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Abstract

Engineering identity is a rapidly evolving construct within engineering, primarily due to
its link to engineering persistence. Yet, most engineering identity research has been qualitative in
nature or has described individuals within the analytical technique as coming from a single
population. This study is the first to allow for the detection of different meaningful groups of
engineering students demonstrating similarity on the construct using the new technique of
Random Intercept Latent Transition Analysis. Through this study we identified three stable
classes of engineering identity existed amongst first-year undergraduate students. Women
demonstrated a greater likelihood of advancing to higher engineering identity classes over time
than men. Unfortunately, the influence of COVID-19 yielded negative engineering identity
developmental patterns for some students. Lastly, descriptive analyses of students’ first-year
engineering identity class assignments in relation to their selection/non-selection of engineering
majors revealed Calculus-readiness upon college entrance might be an important component in

these relationships.

Keywords

Engineering identity, engineering education, Random Intercept Latent Transition Analysis,
person-centered



Introduction

The National Academies Gathering Storm committee concluded several years ago that
the primary driver of the future economy, security of the United States (US) as a nation, and
concomitant creation of jobs would be innovation—largely derived from advances in science
and, particularly, in engineering (National Research Council, 2007). The European Union (EU)
has mirrored this notion regarding the importance of engineering to the success and longevity of
its related countries by prioritizing the production of a sufficient number of engineering
graduates prepared to enter engineering professions over the last several decades (Gomez et al.,
2022). Yet, both North America and Europe struggle with attrition in engineering. It has been
found that almost half of students in the US and an estimated 30-40% of students in European
countries such as Spain who begin their studies in engineering, do not reach graduation (Araque

et al., 2009; Garcia-Ros et al., 2019; Litzler & Young, 2012). These rates are alarming.

Engineering identity is a rapidly evolving construct within the field of engineering. It has
been found to be a strong predictor of student retention and success in engineering degree
programs and fields (Beam et al., 2009; Pierrakos et al., 2009, Rodriguez et al., 2018; Tonso,
2014). Thus, cross-disciplinary research teams from engineering, education, psychology, and
sociology have been urgently seeking to define and investigate the construct (Revelo et al., 2019;
Rodriguez et al., 2018). Yet to date, most of the research has been qualitative in nature
(Rodriguez et al., 2018) or has described individuals within the analytical technique as coming
from a single population. These studies, though noteworthy, have not allowed for the detection
of different, meaningful groups, or classes, of individuals demonstrating similarities in their

engineering identities (Jung & Wickrama, 2008).



Using person-centered analytical approaches can provide tremendous insight into
engineering identity development, cultivation, stability over time, factors influencing its stability,
and ultimately its relationship to students’ persistence into the engineering workforce—as have
been documented with other identity domains (Luyckx et al., 2008b; Meeus et al., 2012). This
study is a first to apply such techniques to investigate the stability of engineering students’
engineering identity classifications over their first year in college, the potential impact of gender
and COVID-19 on this stability, and the relationship between these classifications and students’
selection or non-selection of engineering majors at the beginning of their second year in college.
Though based in the US, the culmination of this study serves to advance the international
research base regarding engineering identity by providing unique insights into the construct’s
development and cultivation across different groups of engineering students that can only be

obtained through person-centered analytical approaches.

Engineering Identity

Theoretical perspectives regarding identity formation were first initiated by Erikson.
Erickson (1959, 1968) believed that identity was a primary task of adolescence that resulted from
individuals beginning to cope with social and developmental demands while, simultaneously,
seeking to provide meaning to their life choices and commitments (Bosma & Kunnen, 2008;
Hewlett, 2013; Jensen, 2011; McLean & Syed, 2015; Schwartz et al., 2011; Was et al., 2009).
Adolescents must make important decisions in multiple identity domains, such as education and
interpersonal relationships, that ultimately lead to identity synthesis and cultivation or identity

crisis (Albarello et al., 2017; Branje et al., 2014; McLean et al., 2016).

Following Erickson, many studies have further proposed that an individual can be

classified under different identity statuses depending upon which identity domain is under



consideration (Marcia et al., 1993). Indeed, advances in identity theory, social identity theory,
and research on identity in practice have come to recognize that people have multiple identity
classifications as they simultaneously serve multiple roles in their lives (Stryker & Burke, 2000;
Tajfel & Turner, 1986). A woman engineer, for example, might also be a researcher, daughter,
mother and musician; thus, her identity might be developing differently depending upon the

identity domain being measured.

One identity domain gaining the attention of researchers and practitioners alike resides in
the field of engineering. Engineering identity has quickly risen to the frontlines of investigations
in engineering, drawing upon cross-disciplinary research from engineering, education,
psychology, and sociology (Revelo et al., 2019; Rodriguez et al., 2018). In actuality, the
conceptualization of engineering identity can be traced back to Gee (2000), a linguist, who
attempted to provide a bridge from traditional identity theory posited by Erickson (1959) into
education. Gee loosely defined identity as a “kind of person” one is in any given context. Many
recent studies seeking to measure engineering identity have been built upon the grounded model
of science identity put forward by Carlone and Johnson (2007) that utilizes Gee’s definition of
identity (Revelo et al., 2019). Carlone and Johnson suggested the existence of three interrelated
dimensions of science identity: Competence, Performance, and Recognition. Inside of Carlone
and Johnson’s description of the Recognition dimension of science identity resonates Gee’s
definition of identity, or recognizing oneself as a “science kind of person” (Carlone & Johnson,

2007; Chemers et al., 2011; Gee, 2000; Godwin, 2016; Godwin et al., 2013).

Tracking this theoretical lens from science identity into the domain of engineering
identity, several scholars have applied the grounded theory of science identity established by

Carlone and Johnson (2007) to the field of engineering (Melo et al., 2017; Godwin, 2016;



Godwin et al., 2013; Revelo et al., 2019; Rodriguez et al., 2018). They have, thus,
simultaneously carried forward Gee’s (2000) definition of identity as being a “kind of person”
into the field of engineering. It follows that one of the central components of a student’s
engineering identity is largely recognized as being the measurement of the degree to which they
“view themself as an engineering kind of person.” Godwin (2016) briefly elaborated on this
operationalization and defined engineering identity as a student’s ability to feel like the kind of
person who is interested in, possesses the relevant knowledge and skills in, and engages in
engineering practices. University students with strong engineering identities establish and refine
their engineering interests, build competence within the area of engineering, and utilize various
tools to help them perform and cultivate their engineering identities (Godwin, 2016; Godwin et

al., 2013).

