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A Wireless Sensor Array System Coupled With
Al-Driven Data Analysis Towards Remote
Monitoring of Human Breaths
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Abstract—The development of low-cost point-of-care sen-
sor systems is essential for the screening and diagnos-
tics of different diseases. However, this type of application
requires effective integration of different sensor hardware
and electronics in a portable, wireless, and reliable platform.
We report herein the development of such a platform by inte-
grating a nanostructured chemiresistive sensing array (CSA)
with a low-current multichannel electronics board (MEB) and
a Raspberry Pi board (RPB). The system allows the collection
of data from the sensor array responses to volatile organic
compounds (VOCs) and human breaths (HBs), then transfers
the data through a serial connection from MEB to RPB. After
processing and restructuring the data, RPB will wirelessly
upload it to MongoDB Atlas (MDBA) cloud database. A work-
station periodically retrieves the data from the MDBA cloud
database and trains them with customized machine learning
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models. The best result feeds back to the MDBA cloud server, providing a pretrained model for a future prediction or
disease identification. At the same time, the real-time sensor response data are displayed on the Thing speak portal. Once
programed, the system runs in an independent mode without a PC connection with various functions, including remote
monitoring services and ad hoc applications that are typically not accessible from traditional stationary monitoring
systems housed in hospitals and laboratories. Some of these functions are demonstrated by testing the performance in
sensing HB samples with and without simulated lung cancer-specific VOCs, showing promises for potential applications

in remote breath monitoring and screening of lung cancer.
Index Terms— Chemiresistive sensing array (CSA), human

breath (HB) monitoring, lung cancer screening, multichan-

nel electronics board (MEB), remote monitoring, volatile organic compounds (VOCs), wireless sensor array.
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. INTRODUCTION

CCORDING to the World Health Organization, lung

cancer is the most common cancer and one of the
leading causes of death around the world for both men and
women [1], [2]. Early diagnosis (Stage I) could lead to a
higher five-year survival rate (67%) than later stages [3].
Symptoms alone cannot be used to diagnose lung cancer
since they typically do not show until the damage has been
done. New methods for detecting cancer at the early stage are
expected to enhance survival dramatically. As a candidate for
the early diagnosis of lung cancer, breath analysis of volatile
organic compounds (VOCs) attracted a considerable amount
of scientific and clinical interest in recent years in medical
applications due to its non-invasiveness, real-time capability,
and wide applicability [4]. The investigation of breath and
samples from cancer cell culture headspace can be performed
using a variety of analytical methods. Gas chromatography
coupled with mass spectrometry (GC-MS) is one of the most
popular methods for analyzing breath samples [5]. A study
conducted on breath samples from 65 patients with different
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stages of lung cancer and undergoing different treatment
regimens using GC-MS successfully identified eight potential
marker compounds, which showed the difference in concen-
tration between healthy volunteers versus cancer patients [6].
Another study used GC-MS coupled with statistical methods
to identify VOCs found in biological samples such as exhaled
air from 108 patients with lung cancer, 121 healthy volunteers,
and 24 people with other lung diseases. They were able to
get an 80% correct classification rate for validation data [7].
However, GC-MS instruments are not portable and expensive.
Furthermore, sample preparation, data analysis, and analyte
identification are all time-consuming [8], [9]. Chemiresistor
arrays made with molecularly capped gold nanoparticles as
sensing materials have been used for the detection of VOCs
in breath samples, which can potentially be used as a portable
and cost-effective diagnostic tool for the early detection of
lung cancer [10], [11], [12], [13], [14], [15], [34]. The use
of pattern recognition algorithms in combination with these
arrays has also been shown to improve their accuracy in
detecting VOCs [16], [17], [18], [19], [25]. Recent studies
on nanoparticle-based chemiresistor arrays have also shown
the capability to detect tumors, diabetes, and other disor-
ders [20], [21], [22], [23], [24], [27].

In contrast to most conventional methods that are invasive,
expensive, time-consuming, and need specialized equipment
and biomarker preconcentration [20], [22], [26], the integration
of chemical sensors in point-of-care testing (POCT) provides
noninvasive, real-time, and cost-effective detection of VOCs in
breath samples. Such sensors can aid in the early diagnosis of
diseases such as lung cancer [10], [11], [12], [13], [14], [15].
However, POCTs currently face challenges such as lower
accuracy compared to traditional laboratory testing, high-cost
manufacturing, and less user-friendly operation. To address
some of the challenges, the use of point-of-care diagnosis
(POCD) [32], [33] aided by machine learning techniques,
cloud computing, and the Internet of Things (IoT) applica-
tions can improve the accuracy and user-friendliness of these
devices and ultimately lead to applications in early detection
and diagnosis of diseases. The use of color and thermal
cameras for the development of monitoring systems to monitor
and classify breathing patterns has shown some promise to
enable automated health assessments [36]. While there are
many reports on different sensor systems for detecting cancer-
specific VOCs, there have been no reports demonstrating the
integration of a nanoparticle-structured chemiresistor sensor
array with a low excitation current detector in a wireless
and portable device for HB detection and monitoring. In this
article, we describe the design of a wireless portable sensor
array monitoring system, which integrates a low excitation
current chemiresistor detector developed in our recent work
[25] with a wireless function, an IoT interface, and a database.
The system can be deployed anywhere wirelessly in under
5 min, and it automatically uploads simultaneously collected
sensor array breath data to the Google Cloud server for
flexible data collection and analysis. This allows for not
only low-temperature drift and low power consumption, but
also real-time and remote monitoring capabilities, making it
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Fig. 1. Block diagram showing the wireless sensor array system in
terms of the electronic communications between the sensor compo-
nents and the database/processing units.

