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ABSTRACT The gut microbiome is a symbiotic microbial community associated with
the host and plays multiple important roles in host physiology, nutrition, and health. A
number of factors have been shown to influence the gut microbiome, among which diet is
considered to be one of the most important; however, the relationship between diet
composition and gut microbiota in wild mammals is still not well recognized. Herein,
we characterized the gut microbiota of bats and examined the effects of diet, host
taxa, body size, gender, elevation, and latitude on the gut microbiota. The cytochrome C
oxidase subunit | (COI) gene and 16S rRNA gene amplicons were sequenced from the
feces of eight insectivorous bat species in southern China, including Miniopterus
fuliginosus, Aselliscus stoliczkanus, Myotis laniger, Rhinolophus episcopus, Rhinolophus
osgoodi, Rhinolophus ferrumequinum, Rhinolophus afinis, and Rhinolophus pusillus. The
results showed that the composition of gut microbiome and diet exhibited significant
differences among bat species. Diet composition and gut microbiota were significantly
correlated at the order, family, genus, and operational taxonomic unit levels, while
certain insects had a marked effect on the gut microbiome at specific taxonomic levels. In
addition, elevation, latitude, body weight of bats, and host species had significant
effects on the gut microbiome, but phylosymbiosis between host phylogeny and gut
microbiome was lacking. These findings clarify the relationship between gut microbiome
and diet and contribute to improving our understanding of host ecology and the
evolution of the gut microbiome in wild mammals.

IMPORTANCE The gut microbiome is critical for the adaptation of wildlife to the
dynamic environment. Bats are the second-largest group of mammals with short
intestinal tract, yet their gut microbiome is still poorly studied. Herein, we explored the
relationships between gut microbiome and food composition, host taxa, body size,
gender, elevation, and latitude. We found a significant association between diet
composition and gut microbiome in insectivorous bats, with certain insect species
having major impacts on gut microbiome. Factors like species taxa, body weight,
elevation, and latitude also affected the gut microbiome, but we failed to detect
phylosymbiosis between the host phylogeny and the gut microbiome. Overall, our
study presents novel insights into how multiple factors shape the bat’s gut microbiome
together and provides a study case on host-microbe interactions in wildlife.

KEYWORDS gut microbiome, diet composition, insectivorous bats, 16S rRNA, high-
throughput sequencing

he guts of mammals harbor diverse and complex microbial communities that have
T profound impacts on host health and physiology (1, 2). Numerous studies have
demonstrated that gut microbial communities play essential roles in driving nutrient
acquisition (3), energy supply (4), behavioral regulation (5), and pathogen defense (6).
Meanwhile, the composition and function of the gut microbiome are determined by
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several factors such as diet, phylogeny, geography, age, and the environment (7-9).
Determining the relevant factors is essential for understanding how the mammalian
gut microbiome adapts to complex and dynamic environments (1, 2).

Diet is one of the most important factors shaping gut microbiome in mammals by
providing different nutrients to support the growth of specific microorganisms (9, 10).
Wild animals living in natural conditions must capture enough food with nutrients to
maximize their chances of survival, and over a long-term evolutionary process, their gut
microbiome may have developed unique functions to adapt to the local food resources
(4, 11). For example, cellulose-degradation in enzymes encoded by the gut microbiome of
giant pandas (Ailuropoda melanoleuca) can facilitate the digestion and use of nutrients
from bamboo (3), while gut microbiota of black howler monkeys (Alouatta pigra) provide
additional energy and nutrients to compensate for seasonal fluctuations in diet (4).
However, many studies have assessed the effects of influencing factors on gut micro
biome only in one dimension, such as low or high fiber content (12) or the composition of
different types of food (13). Most wild animals consume a variety of food types rather than
focusing on a single type of food to meet nutritional demands. Furthermore, most current
research on mammals has focused on humans (14), nonhuman primates (4), laboratory
model animals such as mice (15), domestic animals including pigs, sheep, and cows (16—
18), or captive animals (11) rather than wild animals. Conducting research on wild
animals could provide valuable insights into the role of gut microbiome in natural
conditions in terms of the evolution and adaptation of the host (1). However, observing
foraging behavior is not a common way to identify the diet of mammals in the wild. Thus,
there is a paucity of knowledge about the relationship between dietary composition and
gut microbiome in wild mammals (1, 11).

