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Abstract 

Engineering identity is a rapidly evolving construct within engineering, primarily due to 

its link to engineering persistence. Yet, most engineering identity research has been qualitative in 

nature or has described individuals within the analytical technique as coming from a single 

population.  This study is the first to allow for the detection of different meaningful groups of 

engineering students demonstrating similarity on the construct using the new technique of 

Random Intercept Latent Transition Analysis.  Through this study we identified three stable 

classes of engineering identity existed amongst first-year undergraduate students.  Women 

demonstrated a greater likelihood of advancing to higher engineering identity classes over time 

than men. Unfortunately, the influence of COVID-19 yielded negative engineering identity 

developmental patterns for some students. Lastly, descriptive analyses of students’ first-year 

engineering identity class assignments in relation to their selection/non-selection of engineering 

majors revealed Calculus-readiness upon college entrance might be an important component in 

these relationships.   
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Introduction 

The National Academies Gathering Storm committee concluded several years ago that 

the primary driver of the future economy, security of the United States (US) as a nation, and 

concomitant creation of jobs would be innovation—largely derived from advances in science 

and, particularly, in engineering (National Research Council, 2007).  The European Union (EU) 

has mirrored this notion regarding the importance of engineering to the success and longevity of 

its related countries by prioritizing the production of a sufficient number of engineering 

graduates prepared to enter engineering professions over the last several decades (Gómez et al., 

2022).  Yet, both North America and Europe struggle with attrition in engineering.  It has been 

found that almost half of students in the US and an estimated 30-40% of students in European 

countries such as Spain who begin their studies in engineering, do not reach graduation (Araque 

et al., 2009; Gárcia-Ros et al., 2019; Litzler & Young, 2012).  These rates are alarming. 

Engineering identity is a rapidly evolving construct within the field of engineering.  It has 

been found to be a strong predictor of student retention and success in engineering degree 

programs and fields (Beam et al., 2009; Pierrakos et al., 2009; Rodriguez et al., 2018; Tonso, 

2014).  Thus, cross-disciplinary research teams from engineering, education, psychology, and 

sociology have been urgently seeking to define and investigate the construct (Revelo et al., 2019; 

Rodriguez et al., 2018).  Yet to date, most of the research has been qualitative in nature 

(Rodriguez et al., 2018) or has described individuals within the analytical technique as coming 

from a single population.  These studies, though noteworthy, have not allowed for the detection 

of different, meaningful groups, or classes, of individuals demonstrating similarities in their 

engineering identities (Jung & Wickrama, 2008).   
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Using person-centered analytical approaches can provide tremendous insight into 

engineering identity development, cultivation, stability over time, factors influencing its stability, 

and ultimately its relationship to students’ persistence into the engineering workforce—as have 

been documented with other identity domains (Luyckx et al., 2008b; Meeus et al., 2012).  This 

study is a first to apply such techniques to investigate the stability of engineering students’ 

engineering identity classifications over their first year in college, the potential impact of gender 

and COVID-19 on this stability, and the relationship between these classifications and students’ 

selection or non-selection of engineering majors at the beginning of their second year in college.  

Though based in the US, the culmination of this study serves to advance the international 

research base regarding engineering identity by providing unique insights into the construct’s 

development and cultivation across different groups of engineering students that can only be 

obtained through person-centered analytical approaches. 

Engineering Identity  

Theoretical perspectives regarding identity formation were first initiated by Erikson.  

Erickson (1959, 1968) believed that identity was a primary task of adolescence that resulted from 

individuals beginning to cope with social and developmental demands while, simultaneously, 

seeking to provide meaning to their life choices and commitments (Bosma & Kunnen, 2008; 

Hewlett, 2013; Jensen, 2011; McLean & Syed, 2015; Schwartz et al., 2011; Was et al., 2009).  

Adolescents must make important decisions in multiple identity domains, such as education and 

interpersonal relationships, that ultimately lead to identity synthesis and cultivation or identity 

crisis (Albarello et al., 2017; Branje et al., 2014; McLean et al., 2016).   

Following Erickson, many studies have further proposed that an individual can be 

classified under different identity statuses depending upon which identity domain is under 
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consideration (Marcia et al., 1993).  Indeed, advances in identity theory, social identity theory, 

and research on identity in practice have come to recognize that people have multiple identity 

classifications as they simultaneously serve multiple roles in their lives (Stryker & Burke, 2000; 

Tajfel & Turner, 1986).  A woman engineer, for example, might also be a researcher, daughter, 

mother and musician; thus, her identity might be developing differently depending upon the 

identity domain being measured.   

One identity domain gaining the attention of researchers and practitioners alike resides in 

the field of engineering. Engineering identity has quickly risen to the frontlines of investigations 

in engineering, drawing upon cross-disciplinary research from engineering, education, 

psychology, and sociology (Revelo et al., 2019; Rodriguez et al., 2018).  In actuality, the 

conceptualization of engineering identity can be traced back to Gee (2000), a linguist, who 

attempted to provide a bridge from traditional identity theory posited by Erickson (1959) into 

education.  Gee loosely defined identity as a “kind of person” one is in any given context.  Many 

recent studies seeking to measure engineering identity have been built upon the grounded model 

of science identity put forward by Carlone and Johnson (2007) that utilizes Gee’s definition of 

identity (Revelo et al., 2019).  Carlone and Johnson suggested the existence of three interrelated 

dimensions of science identity: Competence, Performance, and Recognition.  Inside of Carlone 

and Johnson’s description of the Recognition dimension of science identity resonates Gee’s 

definition of identity, or recognizing oneself as a “science kind of person” (Carlone & Johnson, 

2007; Chemers et al., 2011; Gee, 2000; Godwin, 2016; Godwin et al., 2013).  

Tracking this theoretical lens from science identity into the domain of engineering 

identity, several scholars have applied the grounded theory of science identity established by 

Carlone and Johnson (2007) to the field of engineering (Melo et al., 2017; Godwin, 2016; 



   
 

  6 
 

Godwin et al., 2013; Revelo et al., 2019; Rodriguez et al., 2018).  They have, thus, 

simultaneously carried forward Gee’s (2000) definition of identity as being a “kind of person” 

into the field of engineering.  It follows that one of the central components of a student’s 

engineering identity is largely recognized as being the measurement of the degree to which they 

“view themself as an engineering kind of person.”  Godwin (2016) briefly elaborated on this 

operationalization and defined engineering identity as a student’s ability to feel like the kind of 

person who is interested in, possesses the relevant knowledge and skills in, and engages in 

engineering practices.  University students with strong engineering identities establish and refine 

their engineering interests, build competence within the area of engineering, and utilize various 

tools to help them perform and cultivate their engineering identities (Godwin, 2016; Godwin et 

al., 2013).   

As of late, engineering identity has been brought into the discussion regarding 

contributors to student retention and academic success in engineering, along with their ultimate 

matriculation into engineering fields (Bowen et al., 2019; Tonso, 2014; Rodriguez et al., 2018).  