an ideal solution for a wide range of applications. In this
report, results will be shown to demonstrate some of these
functions by testing the performance of the integrated system
in monitoring HB samples with and without simulated lung
cancer-specific VOCs. Implications for potential applications
in remote breath monitoring and screening of lung cancer will
also be discussed.

[I. SYSTEM ARCHITECTURE, INTEGRATION,
AND IMPLEMENTATION

A. System Architecture

Fig. 1 shows the block diagram for the wireless sensor
system, which includes sensor array electronics and Raspberry
Pi board (RPB). The sensor array system first collects data
from the chemiresistive responses to VOCs and sends the data
to the RPB through a serial connection. RPB will then process
and reorganize sensor array response data into a BSON format
data file. The processed Binary JSON (BSON) data file will
then be uploaded through a wireless connection to MongoDB
Atlas (MDBA), which is the global cloud database service
for modern applications. A workstation will pull down data
from the MDBA cloud service after every certain period to
train with ensemble learning models and deep learning models.
The updated best output result will be uploaded back to the
MDBA cloud server and stored in a separate BSON file as the
pretrained model for future prediction.

The RPB can also use the pretrained model on the MDBA
cloud server and output the classification result of the collected
data. MongoDB is a document-oriented NoSQL database
that is used for large-scale data storage. MongoDB employs
collections and documents rather than tables and rows as in
traditional relational databases. Documents are made up of
key-value pairs, which are the fundamental unit of data in
MongoDB. Collections are comparable to relational database
tables in that they include collections of documents and
functions. MongoDB stores data in JSON-like documents
with variable structure, resulting in a dynamic, customizable
schema. MongoDB was also created for high availability and
scalability, with integrated replication and auto-sharing ability.
The MDBA service is a global cloud database service devel-
oped and operated by the MongoDB team. While MongoDB is
under the databases category, MDBA falls under MongoDB’s
Hosting.
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B. Data Acquisition and Processing

RPB is used as the main processing unit for the wireless
sensor array system. It is not only able to process and transfer
sensor data to the cloud database but also generates necessary
commands to synchronize different components’ operations.
Serial protocols were heavily used to connect the peripherals
(sensors) to RPB. These serial protocols are serial peripheral
interface (SPI), integrated circuit interface or inter-integrated
circuit (I12C), and standard universal asynchronous receiver
transmitter (UART).

The humidity and temperature sensor module are connected
to the RPB’s general-purpose input—output (GPIO) pins. The
sensor array electronic board is connected to RPB’s USB port.
The main concept of the wiring is that digital sensors are
connected directly to the RPB’s GPIO, while analog sensors
are connected to an analog-to-digital converter (ADC), which
in turn is directly connected to the RPB. RPB comes with
both wired and wireless networks; it is extremely useful to
get Wi-Fi ready for an IoT applications.

Python programming language is heavily used to create an
autonomous process for collecting, processing, and transfer-
ring sensor response data. Necessary Python packages include
Pandas, NumPy, scikit-learn, scipy, RPi.GPIO, pyserial, and
urllib3. For remoting communication with Ras-Pi, MobaXterm
provides not only one terminal but also the ability to open
multiple terminals within a single window in a tabbed manner.
Each terminal may be for a different purpose. A terminal may
be connected to a remote shell via Secure Socket Shell while
another is a File Transfer Protocol to some other host.

C. Integration of Sensor Array and Electronic Board

Microfabrication is wused for creating interdigitated
microelectrodes (IME) [5]. Using the Nordiko 2000 vacuum
sputtering deposition equipment, thin film electrodes were
created on a glass substrate. Photolithography was used
to pattern the IME device’s construction. IME devices
were utilized for signal transduction. The device features
an array of 200 gold microelectrodes, each with a length
of 200 um, a width of 10 um, and a 5 um gap, on a
I-mm thick glass substrate. The microelectrodes were
100 nm thick and were fabricated at the Cornell NanoScale
Science and Technology Facility. The chemiresistor sensor
array is constructed by a thin film assembly of gold
nanoparticles on the IME device. Gold nanoparticles
with core diameters of 2 and 5 nm and decanethiolate
(DT) monolayer shells were used [9], [10], [11], [12].
11-mercaptoundecanoic acid (MUA), 1,9-nonanedithiol
(NDT), 1,4-butanedithiol (BDT), 1,5-pentanedithiol (PDT),
and 1,6-hexanedithiol (HDT) were used as linker molecules
to assemble the gold nanoparticles. Hexane was used to create
vapors (Hx, Fisher). There were two types of nanoparticle
thin films used in this study: 1) NDT-linked nanoparticles
(NDT-Auppy) and 2) MUA-linked nanoparticles (MUA-Aup).
The thin films were made by following the “exchanging-
cross-linking-precipitation” method [13]. An exchange of
linker molecules (NDT, MUA) with gold-bond alkanethiolates
was followed by crosslinking and precipitation via Au-S