In addition to diet, host species and their areas of distribution can also have
important effects on gut microbiome. In some wild animals, a phylosymbiosis exists
between the host phylogeny and its gut microbiome, which creates a congruence
between the differences in bacterial communities and the phylogenetic divergences
among species, that is, closely related species may feed on similar foods and have similar
gut microbiota (8, 19). Characteristics of the host such as body size and gender may
have a significant effect on the gut microbiome (8, 20). In addition, the different regions
where the hosts are distributed may lead to differences in the gut microbiome due to
different food and environmental factors (21). For example, elevational differences affect
food composition and gut microbiome among populations of plateau pika (Ochotona
curzoniae) (7), wild house mice (Mus musculus domesticus) (22), and black bears (Ursus
thibetanus) (23). Therefore, various factors should be considered to reflect the adaptation
of the gut microbiome of wild animals more comprehensively (2, 24).

Bats are the only mammals capable of flight, with more than 1,400 species worldwide
(24, 25). About 70% of the species feed on insects, and the diet composition differs
significantly among species (26). Bats provide important ecological services such as pest
control in the fields of agriculture and forestry (25). Differences in body size, feeding
strategies, feeding areas, and echolocation calls between different species facilitate
their ability to achieve precise control over different types of insects during predation,
even with a sympatric distribution (27, 28). Consequently, different food compositions
may affect the composition or function of gut microbiome in insectivorous bats. Thus,
insectivorous bats may serve as an ideal model for studying the evolution of host-gut
microbiome relationships and the role of ecological factors influencing them. Neverthe
less, studies on the relationship between gut microbiome and food composition in
insectivorous bats are still limited. The host species is an important factor influencing the
variation in gut microbiome for numerous species in different families (29, 30). However,
the study of phylosymbiosis between host taxonomy and gut microbiome presents
conflicting results concerning the role of bat phylogeny in shaping the microbiome,
which may be explained by the different sample types, such as the gastrointestinal
tract or feces (8, 29, 30). In addition, relationships exist between gut microbiome and
changes in food resources, physiological periods, and geography (31, 32). However, most
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studies involving diets have roughly categorized diets, such as insectivores, frugivores,
nectarivores, carnivores, sanguivores, and omnivores (8, 9). Furthermore, the absence of
detailed food composition information for insectivorous bat species across various
locations has resulted in an inability to understand the effects of ecological features, such
as locality and elevation, on the gut microbiome (24).

The present study used 16S rRNA amplicon sequencing to investigate gut micro
biome of eight species of insectivorous bats from four sites: Miniopterus fuligino sus,
Aselliscus stoliczkanus, Myotis laniger, Rhinolophus episcopus, Rhinolophus osgoodi,
Rhinolophus ferrumequinum, Rhinolophus afinis, and Rhinolophus pusillus. The cyto
chrome oxidase subunit | (COI) genes were sequenced to clarify the food composition of
bats and to elucidate the factors driving the composition of the bat gut microbiomes,
especially the effects of food composition. The objectives of this study were (i) to clarify
the composition of the gut microbiome of insectivorous bats; (ii) to elucidate the effects of
food composition on the gut microbiome of these bats, and (iii) to assess the effects of host
and geography on the gut microbiome.

RESULTS
Composition of gut microbiome

A total of 5.6 million quality sequences were generated (mean = 52,821 reads/sample,
mean length = 422 bp), comprising 2,600 operational taxonomic units (OTUs). The
dominant phyla (relative read abundance > 1%) of gut microbiota were Proteobacteria
(64.42%), Firmicutes (22.28%), Tenericutes (5.10%), Bacteroidetes (3.20%), and Fusobacte
ria (2.10%) (Fig. 1A). The gut microbiome of bat species differed significantly in Fusobac
teria (chi-squared = 22.11, P = 0.002) and Tenericutes (chi-squared = 24.72, P = 0.003)
(Table S2). The dominant genera (relative read abundance > 1%) of gut microbiome
were Serratia (9.80%), Enterobacter (8.99%), Bartonellaceae (7.33%), Yersinia (7.31%), and
Lactococcus (7.12%) (Fig. 1B). The bat species differed significantly in the relative read
abundances of these genera (Table S2). The gut microbiome did not differ significantly
between R. episcopus populations at the phylum level but did differ significantly in the
major genera (Table S2).