As of late, engineering identity has been brought into the discussion regarding
contributors to student retention and academic success in engineering, along with their ultimate
matriculation into engineering fields (Bowen et al., 2019; Tonso, 2014; Rodriguez et al., 2018).
Student GPA at the end of their first year in college, SAT math scores, ACT math scores, high
school GPA and Calculus-readiness—being eligible to take a Calculus course their first semester
in college—have all been identified as significant variables that impact student retention within
engineering programs (Bowen et al., 2019; French et al., 2005; Hall et al., 2015; Lam et al.,
1999; Levin & Wyckoff, 1988). Indeed, the importance of mathematical achievement and
preparation to engineering persistence has long been studied. Correlations between first
semester undergraduate mathematics course grades and success/persistence in engineering have
been recorded, regardless of which mathematics course was taken (Budny et al., 1998).

Moreover, the significant predictive nature of students’ Calculus-readiness upon college entrance



to their actual attainment of an engineering degree have also been well documented with
Calculus-ready engineering students being significantly more likely to graduate with a degree in
engineering than non-Calculus-ready engineering students (Bowen et al., 2017; Bowen et al.,
2019). However, more recent, the construct of engineering identity has joined this list of

potential influences on engineering persistence.

Prior research has suggested that students who do not identify with the engineering field
have a greater likelihood of exiting or not entering the engineering workforce than those who do
(McCave et al., 2014; Owen & Rolfes, 2015; Rodriguez et al., 2018; Tonso, 2014; Trytten et al.,
2015). Meyers and colleagues (2012) suggested that undergraduate engineering students must
navigate acquiring necessary skills and disciplinary development for their careers as they begin
cultivating their professional engineering identities. This cultivation of undergraduate students’
engineering identities is imperative for positive experiences and successful retention within
engineering degree programs leading into engineering fields (Meyers et al., 2012; Seymour,
1997; Stevens et al., 2005). Ultimately, successful cultivation of students’ engineering identities
impacts their continued pursuit of engineering majors and subsequent entrance into the
engineering workforce (Beam et al., 2009; Pierrakos et al., 2009; Revelo et al., 2019). However,
no knowledge currently exists regarding how engineering identity is related to engineering major

selection or underperformance in engineering degree programs.

Given the amount of research suggesting the importance of engineering identity to the
pursuit of engineering careers, and the importance of engineering professionals to the success
and prosperity of the US as a nation (National Research Council, 2007), the establishment and
cultivation of a strong engineering identity within undergraduate engineering students is critical.

This establishment is perhaps even more important for women than men.



Gender Differences in Engineering Identity

It is no secret that gender disparities exist within STEM fields. Progress in reducing
gender inequality, however, has occurred within some STEM disciplines. As documented by the
National Science Foundation’s (2021) findings, 41% of all bachelor’s degrees in the physical
sciences, 38% in the earth sciences, and 42% in mathematics and statistics are now being
awarded to women. However, the gap in degree attainment between men and women remains
substantially wider in engineering, where only 22% of all bachelor’s degrees are awarded to
women (National Science Foundation, 2021). Women, thus, continue to be underrepresented

within engineering.

According to a study by Eccles and Barber (1999) as cited by Chemers and colleagues
(2011), underrepresented groups in STEM (e.g., women in engineering) who identify strongly
with academic role identities demonstrate greater persistence to degree completion than
underrepresented students who identify more strongly with their social identities such as
ethnic/racial identities or gender identity. Hamlet and colleagues (2020) noted specifically that
engineering identity formation plays a crucial role in the persistence and retention of these
underrepresented students in engineering fields. Engineering identity, thus, is gravely important

to increasing gender diversity within the field.

Women have been found to begin their engineering coursework with lower confidence in
several areas including: their engineering knowledge, their ability to succeed in engineering, and
their perceptions of the various contributions that engineers make to society (Besterfield-Sacre et
al., 2001). These lower levels of confidence persist for women throughout their engineering
schooling although they do not perform at a lesser academic standard than men (Besterfield-

Sacre et al., 2001; Seymour & Hewitt, 1997). Indeed, women often leave science, mathematics



or engineering majors having attained academic scores equivalent to, or higher than men who are
retained within these majors (Seymour & Hewitt, 1997). Despite demonstrated engineering
academic ability and skills, a lack of identification or belonging with engineering has repeatedly
been suggested as a motivating factor for women who leave engineering (Godwin & Potvin,

2017; Seymour & Hewitt, 1997; Sheppard et al., 2015).

Women have been found to be more aware of social pressures to conform to the norms of
the professional engineering culture than men, likely due to their already existing deviation from
the gender norm (Hamlet et al., 2020). Engineering students who are unable to conform to
culturally accepted norms and values, such as for women in the men-dominated engineering
environment, leave their programs of study early (Dryburgh, 1999). There is a sense of
belonging within engineering that seems critical for women as they learn to navigate cultural
norms within the field. Furthermore, this crucial sense of belonging has been found to
potentially provide an added protective component to women’s engineering identities (Hamlet et
al., 2020). Women may more deeply internalize their fit in engineering to help withstand their
peers’ disapproval due to their violation of the gender norm within engineering (Hamlet et al.,

2020).

Attaining this deeper internalization of their engineering identity, however, is not easy
and requires a great deal of effort by these women in the men-dominated engineering programs
(Faulkner, 2007; Hamlet et al., 2020). A lack in this internalization of their engineering identity
leads to women not persisting within the field (Godwin & Potvin, 2017; Seymour, 1997,
Sheppard et al., 2015). Indeed, this internalization of engineering identity for women is critical

to their persistence.

Current Research Practices



Though research regarding engineering identity development has increased substantially
over the past 15 years, most of the study has been qualitative in nature (Rodriguez et al., 2018).
Identity development examines how individuals progress through identity stages, or
classifications, over time (Erickson, 1959, 1968; Marcia et al., 1993). This theoretical

framework provides a rich soil for longitudinal, quantitative investigations.

Conventional longitudinal modeling approaches often assume that individuals come from
a single population and that a single growth trajectory can adequately approximate that entire
population (Jung & Wickrama, 2008). Person-centered quantitative methods, however, are
especially applicable to modeling identity development (e.g., engineering identity development)
as they are capable of detecting different, meaningful groups, or classes, of individuals
demonstrating similarities on the construct (Jung & Wickrama, 2008; Luyckx et al., 2008b;
Meeus et al., 2012). These classes can then be investigated over time for probabilistic transitions
of individuals between classes and predictors of such transitions, which yields tremendous

insight into identity development.

A few investigations have applied person-centered techniques to the study of a similar
construct—science identity (Benedict et al., 2019; Lockhart, 2021; Robinson et al., 2018;
Robinson et al., 2019; Shaby et al., 2020). Robinson and colleagues (2018, 2019) utilized a
person-centered approach and found three distinct science identity classes of science college
majors existed, two with flat development trajectories and the lowest class with a negative
trajectory over time. These findings have led to insights regarding science identity development
and best intervention practices for college students (Robinson et al., 2018; Robinson et al.,
2019). No person-centered quantitative approach, however, has been utilized for engineering

identity research. Thus, much insight is left to be gained regarding engineering identity
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development over time within engineering students or factors contributing to, or hindering, its

cultivation.