bonding at both ends of NDT or hydrogen bonding at
the carboxylic acid terminals of MUA. The eight-sensor
array consists of the following sensing films: MUA-Au; .,
MUA-Ausyn, BDT-Auzpm, BDT-Auspy, PDT-Augpn,
HDT-Aus nm, NDT-Auy nm, and ND-Aus .

Fig. 2 shows a block diagram for the design and inte-
gration of the multichannel electronics board (MEB) [25]
with the nanostructured chemiresistor sensor array. The MEB
was designed with the ability to automatically search for the
channel based on the sensor’s initial resistance value (Ri)
and lock it in the most appropriate resistance range. This
also minimizes the difference and time delay in the mea-
sured value caused by resistance switching at the measuring
range’s limit. The resistance is measured using the handheld
chemiresistor detector (HCD) by measuring the voltage drop
while a continuous current is sent through the sensor. Each
channel’s constant current source (6.0 nA-1.2 mA) includes
16 different current values, each corresponding to a different
resistance range. For the specified sensors array interface, the
input channels are configured as a modular array (Fig. 2).
The output voltage signal for the sensor’s resistance measured
by each channel is transferred to an ADC, from which a
microcontroller unit (MCU) calculates the resistance value.
The electronic is designed in such a way that each channel
of the array sensors can be monitored quickly. Through
the microprocessor interface, the measured resistance values
are sent to the readout. The adsorption of VOCs in the
nanoparticle thin films on the interdigitated microelectrode
device causes changes in interparticle spacing and dielectric
medium properties. Such changes are transduced by the IME
into changes in electrical resistance, which is detected by the
low-current MEB. A change in electrical resistance depends
on the chemical properties and concentration of the VOC
and the interaction with the nanoparticle thin film. The array
provides the response signals for data processing, leading to
recognition, speciation, and quantitation.

D. loT Platform and Database

Two IoT platforms were used as servers for collecting and
storing the data and building the database.

1) Thinkspeak Server: Thingspeak is a web-based open
API IoT platform [4], [5], [6] that stores sensor data from
various sensor notes and can visualize data output in graph-
ical form at the web level. Thingspeak communicates with
the help of an internet connection, which acts as a data
packet carrier between the wireless connected sensor notes
and the Thingspeak cloud to retrieve, save/store, analyze,
observe, and work on the sensed data from the connected
sensors to RPB. Moreover, Thingspeak also has the ability
to construct a public-based channel for data analysis and
estimation. To engage the wireless sensor note in sensing the
data and transmitting it across the Internet, the data requires
to be uploaded to Cloud. The Cloud uses graphic visualization
operations and is available in the form of a virtual server to tell
us about our real-time analog data. The IoT helps to not only
bring all information together and permits us to communicate
with our sensor notes but also different sensor notes to interact
with each other.
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Fig. 3. Operational flows for the sensor data collection and analytics
with the loT core architecture.

2) Google Cloud Server: Fig. 3 shows a typical sensor data
collection and analytics with Google Cloud IoT Core Archi-
tecture. The sensor data from the Raspberry-pi are transmitted
as JSON over HTTP to serverless Google Cloud Function
HTTPS endpoints. Then, Google’s Protocol Buffers are used
to transmit binary data over HTTP. It features a reduction in
the message size contained in the request payload from JSON
to Protobuf, which reduces system latency and cost. Data
received by Cloud Functions over HTTP will be published
asynchronously to Google Cloud Pub/Sub. A second Cloud
Function will respond to all published events and push the
messages to MDBA on GCP. Once in Atlas, the data will
be aggregated, transformed, analyzed, and built by machine
learning models using tools such as MongoDB Compass,
Jupyter Notebooks, and Google’s Artificial Intelligent (AI)
Platform Notebooks.

E. Hardware and Software Implementation

As shown in Fig. 4, the BME280 sensor is connected to
RPB through a GPIO connection using an SPI interface. The
chemiresistor sensor board is connected to the sensor array
and R-Pi through the serial protocol. Both chemiresistor sensor
board and R-Pi are powered by external portable battery packs.
The system is also equipped with temperature and humidity
sensors. BME280 sensor is an environmental sensor with
temperature, barometric pressure, and humidity. This sensor is
great for indoor environmental sensing and can even be used
in both I12C and SPI. The sensor can measure humidity with
+3% accuracy, barometric pressure with 1 h Pa absolute
accuracy, and temperature with +1.0 °C accuracy. For simple
easy wiring, we can go with 12C. If we want to connect a series

Block diagram for the design of the multichannel electronic board for interfacing with the individual sensors in the nanostructured

of sensors without worrying about 12C address collisions, SPI
can be a preferred option.