Student GPA at the end of their first year in college, SAT math scores, ACT math scores, high 

school GPA and Calculus-readiness—being eligible to take a Calculus course their first semester 

in college—have all been identified as significant variables that impact student retention within 

engineering programs (Bowen et al., 2019; French et al., 2005; Hall et al., 2015; Lam et al., 

1999; Levin & Wyckoff, 1988).  Indeed, the importance of mathematical achievement and 

preparation to engineering persistence has long been studied.  Correlations between first 

semester undergraduate mathematics course grades and success/persistence in engineering have 

been recorded, regardless of which mathematics course was taken (Budny et al., 1998).  

Moreover, the significant predictive nature of students’ Calculus-readiness upon college entrance 
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to their actual attainment of an engineering degree have also been well documented with 

Calculus-ready engineering students being significantly more likely to graduate with a degree in 

engineering than non-Calculus-ready engineering students (Bowen et al., 2017; Bowen et al., 

2019).   However, more recent, the construct of engineering identity has joined this list of 

potential influences on engineering persistence. 

Prior research has suggested that students who do not identify with the engineering field 

have a greater likelihood of exiting or not entering the engineering workforce than those who do 

(McCave et al., 2014; Owen & Rolfes, 2015; Rodriguez et al., 2018; Tonso, 2014; Trytten et al., 

2015).  Meyers and colleagues (2012) suggested that undergraduate engineering students must 

navigate acquiring necessary skills and disciplinary development for their careers as they begin 

cultivating their professional engineering identities.  This cultivation of undergraduate students’ 

engineering identities is imperative for positive experiences and successful retention within 

engineering degree programs leading into engineering fields (Meyers et al., 2012; Seymour, 

1997; Stevens et al., 2005).  Ultimately, successful cultivation of students’ engineering identities 

impacts their continued pursuit of engineering majors and subsequent entrance into the 

engineering workforce (Beam et al., 2009; Pierrakos et al., 2009; Revelo et al., 2019).  However, 

no knowledge currently exists regarding how engineering identity is related to engineering major 

selection or underperformance in engineering degree programs.   

Given the amount of research suggesting the importance of engineering identity to the 

pursuit of engineering careers, and the importance of engineering professionals to the success 

and prosperity of the US as a nation (National Research Council, 2007), the establishment and 

cultivation of a strong engineering identity within undergraduate engineering students is critical.  

This establishment is perhaps even more important for women than men. 
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Gender Differences in Engineering Identity  

It is no secret that gender disparities exist within STEM fields.  Progress in reducing 

gender inequality, however, has occurred within some STEM disciplines.  As documented by the 

National Science Foundation’s (2021) findings, 41% of all bachelor’s degrees in the physical 

sciences, 38% in the earth sciences, and 42% in mathematics and statistics are now being 

awarded to women.  However, the gap in degree attainment between men and women remains 

substantially wider in engineering, where only 22% of all bachelor’s degrees are awarded to 

women (National Science Foundation, 2021).  Women, thus, continue to be underrepresented 

within engineering.  

According to a study by Eccles and Barber (1999) as cited by Chemers and colleagues 

(2011), underrepresented groups in STEM (e.g., women in engineering) who identify strongly 

with academic role identities demonstrate greater persistence to degree completion than 

underrepresented students who identify more strongly with their social identities such as 

ethnic/racial identities or gender identity.  Hamlet and colleagues (2020) noted specifically that 

engineering identity formation plays a crucial role in the persistence and retention of these 

underrepresented students in engineering fields.  Engineering identity, thus, is gravely important 

to increasing gender diversity within the field. 

Women have been found to begin their engineering coursework with lower confidence in 

several areas including: their engineering knowledge, their ability to succeed in engineering, and 

their perceptions of the various contributions that engineers make to society (Besterfield-Sacre et 

al., 2001).  These lower levels of confidence persist for women throughout their engineering 

schooling although they do not perform at a lesser academic standard than men (Besterfield-

Sacre et al., 2001; Seymour & Hewitt, 1997).  Indeed, women often leave science, mathematics 
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or engineering majors having attained academic scores equivalent to, or higher than men who are 

retained within these majors (Seymour & Hewitt, 1997).  Despite demonstrated engineering 

academic ability and skills, a lack of identification or belonging with engineering has repeatedly 

been suggested as a motivating factor for women who leave engineering (Godwin & Potvin, 

2017; Seymour & Hewitt, 1997; Sheppard et al., 2015). 

Women have been found to be more aware of social pressures to conform to the norms of 

the professional engineering culture than men, likely due to their already existing deviation from 

the gender norm (Hamlet et al., 2020).  Engineering students who are unable to conform to 

culturally accepted norms and values, such as for women in the men-dominated engineering 

environment, leave their programs of study early (Dryburgh, 1999).  There is a sense of 

belonging within engineering that seems critical for women as they learn to navigate cultural 

norms within the field.  Furthermore, this crucial sense of belonging has been found to 

potentially provide an added protective component to women’s engineering identities (Hamlet et 

al., 2020).  Women may more deeply internalize their fit in engineering to help withstand their 

peers’ disapproval due to their violation of the gender norm within engineering (Hamlet et al., 

2020).   

Attaining this deeper internalization of their engineering identity, however, is not easy 

and requires a great deal of effort by these women in the men-dominated engineering programs 

(Faulkner, 2007; Hamlet et al., 2020).  A lack in this internalization of their engineering identity 

leads to women not persisting within the field (Godwin & Potvin, 2017; Seymour, 1997; 

Sheppard et al., 2015).  Indeed, this internalization of engineering identity for women is critical 

to their persistence.   

Current Research Practices 
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Though research regarding engineering identity development has increased substantially 

over the past 15 years, most of the study has been qualitative in nature (Rodriguez et al., 2018).  

Identity development examines how individuals progress through identity stages, or 

classifications, over time (Erickson, 1959, 1968; Marcia et al., 1993).  This theoretical 

framework provides a rich soil for longitudinal, quantitative investigations.   

Conventional longitudinal modeling approaches often assume that individuals come from 

a single population and that a single growth trajectory can adequately approximate that entire 

population (Jung & Wickrama, 2008).  Person-centered quantitative methods, however, are 

especially applicable to modeling identity development (e.g., engineering identity development) 

as they are capable of detecting different, meaningful groups, or classes, of individuals 

demonstrating similarities on the construct (Jung & Wickrama, 2008; Luyckx et al., 2008b; 

Meeus et al., 2012). These classes can then be investigated over time for probabilistic transitions 

of individuals between classes and predictors of such transitions, which yields tremendous 

insight into identity development.  

A few investigations have applied person-centered techniques to the study of a similar 

construct—science identity (Benedict et al., 2019; Lockhart, 2021; Robinson et al., 2018; 

Robinson et al., 2019; Shaby et al., 2020).  Robinson and colleagues (2018, 2019) utilized a 

person-centered approach and found three distinct science identity classes of science college 

majors existed, two with flat development trajectories and the lowest class with a negative 

trajectory over time.  These findings have led to insights regarding science identity development 

and best intervention practices for college students (Robinson et al., 2018; Robinson et al., 

2019).  No person-centered quantitative approach, however, has been utilized for engineering 

identity research.  Thus, much insight is left to be gained regarding engineering identity 
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development over time within engineering students or factors contributing to, or hindering, its 

cultivation. 