Present Study

Considering the evidence regarding the importance of engineering identity to engineering
persistence for undergraduate students, this study examined the stability of engineering students’
engineering identity over their first year in college. This study used the new longitudinal,
person-centered approach of Random Intercept Latent Transition Analysis, RI-LTA (see Data
Analytic Strategy), to classify first-year engineering students within engineering identity statuses
and examine their transitions between statuses over an academic year. To date, no longitudinal,
person-centered approach has been applied to engineering identity research in the published
literature, nor has RI-LTA been utilized for any published study except the original work of

Muthén and Asparouhov (2020). This study is, thus, a first for both.

In the current study, RI-LTA was utilized to investigate the existence of different
engineering identity classes within first-year engineering majors and how likely students are to
transition to different classes during the year. Gender and COVID-19 year were also
investigated within this study for their potential influences on student probabilistic transitions to
different engineering identity classifications throughout the academic year. Though the impact
of COVID-19 upon college-aged individuals will not likely be fully recognized for many years,
if ever, recent studies have documented that the instability, isolation, and strict online
environments for college students during the first year-and-a-half of the pandemic adversely
affected their physical and mental health (Chang et al., 2021; Castaneda-Babarro et al., 2020;

Lopez-Moreno et al., 2020; Wang et al., 2020). It is important, therefore, that potential effects of
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the pandemic upon students’ engineering identity stability be investigated and relayed to the

research community.

The following primary research questions (RQ) were addressed in this study:

e RQI: Are there different engineering identity classifications for first-year undergraduate
engineering students?

e RQ2: Are first-year undergraduate engineering students’ engineering identity statuses, or
classifications, stable over an academic year?
o RQ2.1: Does gender influence engineering identity classification stability?
o RQ2.2: Did COVID-19 influence engineering identity classification stability?

e RQ3: How are first-year engineering students’ initial engineering identity classifications
related to their selection or non-selection of engineering majors at the beginning of their

second year?

Methods

Participants and Procedures

This study resided within a larger federal research grant study focused on changing
undergraduate engineering curriculum and activities. Participants for this study were all first-
year engineering students from a major, public, research university in the US that were enrolled
in two consecutive introductory engineering classes over one academic year. All students were
preliminarily accepted into the engineering program at the university and set to declare an
engineering major at the beginning of their second year, as was common practice for this
university. The study was reviewed and approved by the Institutional Review Board (IRB#

1905584259) and participant consent was obtained through the online survey platform.
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Students’ engineering identities were measured on three different occasions during the
academic year (T1 = August, T2 = December, and T3 = May). These measurements were taken
for three consecutive, distinct cohorts. Information was gathered and used in this study from a
total of 598 out of 610 student participants who completed at least two of the three measurement
occasions and were enrolled in both the fall and spring engineering courses. Five students were
not included in this study due to missing data on the gender variable. The modeling technique
utilized in this study would automatically exclude these five students from analyses utilizing
gender as a covariate. Data from an additional seven students was also excluded from this study
due to a gender selection of “other.” Although important to capture, this group was too small to
accurately represent within the analysis. Thus, data from 598 participants remained and is

described below.

Cohort 1 (2018-2019) included 205 students with 31% women and 4% underrepresented
minorities (URM). Cohort 2 (2019-2020) contained 294 student participants with 25% women
and 7% URM. Cohort 3 (2020-2021) included 99 students with 33% women and 12% URM.
Missing data was detected on at least one of the three measured variables (see Measure) across
the three timepoints for a total of 38% of participants including approximately 1% of participants
at T1, 13% of participants at T2, and 25% of participants at T3. The statistical technique used in
this study afforded the opportunity to include all 598 participants in the analysis. Analyses were
conducted to assess differences between those who participated at all three timepoints and those
who did not. Mann-Whitney U Tests using the Bonferroni correction revealed that there were no
significant differences between the two groups on any of the three measured identity variables
(see Measure), at any of the three timepoints. These results suggested that data may be missing at

random (Little & Rubin, 1987).
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Measure

Identity as an Engineer. The Identity as a Scientist instrument developed by Chemers
and colleagues (2010) was adopted and modified specifically for engineering. The extent to
which participants identified as an engineer was measured using Chemers and colleagues’ (2010)
identity items. Through prior work with the adapted scale, the full instrument was repeatedly
found to produce sub-adequate model fit results under confirmatory factor analysis. A refined
scale with three of the items was selected that yielded a saturated model fit with high,
statistically significant factor loadings greater than .75. Items were rated on a scale of 1
(strongly disagree) to 7 (strongly agree). Participants indicated their level of agreement with the
statements such as, “I have come to think of myself as an engineer.” Please see Appendix A for
a full list of items. A higher scale score indicated a greater degree of self-identification as an
engineer. Cronbach’s alpha was used to assess the internal consistency of identity items for each
of the three measurement occasions (T1-T3). Results revealed good internal consistency of the
instrument with Cronbach’s o = .88, .89, and .92 for all cohorts combined at T1, T2, and T3,
respectively (Kline, 1999). When separated by cohorts, Cronbach's alpha per each timepoint was

greater than or equal to.85.

Data Analytic Strategy

To assess the research questions and sub-questions, RI-LTA was utilized to examine how
probabilistic classes of students (i.e., engineering identity statuses) vary in systematic ways over
time. According to Muthén and Asparouhov (2020), the person-centered regular Latent
Transition Analysis (LTA) technique is unnecessarily restrictive. Regular LTA is a single-level
modeling approach. RI-LTA, alternatively, reflects a multilevel modeling approach of separating

the between and within-subject variation (Muthén & Asparouhov, 2020). By considering time as
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the within-level and student as the between-level, the latent class transitions are represented on
the within-level (Muthén & Asparouhov, 2020). The between-level, thus, captures much of the
variability across students which yields more accurate classifications (Muthén & Asparouhov,
2020). Though LTA and RI-LTA are not normally recommended for small sample sizes (N <
500), Muthén (2021) illustrated RI-LTA typically fits the data better than LTA when N > 500
and there are at least three measurement occasions. Furthermore, RI-LTA leads to more accurate
estimates of the transition probabilities, reduces the probability of subjects staying in the same
class, and reduces the need for Mover-Stayer modeling when compared to LTA (Muthén, 2021;

Muthén & Asparouhov, 2020).