RPB uses PiOS (previously called Raspbian) as an operating
system. Raspberry Pi Imager is a quick and easy way to install
Raspberry Pi OS and other operating systems to a microSD
card, ready to use with RPB. To program on the RPB and
use it to control sensors, we used Virtual Network Computing
(VNC) or Secure Shell Protocol (SSH) client on the main
computer. The headless RPB is activated by writing an empty
text file named “ssh” (no file extension) to the root of the
directory of the micro SD card. When it sees the “ssh” on its
first boot-up, Raspberry Pi OS will automatically enable ssh,
allowing remote access to the Pi command line.

[1l. DATA COLLECTION AND ANALYSIS METHODOLOGIES

To determine the performance of the sensor system in
recognizing different mixtures of VOCs in real HBs, breath
samples were collected with healthy subjects. All subjects
were asked to take 3—5 deep breaths before sample collection.
Breath samples were collected into 1L Tedlar sampling bags.
To reduce the humidity level to an acceptable range for
effective data analysis, we used a plastic mouthpiece to blow
through 1-foot-long silicone tubing and allowed the sampling
bag to stabilize for an additional 5 h. This helped to bring
the relative humidity to a level between 30% and 35%. The
healthy volunteers were asked to be fasting for 12 h prior to
their breath collection. All samples were analyzed between
5 and 24 h after collection, and multiple repeated tests were
conducted.

In this study, simulated breath samples were created
by adding specific lung cancer-related volatile VOCs to
healthy breath samples collected from human subjects. The
VOCs chosen for this study were toluene, 2-butanone, and
2,3,4-trimethyl-pentane, which were generated by a gas
flow and mixing method. The gas flow was precisely con-
trolled by an array of calibrated Aalborg mass flow con-
trollers (AFC-2600), as previously described in the literature
[16], [35]. The concentration of the targeted gases in breath
samples is 9 ppm each. This method allows for the creation
of simulated breath samples with representative lung cancer-
specific VOCs, providing a useful tool for evaluating the
performance of the sensor system.

The sensor array’s response data from HBs and simulated
cancer breaths are analyzed by principal component analysis
(PCA), k-nearest neighbor (KNN*), support vector machine
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Fig. 4. Block diagrams showing the communications in the sensor and wireless hardware. (a) Hardware connections for the sensor array (eliminate
the real photographs and add figure flow), temperature/humidity sensors, electronic board, and R-Pi. (b) Setting up Raspberry Pi.
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(SVM), random forest (RF), XGBoost, and artificial neural
network (ANN), which are summarized as follows.

PCA is used to explore and reduce the dimensionality of the
data. For our analysis, PCA was applied to sensor response to
create new, uncorrelated variables and reduce the dimensions
of a set of variables while preserving the majority amount of
original variance among variables. In addition to PCA, five
different statistical methods (Fig. 5) were used for the data
analysis of the collected sensor array data.

The KNN classifier algorithm is based on the idea of feature
similarity to estimate the value of new response variables. As it
is shown in Fig. 5(a), for an unknown set of predictor vari-
ables, the value of classification is calculated by averaging the
classification values of k-nearest observations. Euclidean and
Mahalanobis Distance can be used to determine the distance
between new unknown observations and training observations.

SVM is mainly used for classification problems by devel-
oping a maximum margin hyperplane between two classes.
In Fig. 5(c), SVM essentially finds the Decision Boundary.
If we had 1-D data, we would separate the data using a single
threshold value. If we had 3-D data, SVM’s output is a plane
separating the two classes. Finally, if the data is more than

]
Output layer
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X2

KRR KRR~ KA
\@/A/

v

Y

(e)

Schematic of several different statistical methods used for data analysis in this work. (a) KNN, (b) ANN, (c) SVM, (d) XGBoost, and

three dimensions, the decision boundary is a hyperplane which
is nothing but a plane in higher dimensions.

The RF is an ensemble learning algorithm proposed by
Breiman [28] to predict discrete-dependent variables by bag-
ging multiple decision trees into the model and averaging
all predictions for results. RF algorithm can obtain better
prediction accuracy with good tolerance for extreme value and
noise. The procedure of the RF classifier is summarized in
Fig. 5(e). In the first part of the algorithm, multiple subsamples
are extracted from the original samples using the bootstrap
resampling method, and a decision tree is applied for each
sample. In the second step, the final prediction from the
RF classifier is computed by an average of the predictions
produced by the trees in the forest.

XGBoost [29] is a tree-based ensemble machine learning
algorithm that is built on a gradient-boosting framework.
As it is visualized in Fig. 6(d), the algorithm consists of
optimized gradient boosting that has been enhanced through
parallel processing, tree-pruning, handling missing values, and
regularization to avoid overfitting/bias. Since its introduction,
the advantages of XGBoost have been validated by several
machine learning and data mining challenges [30].
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Fig. 7. Screenshots of the historical data displays during remote monitoring of HBs on the database. (a) Temporal remote monitoring of breath
sample data structuring and response profiles from remote tracking of breath samples, (b) id1 with sensor 1 for eight days of data collection under

different data collection protocols, and (c) record of id1 with sensor 1.