Present Study 

Considering the evidence regarding the importance of engineering identity to engineering 

persistence for undergraduate students, this study examined the stability of engineering students’ 

engineering identity over their first year in college.  This study used the new longitudinal, 

person-centered approach of Random Intercept Latent Transition Analysis, RI-LTA (see Data 

Analytic Strategy), to classify first-year engineering students within engineering identity statuses 

and examine their transitions between statuses over an academic year.  To date, no longitudinal, 

person-centered approach has been applied to engineering identity research in the published 

literature, nor has RI-LTA been utilized for any published study except the original work of 

Muthén and Asparouhov (2020).  This study is, thus, a first for both. 

In the current study, RI-LTA was utilized to investigate the existence of different 

engineering identity classes within first-year engineering majors and how likely students are to 

transition to different classes during the year.  Gender and COVID-19 year were also 

investigated within this study for their potential influences on student probabilistic transitions to 

different engineering identity classifications throughout the academic year.  Though the impact 

of COVID-19 upon college-aged individuals will not likely be fully recognized for many years, 

if ever, recent studies have documented that the instability, isolation, and strict online 

environments for college students during the first year-and-a-half of the pandemic adversely 

affected their physical and mental health (Chang et al., 2021; Castaneda-Babarro et al., 2020; 

Lopez-Moreno et al., 2020; Wang et al., 2020).  It is important, therefore, that potential effects of 
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the pandemic upon students’ engineering identity stability be investigated and relayed to the 

research community.  

The following primary research questions (RQ) were addressed in this study: 

• RQ1: Are there different engineering identity classifications for first-year undergraduate 

engineering students? 

• RQ2: Are first-year undergraduate engineering students’ engineering identity statuses, or 

classifications, stable over an academic year? 

o RQ2.1: Does gender influence engineering identity classification stability? 

o RQ2.2: Did COVID-19 influence engineering identity classification stability? 

• RQ3: How are first-year engineering students’ initial engineering identity classifications 

related to their selection or non-selection of engineering majors at the beginning of their 

second year? 

Methods 

Participants and Procedures 

  This study resided within a larger federal research grant study focused on changing 

undergraduate engineering curriculum and activities.  Participants for this study were all first-

year engineering students from a major, public, research university in the US that were enrolled 

in two consecutive introductory engineering classes over one academic year.  All students were 

preliminarily accepted into the engineering program at the university and set to declare an 

engineering major at the beginning of their second year, as was common practice for this 

university.  The study was reviewed and approved by the Institutional Review Board (IRB# 

1905584259) and participant consent was obtained through the online survey platform.   
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Students’ engineering identities were measured on three different occasions during the 

academic year (T1 = August, T2 = December, and T3 = May).  These measurements were taken 

for three consecutive, distinct cohorts.  Information was gathered and used in this study from a 

total of 598 out of 610 student participants who completed at least two of the three measurement 

occasions and were enrolled in both the fall and spring engineering courses.  Five students were 

not included in this study due to missing data on the gender variable.  The modeling technique 

utilized in this study would automatically exclude these five students from analyses utilizing 

gender as a covariate.  Data from an additional seven students was also excluded from this study 

due to a gender selection of “other.”  Although important to capture, this group was too small to 

accurately represent within the analysis.  Thus, data from 598 participants remained and is 

described below. 

Cohort 1 (2018-2019) included 205 students with 31% women and 4% underrepresented 

minorities (URM).  Cohort 2 (2019-2020) contained 294 student participants with 25% women 

and 7% URM.  Cohort 3 (2020-2021) included 99 students with 33% women and 12% URM.  

Missing data was detected on at least one of the three measured variables (see Measure) across 

the three timepoints for a total of 38% of participants including approximately 1% of participants 

at T1, 13% of participants at T2, and 25% of participants at T3. The statistical technique used in 

this study afforded the opportunity to include all 598 participants in the analysis.  Analyses were 

conducted to assess differences between those who participated at all three timepoints and those 

who did not.  Mann-Whitney U Tests using the Bonferroni correction revealed that there were no 

significant differences between the two groups on any of the three measured identity variables 

(see Measure), at any of the three timepoints. These results suggested that data may be missing at 

random (Little & Rubin, 1987).  
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Measure 

Identity as an Engineer. The Identity as a Scientist instrument developed by Chemers 

and colleagues (2010) was adopted and modified specifically for engineering.  The extent to 

which participants identified as an engineer was measured using Chemers and colleagues’ (2010) 

identity items.  Through prior work with the adapted scale, the full instrument was repeatedly 

found to produce sub-adequate model fit results under confirmatory factor analysis.  A refined 

scale with three of the items was selected that yielded a saturated model fit with high, 

statistically significant factor loadings greater than .75.  Items were rated on a scale of 1 

(strongly disagree) to 7 (strongly agree).  Participants indicated their level of agreement with the 

statements such as, “I have come to think of myself as an engineer.”  Please see Appendix A for 

a full list of items.  A higher scale score indicated a greater degree of self-identification as an 

engineer.  Cronbach’s alpha was used to assess the internal consistency of identity items for each 

of the three measurement occasions (T1-T3).  Results revealed good internal consistency of the 

instrument with Cronbach’s α = .88, .89, and .92 for all cohorts combined at T1, T2, and T3, 

respectively (Kline, 1999).  When separated by cohorts, Cronbach's alpha per each timepoint was 

greater than or equal to.85. 

Data Analytic Strategy 

To assess the research questions and sub-questions, RI-LTA was utilized to examine how 

probabilistic classes of students (i.e., engineering identity statuses) vary in systematic ways over 

time.  According to Muthén and Asparouhov (2020), the person-centered regular Latent 

Transition Analysis (LTA) technique is unnecessarily restrictive.  Regular LTA is a single-level 

modeling approach. RI-LTA, alternatively, reflects a multilevel modeling approach of separating 

the between and within-subject variation (Muthén & Asparouhov, 2020).  By considering time as 
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the within-level and student as the between-level, the latent class transitions are represented on 

the within-level (Muthén & Asparouhov, 2020).  The between-level, thus, captures much of the 

variability across students which yields more accurate classifications (Muthén & Asparouhov, 

2020).  Though LTA and RI-LTA are not normally recommended for small sample sizes (N < 

500), Muthén (2021) illustrated RI-LTA typically fits the data better than LTA when N ≥ 500 

and there are at least three measurement occasions.  Furthermore, RI-LTA leads to more accurate 

estimates of the transition probabilities, reduces the probability of subjects staying in the same 

class, and reduces the need for Mover-Stayer modeling when compared to LTA (Muthén, 2021; 

Muthén & Asparouhov, 2020).   

