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In collaborative software development, programmers create software branches to add features and fix bugs

tentatively, and then merge branches to integrate edits. When edits from different branches textually overlap

(i.e., textual conflicts) or lead to compilation and runtime errors (i.e., build and test conflicts), it is challenging for

developers to remove such conflicts. Prior work proposed tools to detect and solve conflicts. They investigate

how conflicts relate to code smells and the software development process. However, many questions are still

not fully investigated, such as what types of conflicts exist in real-world applications and how developers or

tools handle them. For this article, we used automated textual merge, compilation, and testing to reveal three

types of conflicts in 208 open-source repositories: textual conflicts, build conflicts (i.e., conflicts causing build

errors), and test conflicts (i.e., conflicts triggering test failures). We manually inspected 538 conflicts and their

resolutions to characterize merge conflicts from different angles.

Our analysis revealed three interesting phenomena. First, higher-order conflicts (i.e., build and test con-

flicts) are harder to detect and resolve, while existing tools mainly focus on textual conflicts. Second, devel-

opers manually resolved most higher-order conflicts by applying similar edits to multiple program locations;

their conflict resolutions share common editing patterns implying great opportunities for future tool design.

Third, developers resolved 64% of true textual conflicts by keeping complete edits from either a left or right

branch. Unlike prior studies, our research for the first time thoroughly characterizes three types of conflicts,

with a special focus on higher-order conflicts and limitations of existing tool design. Our work will shed light

on future research of software merge.
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1 INTRODUCTION

“Integration Hell” refers to the scenarios where developers integrate or merge big chunks of code
changes from software branches right before delivering a software product [20]. In practice, this
integration process is rarely smooth and seamless due to conflicts, which can take developers hours
or even days to debug so that branches can finally merge [12]. To avoid “Integration Hell”, an in-
creasing number of developers use Continuous Integration (CI) to integrate code frequently
(e.g., once a day) and to verify each integration via automated build (i.e., compilation) and test-
ing [54, 57]. Nevertheless, CI practices do not eliminate the challenges posed by merge conflicts.
Developers still rely on the merge feature of version control systems (e.g., git-merge [25]) to au-
tomatically (1) integrate branches and (2) reveal conflicts that require manual resolution. Such

text-based merge usually produces numerous false positives and false negatives. For example, when
two branches reformat the same line in divergent ways (e.g., add vs. delete a whitespace), git-
merge reports a textual conflict even though such a conflict is unimportant and poses no syntactic
or semantic difference. Meanwhile, when two branches edit different lines modifying the program
semantics in conflicting ways, git-merge silently applies both edits without reporting any conflict.

Background. In prior literature, many tools were proposed to improve text-based merge [27,
28, 30, 39, 46, 59]. For instance, FSTMerge [28] models program entities (e.g., classes and methods)
as unordered tree nodes, matches entities based on their signatures, and uses text-based merge to
integrate edits inside matched entities. JDime [27, 39] extends FSTMerge by modeling both pro-
gram entities and statements in its tree representation. It applies tree matching and amalgamation
algorithms to integrate edits. Given textually conflicting edits, AutoMerge [59] enumerates all pos-
sible combinations of the edit operations from both branches and recommends alternative conflict
resolutions. However, all of these tools only compare edits applied to the same program entity;
they do not check whether the co-application of edits to different entities can trigger any compi-
lation or testing error. Crystal [30] overcomes this limitation by building and testing tentatively
merged code to reveal higher-order conflicts (i.e., build conflicts and test conflicts).

Motivation. Despite the existence of diverse tools, some fundamental research questions

(RQs) are yet to be explored, including

— RQ1: How were the three types of conflicts (i.e., textual, build, and test conflicts) introduced
in real-world applications?

— RQ2: What are developers’ resolution strategies for different types of conflicts?
— RQ3: What characteristics of conflicts are overlooked by existing tool design?

Exploring these questions is important for two reasons. First, by contrasting the characteristics
of merge conflicts with the focus of existing merge tools, we can reveal the critical aspects of con-
flicts overlooked by such tools. Second, by examining how conflicts were introduced and resolved
by developers, we can motivate new tools to address conflicts by mimicking developers’ practices
or bringing humans into the loop.

Methodology. To investigate the RQs, we conducted a comprehensive characterization study of
merge conflicts. A typical merging scenario in software version history involves four program
commits: base versionb, left branch l , right branch r , and developers’ merge resultm (see Figure 2).
To crawl for merging scenarios in the version history, we searched for any commit that has two
parent commits. If a commit c has two parent commits, we consider c to be developers’ merge result
m, treat the first parent commit as l , and regard the second parent as r . To identify the common
base version b, we applied the command “git merge-base” to the two parent commits.
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Fig. 1. Workflow of our hybrid approach. Fig. 2. Software versions related

to a merging scenario.

As shown in Figure 1, we took a two-phase approach to extract and analyze merge conflicts
in Java open-source software repositories. In Phase I, starting from an existing merging scenario,
we applied git-merge, automated build, and automated testing in sequence. With git-merge, we
tentatively generated a text-based merged versionAm from l and r (see Figure 2). We then builtAm

and tested it with developers’ predefined test cases. When any of these steps failed, we concluded l
and r to have textual, build, or test conflicts. For deeper analysis, in Phase II, we manually inspected
a sample set of scenarios with textual conflicts and all scenarios with build or test conflicts. For
each of these scenarios, we compared the five program versions involved—b, l , r , m, and Am—to
comprehend the root cause and resolution of conflict(s).

Our Results. In our study, we mined the software version history of 208 popular open-source
Java projects, and found 117,218 merging scenarios (i.e., any code commit with two parent
commits) in those repositories. With the two-phase methodology mentioned above, we iden-
tified 15,886 merging scenarios with textual conflicts, 79 scenarios with build conflicts, and
33 scenarios with test conflicts. Due to the huge number of revealed textual conflicts, we randomly
picked 385 conflicts from distinct merging scenarios for manual inspection. We also manually an-
alyzed all revealed build and test conflicts to characterize the root cause and developers’ conflict
resolutions. The major findings are as below:

— How were conflicts introduced? 65 out of 385 inspected textual conflicts are false positives
because l and r edit adjacent lines instead of the same lines. 18 of the 65 false positives are
located in non-Java files (e.g., pom.xml). Build conflicts occurred when the co-application of
edits from l and r broke any def-use link between program elements (e.g., classes or libraries).
For instance, when l updates a method from foo() to bar() and r adds a call foo(), the co-
application of both edits can break a def-use link as it leads to a mismatch between the use
(i.e., call) and def (i.e., declaration) of foo(). 85% (39/46) of test conflicts happened, as the
co-application of edits broke def-use links between elements or led to mismatches between
test oracles and software implementation.