UpSet analysis showed that 147 OTUs (5.65%) were shared by all bat species, and
273 OTUs (18.68%) were shared by three R. episcopus populations (Fig. 2A and B). Core
microbial analysis showed that 15 OTUs were present in more than 80% of individuals,
and all had relative abundances greater than 0.1% (Table 1). No significant differences
were observed in alpha diversity of gut microbiome among bat species (Kruskal-Wallis
test, Shannon diversity, chi-squared = 5.06, P = 0.65; observed OTUs, chi-squared = 4.86, P
= 0.67, Fig. S1A and B). The Shannon diversity of gut microbiome showed no significant
differences among R. episcopus populations [analysis of variance (ANOVA), F = 1.21, P=
0.31], but the observed OTUs were significantly different between Hunan and Jiangxi
populations (Kruskal-Wallis test, chi-squared = 7.34, P = 0.02, Fig. S1C and D). Beta
diversity analysis indicated significant differences in gut microbiomes among the bat
species and among the R. episcopus populations [permutational multivariate analysis of
variance (PERMANOVA), R?> = 0.17, P = 0.001; Fig. 1C; R* = 0.12, P = 0.001; Fig. 1D; Table
S3]. At the family level, there were significant differences between all family pairs (all P <
0.01) except for Hipposideridae (A. stoliczkanus) and Miniopteridae (M. fuliginosus) (Table
S3; Fig. S2; R = 0.07, P = 0.401).

Diet composition of eight bat species

A total of 8.1 million quality sequences were generated (mean = 76,089 reads/sample),
comprising 1,532 OTUs. There were no significant differences in alpha diversity of diet
compositions among bat species (Kruskal-Wallis test, Shannon diversity, chi-squared =
8.89, P = 0.26; observed OTUs, chi-squared = 10.16, P = 0.17, Fig. S3A and B) or among R.
episcopus populations (ANOVA, Shannon diversity, F = 1.21, P = 0.31; Kruskal-Wallis test,
observed OTUs, chi-squared = 1.58, P = 0.45, Fig. S3C and D).
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FIG 1 Plots showing the composition of the gut microbiome for each bat species at the (A) phylum and (B) genus levels. Nonmetric multidimensional scaling
analysis of the beta diversity of the gut microbiomes among (C) samples per species, and (D) different geographic populations of R. episcopus. R. episcopus (HN),

Hunan'’s Rhinolophus episcopus; R. episcopus (JX), Jiangxi’s Rhinolophus episcopus; R. episcopus (YN), Yunnan's Rhinolophus episcopus.

Diets were composed completely of arthropods at the phylum level, while 93.99%
were insects at the order level. A total of seven orders of insects were obtained,
while significant differences were detected in the consumption of Coleoptera, Diptera,
Hemiptera, and Lepidoptera insects by each bat species (Fig. 3A; Table S4, Kruskal-Wallis
test, all P < 0.05). At the family level, a total of 20 major families were obtained, several of
which differed significantly between species (Table S4, all P < 0.05). At the genus level, a
total of 15 major genera were obtained, several of which differed significantly between
species (Fig. 3B; Table S4, Kruskal-Wallis test, all P < 0.05). Beta diversity analysis showed
significant differences in the composition of diets among bat species (PERMANOVA, R*=
0.15, P = 0.001; Fig. 3C) and significant differences in diet composition among R.
episcopus populations (PERMANOVA, R? = 0.11, P = 0.001; Fig. 3D).

Relationships among gut microbiome and predictor factors

The results of the generalized linear model (GLM) showed that elevation, latitude, body
weight of bats, diet composition of different taxonomic levels, and host taxa were
significant predictors of the gut microbiome (Fig. 4; Table S5). The Mantel test showed a
significant association between bat family and gut microbiome (r = 0.11, P = 0.02).
PERMANOVA analyses revealed that the host species (R* = 0.19, P = 0.0001) is a significant
factor explaining microbial variation among all bat species, but not for gender (R* =
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FIG 2 OTU overlap plots of gut microbiomes between bat species. (A) The UpSet plot of OTU overlap between all bat species; the upper bar indicates the
number of overlapping OTUs, points crossed by a connecting line at the bottom indicate the overlapping species and the species are indicated at the left; (B)
Venn diagram of OTU overlap of three R. episcopus populations.

0.012, P = 0.06), while the interaction of host and gender had a significant effect on the
gut microbiome (R* = 0.07, P = 0.009). Furthermore, the host species (R* = 0.12, P =
0.0001) was a significant factor explaining diet variation among all bat species, but not
for gender (R? = 0.006, P = 0.95) or the interaction of host and gender (R* = 0.04, P = 1.00).
The results of the Mantel test showed that bat species with geographic overlap or similar
diets had significantly similar gut microbiomes (Table S6, all P = 0.01). The results of
Procrustes analysis revealed significant correlations between gut microbiome and diet at
different taxonomic levels (Table 2, P < 0.05). Mantel tests between the host phylogenetic
distance and the weighted, as well as unweighted, UniFrac gut microbiome dissimilarity
values revealed no significant correlation between the gut microbiome and host
phylogeny (weighted UniFrac, r = 0.08, P = 0.39; unweighted UniFrac, r = 0.15, P = 0.67).
The heatmap of those bacterial OTUs with relatively high abundances showed the
Rhinolophus bat species did not cluster together (Fig. 5). These results implied no
convergence between the gut microbiome and the evolutionary relationship with the
host.