To begin investigating RQ1, RQ2 and related sub-questions, three primary processes 

were employed: basic model identification, model invariance testing, and covariate inclusion 

(Muthén, 2021).  Appropriate steps to identifying a baseline LTA model would typically begin 

with a series of latent class analyses (LCA) to identify the optimal number of subgroups of 

people, or classes, being represented at each timepoint (Nylund, 2007). This strategy, however, 

does not work for the RI-LTA modeling framework since the models differ by a random 

intercept factor—yielding LCA nonapplicable (Muthén, 2021).  The optimal number of latent 

classes to help answer RQ1 were, thus, investigated through the estimation of various RI-LTA 

models.  Model fit indicators such as loglikelihood (LL), Akaike information criterion (AIC), 

Bayesian information criterion (BIC), entropy (classification accuracy), and class size were used 

to aid in the selection of the most appropriate model.  Higher loglikelihood values, lower AIC 

and BIC values, entropy values closer to 1.00 with a .70 cutoff (Clark, 2010; Fonseca & 

Cardoso, 2007; Ramaswamy et al., 1993) and reasonable class sizes containing at least 5% of the 

sample (Shanahan et al., 2013) were used as indicators of a better model fit (Muthén, 2021).   
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After a baseline model was selected, the appropriateness of the lag 1 assumption (where 

each measurement occasion directly influenced the next measurement occasion) was tested.  A 

lag 2 model (where the first measurement occasion directly influenced the third measurement 

occasion) was estimated and compared to the lag 1 model using global model fit indices.   

Once the baseline model with the appropriate lag was confirmed, the validity of the 

model based upon the assumptions of invariance over time and across groups was investigated.  

For examining the time invariance assumption, one indicator was freed and allowed to vary 

across all time points.  This method was repeated for each indicator.  Global model fit indices for 

each of these models were compared to the fully invariant model to determine if partial or full 

invariance held across time.   

To examine measurement invariance across groups (gender and cohort), a flexible 

modeling approach utilizing covariates was utilized (Muthén, 2021).  Specifically, a direct 

effects model where the grouping variable acts as a covariate and directly influences the latent 

class variables and latent class indicators (see Figure 1) was compared to a main effects model 

where the grouping variable acts as a covariate and influences the latent class variables and the 

random intercept (see Figure 2).  The selection of the main effects model as the better fitting 

model would indicate measurement invariance held across the grouping variable as the random 

intercept captured most of the measurement non-invariance that was time-invariant (Muthén, 

2021; Muthén & Asparouhov, 2020).   

After invariance was established, RQ2 was addressed by examining transition 

probabilities obtained through the validated, baseline model.  Odds ratios greater than one with a 

significant, non-symmetric 95% confidence interval (centered at 1.00) indicated that the odds of 
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transitioning from a particular class to another at that timepoint were significantly greater than 

the odds of remaining within the same class.   

After establishing and validating the baseline model, covariates for gender (man or 

woman) and group, as related to students’ cohort year (Cohort 1 – pre-COVID-19: 2018-2019, 

Cohort 2 – onset of COVID-19: 2019-2020, or Cohort 3 – mid-COVID-19: 2020-2021) were 

incorporated into the model one at a time as a main effects model to assess the degree to which 

they influenced the transitions of individuals from one classification status to another.  RQ2.1 

and RQ2.2 were investigated through their respective covariate effects on the transition 

probabilities and related significant or nonsignificant odds ratios.  Significant odds ratios 

signified that the odds of transitioning from one class to another were significantly different for 

one-level of the covariate (e.g., women) than the other (e.g., men).   

Lastly, after confirming and validating the optimal RI-LTA model and subsequent 

covariate effects, students’ posterior probabilistic engineering identity classifications were 

analyzed.  Specifically, RQ3 was examined through a descriptive analysis of students’ 

probabilistic engineering identity classifications at T1 in relation to their selected major at the 

beginning of their second year. 

STATA 17.1 (StataCorp, 2021) was used for all descriptive and correlational studies.  RI-

LTA models were estimated with Mplus Version 8.7 (Muthén & Muthén, 1998 –2021) using the 

maximum likelihood estimation method with robust standard errors (MLR), the default estimator 

for RI-LTA.  Missing data was handled using the full information maximum likelihood (FIML) 

method, default to Mplus.  All non-nested models used for invariance testing across groups were 

compared using BIC values with lower values indicating a better model fit.  Nested models used 

for model identification and invariance testing over time were compared using BIC and 
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loglikelihood values with lower BIC and higher loglikelihood values indicating a better model 

fit.  Where appropriate, formal Chi-Square Difference Tests were applied using the Satorra-

Bentler Correction at the standard 𝛼 = .05 significance level (Muthén, 2021).  If BIC and 

loglikelihood values were not in agreement as to which model was the better fitting model, BIC 

was selected for the model comparison (Muthén, 2021; Muthén & Asparouhov, 2020). 

Results 

The present study was based on an identity measure rated on a 7-point Likert scale.  LTA 

and RI-LTA typically reduce a study’s rating to a minimal number of categories, often binary, 

due to computational complexity (Collins & Lanza, 2010; Ryoo et al., 2018).  Noting the 

potential loss of information this would entail, it was decided to proceed with the commonly 

accepted practice of analyzing the present study’s data based on a continuous rating scale 

(Johnson & Creech, 1983; Norman, 2010; Sullivan & Artino, 2013).  The present study (n=598) 

analyzed under the RI-LTA framework contains an adequate sample size to yield reliable results 

with T ≥ 3, and N ≥ 500 (Muthén, 2021).  Descriptive statistics and a correlation matrix for the 

study variables are provided in Appendix B. 

Model Identification 

 RI-LTA models for the 2, 3, and 4-class solutions were produced.  Results are provided 

in Table 1.  Class sizes are provided for each RI-LTA model at every timepoint, ordered from the 

lowest engineering identity class with the lowest indicator intercepts to the highest engineering 

identity class with the highest indicator intercepts.  All models converged.  Class intercept 

estimates and standard errors of the different class RI-LTA models are provided in Appendix C.  
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RQ1: Are there different engineering identity classifications for first-year undergraduate 

engineering students?  The different RI-LTA models were compared. The 3-class model 

demonstrated substantially lower AIC (12255.63), lower BIC (12409.40) and higher LL (-

6092.81, number of free parameters (fp) = 35) than the 2-class solution (AIC = 12526.23, BIC = 

12627.28, LL = -6240.12, fp = 23).  This signified the superiority of the 3-class solution to the 2-

class solution.  Entropy for the 3-class solution (.74) was less than that of the two-class solution 

(.82), but still above the .70 cutoff.  The class sizes for both solutions were adequate.  The 3-

class model was deemed superior to the 2-class model.   

The 4-class model had one class that captured only 1% to 2% of participants on each of 

the three measurement occasions.  This did not meet our established criterion of an adequate 

class size containing at least 5% of participants.  The 4-class model was not chosen to serve as 

the baseline model as it failed to meet our established criterion for model selection. The 3-class 

model was, thus, selected to serve as the baseline model.  Subsequently, three engineering 

identity classifications of first-year engineering students were discovered—Medium, Medium-

High, and High.  We designated the lowest class as “Medium” because their scores on the 

identity items were moderate in nature (see Appendix C). 

 A lag 2, 3-class model was tested (BIC = 12426.38, LL = -6088.51, fp = 39) and 

compared to the 3-class baseline model.  With a lower BIC and borderline insignificant adjusted 

chi-square difference test (X2(4) = 9.75, p=.045), the baseline model was retained based upon our 

established criterion for model selection. 