— How did developers manually resolve merge conflicts? Within the 320 true textual
conflicts, developers resolved most conflicts (i.e., 206) by exclusively keeping changes from
one branch. However, developers resolved most of the higher-order conflicts by combining
all edits from both branches with additional edits. The additional edits solve build or test
errors by repairing broken def-use links or fixing mismatches between implementation and
tests. Such edits present systematic editing patterns that modify similar code in similar ways.
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Table 1. Exemplar Merge Conflicts

Changes in l Changes in r
(a) Textual conflict

- private int a=4; - private int a=4;
+ private int a=40; + private int a=20;

(b) Build conflict
public void foo() { public class C {

+ C.m(); - public static void m(){...}
... } + public static void m(int p){...}}

(c) Test conflict
y = foo(x); - y = foo(x);

+ y = foo(x) + 1;
- if(y < 13){...} if(y < 13){...}
+ if(++y < 13){...}

else error() else error()

Table 2. Overview of Current Merge Tools

Detection Resolution

Textual
conflicts

git-merge, FSTMerge,
JDime, IntelliMerge,
AutoMerge, Crystal,
WeCode, CloudStudio

FSTMerge,
JDime, In-
telliMerge,
AutoMerge

Build
conflicts

Crystal, WeCode,
CloudStudio

-

Test
conflicts

Crystal, WeCode,
SafeMerge

-

— What conflicts cannot be handled by current tools? Existing tools detect textual con-
flicts in non-Java software artifacts (e.g., readme.txt) with relatively low precision (72%) and
thus unable to resolve true textual conflicts fully automatically. When textual conflicts ex-
ist and Am could not be generated, neither compilation nor testing is applicable for conflict
detection. Even if Am is available, compilation and testing can only reveal the symptoms
(e.g., errors or failures) triggered by higher-order conflicts instead of the precise root causes.
There is insufficient tool support for the detection and resolution of higher-order conflicts.

The insights from this study enlighten future software merge tools and suggest new research
directions in related areas like systematic editing and change recommendation. The program and
data presented in this work are publicly available at https://figshare.com/s/c174e1ffd2ad02b15211.

2 BACKGROUND

This section defines the terminology used in this article (Section 2.1), and introduces existing tools
(Section 2.2).

2.1 Terminology

When developers merge two branches (e.g., l and r ) in a software repository, it may lead to three
types of conflicts.

(1) Textual Conflicts exist when l and r edit the same line in divergent ways. As illustrated by
Table 1(a), since l and r update the same statement with conflicting values (e.g., 40 vs. 20), there
is a textual conflict between the branches.

(2) Build Conflicts occur when the edits of l and r do not conflict textually, but their co-
application triggers a compilation or build error. In Table 1(b), when l adds an invocation to C.m()

and r simultaneously updates the signature of C.m(), the edit integration causes an unresolved
method reference.

(3) Test Conflicts occur when the edits of l and r do not conflict textually and do not cause
any compilation issue, but the co-application of both edits triggers a runtime error or test error.
For example, in Table 1(c), although the edits in l and r separately increment y by 1, applying both
edits will increment the variable by 2 and thus fail the related tests.

2.2 Existing Tools for Software Merge

Various tools were proposed to detect or resolve merge conflicts [21, 27, 28, 30–32, 36, 39, 46, 55,
56, 59]. For brevity, in this article, we focus our discussion on the state-of-the-art tools proposed
in the past ten years.
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FSTMerge [21, 28, 32] is also known as semistructured merge. It constructs abstract syntax

trees (ASTs) of programming languages (i.e., Java, C#, and Python), and converts each AST to
a program structure tree by removing the AST subtrees of program statements. Using program
structure trees, FSTMerge matches nodes between l and r purely based on the class or method
signatures. It then integrates the edits inside matching nodes via textual merge. By modeling and
comparing Java classes and methods, FSTMerge could align code better than textual merge and
thus reports conflicts with better accuracy [28, 32].

JDime [27] is also known as structured merge. Similar to FSTMerge, JDime matches Java
methods, and classes based on program structure trees. However, unlike FSTMerge, JDime creates
ASTs, and conducts tree-based merge instead of text-based merge for each matching pair. A recent
study shows that such structured merge could report conflicts more precisely than semistructured
merge [33], mainly because structured merge observes the syntactic structures when matching
program statements.

AutoMerge [59] is similar to the JDime, in the sense that it also detects conflicts based on AST
comparison. However, AutoMerge goes beyond reporting conflicts and attempts to resolve con-
flicts by proposing alternative strategies to merge l and r , with each strategy integrating some
edits from both branches.

Similar to FSTMerge, IntelliMerge [55] also matches program elements (e.g., Java classes, meth-
ods, and fields) based on the syntactic structures. For each matching pair, IntelliMerge integrates
the edits inside matching nodes via textual merge. However, unlike FSTMerge, IntelliMerge detects
refactoring edits (e.g., method renaming) applied to software branches and considers those edits
when matching program elements. In this way, IntelliMerge reports conflicts with higher precision
and higher recall than FSTMerge [55].

SafeMerge [56] takes in four program versions related to a merging scenario: b, l , r , and m
and statically infers the relational postconditions of distinct versions to model program semantics.
Afterward, SafeMerge compares all postconditions to decide whether l and r are free of conflicts

(i.e., m does not introduce new unwanted behaviors). Like the tools mentioned above, SafeMerge
only examines edits applied to the same program entity for potential conflicts. It does not relate
edits applied to distinct program entities to reveal more conflicts.

Crystal [30, 31] takes three steps to reveal different kinds of conflicts. As with our Phase I, Crystal
first applies textual merge to l and r to reveal any textual conflict. Next, it exploits automatic build
and testing to reveal any higher-order conflict.

WeCode [36] is similar to Crystal. It continuously merges the committed and uncommitted
changes in software branches to raise developers’ awareness of potential conflicts even before
program edits are all committed, and branches get merged.

CloudStudio [34] is similar to Crystal and WeCode, in the sense that they are all awareness
systems. These systems notify developers of the potential conflicts their branches can have with
the branches of other developers. As a web-based IDE, CloudStudio monitors developers’ coding
activities, and reports textual conflicts when two developers modify the same line. It also reports
build conflicts by trying to merge simultaneously applied edits, and to compile the merged version.