TABLE 1 Core gut microbiome present in 80% of bat individuals

OTU ID Phylum Family Genus Samples Ratio Frequency
OTU9 Proteobacteria Enterobacteriaceae Enterobacter 106 1 0.094
OTU12 Firmicutes Enterococcaceae Enterococcus 105 0.99 0.025
0oTU62 Proteobacteria Enterobacteriaceae - 104 0.98 0.047
OTU3 Proteobacteria Enterobacteriaceae Serratia 102 0.96 0.070
0TU435 Firmicutes Enterococcaceae Enterococcus 102 0.96 0.007
0TU143 Proteobacteria Enterobacteriaceae - 101 0.95 0.006
0OTU33 Proteobacteria Moraxellaceae Acinetobacter 98 0.92 0.007
oTuU6b Proteobacteria Enterobacteriaceae Yersinia 97 0.91 0.071
OTU11 Proteobacteria Acetobacteraceae Swaminathania 94 0.88 0.018
OoTuU2 Firmicutes Streptococcaceae Lactococcus 92 0.86 0.046
OoTu1 Proteobacteria Bartonellaceae - 91 0.85 0.062
oTu22 Proteobacteria Enterobacteriaceae Serratia 91 0.85 0.017
OTU36 Proteobacteria Pseudomonadaceae Pseudomonas 91 0.85 0.005
oTu4 Firmicutes Streptococcaceae Lactococcus 87 0.82 0.026
OTU619 Proteobacteria Enterobacteriaceae Serratia 86 0.81 0.004
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FIG 3 Plots showing the composition of the diet for each bat species at the (A) phylum and (B) genus levels. Nonmetric multidimensional scaling analysis of the

beta diversity of the composition of diet among (C) samples per species, and (D) different geographic populations of R. episcopus.

DISCUSSION
Composition of gut microbiome

Consistent with previous findings in insectivorous bats (9, 32, 33), this study found gut
microbiome at the phylum level consisted mainly of Proteobacteria, Firmicutes, Teneri
cutes, Bacteroidetes, and Fusobacteria. Proteobacteria (relative abundance > 50%) was
the most abundant bacterial phylum, which is similar to the previous studies on Phyllos
tomid, Emballonuridae, and Pteropodidae bats (over 40% relative abundance) (9, 34), but
has low relative abundance (usually less than 5%) in terrestrial mammals such as mice
(35) and humans (36). Firmicutes is a specific bacterial phylum distributed in all mammals
that plays an important role in the digestion and catabolism of food, especially of
polysaccharides, which can promote calorie extraction from food and produce large
amounts of short-chain fatty acids to influence nutrient acquisition and energy regula
tion (15, 37). The Bacteroidetes are strictly anaerobic bacteria, similar to findings in birds
(38, 39). This phenomenon reflects the co-evolution of gut microbiome and host
physiology, as gut microbiomes of bats and birds have many special features related to
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FIG4 Correlation of the gut microbiome data set with the dietary data set at the genus level.

the gastrointestinal system and flight activity not found in many other animals (9, 40).
Bacteroidetes are also related to the high level of carbohydrates and fermentation of
sugar molecules to provide nutrients (35, 36). Tenericutes constituted a small portion of
the microbiome in this study, possibly because the samples were collected in the
summer rather than the fall, a period when members of this phylum are most active

TABLE 2 Procrustean correlations of the gut microbiome and dietary, both summarized at different
taxonomic levels

oTu Genus Family Order
M’ 0.965 0.956 0.929 0.927
P value 0.001 0.017 0.007 0.003
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FIG5 The heatmap of the 40 OTUs with the highest abundance in the gut microbiomes of eight insectivorous bats.

during periods of rapid fat accumulation (9, 38). Fusobacteria is often associated with
intestinal-like diseases, being one of the indicator species of health status. These bacteria
produce butyrate with known positive effects on the control of enteric pathogens (6, 41).
At the genus level, Enterobacter (Enterobacteriaceae), Enterococcus (Enterococca
ceae), and Lactococcus (Streptococcaceae) accounted for a large proportion of the gut
microbiome. These groups are short-chain fatty acids (SCFA) fermenters involved in
the microbial fermentation of carbohydrates and produce large quantities of SCFAs to
maximize energy (42). This suggests that bat's gut microbiome tends to consist of
facultative anaerobes rather than strictly obligate anaerobes. Chitinase-producing
bacteria were found in this study, including Serratia marcescens (Firmicutes), Bacillus
cereus (Firmicutes), and Enterobacter cloacae (Proteobacteria), all of which contribute to
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chitin degradation (43). The present study also identified several potential pathogenic
bacteria such as Yersinia, Pseudomonas, Bartonella, Serratia, Enterobacter, Clostridium,
and Acinetobacter, suggesting that bats may be a source of microorganisms that are
potentially pathogenic to humans and animals (44-48).