To begin investigating RQ1, RQ2 and related sub-questions, three primary processes
were employed: basic model identification, model invariance testing, and covariate inclusion
(Muthén, 2021). Appropriate steps to identifying a baseline LTA model would typically begin
with a series of latent class analyses (LCA) to identify the optimal number of subgroups of
people, or classes, being represented at each timepoint (Nylund, 2007). This strategy, however,
does not work for the RI-LTA modeling framework since the models differ by a random
intercept factor—yielding LCA nonapplicable (Muthén, 2021). The optimal number of latent
classes to help answer RQ1 were, thus, investigated through the estimation of various RI-LTA
models. Model fit indicators such as loglikelihood (LL), Akaike information criterion (AIC),
Bayesian information criterion (BIC), entropy (classification accuracy), and class size were used
to aid in the selection of the most appropriate model. Higher loglikelihood values, lower AIC
and BIC values, entropy values closer to 1.00 with a .70 cutoff (Clark, 2010; Fonseca &
Cardoso, 2007; Ramaswamy et al., 1993) and reasonable class sizes containing at least 5% of the

sample (Shanahan et al., 2013) were used as indicators of a better model fit (Muthén, 2021).
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After a baseline model was selected, the appropriateness of the lag 1 assumption (where
each measurement occasion directly influenced the next measurement occasion) was tested. A
lag 2 model (where the first measurement occasion directly influenced the third measurement

occasion) was estimated and compared to the lag 1 model using global model fit indices.

Once the baseline model with the appropriate lag was confirmed, the validity of the
model based upon the assumptions of invariance over time and across groups was investigated.
For examining the time invariance assumption, one indicator was freed and allowed to vary
across all time points. This method was repeated for each indicator. Global model fit indices for
each of these models were compared to the fully invariant model to determine if partial or full

invariance held across time.

To examine measurement invariance across groups (gender and cohort), a flexible
modeling approach utilizing covariates was utilized (Muthén, 2021). Specifically, a direct
effects model where the grouping variable acts as a covariate and directly influences the latent
class variables and latent class indicators (see Figure 1) was compared to a main effects model
where the grouping variable acts as a covariate and influences the latent class variables and the
random intercept (see Figure 2). The selection of the main effects model as the better fitting
model would indicate measurement invariance held across the grouping variable as the random
intercept captured most of the measurement non-invariance that was time-invariant (Muthén,

2021; Muthén & Asparouhov, 2020).

After invariance was established, RQ2 was addressed by examining transition
probabilities obtained through the validated, baseline model. Odds ratios greater than one with a

significant, non-symmetric 95% confidence interval (centered at 1.00) indicated that the odds of
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transitioning from a particular class to another at that timepoint were significantly greater than

the odds of remaining within the same class.

After establishing and validating the baseline model, covariates for gender (man or
woman) and group, as related to students’ cohort year (Cohort 1 — pre-COVID-19: 2018-2019,
Cohort 2 — onset of COVID-19: 2019-2020, or Cohort 3 — mid-COVID-19: 2020-2021) were
incorporated into the model one at a time as a main effects model to assess the degree to which
they influenced the transitions of individuals from one classification status to another. RQ2.1
and RQ2.2 were investigated through their respective covariate effects on the transition
probabilities and related significant or nonsignificant odds ratios. Significant odds ratios
signified that the odds of transitioning from one class to another were significantly different for

one-level of the covariate (e.g., women) than the other (e.g., men).

Lastly, after confirming and validating the optimal RI-LTA model and subsequent
covariate effects, students’ posterior probabilistic engineering identity classifications were
analyzed. Specifically, RQ3 was examined through a descriptive analysis of students’
probabilistic engineering identity classifications at T1 in relation to their selected major at the

beginning of their second year.

STATA 17.1 (StataCorp, 2021) was used for all descriptive and correlational studies. RI-
LTA models were estimated with Mplus Version 8.7 (Muthén & Muthén, 1998 —2021) using the
maximum likelihood estimation method with robust standard errors (MLR), the default estimator
for RI-LTA. Missing data was handled using the full information maximum likelihood (FIML)
method, default to Mplus. All non-nested models used for invariance testing across groups were
compared using BIC values with lower values indicating a better model fit. Nested models used

for model identification and invariance testing over time were compared using BIC and
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loglikelihood values with lower BIC and higher loglikelihood values indicating a better model
fit. Where appropriate, formal Chi-Square Difference Tests were applied using the Satorra-
Bentler Correction at the standard @ = .05 significance level (Muthén, 2021). If BIC and
loglikelihood values were not in agreement as to which model was the better fitting model, BIC

was selected for the model comparison (Muthén, 2021; Muthén & Asparouhov, 2020).

Results

The present study was based on an identity measure rated on a 7-point Likert scale. LTA
and RI-LTA typically reduce a study’s rating to a minimal number of categories, often binary,
due to computational complexity (Collins & Lanza, 2010; Ryoo et al., 2018). Noting the
potential loss of information this would entail, it was decided to proceed with the commonly
accepted practice of analyzing the present study’s data based on a continuous rating scale
(Johnson & Creech, 1983; Norman, 2010; Sullivan & Artino, 2013). The present study (n=598)
analyzed under the RI-LTA framework contains an adequate sample size to yield reliable results
with T > 3, and N > 500 (Muthén, 2021). Descriptive statistics and a correlation matrix for the

study variables are provided in Appendix B.

Model Identification

RI-LTA models for the 2, 3, and 4-class solutions were produced. Results are provided
in Table 1. Class sizes are provided for each RI-LTA model at every timepoint, ordered from the
lowest engineering identity class with the lowest indicator intercepts to the highest engineering
identity class with the highest indicator intercepts. All models converged. Class intercept

estimates and standard errors of the different class RI-LTA models are provided in Appendix C.
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RQI: Are there different engineering identity classifications for first-year undergraduate
engineering students? The different RI-LTA models were compared. The 3-class model
demonstrated substantially lower AIC (12255.63), lower BIC (12409.40) and higher LL (-
6092.81, number of free parameters (fp) = 35) than the 2-class solution (AIC = 12526.23, BIC =
12627.28, LL =-6240.12, fp = 23). This signified the superiority of the 3-class solution to the 2-
class solution. Entropy for the 3-class solution (.74) was less than that of the two-class solution
(.82), but still above the .70 cutoff. The class sizes for both solutions were adequate. The 3-

class model was deemed superior to the 2-class model.

The 4-class model had one class that captured only 1% to 2% of participants on each of
the three measurement occasions. This did not meet our established criterion of an adequate
class size containing at least 5% of participants. The 4-class model was not chosen to serve as
the baseline model as it failed to meet our established criterion for model selection. The 3-class
model was, thus, selected to serve as the baseline model. Subsequently, three engineering
identity classifications of first-year engineering students were discovered—Medium, Medium-
High, and High. We designated the lowest class as “Medium” because their scores on the

identity items were moderate in nature (see Appendix C).