To facilitate understanding, we visualize the task categories covered by each tool in Table 2.
This table reflects the solution domain for software merge conflicts. However, the table does
not characterize the problem domain (i.e., the conflicts exist in reality), neither does it map a
tool’s applicability to different characteristics of conflicts. Without such mapping, it is hard to tell
(1) what kind of conflicts are well captured by the methodologies implemented by current tools and
(2) what new methodologies are still needed. Therefore, our study intends to systematically

characterize merge conflicts and their resolutions, and to compare them against the appli-

cation scope of existing techniques, while shedding light on future research directions.
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3 STUDY APPROACH

Our approach has two phases (see Figure 1). Phase I uses automatic approaches to discover con-
flicts (Section 3.1). Phase II relies on manual inspection to comprehend the revealed conflicts and
developers’ resolutions (Section 3.2).

3.1 Phase I: Automatic Detection of Conflicts

To ensure the representativeness of our study, we ranked Java projects on GitHub based on their
popularity (i.e., star counts). We cloned repositories for the top 1,000 projects as our initial dataset.
We then refined the dataset with two heuristics. First, we only kept the projects that can be built
with Maven [22], Ant [24], or Gradle [19], because these three build tools are popularly used and we
will rely on them to build and test each naïvely merged version Am . In particular, Gradle projects
typically contain build files named *.gradle; Maven and Ant projects often have build files sepa-
rately named as pom.xml and build.xml. We recognized the projects that can be built with Maven,
Ant, or Gradle based on the existence of corresponding build files. Second, we removed tutorial
projects as they are not real Java applications and may not show real-world merging scenarios.
Namely, if the readme file of any project contains some description like “this tutorial project serves
for learning purposes”, we removed the project.

Consequently, our refined dataset comprises 208 repositories. Among the 208 repositories, we
identified 117,218 merging scenarios by searching for any commit with two parent/predecessor
commits. In each identified merging scenario, we regard the first and second parent commits as l
and r separately. We treat their common child and ancestor commits as m and b. Figure 3 shows
the distribution of projects based on their merging-scenario counts. According to this figure, 3
projects contain no more than two merging scenarios, while two projects contain more than 213

or 8,192 scenarios. Among the 14 count intervals, (26, 27) corresponds to the most projects (i.e.,
37). The median count per project is 131, which means that merging scenarios exist widely in the
subject software repositories.

Although some of the 208 repositories have few merging scenarios (e.g., less than 10) or are
maintained by single developers, we did not further refine this dataset for two reasons. First, if the
developers of some repositories do not create or merge branches very often, our dataset can cover
the merging practices by those developers to be representative. Second, if some developers eagerly
create and merge branches even though they are the solo contributors of their projects, we believe
it is also important to cover the merging scenarios in their repositories. Because different projects
may define test files in different ways, we leveraged the regular expression “*Test*.java” to search
for test files in the latest versions of 208 repositories. We found test files in 191 repositories; only
17 repositories have no test file. These numbers indicate that test files popularly exist in the subject
repositories; they are usually available when testing is required to reveal test conflicts.

As illustrated in Figure 1, in Phase I, we process each merging scenario by taking three steps
sequentially. In Step 1, we apply git-merge to l and r to generate a text-based merged version Am .
If this trial fails, git-merge reports all textual conflicts, and we record that scenario. Otherwise, if
both l and r build smoothly and we successfully generate Am then, in Step 2, we attempt to build
Am . If the attempt fails, we log all build errors and label the merging scenario to have build conflicts.
Otherwise, ifAm builds successfully and both l and r pass developers’ test cases, then in Step 3, we
further execute the successfully built version of Am with the developers’ test suite. If the program
fails any test, we log all runtime errors and label the scenario to have test conflicts; otherwise, we
skip the merging scenario as no conflict is revealed. By applying such a three-step method, we
marked 15,886 merging scenarios with textual conflicts, 79 scenarios with build conflicts, and 33
scenarios with test conflicts. As shown in Table 3, these three types of scenarios are separately
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Fig. 3. Project distribution based on merging scenarios.

Table 3. The Merging Scenarios with Conflicts

Textual Build Test

# of
merging
scenarios

15,886 79 33

Phase # of projects 183 37 22

I Max # of
scenarios
per
repository

4,172 6 4

Phase
II

# of
inspected
conflicts

385 107 46

from 183, 37, and 22 repositories. We found at most 4,172, 6, and four merging scenarios related to
individual conflicts per repository. All reported numbers imply the prevalence of merge conflicts.
Textual conflicts were reported more often than the other two types of conflicts.

3.2 Phase II: Manual Inspection

We inspected the merge conflicts to investigate the three research questions mentioned in Section 1.
Due to a large number of merging scenarios with textual conflicts (i.e., 15,886), it is infeasible to
analyze each conflict manually. We thus decided to sample 385 textual conflicts to reduce man-
ual effort while ensuring the representativeness of our observations. In particular, when 15,886
merging scenarios contain in total thousands or millions of textual conflicts, 385 is a statistically
significant sample size with 95% confidence level and±5% confidence interval [23, 41]. To construct
our sample set, we randomly picked one or more merging scenarios in each of the 183 repositories
and examined one of the reported textual conflicts for each scenario. To manually analyze every
sampled conflict, we studied five related program versions: b, l , r ,m, and Am .

We inspected all build conflicts without sampling because of only a few such scenarios (i.e., 79).
Different from git-merge, build tools report compilation errors but never pinpoint the conflicting
edits. To locate and understand those edits that correspond to each compilation error, we checked
five program versions (i.e., b, l , r , m, and Am ) and inspected edits applied to distinct locations. If
the co-application of certain edits from l and r is responsible for the error, we identified the mini-

mum set of involved edits as the root cause of a build conflict. Similarly, we inspected all scenarios
labeled with test conflicts (i.e., 33). Automated testing reports runtime errors but does not locate
any conflicting edits. To reveal those edits, we inspected all five program versions to compare the
semantics and identified the minimum set of responsible edits.

With more details, to locate the root cause of a higher-order conflict, we checked whether de-
velopers’ merged version m had any build or test error. If both Am and m had build or test errors,
we could not decide how those errors were introduced or resolved. In such scenarios, we checked
three more commits after m in the software history. If none of these additional commits resolved
the build or test errors introduced earlier, we concluded that the merging scenario had some un-
known build/test conflicts. Otherwise, if m or any of the later commits being checked had zero
build/test error, we compared Am with that commit to locate conflicts.