Factors influencing gut microbiome of insectivorous bats

Clarifying diet composition can help researchers understand whether a link exists
between food and gut microbiome. For example, changes in nutrient composition can
affect the composition and function of the gut microbiome (4, 49), and feeding livestock
animals with insects that are high in protein and lipid content can help promote growth
performance (50). In this study, Fusobacteria had a significantly higher relative abun
dance in R. afinis than in other species, which may be related to it having large amounts of
Dipteran insects in its diet, including insects such as the genus Coenosia, which carry large
numbers of viruses (51). Procrustes analysis and GLM revealed strong correlations
between diet composition and gut microbiome, indicating that dietary variations among
eight bat species had a direct impact on gut microbiome. A particular diet composition
can significantly affect the gut microbiome, possibly due to these microbiomes being
enriched by a variety of foods to which the intestinal microbiota have been exposed for
a long time (32), some microorganisms have gained a competitive advantage and
become dominant during co-evolutionary processes (40, 52). Our findings provide a
more accurate picture of the bat’s diet, implying the importance of regulating food
composition for animal conservation.

Bat taxon was a significant factor in explaining the variation in the beta diversity
of bacterial OTU levels, suggesting that the host taxon is an important driver of its
gut microbiome, as in previous studies of many species at the family level (9, 30).
Indeed, the gut microbiome of bats has been closely related to their hosts during
evolution, and phylosymbiosis may exist in Phyllostomid, Emballonuridae, Molossidae,
Mormoopidae, Noctilionidae, Natalidae, and Vespertilionidae bats (9, 30). However,
no significant correlation was detected between the gut microbiome and the host
phylogeny, implying the absence of phylosymbiosis. That means host identity, but not
evolutionary history drove the changes in gut microbiota in this study. It has been
shown that gut microbiomes carry phylogenetic signals from the host taxon of bats
(53), but studies on different bat species yielded mixed results (8, 29, 30, 39). A possible
reason is that intestinal mucosa retains more of the host’s evolutionary traits, whereas
feces may be more reflective of the host’s ecological traits (30). Nevertheless, although
Lutz et al. collected a variety of materials from bats (feces, gut lumen, skin, and oral
samples), they found no correlation between host phylogeny and bacterial community
dissimilarity (29). Another recent study also found little evidence of phylosymbiosis and
bat hosts especially, bird-like gut microbiomes, potentially associated with the physio
logical adaptations to flight (39). This implies that host ecological traits, rather than
host phylogeny, may drive the variation in microbial community. Bats and birds both
contain relatively low proportions of Bacteroidetes but high proportions of Proteobacte
ria. Proteobacteria have high functional variability, which maximizes microbial function
while reducing diversity and mass for more eficient flight (54). The shorter guts and
retention time of bats could facilitate microbial exchange through an aerobic environ
ment (55). In addition, high digestive eficiency and greater rates of intestinal paracellular
absorption in bats compared to nonflying mammals could also aid in nutrient absorption
(55, 56). The high energy demands of flight may have imposed a limitation on the bat gut
microbiome, leading to the observed lack of correlation with the host phylogeny (29).