Model Invariance Testing 
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 To examine the time invariance assumption of the baseline model, one indicator was 

freed at a time and allowed to vary across all time points.  Model results are provided in  

Table 2.  The loglikelihood for the fully invariant, baseline model was slightly higher than the 

partially invariant models.  These differences in loglikelihood values, however, were only 

significant between the baseline model and the Item 3 Noninvariant model (adjusted X2(6) = 

19.10, p = .004).  The BIC for the fully invariant model (BIC = 12409.40) was less than that of 

each of the partially invariant models, including the Item 3 Noninvariant model (BIC = 

12420.53).  Thus, the fully invariant baseline model was retained based upon our established 

criterion for model selection.   

To examine invariance across groups (gender and cohort), a direct effects model was 

compared to a main effects model using BIC.  The gender main effects model produced a lower 

BIC (12444.27) than the related direct effects model (12469.85).  Similarly, the cohort main 

effects model also produced a lower BIC (12465.41) than the corresponding direct effects model 

(12536.41).  Thus, the main effects model for both gender and cohort were superior to their 

direct effects counterparts.  Measurement invariance was upheld across gender and cohort under 

the RI-LTA framework. 

RQ2: Are first-year undergraduate engineering students’ engineering identity statuses, or 

classifications, stable over an academic year?  After measurement invariance was established 

across time and groups, RQ2 was addressed.  The most common class patterns based on the 

estimated model were as follows: 3-3-3 where students remained in the highest engineering 

identity class across all three timepoints (36%); 2-3-3 where students started in the Medium-

High class at T1 and then transitioned to the High class by T2 and remained there for T3 (11%); 

and 2-2-2 where students remained in the Medium-High class across all three timepoints (10%).   
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Next, transition probabilities between the timepoints were observed from the validated 

baseline model (see Table 3).  Transition probability odds ratios are provided in Appendix D.  

Students tended to stay within the same class over time, though some movement was detected as 

was found in examination of the class patterns with 11% of students demonstrating the 2-3-3 

pattern.  Indeed, the greatest likelihood of transitioning to a different class was derived from this 

pattern and occurred between T1 and T2.  Students in Class 2 (Medium-High) had a 37% chance 

of transitioning to Class 3 (High).  However, the odds of transitioning from Class 2 to Class 3 

during this time were .69 times that of just staying in Class 2.  These odds were non-significant 

(0.37, 1.26).  In general, the probabilistic movement of students between classes was not 

statistically significant, or significantly less than the likelihood of students remaining in their 

same class.  The classes, thus, demonstrated stability over time. 

Covariate Inclusion 

RQ2.1: Does gender influence engineering identity classification stability?  To address 

RQ2.1, a binary gender variable representative of man or woman (man = 0, woman = 1) was 

incorporated into the model as a covariate in a main effects model to examine its effects on the 

probabilistic transitions of students between classes.  The effect of gender on transition 

probability odds ratios was observed over each time period.  These ratios are provided in Table 

4.  Notably, between T2 and T3 the odds of transitioning from Class 2 (Medium-High) to Class 3 

(High) were 2.42 times greater for women than for men.  This result was statistically significant 

(1.07, 4.71).  During this same time period, the odds of transitioning from Class 3 (High) to 

Class 2 (Medium-High) was .45 times as likely for women than men.  This result was also 

statistically significant (0.21, 0.94).  Hence, gender did demonstrate influence on engineering 

identity stability over the academic year.  
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RQ2.2: Did COVID-19 influence engineering identity classification stability?  To address 

RQ2.2, two dummy-coded covariates representative of the COVID-year (Cohort 2: Cohort 2 = 1, 

otherwise = 0 and Cohort 3: Cohort 3 = 1, otherwise = 0) were incorporated into the model as 

main effects models to examine its effects on the probabilistic transitions of students between 

classes.  Cohort 1 was selected to serve as the reference group because it was the only group not 

affected by COVID-19.  The effect of cohort classification on the transition probability odds 

ratios were observed over each time period.  These ratios representing the effects of Cohort 2 and 

Cohort 3 are provided in Table 5 and Table 6, respectively.  Over the first semester, students in 

Cohort 2 were 3.18 times more likely to transition from Class 1 (Medium) to Class 3 (High) 

between the beginning and middle of the academic year compared to students in Cohort 1.  

During this same time period, students in Class 2 (Medium-High) were 2.64 times more likely to 

transition to Class 3 (High) if they were in Cohort 2 compared to Cohort 1.  These results were 

statistically significant.  It should be noted that both of these probabilistic transitions occurred 

during the first semester of the 2019 academic year—before the COVID-19 outbreak directly 

impacted the US but was already making headlines. In examination of the effects of Cohort 3 on 

transitions, it was found that students were 2.97 times more likely to transition down from Class 

3 (High) to Class 1 (Medium) during their second semester if they were in Cohort 3 (mid 

COVID) compared to Cohort 1 (pre COVID).  This result was statistically significant.  COVID-

19 as modeled by Cohort-year, thus, did demonstrate a significant influence on classification 

stability. 

Descriptive Analysis 

Lastly, to address RQ3: How are first-year engineering students’ initial engineering 

identity classifications related to their selection or non-selection of engineering majors at the 
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beginning of their second year? students' probabilistic engineering identity classifications at T1 

were observed in conjunction with their major selections at the beginning of Year 2.  A total of 

77 student participants’ major selections at the beginning of their first and second years were 

missing. The reason(s) for this are unknown but could be contributed to a myriad of sources—the 

students could have dropped out of college, enrolled in a different university, had an 

“undeclared” major, or experienced a computer error in data gathering.  Thus, we cannot 

adequately describe these students.  Major selections for the remaining 521 student participants 

can be seen in Figure 3 (see Appendix E for the related table).   

Students residing in Engineering Identity Class 3 (High) comprised the greatest 

proportion of each engineering major (see Figure 3).  This is not surprising given that all the 

students in this study entered college planning to major in engineering, and that Engineering 

Identity Class 3 constituted the majority of all students at T1.  Chemical Engineering and 

Industrial Engineering majors showed the greatest difference in representations between 

Engineering Identity Class 2 (Medium-High) and Class 3 (High) (see Figure 3).  Indeed, 3.25 

times more students who majored in Chemical Engineering (N=26) were in Engineering Identity 

Class 3 compared to Class 2 (N=8).  Also, 2.38 times more students who majored in Industrial 

Engineering were in Engineering Identity Class 3 (High, N=31) compared to Class 2 (Medium-

High, N=13).  Furthermore, though a total of 20 students selected an Electrical Engineering 

Major for their second year, none of these students were in Engineering Identity Class 1 

(Medium).  This was the only major that did not have a Class 1 student.  

Of special interest regarding retention within engineering education are the groups of 

students who “switched” to another major for Year 2, who were declared “Not on Track” for 

Year 2 and could not select an engineering major, or who did “Not Return” for Year 2.  
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Approximately 28, or 5%, of the student participants selected a major outside of engineering for 

Year 2—16 students who were initially classified in Engineering Identity Class 3 (High), 11 in 

Engineering Identity Class 2 (Medium-High) and one in Engineering Identity Class 1 (Medium).   