To ensure the quality of our manual inspection, two authors independently examined the sam-
pled textual conflicts and all merging scenarios with build or test failures. The authors compared
their description on root causes and resolutions for all conflicts and extensively discussed any dis-
agreement until reaching a consensus. As shown in Table 3, we sampled 385 textual conflicts, and
manually located 107 build conflicts as well as 46 test conflicts in the 112 (i.e., 79 + 33) examined
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Fig. 4. Characterization of root causes for textual conflicts.

scenarios. Notice that one merging scenario can have one or more higher-order conflicts. Thus, the
total number of higher-order conflicts (i.e., 107 + 46) is larger than the total number of examined
scenarios (i.e., 112). We report our empirical findings for different conflict types in Sections 4–6.

4 STUDY RESULTS ON TEXTUAL CONFLICTS

This section presents our analysis of the 385 textual conflicts to answer each research question.

4.1 RQ1: Root Causes of Conflicts

We studied three characteristics of each conflict: the edited files, relative edit locations, and edit
types (see Figure 4). In terms of edited files, the 385 textual conflicts can be classified into six cate-
gories based on where they arise: 239 conflicts occur in Java code; 35 conflicts exist in build scripts
(i.e., build.xml, pom.xml, and *.gradle); 32 conflicts are found in other XML files (e.g., plugin.xml

and web.xml); 20 conflicts are in MARKDOWN files (i.e., *.md), 11 conflicts are located in property
files (i.e., *.properties), and 59 conflicts happen in other files (e.g., code written in other program-
ming languages). Most conflicts occur in Java code, resonating with the fact that we inspected
merging scenarios in Java projects only, and developers mainly modified code via commits.

In terms of relative edit locations, we discovered two types of conflicts: (i) in 65 conflicts, the
edits from l and r were applied to adjacent instead of same lines; (ii) in the other 320 conflicts, the
edits from different branches commonly cover at least one line. Table 4 presents an exemplar con-
flict of type (i) in (a), and conflict examples of type (ii) in (b)–(i). Conflicts in the first category are
false positives generated by git-merge, because the edits do not overlap and can be co-applied the-
oretically. These conflicts do not satisfy the definition of textual conflicts mentioned in Section 2.1.
Among the 65 false positives, there are 18 instances located in non-Java files (i.e., build scripts and
other files) and 47 instances in Java files. In the following exploration, we focused our analysis on
the 320 true conflicts.

In terms of edit types, we further classified the true conflicts into eight categories: (1) add vs. add,
(2) update vs. update, (3) update vs. delete, (4) delete+add vs. update, (5) delete+add vs. delete+add,
(6) delete+add vs. add, (7) delete+add vs. delete, and (8) others. Given an added line and a deleted
line, if they have at least 50% of string similarity, our manual inspection considers them to present
an update operation; otherwise, our manual inspection treats them as two separate edit operations:
one insertion and one deletion. Add vs. add means l and r insert divergent content at the same
location, as shown by the example in Table 4(b). Update vs. update means l and r update the same
line(s) in divergent ways (e.g., Table 4(c)). Update vs. delete means between l and r , one branch
updates some text while the other deletes the same text. As shown in Table 4(d), l deletes a Java
file while r updates content of that file. These three edit types take up the majority of 320 conflicts
(i.e., 68%).

Delete+add vs. update and delete+add vs. delete+add are similar to the edit type update vs. up-

date, as these three types all involve simultaneous line addition and deletion in both branches. In
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Table 4. Nine Exemplar Conflicts Reported by Git-merge

(a) A reported conflict due to edits to adjacent lines [1]

Changes in l : Changes in r :
import java.io.IOException; import java.io.IOException;
import java.io.InputStream; - import java.io.InputStream;
import java.util.List; - import java.util.List;
import java.util.Map; - import java.util.Map;

- import java.util.concurrent.Executors; import java.util.concurrent.Executors;
(b) A conflict of type add vs. add [14]

Changes in l : Changes in r :
import org.apache.dubbo.common.URL; import org.apache.dubbo.common.URL;

+ import org.apache.dubbo.common.utils.StringUtils; + import org.apache.dubbo.common.Version;
(c) A conflict of type update vs. update [3]

Changes in l : Changes in r :
<artifactId>jackson-jaxrs </art ifactId> <artifactId>jackson-jaxrs </art ifactId>

- <version>1.8.1</version> - <version>1.8.1</version>
+ <version>1.9.7</version> + <version>1.9.3</version>

<scope>test</scope> <scope>test</scope>
(d) A conflict of type update vs. delete [15]

Changes in l : Changes in r :
Delete the whole file TestTryCatchNoMove.java Update content of the file TestTryCatchNoMove.java.

(e) A conflict of type delete+add vs. update [13]

Changes in l : Changes in r :
Delete and add many lines in a Java method of Server-
Connection.java. The edited area overlaps with that of r .

- if(tableKey.equalsIgnoreCase(table) &&
itemConfig!=null){
+ if((tableKey.equalsIgnoreCase(table) &&
itemConfig!=null) || tableKey.equals(‘‘*’’)){

(f) A conflict of type delete+add vs. delete+add [7]

Changes in l : Changes in r :
Delete 40 lines and insert 3 lines in mycat.xml. The edited region
overlaps with that of r .

Delete 29 lines and add 1 line in mycat.xml.

(g) A conflict of type delete + add vs. add [2]

Changes in l : Changes in r :
+ import java.util.ArrayList;

- import java.util.Collection; import java.util.Collection;
- import java.util.ConcurrentModificationException; import java.util.ConcurrentModificationException;
+ import java.util.Iterator; + import java.util.List;

import java.util.Map; import java.util.Map;
(h) A conflict of type delete+add vs. delete [5]

Changes in l : Changes in r :
- import azkaban.executor.ExecutableFlow.FailureAction; import azkaban.executor.ExecutableFlow.FailureAction;
- import azkaban.executor.ExecutableFlow.Status; - import azkaban.executor.ExecutableFlow.Status;
+ import azkaban.executor.ExecutionOptions;

(i) A conflict of type others [8]

Changes in l : Changes in r :
this.addConnectionExecutor = ...; - this.addConnectionExecutor = ...;

- this.closeConnectionExecutor = createThreadPoolExecu-
tor(4, ...);

- this.closeConnectionExecutor = createThreadPoolExecu-
tor(4, ...);
+ ThreadFactory threadFactory = ...;
+ this.addConnectionExecutor = ...;