A lag 2, 3-class model was tested (BIC = 12426.38, LL =-6088.51, fp = 39) and
compared to the 3-class baseline model. With a lower BIC and borderline insignificant adjusted
chi-square difference test (X°(4) = 9.75, p=.045), the baseline model was retained based upon our

established criterion for model selection.

Model Invariance Testing
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To examine the time invariance assumption of the baseline model, one indicator was
freed at a time and allowed to vary across all time points. Model results are provided in
Table 2. The loglikelihood for the fully invariant, baseline model was slightly higher than the
partially invariant models. These differences in loglikelihood values, however, were only
significant between the baseline model and the Item 3 Noninvariant model (adjusted X*(6) =
19.10, p =.004). The BIC for the fully invariant model (BIC = 12409.40) was less than that of
each of the partially invariant models, including the Item 3 Noninvariant model (BIC =
12420.53). Thus, the fully invariant baseline model was retained based upon our established
criterion for model selection.

To examine invariance across groups (gender and cohort), a direct effects model was
compared to a main effects model using BIC. The gender main effects model produced a lower
BIC (12444.27) than the related direct effects model (12469.85). Similarly, the cohort main
effects model also produced a lower BIC (12465.41) than the corresponding direct effects model
(12536.41). Thus, the main effects model for both gender and cohort were superior to their
direct effects counterparts. Measurement invariance was upheld across gender and cohort under

the RI-LTA framework.

RQ2: Are first-year undergraduate engineering students’ engineering identity statuses, or
classifications, stable over an academic year? After measurement invariance was established
across time and groups, RQ2 was addressed. The most common class patterns based on the
estimated model were as follows: 3-3-3 where students remained in the highest engineering
identity class across all three timepoints (36%); 2-3-3 where students started in the Medium-
High class at T1 and then transitioned to the High class by T2 and remained there for T3 (11%);

and 2-2-2 where students remained in the Medium-High class across all three timepoints (10%).
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Next, transition probabilities between the timepoints were observed from the validated
baseline model (see Table 3). Transition probability odds ratios are provided in Appendix D.
Students tended to stay within the same class over time, though some movement was detected as
was found in examination of the class patterns with 11% of students demonstrating the 2-3-3
pattern. Indeed, the greatest likelihood of transitioning to a different class was derived from this
pattern and occurred between T1 and T2. Students in Class 2 (Medium-High) had a 37% chance
of transitioning to Class 3 (High). However, the odds of transitioning from Class 2 to Class 3
during this time were .69 times that of just staying in Class 2. These odds were non-significant
(0.37, 1.26). In general, the probabilistic movement of students between classes was not
statistically significant, or significantly less than the likelihood of students remaining in their

same class. The classes, thus, demonstrated stability over time.

Covariate Inclusion

RQ2.1: Does gender influence engineering identity classification stability? To address
RQ2.1, a binary gender variable representative of man or woman (man = 0, woman = 1) was
incorporated into the model as a covariate in a main effects model to examine its effects on the
probabilistic transitions of students between classes. The effect of gender on transition
probability odds ratios was observed over each time period. These ratios are provided in Table
4. Notably, between T2 and T3 the odds of transitioning from Class 2 (Medium-High) to Class 3
(High) were 2.42 times greater for women than for men. This result was statistically significant
(1.07,4.71). During this same time period, the odds of transitioning from Class 3 (High) to
Class 2 (Medium-High) was .45 times as likely for women than men. This result was also
statistically significant (0.21, 0.94). Hence, gender did demonstrate influence on engineering

identity stability over the academic year.
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RQ2.2: Did COVID-19 influence engineering identity classification stability? To address
RQ2.2, two dummy-coded covariates representative of the COVID-year (Cohort 2: Cohort 2 =1,
otherwise = 0 and Cohort 3: Cohort 3 = 1, otherwise = 0) were incorporated into the model as
main effects models to examine its effects on the probabilistic transitions of students between
classes. Cohort 1 was selected to serve as the reference group because it was the only group not
affected by COVID-19. The effect of cohort classification on the transition probability odds
ratios were observed over each time period. These ratios representing the effects of Cohort 2 and
Cohort 3 are provided in Table 5 and Table 6, respectively. Over the first semester, students in
Cohort 2 were 3.18 times more likely to transition from Class 1 (Medium) to Class 3 (High)
between the beginning and middle of the academic year compared to students in Cohort 1.
During this same time period, students in Class 2 (Medium-High) were 2.64 times more likely to
transition to Class 3 (High) if they were in Cohort 2 compared to Cohort 1. These results were
statistically significant. It should be noted that both of these probabilistic transitions occurred
during the first semester of the 2019 academic year—before the COVID-19 outbreak directly
impacted the US but was already making headlines. In examination of the effects of Cohort 3 on
transitions, it was found that students were 2.97 times more likely to transition down from Class
3 (High) to Class 1 (Medium) during their second semester if they were in Cohort 3 (mid
COVID) compared to Cohort 1 (pre COVID). This result was statistically significant. COVID-
19 as modeled by Cohort-year, thus, did demonstrate a significant influence on classification

stability.

Descriptive Analysis

Lastly, to address RQ3: How are first-year engineering students’ initial engineering

identity classifications related to their selection or non-selection of engineering majors at the
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beginning of their second year? students' probabilistic engineering identity classifications at T1
were observed in conjunction with their major selections at the beginning of Year 2. A total of
77 student participants’ major selections at the beginning of their first and second years were
missing. The reason(s) for this are unknown but could be contributed to a myriad of sources—the
students could have dropped out of college, enrolled in a different university, had an
“undeclared” major, or experienced a computer error in data gathering. Thus, we cannot
adequately describe these students. Major selections for the remaining 521 student participants

can be seen in Figure 3 (see Appendix E for the related table).

Students residing in Engineering Identity Class 3 (High) comprised the greatest
proportion of each engineering major (see Figure 3). This is not surprising given that all the
students in this study entered college planning to major in engineering, and that Engineering
Identity Class 3 constituted the majority of all students at T1. Chemical Engineering and
Industrial Engineering majors showed the greatest difference in representations between
Engineering Identity Class 2 (Medium-High) and Class 3 (High) (see Figure 3). Indeed, 3.25
times more students who majored in Chemical Engineering (N=26) were in Engineering Identity
Class 3 compared to Class 2 (N=8). Also, 2.38 times more students who majored in Industrial
Engineering were in Engineering Identity Class 3 (High, N=31) compared to Class 2 (Medium-
High, N=13). Furthermore, though a total of 20 students selected an Electrical Engineering
Major for their second year, none of these students were in Engineering Identity Class 1

(Medium). This was the only major that did not have a Class 1 student.