ANN is a methodology motivated by a biological network
of neurons. ANN can be used as a powerful tool to capture
complex or nonlinear relationships between predictor and
response variables [31]. As seen in Fig. 6(b), a basic neural
network model includes an input layer, one or more hidden
layers in the middle, and an output layer at the end. Each layer
in the ANN model consists of a collection of nodes. The output
of each node is calculated by multiplication between inputs
and activation function. Each connection among nodes across
different layers has a certain weight which regulates the signal
between the neurons. Weights between nodes are continuously
updated based on feedback from output errors [31].

Despite the fact that some machine learning models, such
as ANN, require large amounts of data for training, using the
original data collected from the limited number of healthy
volunteers at different time points with added simulated noise
is adequate to evaluate the performance of the sensor system
in terms of shallow machine learning models like KNN, SVM,
RF, and XGBoost.

V. RESULTS AND DISCUSSION
A. Remote Monitoring and Simulation of HBs

To evaluate the performance of the integrated system for
remote monitoring of HBs, two different sensor array stations

A and B were set up in two different physical locations.
There were five volunteers and sensor testing lasted more than
22 days. Sensor responses were recorded through the Things-
peak IoT portal from any place with an internet connection and
web browser connectivity. Data from sensor responses were
saved in both the Thingspeak IoT portal and an MDBA Atlas
Database on Google Cloud Service.

Once the error-free coding is established, then the program
is executed, and the sensor data output is shown from a local
platform such as LCD 16 x 2 display. The local data is
transferred to the Thingspeak Cloud via the Internet and can
be visualized on a global platform. Fig. 6 shows the graphical
output at the Thingspeak cloud observed upon logging in to
the Thingspeak website with a secure username and password.

Fig. 7 shows the data layout on the display screen at one
of the monitoring stations (a) and examples of the sensor
response profiles from one of the sensors (Sensor 1) in the
sensor array for a subject (id2) on eight different days of the
continuous data collection (b). The system displayed excellent
stability and continuity, demonstrating the ability of the system
to capture different patterns from a specific person on different
days and the viability of wirelessly transferring and storing
data in a cloud database. From the recorded data for id2
with Sensors 1-8, we can analyze the different response
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Fig. 8. (a) Three-dimensional and (b) 2-D PCA plots of the results from the sensor array system in monitoring breath samples with and without

spiked lung cancer-specific VOCs. Samples: HB and HB with LC-specific VOCs.
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Fig. 9. Confusion matrix result of (a) KNN, (b) SVM, (c) RF, (d) XGBoost, and (e) ANN classifier. Samples: HB and HB with LC-specific VOCs.

patterns, thereby achieving differential sensing information
for assessing multianalytes. The information is processed for
further machine learning analysis. Moreover, the use of sensor
arrays with multiple sensors enables the effective management
of the impact of defective sensors on system performance.

B. Pattern Recognition of the Sensor Responses

To illustrate how the data collected are used for pattern
recognition, we show here one specific example of remote
screening of HB samples with and without spiked lung cancer-
specific VOCs. In this study, a dataset of 150 data points,
including 75 healthy breath samples and 75 simulated breath
samples from lung cancer patients was used. These data
were divided into 70% for training and 30% for testing. The
combination of the abundance ratio range [19] and Monte
Carlo simulations was used to test the performance of the
machine learning model in noisy conditions. The calibrated
responses of all vapors to random and systematic errors are
assumed to have a Gaussian distribution. Through multiple
repeated sampling of these error-enhanced responses and
assigning each sample an identity based on the abundance ratio
range determined during calibration, the expected frequency
and nature of recognition errors under standard operating

conditions can be evaluated. Data for the sample testing were
collected on three consecutive days, in which 50% of data were
collected 5 h after the sample collection and the other 50%
were collected 24 h after the sample collection. By doing that,
the performance of the sensor array system could be evaluated
in terms of sample shelf time variations. Fig. 8 shows the PCA
analysis results from the collected data. The result displays two
separate clusters with a small overlapping area, demonstrating
a good separation among the HB samples with and without
spiked lung cancer-specific VOCs.

We also examined the performance evaluation of different
analytic methods in terms of sensitivity and selectivity. Fig. 9
shows a representative set of the confusion matrixes of clas-
sification results from various machine learning techniques,
where the diagonal elements represent the total correct values
predicted per class. The darker the color, the greater the
number. There are two types of color coding, darker and lighter
colors on the diagonal elements, which illustrate how well
the model performs in terms of sensitivity and selectivity in
recognition of healthy and LC-VOC-spiked HBs.