+ this.closeConnectionExecutor = createThreadPoolExecu-
tor(1 + (config.getMaximumPoolSize() / 2), ...);

+ this.closeConnectionExecutor = createThreadPoolExecu-
tor(1 + config.getMaximumPoolSize() / 2, ...);

+ if (config.getMetricsTrackerFactory() != null) { ...

our research, we differentiate update from deletion+add based on the observed textual similarity.
Namely, if in a branch the inserted lines are similar to deleted ones, we label the edits update;
otherwise, the label is delete+add. In Table 4, (e)–(f) present examples for both types. Additionally,
delete+add vs. add means that one branch deletes and adds lines while the other branch inserts
lines to the same edit location. As shown in Table 4(g), l deletes two imports and adds another
import, and r adds two imports. Because the edit locations by both branches overlap (i.e., the last
import addition), git-merge reports a conflict. Delete+add vs. delete means that one branch deletes
and adds lines while the other branch deletes lines; the two branches have overlapping edit loca-
tions (see Table 4(h)). Others include miscellaneous conflicts. For example, as shown in Table 4(i),
l updates a line and adds extra lines to implement new logic; r replaces two statements with three
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Table 5. Developers’ Resolutions for the 320 True Conflicts

Edit Types L R M L+R L+M R+M L+R+M X

Add vs. add 19 17 - 40 1 2 4 1
Update vs. update 42 23 4 5 1 - 6 1
Update vs. delete 35 12 1 - 1 2 - -
Delete+add vs. update 8 7 - 2 1 - 5 -
Delete+add vs. delete+add 7 4 - 1 - 2 2 -
Delete+add vs. add 2 3 1 7 1 - 1 1
Delete+add vs. delete 5 1 - 2 1 - 1 -
Others 11 10 - 7 3 1 6 -
Total 129 77 6 64 9 7 25 3

“-” indicates “zero-entry”.

semantically similar statements. We consider such conflicts as update+add vs. update and put them
into the miscellaneous category.

We defined the eight categories mainly due to the larger proportion of the first seven types of
conflicts. Others include all smaller types of edits, each of which covers less than 10 conflicts.

RQ1 answer summary: Among the inspected 385 textual conflicts, 146 conflicts exist in non-

Java files; 65 conflicts are false positives by git-merge; 166 true conflicts are caused by divergent

insertions or updates between branches (i.e., add vs. add, and update vs. update).

4.2 RQ2: Resolutions of Conflicts

We observed that developers may react to a given conflict in one of the following eight ways:

— L: Keep all edits from l .
— R: Keep all edits from r .
— M: Apply new edits that are not from l or r .
— L+R: Keep edits from both sides.
— L+M: Keep edits from l and apply extra edits as needed. Compared with L, L+M may keep

some instead of all edits from l and/or add new edits.
— R+M: Keep the edits from r and apply extra edits as needed. Compared with R, R+M may

keep some instead of all edits from r and/or add new edits.
— L+R+M: Keep edits from sides and apply extra edits as needed. Compared with L+R, L+R+M

may keep fewer edits from both sides and/or add new edits.
— X: Do not resolve the conflict.

For the 320 true conflicts in our sample set, we present the distribution of developers’ resolution
strategies in Table 5. As shown in the table, developers resolved 64% of conflicts (206/320) by taking
all edits from either l or r (i.e., L or R). They resolved 20% of conflicts (64/320) by including all
edits from both branches (i.e., L+R). Table 6 presents such an example. Developers handled 8% of
conflicts (25/320) by applying additional changes after integrating all edits from both branches (i.e.,
L+R+M). They seldom used the other resolution strategies.

For the 206 conflicts that developers resolved by keeping all edits from one branch only, we
further compared the involved edits to understand how developers chose one branch over the other.
Interestingly, we found three insights. First, among the 36 add vs. add instances resolved via either
L or R, there are 14 conflicts reported because the content inserted by one branch fully contains
the one inserted by the other. Developers resolved 12 of the 14 conflicts by taking the branch with
more insertions. There are seven conflicts triggered when branches insert semantically equivalent
but textually different content, mainly due to formatting or code comments. Developers resolved
these seven conflicts by (probably randomly) picking one branch. Second, among the 65 update

vs. update instances resolved via either L or R, there are 30 conflicts caused by divergent updates
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Table 6. A Textual Conflict Resolved via L+R [16]

Changes in l :
- @Override public String[] ...‘‘*:file:*.aar’’, ‘‘*:file:*. jmod’’);}
+ @Override public String[] ...‘‘*:file:*.aar’’, ‘‘*:file:*. jmod’’, ‘‘*:file:*.kar’’);}

Changes in r :
- @Override public String[] ...‘‘*:file:*.aar’’, ‘‘*:file:*. jmod’’);}
+ @Override public String[] ...‘‘*:file:*.aar’’);}

Changes in m:
- @Override public String[] ...‘‘*:file:*.aar’’, ‘‘*:file:*. jmod’’);}
+ @Override public String[] ...‘‘*:file:*.aar’’, ‘‘*:file:*. kar’’);}

to the library version. Developers resolved 26 conflicts by taking the branch that introduced a
higher version number. In the conflict shown in Table 4(b), developers kept the edit from l probably
because 1.9.7 > 1.9.3. Third, among the 47 update vs. delete cases resolved via L or R, developers
handled 36 cases by keeping delete operations but resolved 11 cases by preserving updates. It
means that developers are more likely to delete the edited content for resolution given an update

vs. delete conflict. These observations imply that developers adopt strategic resolutions in certain
circumstances depending on the types and content of conflicting edits.

RQ2 answer summary: Developers resolved 206 true conflicts via either L or R. Their decisions

of choosing one branch over the other seem predictable in at least 74 (i.e., 12 + 26 + 36) of these

instances.

4.3 RQ3: Discussion on Existing Tool Design

Limitations and Opportunities of Conflict Detectors. Table 2 lists eight tools that detect
textual conflicts. Three tools (i.e., git-merge, Crystal, and WeCode) have the false-positive issues
grayed in Figure 4, as they all conduct text-based merge. CloudStudio seems to be able to detect
textual conflicts accurately, as it monitors developers’ coding activities. However, because it needs
to eagerly detect and report textual conflicts whenever two developers touch the same line, Cloud-
Studio’s performance can scale poorly with the number of users concurrently accessing the server.
Prior work [28, 32, 33, 55] show that the other four tools (i.e., FSTMerge, IntelliMerge, JDime, and
AutoMerge) can overcome the limitation of text-based merge, because they all observe program
syntax and report conflicts only if the same tree/graph nodes are edited divergently between l and
r . For simplicity, we use syntax-based merge to refer to the methodology shared by the four tools.
Because syntax-based tools were designed to analyze Java files only, they are unlikely to overcome
the false-positive issues in non-Java files (e.g., build scripts and readme files).