The weak effect of gender on gut microbiota may be caused by the small sample
size and the avoidance of the bat’s reproductive period (8, 57). Although the bats in
this study were all small-bodied mammals (<20 g), the body weight varied significantly
among species (20, 53). The results showed that geography (elevation and latitude)
was a significant factor influencing the variation of the gut microbiome, possibly due to
the different food resources or climatic conditions of the sampling region. The
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Yunnan—Guizhou Plateau, where the Xianren and Longxu caves are located, is in the
second order in the terrain of the Chinese mainland, having a relatively high elevation,
whereas the Jiumen and Luohan caves are in the third order, with a lower elevation
(58). The local ecosystem components among different collection localities may have
influenced differences in the composition or function of the gut microbiome, allowing
hosts to better adapt to local foods and environmental conditions (21). For example,
differences in diet composition of two populations of lesser long-nosed bats (Leptonycte ris
yerbabuenae) distributed in different regions of Mexico determined the composition of
microbial communities (31). The diet composition and gut microbiome of plateau pikas
from the Tibetan Plateau varied with elevation, and a strong correlation between diet
composition and gut microbiome was found (7). Environmental conditions at high
elevations are characterized by cold, aridity, and low oxygen content, all factors that
can affect the cardiovascular system and energy metabolism. Mammals respond to
environmental stresses, and gut microbiome adapts to high-altitude environments; for
example, yak and Tibetan sheep rumen microbial communities at high elevations show
convergence, with significantly lower production of methane and volatile fatty acids
(59). Bats have a wide distribution and consume large amounts of energy during flight
activity (60); an exploration of how gut microbiome adapts to flight at high elevations is
necessary in the future. However, 16S rRNA gene amplicon sequencing used in this study
also has limitations. First, the primers used for amplification could introduce a bias, as
they bind to regions that are not 100% conserved across all bacteria (61, 62). Second, this
approach is not possible to obtain the full-length sequence of the 16S rRNA gene (63).
This could lead to the sequences only being identified to the genus level due to high
similarity between 16S rRNA genes from closely related species. While the lllumina MiSeq
sequencing platform has been demonstrated to produce reads with higher quantity and
quality than other platforms (62, 63). Especially, we performed the appropriate quality
controls to reduce the spurious and rare OTUs to minimize the influence of sequencing
errors for this study.

In conclusion, we surveyed the gut microbiomes of eight insectivorous bats
distributed in southern China and analyzed the effects of host traits, host taxonomy,
geography, and phylogeny on shaping gut microbiomes. The results showed that gut
microbiome was significantly correlated with diet at different taxonomic levels and also
shaped predominantly by host traits and geography. In addition, no phylosymbiosis
was observed between gut microbiome and host phylogeny. This study provides an
opportunity for researchers to understand how these factors determine the nature of gut
microbiome, with important implications for the conservation and management of wild
animals.

MATERIALS AND METHODS
Sample collection

In July—August 2018, fecal samples were collected from four locations in southern China
(Fig. 6). The Jiumen cave with about 200 m elevation is located in Lengshuijiang City,
Hunan Province, and is surrounded by evergreen broad-leaved forest and rice farmland
(64). The Luohan cave with about 450 m elevation is located in Ganzhou City, Jiangxi
Province, and is surrounded by evergreen broad-leaved forest (65). The Longxu cave and
Xianren cave with about 2,100 m elevation are located in Kunming City, Yunnan Province.
These two caves are located on the Yunnan—-Guizhou Plateau and are surrounded by
semi-humid evergreen broad-leaved forest and farmland (tobacco and corn) (66). Eight
bat species were collected, including R. episcopus from the Jiumen (n = 12) and Luohan
caves (n = 10); M. fuliginosus (n = 9), A. stoliczkanus (n = 6), and M. laniger (n = 12) from
the Longxu cave; R. osgoodi (n = 12), R. ferrumequinum (n = 11), R. afinis (n = 12), R.
pusillus (n = 10), and R. episcopus (n = 12) from the Xianren cave. Given that the
Longxu and Xianren caves are located just slightly over 1 km apart, the sympatric
distribution of the bats in the two caves was documented for this study (Table 3).
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FIG6 Map of sampling site distribution and elevation, with pie charts showing samples per species composition and proportions within habitats.

The collection was conducted during the nonmating and nonlactating periods. From
21:00 in the evening to 4:00 the following morning, bats were captured with mist nets at
the entrance of each cave as they returned to the cave. Species and gender were
identified based on external morphological characteristics, and bats were judged as
juveniles or adults based on epiphyseal fusions (67). First, juveniles were immediately
released in situ after being identified. Next, captured bats were placed individually in
sterilized kraft paper bags for 2 h while droppings were collected. The bags were
checked frequently to ensure the collection of fresh droppings. The droppings were
placed into lyophilized tubes containing RNAlater (RNA-EZ Reagents RNA-Be-Locked A,
Sangon Biotech, China) using sterilized forceps. At least five droppings per bat were
collected and stored at —80°C for DNA extraction. The body mass was determined with an
electronic balance (ProScale LC-50, Accurate Technology, Asheville, USA, 0.01 g). The
elevation and latitude of the sampling sites were measured using a global positioning
instrument (GPSmap60CSx, GARMIN, Shanghai, China) (Table 3). The bats were released at
the cave entrance immediately after droppings collection and measurements were
finished.