Of special interest regarding retention within engineering education are the groups of
students who “switched” to another major for Year 2, who were declared “Not on Track” for

Year 2 and could not select an engineering major, or who did “Not Return” for Year 2.
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Approximately 28, or 5%, of the student participants selected a major outside of engineering for
Year 2—16 students who were initially classified in Engineering Identity Class 3 (High), 11 in

Engineering Identity Class 2 (Medium-High) and one in Engineering Identity Class 1 (Medium).

Noting the importance of Calculus-readiness to the retention of engineering majors (e.g.,
Bowen et al., 2019; French et al., 2005) combined with the importance of engineering identity to
the retention of engineering majors (Beam et al., 2009; Pierrakos et al., 2009; Rodriguez et al.,
2018; Tonso, 2014) along with the lack of published literature investigating the links between
Calculus-readiness and engineering identity, we decided to conduct an exploratory analysis and
investigate students’ Calculus-readiness upon college entrance in regards to their engineering
identity and major selection. Calculus-readiness upon college entrance was determined by the
university. A student was declared “Calculus-ready” if they were deemed eligible to enter any
Calculus course and “not Calculus-ready” if they were not eligible to enter a Calculus course
upon college entrance. Approximately 37% of students who entered college not Calculus-ready
successfully progressed into an engineering major by Year 2. In contrast, about 60% of
“switchers,” entered college not Calculus-ready. Of these “switchers” who were not Calculus-

ready, 63% of them were initially classified in Engineering Identity Class 3.

Furthermore, approximately 9% of student participants were declared “Not on Track” at
the beginning of Year 2 and were, thus, unable to declare an engineering major—26 students
initially classified in Engineering Identity Class 3 (High), 16 in Engineering Identity Class 2
(Medium-High), and 3 in Engineering Identity Class 1 (Medium). Again, utilizing Calculus-
readiness to further describe these students, it was found that 80% of the students declared “Not

on Track” entered college not Calculus-ready. Moreover, looking more specifically at students
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by their class, 92% of Engineering Identity Class 3 (High) students who were declared “Not on

Track” were not Calculus-ready upon college entrance.

Lastly, eight out of the 521 students beginning on an engineering track in Year 1 did not
return for Year 2—seven initially classified in Engineering Identity Class 3 (High) and one in
Engineering Identity Class 1 (Medium). Approximately 75% of students who did “Not Return”
were not Calculus-ready upon college entrance, including five out of the seven students initially

classified in Engineering Class 3.

Discussion

This study is the first in peer-reviewed published literature to apply person-centered
quantitative techniques to the longitudinal study of engineering identity. It is also the first to
apply the newly established RI-LTA modeling framework to a relevant investigation outside of
Muthén and Asparouhov’s (2020) original work. Noting the heightened attention and
importance of engineering identity, we sought to investigate the number of engineering classes
present within first-year engineering students, the stability of these identities over an academic
year, the potential impact that gender and COVID-19 had on engineering identity stability, and

the relationship of engineering identity to the selection or non-selection of engineering majors.

First, the establishment of a solid 3-class RI-LTA model was critical to this study as it
demonstrated different classes of engineering identity existed for first-year engineering students.
Given that no person-centered technique has been applied to the domain of engineering identity,
this is a novel finding. This finding further emphasizes the need to not assume that individuals

come from a single population when studying different identity domains, but to allow for the
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detection of different, meaningful groups, or classes, of individuals demonstrating similarities on

the construct (Jung & Wickrama, 2008; Luyckx et al., 2008b; Meeus et al., 2012).

The discovered 3-class RI-LTA model for engineering identity also mirrors the findings
of Robinson and colleagues (2018, 2019). Using person-centered longitudinal methods,
Robinson and colleagues (2018, 2019) also discovered 3-classes of science identity existed for
undergraduate science majors. This 3-class engineering identity solution suggests that students
do not all begin their collegiate tenure with a high-level of established engineering identity.
Indeed, medium, medium-high, and high-levels of engineering identity were all detected (see
Appendix C). Thus, distinctiveness was detected between students’ engineering identities even
though all the students were pursuing engineering. Simply grouping all students together for
analytical purposes would have forfeited this valuable information and future investigations into
relationships between these classes and external variables. Discovering these classes allows for
further investigations into motivational, personality, and various psychosocial factors

contributing to or hindering the effective cultivation of students’ engineering identities over time.

The three engineering identity classes demonstrated stability throughout the academic
year suggesting first-year engineering students typically remained within their same class. Again,
these results were similar to Robinson and colleagues’ (2018, 2019) science identity findings
where two of three classes yielded no significant trajectory changes over time. The modest
transitions in engineering identity that were detected suggested a greater likelihood of students
transitioning in an upward trajectory, that is, transitioning to a higher engineering identity class
instead of a lower one. These findings amplify the importance of the establishment of a strong

engineering identity before college entrance.
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Interestingly, women in this study were more likely to transition to higher engineering
identity classifications and less likely to transition to lower classifications compared to men. This
was evidenced by women being approximately 2.5 times more likely than men to transition from
the Medium-High to High class during the latter part of the academic year. This significant
result provides some statistical evidence regarding the internalization of women's engineering
identities that previous studies have suggested (Faulkner, 2007; Godwin & Potvin, 2017; Hamlet
et al., 2020; Seymour, 1997; Sheppard et al., 2015). Women who were first-year engineering
students with a medium-high level of engineering identity appeared to grow in their identity and
have some protective barrier against identity regression, or confusion, that was distinctively
different from their men counterparts. This finding serves to enhance the research-base
regarding women in engineering by providing statistical support to the importance of the

internalization of women’s engineering identity over time that differs from men.

Investigations into the myriad of effects the COVID-19 pandemic has had upon different
populations within society will likely continue to be unraveled for the foreseeable future. The
drastic rise in mental health struggles for university students during the pandemic is of particular
importance. Studies documented increases in anxiety rates among undergraduate students by
about 50% and depression rates by over 60% during the first year-and-a-half of the pandemic
(Coakley et al., 2021; Czeisler, 2020; Fruehwirth et al., 2021; Lopez-Moreno et al., 2020).

Social distancing measures, online courses, pandemic fatigue and several other factors could
have potentially contributed to this trend. The growing influx of such mental health struggles for
university students combined with first-year engineering students being towards the beginning of
the formative period for their engineering identity is cause for concern and investigation. It is

reasonable to question if greater numbers of first-year engineering students enrolled during the
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pandemic transitioned to lower engineering identity statuses as the academic year and pandemic
progressed in contrast to similar students who were enrolled prior to the pandemic. This study
showed that indeed COVID-19 did influence engineering identity stability in a negative way.
First-year engineering students were 2.97 times more likely to transition down from the highest
engineering identity class to the lowest during their second semester if they were in Cohort 3
(mid-COVID) compared to Cohort 1 (pre-COVID). As time wore on for students enrolled
during the 2020 academic year, their engineering identity showed significant negative
developmental patterns compared to students before the pandemic. This only adds to the vast
number of negative effects COVID-19 has had upon our world. Certainly, these results are
noteworthy and warrant further investigation into the many effects of the COVID-19 pandemic

including its impact upon students’ various developing identities.