We conducted a pilot study by applying FSTMerge, IntelliMerge, JDime, and AutoMerge to 10
randomly picked merging scenarios to validate our hypothesis. Among these scenarios, we sam-
pled three false-positive and seven true conflicts in non-Java files reported by git-merge. Our study
shows that none of the four tools can properly handle non-Java files, let alone overcome the false-
positive issues. Given the three versions (b, l , and r ) of each scenario, FSTMerge either outputs
nothing or generates incorrectly merged files with no conflict found. IntelliMerge prompts that it
cannot find any file to merge and both JDime and AutoMerge generate error messages to explain
that the tools only accept Java files. Our pilot study confirms that syntax-based tools do not address
the false-positive issues in non-Java files. As we observed a considerable portion—12% (18/146)—of
the conflicts revealed by textual merge in non-Java files to be false positives, we believe that it is
still important to create new tools that better detect textual conflicts in such files.

Limitations and Opportunities of Conflict Resolvers. Table 2 lists four tools that can resolve
textual conflicts. To assess the resolution capabilities of distinct tools, we conducted a pilot study
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Table 7. A Pilot Study that Applies Four Tools to Tentatively Resolve

Eight Different Kinds of Textual Conflicts

Conflict Type FSTMerge JDime IntelliMerge AutoMerge

Add vs. add Succeed Succeed Succeed Succeed
Update vs. update Fail Fail Fail Fail
Update vs. delete Fail Fail Fail Fail
Delete+add vs. update Fail Fail Fail Fail
Delete+add vs. delete+add Fail Fail Succeed Fail
Delete+add vs. add Fail Fail Fail Succeed
Delete+add vs. delete Fail Succeed Fail Succeed
Others Fail Fail Fail Fail

by constructing a dataset of eight randomly sampled textual conflicts, with each conflict corre-
sponding to one edit type mentioned in Table 5. As shown in Table 7, after applying tools to the
eight textual conflicts, we found all tools to be able to successfully resolve the conflict of type add

vs. add. Additionally, JDime resolved one more type of conflict successfully: delete+add vs. delete;
IntelliMerge successfully resolved another type of conflict: delete+add vs. delete+add; AutoMerge
managed to resolve two more types of conflicts: delete+add vs. add and delete+add vs. delete. No-
tice that our main focus is the characterization of various conflicts instead of comparison between
tools, and it is understandable that different tools have separate implementation issues. Therefore,
in this section, we conducted a pilot study to qualitatively measure existing tools’ resolution ca-
pabilities, instead of performing a large-scale study to quantitatively measure the applicability or
resolution quality of all tools. We believe that the detailed empirical comparison between tools is
worth thorough investigation, although it is not the main focus of this article.

Although in Section 4.2, we observed developers’ preferences when they choose one branch
over the other, we are unaware of any tool built that predicts or suggests such resolution strate-
gies. Our pilot study shows that the tools do not resolve conflicts as developers did in most cases.
Future tools have great opportunities to propose better candidate merged versions by predicting
and automating more resolution strategies based on scenario characterization.

RQ3 answer summary: Despite the necessity observed in this study, existing tools cannot precisely

detect textual conflicts in non-Java files (e.g., build scripts and other files). We observed typical

strategies and preferences in developers’ conflict resolution practices, which shows promise for fu-

ture tools that suggest resolutions based on scenario characterization.

5 STUDY RESULTS ON BUILD CONFLICTS

This section presents our analysis of the 107 build conflicts.

5.1 RQ1: Root Causes of Build Conflicts

We characterized each inspected build conflict from two perspectives: the edited files and edit types
(see Figure 5). We did not classify conflicts based on relative edit locations because no conflicting
edits overlap textually. In other words, each pair of conflicting edits were smoothly integrated into
Am by git-merge. In terms of edited files, 107 build conflicts can be classified into four categories.
79 conflicts exist among Java edits (e.g., Table 8(a)); 19 conflicts occur among edits to build scripts
(e.g., Table 8(c)); seven conflicts are due to simultaneous edits in Java code and build scripts (e.g.,
Table 8(d)); and two conflicts are caused by unknown reasons. All these conflicts are true positives
because they all trigger compilation errors. We classified the conflicts into four categories in terms
of edit types: (1) update vs. add, (2) delete vs. add, (3) others, and (4) unknown.

5.1.1 Update vs. Add. These 68 conflicts can be further classified into four subcategories:
declaration-reference, super-sub, version-version, and dependency-code. We defined these
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Fig. 5. Characterization for build conflicts.

Table 8. Four Representative Build Conflicts of the Category Update vs. Add (Section 5.1.1)

(a) declaration-reference [17]

Changes in l :
In ServerListManager.java,
+ Loggers.EPHEMERAL.debug(‘‘check distro heartbeat.’’);

Changes in r :
In Loggers.java,
- public static final Logger EPHEMERAL = LoggerFactory.getLogger(‘‘com.alibaba.nacos.naming.ephemeral’’);
+ public static final Logger DISTRO = LoggerFactory.getLogger(‘‘com.alibaba.nacos.naming.distro’’);

Additional edits in m for conflict resolution:
In ServerListManager.java, use Loggers.SRV_LOG to replace the nonexistent field Loggers.EPHEMERAL.
(b) super-sub [9]

Changes in l :
Add ElasticSearch5DAO.java,
+ public class ElasticSearch5DAO implements IndexDAO {...}

Changes in r :
In IndexDAO.java,
+ public List<TaskExecLog> getTaskLogs(String taskId);

Additional edits in m for conflict resolution:
In ElasticSearch5DAO.java, add code to override the newly declared method interface getTaskLogs(...).
(c) version-version [11]

Changes in l :
In spring-cloud-alibaba-sentinel-datasource/pom.xml,
+ <parent>
+ <groupId>org.springframework.cloud</groupId>
+ <artifactId>spring-cloud-alibaba</artifactId>
+ <version>0.2.0</version>
+ </parent>

Changes in r :
In pom.xml,

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-alibaba</artifactId>

- <version>0.2.0</version>
+ <version>0.2.0.BUILD-SNAPSHOT</version>

Additional edits in m for conflict resolution:
In spring-cloud-alibaba-sentinel-datasource/pom.xml, update the version number to 0.2.0.BUILD-SNAPSHOT to refer to the
updated parent artifact.
(d) dependency-code [6]