Noting the importance of Calculus-readiness to the retention of engineering majors (e.g., 

Bowen et al., 2019; French et al., 2005) combined with the importance of engineering identity to 

the retention of engineering majors (Beam et al., 2009; Pierrakos et al., 2009; Rodriguez et al., 

2018; Tonso, 2014) along with the lack of published literature investigating the links between 

Calculus-readiness and engineering identity, we decided to conduct an exploratory analysis and 

investigate students’ Calculus-readiness upon college entrance in regards to their engineering 

identity and major selection.  Calculus-readiness upon college entrance was determined by the 

university.  A student was declared “Calculus-ready” if they were deemed eligible to enter any 

Calculus course and “not Calculus-ready” if they were not eligible to enter a Calculus course 

upon college entrance.  Approximately 37% of students who entered college not Calculus-ready 

successfully progressed into an engineering major by Year 2. In contrast, about 60% of 

“switchers,” entered college not Calculus-ready.  Of these “switchers” who were not Calculus-

ready, 63% of them were initially classified in Engineering Identity Class 3.   

Furthermore, approximately 9% of student participants were declared “Not on Track” at 

the beginning of Year 2 and were, thus, unable to declare an engineering major—26 students 

initially classified in Engineering Identity Class 3 (High), 16 in Engineering Identity Class 2 

(Medium-High), and 3 in Engineering Identity Class 1 (Medium).  Again, utilizing Calculus-

readiness to further describe these students, it was found that 80% of the students declared “Not 

on Track” entered college not Calculus-ready.  Moreover, looking more specifically at students 
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by their class, 92% of Engineering Identity Class 3 (High) students who were declared “Not on 

Track” were not Calculus-ready upon college entrance.  

Lastly, eight out of the 521 students beginning on an engineering track in Year 1 did not 

return for Year 2—seven initially classified in Engineering Identity Class 3 (High) and one in 

Engineering Identity Class 1 (Medium).  Approximately 75% of students who did “Not Return” 

were not Calculus-ready upon college entrance, including five out of the seven students initially 

classified in Engineering Class 3.   

Discussion 

 This study is the first in peer-reviewed published literature to apply person-centered 

quantitative techniques to the longitudinal study of engineering identity.  It is also the first to 

apply the newly established RI-LTA modeling framework to a relevant investigation outside of 

Muthén and Asparouhov’s (2020) original work.  Noting the heightened attention and 

importance of engineering identity, we sought to investigate the number of engineering classes 

present within first-year engineering students, the stability of these identities over an academic 

year, the potential impact that gender and COVID-19 had on engineering identity stability, and 

the relationship of engineering identity to the selection or non-selection of engineering majors.   

 First, the establishment of a solid 3-class RI-LTA model was critical to this study as it 

demonstrated different classes of engineering identity existed for first-year engineering students. 

Given that no person-centered technique has been applied to the domain of engineering identity, 

this is a novel finding.  This finding further emphasizes the need to not assume that individuals 

come from a single population when studying different identity domains, but to allow for the 
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detection of different, meaningful groups, or classes, of individuals demonstrating similarities on 

the construct (Jung & Wickrama, 2008; Luyckx et al., 2008b; Meeus et al., 2012).   

The discovered 3-class RI-LTA model for engineering identity also mirrors the findings 

of Robinson and colleagues (2018, 2019).  Using person-centered longitudinal methods, 

Robinson and colleagues (2018, 2019) also discovered 3-classes of science identity existed for 

undergraduate science majors.  This 3-class engineering identity solution suggests that students 

do not all begin their collegiate tenure with a high-level of established engineering identity. 

Indeed, medium, medium-high, and high-levels of engineering identity were all detected (see 

Appendix C).  Thus, distinctiveness was detected between students’ engineering identities even 

though all the students were pursuing engineering. Simply grouping all students together for 

analytical purposes would have forfeited this valuable information and future investigations into 

relationships between these classes and external variables.  Discovering these classes allows for 

further investigations into motivational, personality, and various psychosocial factors 

contributing to or hindering the effective cultivation of students’ engineering identities over time.  

The three engineering identity classes demonstrated stability throughout the academic 

year suggesting first-year engineering students typically remained within their same class. Again, 

these results were similar to Robinson and colleagues’ (2018, 2019) science identity findings 

where two of three classes yielded no significant trajectory changes over time.  The modest 

transitions in engineering identity that were detected suggested a greater likelihood of students 

transitioning in an upward trajectory, that is, transitioning to a higher engineering identity class 

instead of a lower one.  These findings amplify the importance of the establishment of a strong 

engineering identity before college entrance.   
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Interestingly, women in this study were more likely to transition to higher engineering 

identity classifications and less likely to transition to lower classifications compared to men. This 

was evidenced by women being approximately 2.5 times more likely than men to transition from 

the Medium-High to High class during the latter part of the academic year.  This significant 

result provides some statistical evidence regarding the internalization of women's engineering 

identities that previous studies have suggested (Faulkner, 2007; Godwin & Potvin, 2017; Hamlet 

et al., 2020; Seymour, 1997; Sheppard et al., 2015).  Women who were first-year engineering 

students with a medium-high level of engineering identity appeared to grow in their identity and 

have some protective barrier against identity regression, or confusion, that was distinctively 

different from their men counterparts.  This finding serves to enhance the research-base 

regarding women in engineering by providing statistical support to the importance of the 

internalization of women’s engineering identity over time that differs from men.  

Investigations into the myriad of effects the COVID-19 pandemic has had upon different 

populations within society will likely continue to be unraveled for the foreseeable future.  The 

drastic rise in mental health struggles for university students during the pandemic is of particular 

importance.  Studies documented increases in anxiety rates among undergraduate students by 

about 50% and depression rates by over 60% during the first year-and-a-half of the pandemic 

(Coakley et al., 2021; Czeisler, 2020; Fruehwirth et al., 2021; Lopez-Moreno et al., 2020).  

Social distancing measures, online courses, pandemic fatigue and several other factors could 

have potentially contributed to this trend. The growing influx of such mental health struggles for 

university students combined with first-year engineering students being towards the beginning of 

the formative period for their engineering identity is cause for concern and investigation.  It is 

reasonable to question if greater numbers of first-year engineering students enrolled during the 
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pandemic transitioned to lower engineering identity statuses as the academic year and pandemic 

progressed in contrast to similar students who were enrolled prior to the pandemic.  This study 

showed that indeed COVID-19 did influence engineering identity stability in a negative way.  

First-year engineering students were 2.97 times more likely to transition down from the highest 

engineering identity class to the lowest during their second semester if they were in Cohort 3 

(mid-COVID) compared to Cohort 1 (pre-COVID).  As time wore on for students enrolled 

during the 2020 academic year, their engineering identity showed significant negative 

developmental patterns compared to students before the pandemic.  This only adds to the vast 

number of negative effects COVID-19 has had upon our world.  Certainly, these results are 

noteworthy and warrant further investigation into the many effects of the COVID-19 pandemic 

including its impact upon students’ various developing identities. 