Given that persistence data commonly associated with engineering identity (i.e.,
graduation with an engineering degree or entrance into the engineering workforce) would not be
available for several more years for all students in this study, it was decided to investigate
students’ initial engineering identity classification with their selection/non-selection of an
engineering major at the beginning of Year 2. Through the descriptive analysis of initial identity
classification in conjunction with the selection of an engineering major in Year 2, it was
discovered that a fairly equivalent distribution of the identity classes across major selections
existed. This is not surprising as students demonstrating greater levels of cultivation of their
engineering identity would be expected to pursue engineering majors at greater proportions than
others as a representation of their engineering persistence—ultimately culminating in their
entrance into the engineering workforce (Cave et al., 2014; Owen & Rolfes, 2015; Rodriguez et

al., 2018; Tonso, 2014; Trytten et al., 2015).
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The finding that zero students from Class 1 (Medium) selected an Electrical Engineering
major, and this being the only major without a Class 1 student is noteworthy. Electrical
engineering is well-known for being one of, if not the most, math-intensive engineering majors
as it relies heavily upon the fields of mathematics and physics—which is also mathematically-
intensive. Combining this result with the findings that 63% of “switchers,” 92% of students
declared “not on track” for Year 2, and 71% of students that did “not return” for Year 2 were
classified in Engineering Identity Class 3 (High) but were not Calculus-ready upon college
entrance suggests that there could be a link between mathematics (i.e., mathematics-readiness,
mathematics appreciation, mathematics motivation, etc.) and engineering identity. It is feasible
that some students enter college strongly identifying themselves as engineers but are unaware of
the mathematical aptitude and strenuousness required for engineering degrees. However, more
study is needed. Certainly, the link between students being Calculus-ready upon college
entrance and their retention within engineering degree programs established in previous studies
(e.g., Bowen et al., 2019; French, 2005) was also visible in this investigation with 57% of

“switchers” and 80% of those declared “not on track” by Year 2 being not Calculus-ready.

Implications for Future Research

This study sets the groundwork for future investigations into engineering identity
development for entering engineering students. Person-centered longitudinal, quantitative
approaches are needed to continue investigating the development and stability of engineering
identity throughout the college-tenure. One possible theoretical framework for which to
approach future person-centered methodological studies regarding engineering identity
development is through the lens of variation theory. Variation theory reflects a theory of

learning and experience that explains various ways a learner might come to see, understand, or
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experience a given phenomenon in a particular way, and why certain students in similar
situations (e.g., classrooms, programs of study) might perceive concepts or constructs differently
(Bussey et al., 2013; Orgill, 2012). Given that the current study quantitatively identified three
engineering classes, variation theory would seek to understand “why” students who are all
pursuing engineering are quantitatively grouped into these three distinct classes—reflecting
variations in their perceived identification with engineering. Future investigations could
consider utilizing variation theory in longitudinal person-centered quantitative investigations
regarding engineering identity to further identify factors related to engineering identity

cultivation.

In this study, stability in engineering identity was observed over students’ first year.
However, this does not imply that stability continues. More study is needed to determine if
stability is maintained throughout the college-tenure and how this impacts persistence into
engineering fields. This will enable scholars and researchers to detect periods of potential change
in engineering identity and allow for more directed and effective intervention approaches. It will
also provide insight into how the different engineering identity classifications are related to

engineering persistence as given by entrance into the engineering workforce.

Furthermore, the finding that most students who did not declare an engineering major for
Year 2 were not-Calculus ready is of significance as it applied to students of all engineering
identity classes. Noting that Calculus-readiness has already been linked to student retention
within engineering programs and that engineering identity is currently gaining traction in
investigating its importance to student matriculation into engineering fields, it is feasible that all

these constructs are intertwined. A basis exists for future studies to investigate potential links
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between Calculus-readiness and engineering identity, and how the relationship between these

two constructs ultimately influences engineering persistence.

Limitations

There are limitations to the present study that require attention. The sample size for this
study, though adequate, was not optimal and from only one university. A larger study with a
more diverse sample obtained from varying institutions across the US is needed to validate the

results of this study. Findings from this study lack generalizability.

Though the entropy value of the 3-class baseline model, .74, was above the .70 cutoff,
values closer to 1.00 would demonstrate greater classification accuracy. This was likely due to a
combination of the sample size and the complexity of the modeling technique. A larger sample
size would likely produce higher entropy values and more consistent decisions when comparing
global fit indices. Furthermore, the descriptive analysis portion of this study utilized the
posterior probabilistic engineering identity classes at T1 produced by the validated baseline
model. Formal testing, such as regression analysis, that utilize latent classifications are typically
not recommended if the mixture model produced an entropy value less than .80 (Clark, 2010).
This study was a preliminary investigation into engineering identity classifications, indeed the
first of its kind. The goal of the descriptive analysis was simply to gain better insight into how
the engineering identity classifications spread-out across the engineering majors and non-majors.
No formal testing was utilized. Thus, we argued the information gained from the descriptive
analysis should be presented to provide baseline information that can be utilized as a springboard

for future studies. No firm conclusions should be drawn from this portion of the study.
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Discrepancies in global model comparison and test results were also detected between the
baseline model and the Item 3 Noninvariant model, the gender main effects model, and the
cohort main effects model. The baseline model was continuously selected for model building
purposes due to its lower BIC values. However, the discrepancies with its lower loglikelihood
values provide reason for further consideration of the retention of the other models in future

investigations with larger samples.

Furthermore, though this study provided some insight into the underrepresented group of
women engineers and their related engineering identity, other underrepresented groups were not
considered as they accounted for a small percentage of the participants. Future studies with
larger samples may be able to explore patterns by ethnicity and other student background
characteristics such as first-generation status. Not accounting for students’ ethnicity potentially

introduced some bias into this study and findings related to engineering identity stability.

Lastly, the measure of engineering identity used in this study reflects common
operationalizations put forth by various scholars (Melo et al., 2017; Godwin, 2016; Godwin et
al., 2013; Revelo et al., 2019; Rodriguez et al., 2018). However, we acknowledge that it lacks in
its ability to measure the three dimensions of their engineering (science) identity proposed by
Carlone and Johnson (2008)—Competence, Performance and Recognition. The instrument
primarily measures the Self-Recognition component of the Recognition dimension of
engineering identity. Though cited by Carlone and Johnson (2008) as being extremely critical to
one’s science identity, the measure of one’s engineering self-recognition does not likely

encompass the entirety of their engineering identity.