DNA extraction, PCR amplification, and sequencing

Genomic DNA was extracted from guano using an E.Z.N.A. Mag-Bind Soil DNA Kit
(OMEGA Bio-Tek, Norcross, USA) according to the manufacturer’s instructions. After
DNA extraction, DNA integrity was tested using 2% agarose gel. Genomic DNA was
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TABLE 3 Collection sites and species information of bats®

Site Species Family Date Number Elevation Latitude Weight
(Province) (n) (m) (N) (g)

Jiumen cave (Hunan) R. episcopus Rhinolophidae 12 July 2018 12(F=5M=7) 210 27°44'N 9.01+0.93
Luohan cave (Jiangxi) R. episcopus Rhinolophidae 20 July 2018 10(F=4,M=6) 442 25°27'N 9.79 £0.94
Xianren cave (Yunnan) R. episcopus Rhinolophidae 14 August 2018 12 (F=4,M=38) 2,084 24°30'N 6.42+0.29
Xianren cave (Yunnan) R. osgoodi Rhinolophidae 14 August 2018 12 (F=6,M=6) 2,084 24°30°N 6.05+0.51
Xianren cave (Yunnan) R. ferrumequinum Rhinolophidae 14 August 2018 11 (F=6,M=5) 2,084 24°30' N 18.82 £1.25
Xianren cave (Yunnan) R. afinis Rhinolophidae 14 August 2018 12 (F=4,M=38) 2,084 24°30'N 13.29+1.02
Xianren cave (Yunnan) R. pusillus Rhinolophidae 14 August 2018 10 (F=2,M=38) 2,084 24°30'N 4,90 +0.36
Longxu cave (Yunnan) M. fuliginosus Miniopteridae 16 August 2018 9 (F=5,M=4) 2,084 24°30'N 12.98 +0.89
Longxu cave (Yunnan) A. stoliczkanus Hipposideridae 16 August 2018 6 (F=2,M=4) 2,084 24°30'N 7.04£0.58
Longxu cave (Yunnan) M. laniger Vespertilionidae 16 August 2018 12 (F=3,M=9) 2,084 24°30'N 5.25+0.37

“Note: Body weight is mean * SD; F, females; M, males.

accurately quantified using a Qubit 3.0 DNA Assay Kit (Life Technologies, Waltham, USA) to
determine the amount of DNA in each sample. For the gut microbiome, the primers 341F
(5"-CCTACGGGNGGCWGCAG-3’) and 805R (5-GACTACHVGGGTATCTAATCC-3’) were used
to amplify the V3-V4 region of the 16S rRNA gene. For dietary identification,

we used the primers LCO-1490 (5-GGTCAACAAATCATAAAGATATTGG-3’) and ZBJ-ArtR2c
(5"-WACTAATCAATTWCCAAATCCTCC-3) to amplify a 225 bp fragment of the COI gene
(68, 69). The PCR systems and conditions have been described in previous studies
(26, 70). The PCR products were purified using Agencourt AMPure XP beads (Beckman
Coulter, CA, USA), and the DNA concentration of each sample was quantified using the
Qubit 3.0 DNA assay kit (Life Technologies) to normalize the samples according to the
manufacturer’s protocol. The final sequencing concentration was 20 pmol, and 10 ng of
DNA was taken from each sample. The final products were sequenced using an lllumina
Miseq platform (2 x 300 bp) at Sangon Biotech (Shanghai, China).

16S rRNA and COIl sequence analysis

Primers and adaptors were removed from the raw sequences using cutadapt v1.2.1 (71),
and paired-end reads were merged using PEAR v0.9.6 (72) based on barcode tags to
distinguish samples. Finally, the data files were quality-filtered using Prinseq v0.20.4 (73).
High-quality reads were obtained using the following criteria: no presence of ambiguous
bases (N), no barcode sequence errors, and a minimum of five consecutive high-quality
base pairs (Q = 20), and a maximum of three consecutive low-quality base pairs were
allowed. The OTUs were clustered using Usearch after the singletons and chimeras were
removed (74). All optimized sequences were mapped to representative sequences, and
OTU tables with a 97% similarity threshold were generated. For 16S rRNA data, species
taxonomic information for each OTU was obtained using the Qiimel v1.9.1 software
and the Greengenes database. The OTU table was filtered using a minimum cluster
size of 0.001% of the total reads to improve accuracy. Trees were constructed based on
FastTree, samples with fewer than 23,600 sequences were discarded, and the data were
rarefied to 23,600 sequences per sample. Finally, the alpha diversity (Shannon diversity
and observed OTUs) of the gut microbiome of individuals was calculated, and the OTUs
were classified according to species taxonomic level (75). For COI data, the rhinolophid
bats collected from the Xianren cave were used in a previous study (26), in order to
minimize the effects of an uneven number of sample sequences, the number of sequences
per sample was diluted to 11,000. Finally, to minimize the effect of sequencing errors, the
OTUs representing <0.1% of the normalized sequences for each sample were removed
to prevent the generation of potentially erroneous results. Representa tive sequences of
each OTU were manually compared with the reference sequencesin the Barcode of Life
Database (www.boldsystems.org/) in the “Species Level Barcode Records” database of
ANIMAL IDENTIFICATION [COl] tool and the Genbank database
(http://www.ncbi.nlm.nih.gov/GenBank) using BLASTN’s Nucleotide BLAST tool to obtain
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taxonomic information. The identification criteria were based on slightly modified “strict”
and “best” matching methods (76, 77). The guidelines were (i) a solid match (>98.5%) to
one species resulting in a species-level assignment. If there is a match to multiple
species, all belonging to the same genus, this leads to a genus-level assignment. (ii) If
there is a match (>98.5%) to more than one species from different genera, and only
one of them belongs to China, it is considered a species-level assignment. (iii) A match
(>98.5%) to several species from different genera within the same family or to reference
sequences that are only identified to the family level, indicates a family-level assignment.
Any OTUs that did not match any taxonomic information were excluded.