Five different statistical methods were used to assess the
sensitivity and selectivity of the sensor array data. Among
the five different methods, the XGBoost classifier performs
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the best with an 82% overall correct classification rate and
successfully identified 84% of the breath samples with lung
cancer-specific VOCs, i.e., 84% sensitivity, while the selectiv-
ity is 81%. The next best appears to be the RF Classifier,
showing 79% sensitivity and 81% selectivity. Even though
XGBoost shows a better overall classification rate and high
selectivity (81%) compared to ANN, ANN appears to correctly
classify more breath samples with lung cancer-specific VOCs,
i.e., higher sensitivity (88%) but with worse selectivity (57%).
The KNN classifier performs worst among all methods, with
a very low overall correct classification rate but also low
sensitivity and selectivity.

V. SUMMARY

In summary, we have demonstrated an effective strategy for
the integration of a nanostructured chemiresistive sensing array
(CSA) with a low-current MEB and an RPB as a portable and
wireless sensor platform. The coupling of the sensor array and
electronics board with RPB allows effective data collection
and database development. The sensor array system collects
data from HBs with and without certain lung cancer-specific
VOCs. The data are first transferred to the RBP through a serial
connection and then RPB enables the processing of the sensor
array response data, which is followed by wirelessly uploading
to a cloud database, MDBA. A workstation can pull down
data from the MDBA cloud database after a certain period of
time to train with ensemble learning and deep learning models.
The updated best output result is then uploaded back to the
MDBA cloud server and stored in a separate BSON file as
the pretrained model for future prediction. Real-time sensor
data are visualized in the form of charts in Thing speak. The
integrated system can work in standalone mode without the
requirement of a PC once programed. This system is viable
for potential point-of-care and remote monitoring of HBs for
screening for lung cancer. This viability is demonstrated by
the performance evaluation of the system which is coupled
with different analytic methods to determine the sensitivity and
selectivity in monitoring HB samples with and without lung
cancer-specific VOCs, demonstrating a high recognition rate.
The repeatability and reliability of the system are also evalu-
ated by results from continuous monitoring of the HB samples,
including remote monitoring services and ad hoc applications.
This capability is important for applications in areas that are
typically not accessible from traditional stationary monitoring
systems housed in hospitals and laboratories [37]. The results
from the performance evaluation of the system in monitoring
HB samples with and without simulated lung cancer-specific
VOCs have shown promise for potential applications in remote
breath monitoring and screening of lung cancer. This work
has demonstrated the integration of our laboratory-developed
low-current multichannel detection electronics board and the
nanostructured chemiresistor sensor array with the commer-
cially available wireless function and cloud data techniques
for breath monitoring, which represents a new development
in the system hardware in our work. The Al model further
amplifies the system’s capabilities, providing a comprehensive
understanding of the specific database setup, the protocol
for wireless data transfer, the type of breath samples being
monitored, and the specific machine learning algorithm used

toward a comprehensive understanding of the optimization of
the wireless system’s capabilities for potential applications.

REFERENCES

[1] T. N. Zamay et al., “Current and prospective protein biomarkers of lung
cancer,” Cancers, vol. 9, no. 11, p. 155, 2017.

[2] Y. Adiguzel and H. Kulah, “Breath sensors for lung cancer diagnosis,”
Biosensors Bioelectron., vol. 65, pp. 121-138, Mar. 2015.

[3] C. F. Mountain, “Revisions in the international system for staging lung
cancer,” Chest, vol. 111, no. 6, pp. 1710-1717, Jun. 1997.

[4] H.P. Chan, C. Lewis, and P. S. Thomas, “Exhaled breath analysis: Novel
approach for early detection of lung cancer,” Lung Cancer, vol. 63, no. 2,
pp. 164-168, Feb. 2009.

[5] J. K. Schubert, W. Miekisch, K. Geiger, and G. F. Noldge-Schomburg,
“Breath analysis in critically ill patients: Potential and limitations,”
Expert Rev. Mol. Diagnostics, vol. 4, no. 5, pp. 619-629, Sep. 2004.

[6] M. Ligor et al., “Determination of volatile organic compounds in exhaled
breath of patients with lung cancer using solid phase microextraction
and gas chromatography mass spectrometry,” Clin. Chem. Lab. Med.,
vol. 47, no. 5, pp. 550-560, Jan. 2009.

[71 J. Rudnicka, M. Walczak, T. Kowalkowski, T. Jezierski, and
B. Buszewski, “Determination of volatile organic compounds as poten-
tial markers of lung cancer by gas chromatography—mass spectrometry
versus trained dogs,” Sens. Actuators B, Chem., vol. 202, pp. 615-621,
Oct. 2014.

[8] N. J. W. Rattray, Z. Hamrang, D. K. Trivedi, R. Goodacre, and
S. J. Fowler, “Taking your breath away: Metabolomics breathes life
in to personalized medicine,” Trends Biotechnol., vol. 32, no. 10,
pp- 538-548, Oct. 2014.

[9] J. Rudnicka, T. Kowalkowski, T. Ligor, and B. Buszewski, “Determi-

nation of volatile organic compounds as biomarkers of lung cancer

by SPME-GC-TOF/MS and chemometrics,” J. Chromatography B,

vol. 879, no. 30, pp. 3360-3366, Nov. 2011.