Conclusion
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As engineering identity is a rapidly developing construct within the field of engineering,
it is imperative that various analytical approaches be utilized to validate, confirm, or contradict
theories and qualitative findings related to the construct. The findings of this study underscore
that we can obtain three primarily stable engineering identity classes amongst first-year
engineering students. The stability of these classes was statistically significantly affected by
gender, providing support to previous research citing women might more deeply internalize their
engineering identities than men. Unfortunately, engineering identity stability was also affected
by COVID-19 adding to the growing body of literature regarding the negative impacts of
COVID-19 upon our world. Moreover, the classes of engineering identity in conjunction with
students’ Calculus-readiness upon college entrance appear to be related to their non-selection of
engineering majors in their second year of college. These findings should serve to stimulate and
refine future investigations into the construct of engineering identity with a goal of uncovering
the factors related to its successful cultivation within students over time and, ultimately, its

influence on persistence into engineering careers. (8,724 words)
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Appendix A

Engineering Identity Items

ID1: In general, being an engineer is an important part of my self-image.

ID2: Being an engineer is an important reflection of who I am.

ID3: T have come to think of myself as “an engineer”.

Note. Items adopted from: Chemers, M. M., Syed, M., Goza, B. K., Zurbriggen, E. L., Bearman,
S., Crosby, F. J., ... & Morgan, E. M. (2010). The role of self-efficacy and identity in

mediating the effects of science support programs (No. 5). Technical Report.
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Appendix B

Descriptive Statistics and Correlation Matrix of Study Variables

IDI_ ID2_ ID3_ IDI_ ID2_ ID3_ IDI_ ID2_ ID3_
M SD T1 T1 T1 T2 T2 T2 T3 T3 T3 Woman  Cohort2  Cohort 3

ID1 T1 | 538 1.32 1.00
ID2 T1 | 537 129 079 1.00
ID3 T1 | 527 139 0.63 0.69 1.00

ID1 T2 | 540 135 057 0.57 0.48 1.00

ID2 T2 | 540 132 053 0.62 0.5 0.83 1.00

ID3 T2 | 541 137 044 0.52 0.52 0.65 0.69 1.00

ID1 T3 | 532 144 054 0.55 0.52 0.64 0.66 057 1.00

ID2 T3 | 533 140 048 0.55 0.5 0.59 0.63 0.53  0.90 1.00

ID3 T3 | 550 141 041 048 0.55 0.50 0.53 0.58 0.71 0.73 1.00

Woman | 029 045 0.02 -0.01 -0.02 -0.06 -0.03 -0.04 0.02 004 0.01 1.00

Cohort2 | 0.49 0.50 -0.04 -0.03 0.02 0.12  0.08 0.01 009 0.13 0.11 -0.05 1.00

Cohort3 | 0.17 0.37 -0.02 -0.03 -0.05 0.03 0.03 0.06 -0.02 -0.06 -0.06 .04 -0.39 1.00

Note. M = Mean, SD = Standard Deviation, T1 = Time 1, T2 = Time 2, T3 = Time 3, ID1 = In general, being an engineer is an
important part of my self-image, ID2 = Being an engineer is an important reflection of who I am, 1D3 = I have come to think of myself
as “an engineer”.
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Appendix C

Class Intercept Estimates and Standard Errors for the RI-LTA Models

2 Class Solution 3 Class Solution 4 Class Solution
Class
‘IEIISEEZ?; Clags 2 Class 3
Class 1 | Class?2 Class 1 (Medium- . Class1 | Class2 | Class3 | Class 4
(S.E.) (Medium) | Highy | (HigW
Item
Number
ID1 3.58 5.74 2.70 478 6.08 2.99 2.68 4.94 6.02
(.17) (.05) (.20) (.13) (.09) (.13) (.30) (.10) (.06)
ID2 3.69 5.72 3.09 4.74 6.04 2.96 5.48 4.77 6.04
(.14) (.05) (.15) (.1D) (.06) (.11 (.26) (.09) (.06)
ID3 423 5.61 3.97 493 5.83 3.93 5.04 493 5.84
(.17) (.05) (.16) (.1D) (.06) (.17) (.33) (.09) (.07)

Note. Mean (standard deviation).
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Transition Probability Odds Ratios for the 3-Class Model

Appendix D

Time 2

Class 1

Class 2

Class 3

Class 1

1.00 (1.00, 1.00)

0.66 (.23, 1.88)

0.59 (.24, 1.46)

Time 1 | Class 2

0.19 (.09, .39)

1.00 (1.00, 1.00)

0.69 (.37, 1.26)

Class 3 | 0.05(.02,.105) 0.24 (.14, 41) 1.00 (1.00, 1.00)
Time 3
Class 1 | 1.00 (1.00, 1.00) | 0.62 (.24, 1.64) 0.26 (.07, .95)

Time 2 | Class 2

0.24 (.11, .51)

1.00 (1.00, 1.00)

0.63 (.23, 1.77)

Class3

0.03 (.01, .10)

0.19 (.09, .38)

1.00 (1.00, 1.00)

Note. Odds ratio (non-symmetric 95% confidence intervals centered at 1.00).
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Engineering Identity Classifications by Engineering Major Table

Appendix E

IDT1

Year2Major Class 1 | Class2 [ Class 3 | Total

Aerospace Engineering 9 38 52 99
(9%) (38%) | (52%)

Biomedical Engineering 3 32 35 70
(4%) (46%) | (50%)

Biometric Systems Engineering 1 0 2 3
(33%) (0%) (67%)

Chemical Engineering 4 8 26 38
(11%) | (21%) | (68%)

Civil Engineering 6 16 28 50
(12%) | (32%) | (56%)

Computer Engineering 2 11 23 36
(6%) (31%) | (64%)

Electrical Engineering 0 8 12 20
(0%) (40%) [ (60%)

Industrial Engineering 1 13 31 45
(2%) (29%) | (69%)

Mechanical Engineering 7 21 31 59
(12%) | (36%) | (53%)

Mining Engineering 1 1 8 10
(10%) | (10%) | (80%)

Petroleum & Natural Gas Engineering 1 1 8 10
(10%) | (10%) [ (80%)

Not Return 0 1 7 8
(0%) (13%) | (88%)

Not on Track 3 16 26 45
(7%) (36%) | (58%)

Switch 1 11 16 28
(4%) (39%) | (57%)

Total 39 177 305 521

Note. IDT1 = Engineering identity measured at Time 1. Count (percent of major).
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