optimal lot streaming for multiple products in a two-machine flow shop. Eur. J. Oper. Res.
85(3), 556-575 (1995)

Wittrock, R.J.: An adaptable scheduling algorithm for flexible flow lines. Oper. Res. 36(3), 445-453
(1988)

Yaurima-Basaldua, V., Tchernykh, A., Villalobos-Rodr 1guez, F., Salomon-Torres, R.: Hybrid flow shop
with unrelated machines, setup time, and work in progress buffers for bi-objective optimization of tortilla
manufacturing. Algorithms 11(5), 68 (2018)

Zhang, B., Pan, Q., Meng, L.L., Zhang, X.L., Ren, Y.P, Li, J.Q., Jiang, S.C.: A collaborative variable
neighborhood descent algorithm for the hybrid flow shop scheduling problem with consistent sublots.
Appl. Soft Comput. 106, 107305 (2021)

Zhang, W., Liu, J., Linn, R.J.: Model and heuristics for lot streaming of one job in m+1 hybrid flow shop.
Int. J. Oper. Quant. Manag. 9(1), 49-64 (2003)

Zhang, W., Yin, C., Liu, J., Linn, R.J.: Multi-job lot streaming to minimize the mean completion time in
m+1 hybrid flow shop. Int. J. Prod. Econ. 96(2), 189-200 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

	Single-lot, lot-streaming problem for a 1 m hybrid flow shop
	Abstract
	1 Introduction
	2 Model formulation
	2.1 Model TSHFS-LSP
	2.2 Solution methodology for continuous sublot sizes
	2.3 Determination of optimal schedule when the number of sublots is fixed
	2.4 Determination of an optimal schedule when the number of sublots is not specified

	3 Case of discrete sublot sizes
	4 Computational investigation
	5 Concluding remarks
	References