Changes in l :
In pom.xml,
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
- <version>1.6.0</version>
+ <version>2.0.0</version>

Changes in r :
In CSVResultsExtractor.java,
+ for (MultiBucketsAggregation.Bucket bucket : buckets) {
+ String key = bucket.getKeyAsText().string();

Additional edits in m for conflict resolution:
In CSVResultsExtractor.java, replace the function call getKeyAsText() with getKeyAsString().
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Table 9. A Representative Build Conflict of the Category Delete vs. Add (Section 5.1.2)

Changes in l :
In DubboGatewayServlet.java,
+ import org.springframework.cloud.alibaba.dubbo.metadata.DubboTransportedMetadata;

Changes in r :
Delete the entire file DubboTransportedMetadata.java,

subcategories based on the content and semantic dependencies of conflicting edits. Table 8 presents
an example for each subcategory, and we will explain all of them in detail below.

(a) Declaration-reference. When l (or r ) updates the declaration of a program entity and r
(or l ) adds references to the original declaration, there is a mismatch between referencers and
the referencee. For example, in Table 8(a), r updates a field name EPHEMERAL to DISTRO, while l adds
a reference to EPHEMERAL. The integration of both edits causes a build error “cannot find symbol:
variable EPHEMERAL”.

(b) Super-sub. There are scenarios where one branch adds a type reference via inheritance
(i.e., A extends B) or implementation (i.e., A implements B), and the other branch updates a method
of the super or subtype. The edit co-application makes method signatures inconsistent between
two Java types. For instance, in Table 8(b), r revises an interface IndexDAO to declare a new method
getTaskLogs(...), while l defines a class ElasticSearch5DAO to implement the original interface. Be-
cause the defined class does not implement the newly added method, the compiler outputs an error
“ElasticSearch5DAO is not abstract and does not override abstract method getTaskLogs(String) in
IndexDAO”.

(c) Version-version. In some merging scenarios, one branch updates the version number of
a defined artifact in build scripts while the other branch adds one or more references to the
original artifact version. As shown in Table 8(c), l adds a reference to version 0.2.0 of artifact
spring-cloud-alibaba; however, r updates the artifact’s version from 0.2.0 to 0.2.0.BUILD-SNAPSHOT.
When both edits are applied, the compiler or build system produces an error “Could not find arti-
fact org.springframework. cloud:spring-cloud-alibaba:pom:0.2.0”.

(d) Dependency-code. There are cases where one branch updates a library dependency in build
scripts while the other branch adds code that accesses APIs only supported by the original library.
In Table 8(d), l upgrades artifact elasticsearch and r adds code to call Bucket.getKeyAsText(), which
is only supported by the old library. The co-application of both edits triggers a compilation error
“cannot find symbol: method getKeyAsText()”.

5.1.2 Delete vs. Add. These 31 conflicts can be further put into two subcategories: declaration-
reference and dependency-code. The first subcategory represents scenarios where l (or r ) deletes
an entity declaration and r (or l ) adds one or more references to that entity. In Table 9, r
deletes an entire file DubboTransportedMetadata.java and thus removes the class definition for
DubboTransportedMetadata. Meanwhile, l adds an import-declaration for the class. Consequently, the
combination of both edits leads to an error “cannot find symbol: class DubboTransportedMetadata”.
The second subcategory means one branch deletes the library dependency in build scripts, and the
other branch adds references to APIs solely provided by that library. These two subcategories are
similar to the subcategories (a) and (d) of update vs. add, but different in terms of edit types.

5.1.3 Others. Six conflicts were introduced for miscellaneous reasons. Four of them are add

vs. add conflicts. For example, as shown in Table 10, when both branches add declarations of the
same field required, integrating those edits can trigger a build error like “variable required is al-
ready defined in class CodegenParameter”. The other two instances are update vs. update conflicts.
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Table 10. A Representative Build Conflict of the Category Others (Section 5.1.3)

Changes in l :
In CodegenParameter.java,
- public Boolean hasMore = null, isContainer = null, secondaryParam = null;
+ public Boolean hasMore = null, isContainer = null, secondaryParam = null, required = null;

Changes in r :
In CodegenParameter.java,
+ public boolean required;

Table 11. Developers’ Resolutions for

Build Conflicts

Edit
Types

L R M L+R L+M R+M L+R+M X

Update
vs. add

2 8 - - - - 58 -

Delete
vs. add

3 11 - - - - 17 -

Others - 3 - - - - 3 -
Total 5 22 - - - - 78 -

Namely, when l and r update different code regions of the same method, the edit integration acci-
dentally introduces the usage of undefined variables.

5.1.4 Unknown. For two conflicts, we did not figure out how the edits from l and r conflict with
each other. The reported errors are all about missing packages. For instance, one error is “package
org.springframework.mock.web does not exist”. Although this seems to be a library configuration
issue, we could not locate the root cause or developers’ manual resolution.

Summary. We notice an interesting common characteristic among the 105 conflicts with known
reasons. When developers define and use program elements (e.g., classes or libraries) in software,
they should always observe two constraints regarding def-use links. First, no element should be
defined twice. Second, any used element should correspond to a defined element. If the edit inte-
gration between branches breaks def-use links by violating any constraint, build systems report
errors, and those integrated edits result in build conflicts.

RQ1 answer summary: Within the 107 conflicts studied, at least 105 conflicts are due to the co-

applied edits that break def-use links in Java files and/or build scripts; 99 conflicts can be explained

with two typical combinations of edit types: update vs. add, and delete vs. add.

5.2 RQ2: Resolutions of Build Conflicts

For the 105 conflicts with identified root causes, we further studied developers’ manual resolutions.
Table 11 presents the resolution distribution. As shown in the table, developers resolved 78 conflicts
via L+R+M. When the co-application of edits from branches triggers any build error, developers
usually applied adaptive changes to glue those edits. For instance, to resolve the conflict shown in
Table 8(b), developers kept edits from both sides and inserted code to ElasticSearch5DAO in order to
implement the newly added method interface getTaskLogs(...). Additionally, developers adopted L
and R to separately resolve five and 22 conflicts.

Interestingly, the resolution distribution shown in Table 11 is quite different from developers’
resolutions to textual conflicts (see Table 5). Most build conflicts were resolved via L+R+M instead
of L or R. One possible reason to explain this contrast is that build conflicts are between edits
applied to distinct program locations, while textual conflicts are between divergent edits to the
same location. Although it is hard to co-apply the edits that textually overlap, it is easier to co-

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 40. Pub. date: March 2023.