Given that persistence data commonly associated with engineering identity (i.e., 

graduation with an engineering degree or entrance into the engineering workforce) would not be 

available for several more years for all students in this study, it was decided to investigate 

students’ initial engineering identity classification with their selection/non-selection of an 

engineering major at the beginning of Year 2.  Through the descriptive analysis of initial identity 

classification in conjunction with the selection of an engineering major in Year 2, it was 

discovered that a fairly equivalent distribution of the identity classes across major selections 

existed.  This is not surprising as students demonstrating greater levels of cultivation of their 

engineering identity would be expected to pursue engineering majors at greater proportions than 

others as a representation of their engineering persistence—ultimately culminating in their 

entrance into the engineering workforce (Cave et al., 2014; Owen & Rolfes, 2015; Rodriguez et 

al., 2018; Tonso, 2014; Trytten et al., 2015).   
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The finding that zero students from Class 1 (Medium) selected an Electrical Engineering 

major, and this being the only major without a Class 1 student is noteworthy.  Electrical 

engineering is well-known for being one of, if not the most, math-intensive engineering majors 

as it relies heavily upon the fields of mathematics and physics—which is also mathematically-

intensive.  Combining this result with the findings that 63% of “switchers,” 92% of students 

declared “not on track” for Year 2, and 71% of students that did “not return” for Year 2 were 

classified in Engineering Identity Class 3 (High) but were not Calculus-ready upon college 

entrance suggests that there could be a link between mathematics (i.e., mathematics-readiness, 

mathematics appreciation, mathematics motivation, etc.) and engineering identity.  It is feasible 

that some students enter college strongly identifying themselves as engineers but are unaware of 

the mathematical aptitude and strenuousness required for engineering degrees.  However, more 

study is needed.  Certainly, the link between students being Calculus-ready upon college 

entrance and their retention within engineering degree programs established in previous studies 

(e.g., Bowen et al., 2019; French, 2005) was also visible in this investigation with 57% of 

“switchers” and 80% of those declared “not on track” by Year 2 being not Calculus-ready.   

Implications for Future Research 

 This study sets the groundwork for future investigations into engineering identity 

development for entering engineering students. Person-centered longitudinal, quantitative 

approaches are needed to continue investigating the development and stability of engineering 

identity throughout the college-tenure.  One possible theoretical framework for which to 

approach future person-centered methodological studies regarding engineering identity 

development is through the lens of variation theory.  Variation theory reflects a theory of 

learning and experience that explains various ways a learner might come to see, understand, or 



   
 

  30 
 

experience a given phenomenon in a particular way, and why certain students in similar 

situations (e.g., classrooms, programs of study) might perceive concepts or constructs differently 

(Bussey et al., 2013; Orgill, 2012).  Given that the current study quantitatively identified three 

engineering classes, variation theory would seek to understand “why” students who are all 

pursuing engineering are quantitatively grouped into these three distinct classes—reflecting 

variations in their perceived identification with engineering.  Future investigations could 

consider utilizing variation theory in longitudinal person-centered quantitative investigations 

regarding engineering identity to further identify factors related to engineering identity 

cultivation.  

In this study, stability in engineering identity was observed over students’ first year.  

However, this does not imply that stability continues.  More study is needed to determine if 

stability is maintained throughout the college-tenure and how this impacts persistence into 

engineering fields. This will enable scholars and researchers to detect periods of potential change 

in engineering identity and allow for more directed and effective intervention approaches.  It will 

also provide insight into how the different engineering identity classifications are related to 

engineering persistence as given by entrance into the engineering workforce.  

Furthermore, the finding that most students who did not declare an engineering major for 

Year 2 were not-Calculus ready is of significance as it applied to students of all engineering 

identity classes.  Noting that Calculus-readiness has already been linked to student retention 

within engineering programs and that engineering identity is currently gaining traction in 

investigating its importance to student matriculation into engineering fields, it is feasible that all 

these constructs are intertwined.  A basis exists for future studies to investigate potential links 
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between Calculus-readiness and engineering identity, and how the relationship between these 

two constructs ultimately influences engineering persistence. 

Limitations 

 There are limitations to the present study that require attention.  The sample size for this 

study, though adequate, was not optimal and from only one university.  A larger study with a 

more diverse sample obtained from varying institutions across the US is needed to validate the 

results of this study.  Findings from this study lack generalizability.   

Though the entropy value of the 3-class baseline model, .74, was above the .70 cutoff, 

values closer to 1.00 would demonstrate greater classification accuracy.  This was likely due to a 

combination of the sample size and the complexity of the modeling technique.  A larger sample 

size would likely produce higher entropy values and more consistent decisions when comparing 

global fit indices.  Furthermore, the descriptive analysis portion of this study utilized the 

posterior probabilistic engineering identity classes at T1 produced by the validated baseline 

model.  Formal testing, such as regression analysis, that utilize latent classifications are typically 

not recommended if the mixture model produced an entropy value less than .80 (Clark, 2010).  

This study was a preliminary investigation into engineering identity classifications, indeed the 

first of its kind.  The goal of the descriptive analysis was simply to gain better insight into how 

the engineering identity classifications spread-out across the engineering majors and non-majors.  

No formal testing was utilized.  Thus, we argued the information gained from the descriptive 

analysis should be presented to provide baseline information that can be utilized as a springboard 

for future studies.  No firm conclusions should be drawn from this portion of the study. 
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Discrepancies in global model comparison and test results were also detected between the 

baseline model and the Item 3 Noninvariant model, the gender main effects model, and the 

cohort main effects model.  The baseline model was continuously selected for model building 

purposes due to its lower BIC values.  However, the discrepancies with its lower loglikelihood 

values provide reason for further consideration of the retention of the other models in future 

investigations with larger samples.   

Furthermore, though this study provided some insight into the underrepresented group of 

women engineers and their related engineering identity, other underrepresented groups were not 

considered as they accounted for a small percentage of the participants. Future studies with 

larger samples may be able to explore patterns by ethnicity and other student background 

characteristics such as first-generation status. Not accounting for students’ ethnicity potentially 

introduced some bias into this study and findings related to engineering identity stability. 

Lastly, the measure of engineering identity used in this study reflects common 

operationalizations put forth by various scholars (Melo et al., 2017; Godwin, 2016; Godwin et 

al., 2013; Revelo et al., 2019; Rodriguez et al., 2018).  However, we acknowledge that it lacks in 

its ability to measure the three dimensions of their engineering (science) identity proposed by 

Carlone and Johnson (2008)—Competence, Performance and Recognition.  The instrument 

primarily measures the Self-Recognition component of the Recognition dimension of 

engineering identity.  Though cited by Carlone and Johnson (2008) as being extremely critical to 

one’s science identity, the measure of one’s engineering self-recognition does not likely 

encompass the entirety of their engineering identity.   