Statistical analysis

We used ANOVA or Kruskal-Wallis tests to compare alpha diversity (Shannon diversity
and observed OTUs) of gut microbiome among bat species. The Bonferroni correction
was applied to the P values by post hoc Dunn’s multiple comparisons test in the FSA
package. PERMANOVA was used to test the effects on host species and gender and their
interaction effects on Bray—Curtis distance between the gut microbiome and diet using
the “adonis” function in the vegan package. Composition and relative read abundance of
the gut microbiome of each bat species at the phylum and genus levels were calculated. In
addition, ANOVA or Kruskal-Wallis test with a post hoc Dunn'’s test was performed on the
major constituents to detect significant differences between species. Venn diagrams were
used to represent the overlap in the distribution of OTUs among bat species and OTUs
that were found in at least 80% of the samples were counted and defined as core OTUs
using Usearch. Beta diversity between species was calculated with Bray—Curtis distance
matrices and plotted using nonmetric multidimensional scaling (NMDS) in the phyloseq
package at the OTU level and family level, and PERMANOVA was used to detect
differences among bat species. The GLM with Poisson distribution was used to examine
the effects of predictor variables on gut microbiome. Elevation, latitude, the body
weight of bats, diet composition of different taxonomic levels, and host taxa (family and
genus) were assigned as the predictor variables. The variance inflation factors were
calculated to identify the collinearity between the predictor variables until the values of
all factors were less than 10. We chose the best-fitting GLM according to Akaike’s
information criterion corrected for small sample size using the “dredge” function in the
MuMIn package. We also performed a Mantel test to examine whether gut microbiome at
the family level contained phylogenetic signals. The OTU table was transformed to
present-absence data using the “decostand” function in the vegan package, and the bat
family was transformed using Gower distance in the cluster package. The significance of r
values was assessed via 999 permutations.

For the analysis of dietary data, alpha diversity was tested as described above. Diet
composition and relative read abundance for each bat species were also calculated and
tested as described above at the order, family, and genus levels. Beta diversity between
species was calculated with Bray—Curtis distance matrices using NMDS with PERMANOVA
to detect differences among bat species. To assess the effects of geographic variation on
gut microbiome, the diet composition and gut microbiome of three R. episcopus
populations were analyzed using the method described above.

Based on the results for beta diversity of species that had similar diets or geographic
overlap, we used the Mantel test to demonstrate correlations of gut microbiome
between species at the species level. Procrustes analysis was used to test for consis
tency in the composition of prey and gut microbiota across taxonomic levels, using
the “protest” function; a 999 permutation test was used to determine significance. To
assess the influence of host phylogeny on the variability of gut microbiome, phylo
symbiosis analysis was performed to evaluate the phylogenetic congruence between
gut microbiomes and the hosts. The cyt b gene sequences of each bat species were
downloaded from the NCBI database (Table S1) and aligned in Geneious prime (v.2022);
four sequences were selected for each species, and there were variant loci between the
sequences. Then, these sequences were grouped according to the species in MEGA
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11, and finally, the Kimura 2-parameter model was selected to calculate the average
phylogenetic distance between species. For gut microbiomes, weighted and unweigh
ted UniFrac distances were used to obtain the dissimilarity distance matrix between
individuals. After grouping according to species, the average dissimilarity distance matrix
between species was calculated, after which a Mantel’s test with 999 permutations was
performed. The membership of gut microbiome for the top 40 OTUs was revealed by a
heatmap plot in the pheatmap package. All the data analyses were performed using R
(v.4.1.1) unless otherwise stated (78), with the resulting data expressed as mean + SD.
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