A. W. Snow, F. K. Perkins, M. G. Ancona, J. T. Robinson, E. S. Snow,

and E. E. Foos, “Disordered nanomaterials for chemielectric vapor

sensing: A review,” IEEE Sensors J., vol. 15, no. 3, pp. 1301-1320,

Mar. 2015.

[11] N. Olichwer, E. W. Leib, A. H. Halfar, A. Petrov, and T. Vossmeyer,

“Cross-linked gold nanoparticles on polyethylene: Resistive responses
to tensile strain and vapors,” ACS Appl. Mater. Interfaces, vol. 4,
pp. 6151-6161, Nov. 2012.

[12] F. J. Ibafiez and F. P. Zamborini, “Chemiresistive sensing with chem-

ically modified metal and alloy nanoparticles,” Small, vol. 8, no. 2,

pp. 174-202, Jan. 2011.

M. C. Leopold, R. L. Donkers, D. Georganopoulou, M. Fisher,

F. P. Zamborini, and R. W. Murray, “Growth, conductivity, and vapor

response properties of metal ion-carboxylate linked nanoparticle films,”

Faraday Discuss., vol. 125, p. 63, Jul. 2004.

C.-L. Chang, S.-W. Chiu, and K.-T. Tang, “An ADC-free adaptive

interface circuit of resistive sensor for electronic nose system,” in Proc.

35th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2013,

pp. 2012-2015.

L. Han et al.,, “Nanoparticle-structured sensing array materials and

pattern recognition for VOC detection,” Sens. Actuators B, Chem.,

vol. 106, no. 1, pp. 431-441, Apr. 2005.

[16] L. Wang et al.,, “Array of molecularly mediated thin film assemblies

of nanoparticles: Correlation of vapor sensing with interparticle spatial

properties,” J. Amer. Chem. Soc., vol. 129, no. 7, pp. 2161-2170, 2007.

L. Wang, J. Luo, M. J. Schadt, and C.-J. Zhong, “Thin film assemblies of

molecularly-linked metal nanoparticles and multifunctional properties,”

Langmuir, vol. 26, no. 2, pp. 618-632, Jan. 2010.

L. Wang et al., “Sensing arrays constructed from nanoparticle thin films

and interdigitated microelectrodes,” Sensors, vol. 6, no. 6, pp. 667-679,

Jun. 2006.

G. Peng, U. Tisch, and H. Haick, “Detection of nonpolar molecules by

means of carrier scattering in random networks of carbon nanotubes:

Toward diagnosis of diseases via breath samples,” Nano Lett., vol. 9,

no. 4, pp. 1362-1368, Apr. 2009.

M. Hakim et al., “Volatile organic compounds of lung cancer and possi-

ble biochemical pathways,” Chem. Rev., vol. 112, no. 11, pp. 5949-5966,

Nov. 2012.

M. Phillips et al., “Volatile organic compounds in breath as markers

of lung cancer: A cross-sectional study,” Lancet, vol. 353, no. 9168,

pp. 1930-1933, Jun. 1999.

[10]

[13]

[14]

[15]

(17]

[18]

[19]

[20]

(21]

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on November 04,2023 at 15:41:19 UTC from IEEE Xplore. Restrictions apply.



16050

IEEE SENSORS JOURNAL, VOL. 23, NO. 14, 15 JULY 2023

[22] M. K. Nakhleh et al., “Sensor arrays based on nanoparticles for
early detection of kidney injury by breath samples,” Nanomedicine,
Nanotechnol., Biol. Med., vol. 10, no. 8, pp. 1767-1776, Nov. 2014.
S. W. Chiu and K. T. Tang, “Towards a chemiresistive sensor-integrated
electronic nose: A review,” Sensors, vol. 13, no. 10, pp. 14214-14247,
Oct. 2013.

R. C. Hughes et al., “Integrated chemiresistor array for small sensor
platforms,” in Proc. SPIE, 2000, pp. 1-12.

[25] Z. Wang et al., “A low-current and multi-channel chemiresistor array
sensor device,” Sensors, vol. 22, no. 7, p. 2781, Apr. 2022.

W. Zhao et al., “Detection of mixed volatile organic compounds and lung
cancer breaths using chemiresistor arrays with crosslinked nanoparticle
thin films,” Sens. Actuators B, Chem., vol. 232, pp. 292-299, Sep. 2016.
S. Yan et al., “Nano-filamented textile sensor platform with high
structure sensitivity,” ACS Appl. Mater. Interfaces, vol. 14, no. 13,
pp. 15391-15400, Apr. 2022.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

T. Chen and C. Guestrin, “XGBoost,” in Proc. 22nd ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Aug. 2016, pp. 785-794.

A. Kadiyala and A. Kumar, “Applications of Python to evaluate the
performance of decision tree-based boosting algorithms,” Environ. Prog.
Sustain. Energy, vol. 37, no. 2, pp. 618-623, Mar. 2018.