Conclusion 
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As engineering identity is a rapidly developing construct within the field of engineering, 

it is imperative that various analytical approaches be utilized to validate, confirm, or contradict 

theories and qualitative findings related to the construct.  The findings of this study underscore 

that we can obtain three primarily stable engineering identity classes amongst first-year 

engineering students.  The stability of these classes was statistically significantly affected by 

gender, providing support to previous research citing women might more deeply internalize their 

engineering identities than men.  Unfortunately, engineering identity stability was also affected 

by COVID-19 adding to the growing body of literature regarding the negative impacts of 

COVID-19 upon our world.  Moreover, the classes of engineering identity in conjunction with 

students’ Calculus-readiness upon college entrance appear to be related to their non-selection of 

engineering majors in their second year of college.  These findings should serve to stimulate and 

refine future investigations into the construct of engineering identity with a goal of uncovering 

the factors related to its successful cultivation within students over time and, ultimately, its 

influence on persistence into engineering careers. (8,724 words) 
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Appendix A 

Engineering Identity Items  

ID1: In general, being an engineer is an important part of my self-image. 

ID2: Being an engineer is an important reflection of who I am. 

ID3: I have come to think of myself as “an engineer”. 

Note. Items adopted from: Chemers, M. M., Syed, M., Goza, B. K., Zurbriggen, E. L., Bearman, 

S., Crosby, F. J., ... & Morgan, E. M. (2010). The role of self-efficacy and identity in 

mediating the effects of science support programs (No. 5). Technical Report. 
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Appendix B 

Descriptive Statistics and Correlation Matrix of Study Variables 

 
M SD 

ID1_ 

T1 

ID2_ 

T1 

ID3_ 

T1 

ID1_ 

T2 

ID2_ 

T2 

ID3_ 

T2 

ID1_ 

T3 

ID2_ 

T3 

ID3_ 

T3 Woman Cohort 2 Cohort 3 

ID1_T1 5.38 1.32 1.00            

ID2_T1 5.37 1.29 0.79 1.00           

ID3_T1 5.27 1.39 0.63 0.69 1.00          

ID1_T2 5.40 1.35 0.57 0.57 0.48 1.00         

ID2_T2 5.40 1.32 0.53 0.62 0.5 0.83 1.00        

ID3_T2 5.41 1.37 0.44 0.52 0.52 0.65 0.69 1.00       

ID1_T3 5.32 1.44 0.54 0.55 0.52 0.64 0.66 0.57 1.00      

ID2_T3 5.33 1.40 0.48 0.55 0.5 0.59 0.63 0.53 0.90 1.00     

ID3_T3 5.50 1.41 0.41 0.48 0.55 0.50 0.53 0.58 0.71 0.73 1.00    

Woman 0.29 0.45 0.02 -0.01 -0.02 -0.06 -0.03 -0.04 0.02 0.04 0.01 1.00  
 

Cohort 2 0.49 0.50 -0.04 -0.03 0.02 0.12 0.08 0.01 0.09 0.13 0.11 -0.05 1.00  

Cohort 3 0.17 0.37 -0.02 -0.03 -0.05 0.03 0.03 0.06 -0.02 -0.06 -0.06 .04 -0.39 1.00 

Note. M = Mean, SD = Standard Deviation, T1 = Time 1, T2 = Time 2, T3 = Time 3, ID1 = In general, being an engineer is an 

important part of my self-image, ID2 = Being an engineer is an important reflection of who I am, ID3 = I have come to think of myself 

as “an engineer”. 
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Appendix C 

Class Intercept Estimates and Standard Errors for the RI-LTA Models 

 2 Class Solution 3 Class Solution 4 Class Solution 

Class 

Intercept 

Estimate 

(S.E.)/ 

Item 

Number 

Class 1 Class 2 

 

Class 1 

(Medium) 

 

Class 2 

(Medium-

High) 

 

 

Class 3 

(High) 

 

Class 1 Class 2 Class 3 Class 4 

ID1  3.58 

(.17) 

5.74 

(.05) 

2.70  

(.20) 

4.78  

(.13) 

6.08 

(.09) 

2.99 

(.13) 

2.68 

(.30) 

4.94 

(.10) 

6.02 

(.06) 

ID2 3.69 

(.14) 

5.72 

(.05) 

3.09 

 (.15) 

4.74  

(.11) 

6.04 

(.06) 

2.96 

(.11) 

5.48 

(.26) 

4.77 

(.09) 

6.04 

(.06) 

ID3 4.23 

(.17) 

5.61 

(.05) 

3.97  

(.16) 

4.93  

(.11) 

5.83 

(.06) 

3.93 

(.17) 

5.04 

(.33) 

4.93 

(.09) 

5.84 

(.07) 

Note. Mean (standard deviation). 
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Appendix D 

Transition Probability Odds Ratios for the 3-Class Model 

 Time 2  

Class 1  Class 2 Class 3 

Time 1 

 

Class 1 1.00 (1.00, 1.00) 0.66 (.23, 1.88) 0.59 (.24, 1.46) 

Class 2 0.19 (.09, .39) 1.00 (1.00, 1.00) 0.69 (.37, 1.26) 

Class 3 0.05 (.02, .105) 0.24 (.14, .41) 1.00 (1.00, 1.00) 

 Time 3  

Time 2 

 

Class 1 1.00 (1.00, 1.00) 0.62 (.24, 1.64) 0.26 (.07, .95) 

Class 2 0.24 (.11, .51) 1.00 (1.00, 1.00) 0.63 (.23, 1.77) 

Class3 0.03 (.01, .10) 0.19 (.09, .38) 1.00 (1.00, 1.00) 

Note. Odds ratio (non-symmetric 95% confidence intervals centered at 1.00). 
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Appendix E 

Engineering Identity Classifications by Engineering Major Table 

 IDT1   

Year2Major Class 1 Class 2 Class 3 Total 

Aerospace Engineering 9  

(9%) 

38 

(38%) 

52 

(52%) 

99 

Biomedical Engineering 3  

(4%) 

32 

(46%) 

35 

(50%) 

70 

Biometric Systems Engineering 1  

(33%) 

0 

(0%) 

2 

(67%) 

3 

Chemical Engineering 4 

(11%) 

8 

(21%) 

26 

(68%) 

38 

Civil Engineering 6 

(12%) 

16 

(32%) 

28 

(56%) 

50 

Computer Engineering 2 

(6%) 

11 

(31%) 

23 

(64%) 

36 

Electrical Engineering 0 

(0%) 

8 

(40%) 

12 

(60%) 

20 

Industrial Engineering 1 

(2%) 

13 

(29%) 

31 

(69%) 

45 

Mechanical Engineering 7 

(12%) 

21 

(36%) 

31 

(53%) 

59 

Mining Engineering 1 

(10%) 

1 

(10%) 

8 

(80%) 

10 

Petroleum & Natural Gas Engineering 1 

(10%) 

1 

(10%) 

8 

(80%) 

10 

Not Return 0 

(0%) 

1 

(13%) 

7 

(88%) 

8 

Not on Track 3 

(7%) 

16 

(36%) 

26 

(58%) 

45 

Switch 1 

(4%) 

11 

(39%) 

16 

(57%) 

28 

Total 39 177 305 521 

Note. IDT1 = Engineering identity measured at Time 1. Count (percent of major). 

 