A. Sharma, P. K. Sahoo, R. K. Tripathi, and L. C. Meher, “Artificial
neural network-based prediction of performance and emission charac-
teristics of CI engine using polanga as a biodiesel,” Int. J. Ambient
Energy, vol. 37, no. 6, pp. 559-570, Nov. 2016.

S. K. Vashist, “Point-of-care diagnostics: Recent advances and trends,”
Biosensors, vol. 7, no. 4, p. 62, Dec. 2017.

S. Gavrilasg, C. S. Ursachi, S. Perta-Crisan, and F.-D. Munteanu, “Recent
trends in biosensors for environmental quality monitoring,” Sensors,
vol. 22, no. 4, p. 1513, Feb. 2022.

H.-W. Cheng et al., “Assessing plasmonic nanoprobes in electromagnetic
field enhancement for SERS detection of biomarkers,” Sensors, vol. 21,
no. 24, p. 8345, Dec. 2021.

M. J. Schadt, W. Cheung, J. Luo, and C.-J. Zhong, “Molecularly tuned
size selectivity in thermal processing of gold nanoparticles,” Chem.
Mater., vol. 18, no. 22, pp. 5147-5149, Oct. 2006.

[36] J. Kunczik, K. Hubbermann, L. Mdosch, A. Follmann, M. Czaplik, and
C. Barbosa Pereira, “Breathing pattern monitoring by using remote
sensors,” Sensors, vol. 22, no. 22, p. 8854, Nov. 2022.

M. Ali, A. Elsayed, A. Mendez, Y. Savaria, M. Sawan, and M. Sawan,
“Contact and remote breathing rate monitoring techniques: A review,”
IEEE Sensors J., vol. 21, no. 13, pp. 14569-14586, Jul. 2021.

[23]

[24]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

(371

Dong Dinh is pursuing the Ph.D. degree with the Department of Sys-
tems Science and Industrial Engineering, State University of New York
(SUNY) at Binghamton, Binghamton, NY, USA.

His current research interests include sensor/biosensor optimiza-
tion, system development, pattern recognition, and the Internet of
Things (loT).

Guojun Shang is pursuing the Ph.D. degree with the Department of
Materials Science and Engineering and Chemistry, State University of
New York (SUNY) at Binghamton, Binghamton, NY, USA.

Her current research interests include chemical sensors/biosensors,
functional nanomaterials, nanotechnology, nanofabrication, and wear-
able devices and applications.

Shan Yan received the Ph.D. degree in chemistry from the State
University of New York (SUNY) at Binghamton, Binghamton, NY, USA,
in 2019.

She is currently a Senior Scientist with the Stony Brook and
Brookhaven National Laboratory, SUNY. Her research interests include
chemical sensors/biosensors, batteries, energy storage materials,
nanofabrication, and nanotechnology.

Jin Luo received the Ph.D. degree in physical chemistry from Xiamen
University, Xiamen, China, and The University of Tokyo, Tokyo, Japan,
in 1990.

He is a Senior Scientist with the Department of Chemistry, State
University of New York (SUNY) at Binghamton, Binghamton, NY, USA.
His research interests include sensors, catalysts, nanomaterials, micro-
electronics, and functional devices.

Aimin Huang received the Ph.D. degree in chemistry from the Univer-
sity of Connecticut, Stamford, CT, USA, in 2001.

She is a Senior Scientist at Xiamen Smart NanoSensing, Xiamen,
China. Her research interests include catalysts, sensors, nanomaterials,
and functional devices.

Lefu Yang received the Ph.D. degree in chemistry from Xiamen Univer-
sity, Xiamen, China, in 1998.

He is an Associate Professor at the Department of Chemistry, Xiamen
University, and a Senior Scientist at Xiamen Smart NanoSensing,
Xiamen. His research interests include catalysts, sensors, nanomate-
rials, and nanotechnology.

Susan Lu received the Ph.D. degree from the Department of Industrial
Engineering, Texas Tech University, Lubbock, TX, USA, in 1999.

She is a Professor with the Department of Systems Science and
Industrial Engineering, State University of New York (SUNY) at Bing-
hamton, Binghamton, NY, USA. Her current research interests include
pattern recognition, reliability, and process optimization.

Chuan-Jian Zhong received the Ph.D. degree in chemistry from
Xiamen University, Xiamen, China, in 1989.

He was a Postdoctoral at the Fritz-Haber Institute and the University
of Minnesota, Minneapolis, MN, USA, and an Associate Scientist at
DOE-Ames Laboratory, Ames, IA, USA. He is a Professor in chemistry at
the State University of New York (SUNY) at Binghamton, Binghamton,
NY, USA. His research interests include chemical sensors/biosensors,
heterogeneous catalysts, interfacial chemistry, and functional nanoma-
terials and devices.

Authorized licensed use limited to: STATE UNIV NY BINGHAMTON. Downloaded on November 04,2023 at 15:41:19 UTC from IEEE Xplore. Restrictions apply.