40:16 B. Shen et al.

apply the edits whose locations are different. Thus, it is more favorable for developers to keep
edits from both sides when resolving build conflicts and make adaptive changes as needed.

Although the additional edits M vary with merging scenarios, we observed two important com-
monalities. First, the edits were always applied to remedy broken def-use links. For simplicity,
we name such edits for link-repair purposes as adaptive changes. Second, for many scenarios,
the adaptive edits similar to M were already applied in either l or r . Take Table 8(c) as an example.
When developers updated the artifact’s version number from 0.2.0 to 0.2.0.BUILD-SNAPSHOT in r , they
also revised build scripts to consistently update all version references in order to use the new arti-
fact version. We use consistent edits or systematic edits to refer to the similar edits repetitively
applied to multiple locations to address the similar or identical coding issues in those locations. In
Table 8(c), we observed developers to apply adaptive changes to resolve all build errors triggered
by the version upgrade in r . These adaptive changes are very similar to the additional edits M
because both sets of edits intend to fix the same kind of errors.

Among the 78 conflicts resolved via L+R+M, we saw 64 conflicts (82%) to have M consistent with
(i.e., similar to) the adaptive edits applied in one branch. These highly consistent edits indicate great
opportunities for automatic conflict resolution.

RQ2 answer summary: We analyzed in total 107 build conflicts. Among the 105 build conflicts

with identified root causes, 78 conflicts were resolved via L+R+M. The resolution edits M are often

consistent with the adaptive changes applied in one branch for program compilability.

5.3 RQ3: Discussion on Existing Tool Design

Limitations of Conflict Detectors. Table 2 shows three detectors for build conflicts— Crystal,
WeCode, and CloudStudio. All of them rely on build systems to reveal build conflicts. However,
based on our experience, the common methodology of these tools has three limitations.

First, the builder-based or compiler-based detection of conflicts is ineffective in reporting build
conflicts when textual conflicts exist between l and r . Actually, in our procedural of manual in-
spection for textual conflicts, we noticed that build conflicts can coexist with textual conflicts in
unmergeable versions by git-merge. For such scenarios, neither Crystal nor WeCode reports any
build conflict, as they require users to remove all textual conflicts first and produce a merged ver-
sionAm . Second, given a merged version, builders or build systems may not report all compilation
errors in one run. Namely, the initially revealed errors can prevent builders from detecting other
errors. Thus, it can be time-consuming for developers to recognize all build errors through repet-
itive compilation and program revision. Our study did not change any program or fix any build
error. Instead, we focused on the initial build errors. As a result, our analysis can miss some build
errors hidden by the initially reported ones. It is possible that in the 79 merging scenarios with
build conflicts detected, there are more than 107 build conflicts between branches. Third, given a
build error, developers have to identify the conflicting edits manually. When l and r contain many
edits, developers may find it challenging to locate the root cause manually. In our manual analy-
sis, even though we spent lots of time investigating the root causes for every reported build error,
there are still two errors for which we cannot locate the conflicting edits. Existing tools do not
help developers/users reason about conflicts.

Future Opportunities of Conflict Detectors. As mentioned in Section 5.2, build conflicts are
mainly about the broken def-use links induced by software merge. The resolution edits always
repair broken links, and those edits are often inferable from relevant adaptive changes in either l
or r . Based on these observations, we envision a promising conflict detector to replace the usage
of compilers with static program analysis. Specifically, the tool can contrast all edits separately
applied in l and r , reason about the def-use links between edited program elements, and report
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Fig. 6. Characterization for test conflicts.

conflicts whenever a def-use constraint between elements is violated. For example, for the merging
scenario shown in Table 8(a), a future tool can scan for any updated field in either branch (e.g., r )
and then check whether the other branch adds any reference to the original field before the update.
If so, a broken def-use link is detected, and a conflict is reported accordingly. Without using any
builder or compiler, such static analyzers can overcome the three limitations mentioned above.

Limitations and Opportunities of Conflict Resolvers. We were not aware of any tool that
can resolve build conflicts, so we conducted a pilot study by applying four syntax-based tools
(i.e., FSTMerge, JDime, IntelliMerge, and AutoMerge) to five merging scenarios with known build
conflicts. According to our experiments, JDime and AutoMerge are unable to detect or resolve build
conflicts. In the scenarios, when only Java files are involved in conflicts, both tools either naïvely
integrate edits as git-merge does, or fail to process newly added Java files because they strictly
require all three program versions (b, l , r ) to be provided. In the scenarios when build scripts are
also edited, both tools either fail to process non-Java files or output nothing. To sum up, JDime
and AutoMerge are unable to detect and resolve build conflicts. Interestingly, when applied to the
five scenarios, FSTMerge and IntelliMerge successfully handled one scenario by adding an extra
edit to fix the broken def-use link but failed in the other four. In the scenario where FSTMerge and
IntelliMerge resolved a conflict, l removes an import from a Java file, and r adds a reference to the
originally imported class in the same file. The tools fixed the broken def-use link by adding back
the removed import. Our pilot study shows that we lack systematic tool support for the resolution
of build conflicts.

Based on our conflict characterization, we see great opportunities to create conflict resolvers.
Specifically, a promising approach can infer systematic editing patterns from the adaptive changes
applied in either l or r and customize the inferred patterns to resolve conflicts in Am . Our insight
is that if developers resolve compilation errors in either branch for any edit that breaks def-use links,

they are likely to resolve the same compilation errors in Am in similar ways for that merged-in edit.

Take Table 8(a) as an example. Given the conflicting edits between branches, a future tool can
focus on the field-update edit and mine r for any adaptive edits related to that update. Suppose
an adaptive edits were applied in r to remedy broken links between the defined fields and field
accesses (i.e., by updating all added field accesses to refer to DISTRO). In that case, the future tool
can similarly apply such edits to Am to resolve conflicts.

RQ3 answer summary: Existing detectors of build conflicts have quite limited applicability, effi-

ciency, and effectiveness. There is almost no tool support to automatically resolve build conflicts.

6 STUDY RESULTS ON TEST CONFLICTS

This section presents our analysis of the 46 test conflicts.

6.1 RQ1: Root Causes of Test Conflicts

We characterized test conflicts from two perspectives: the edited files and edit types. As shown in
Figure 6, we classified conflicts into four categories based on edited files: 35 conflicts exist among
Java edits (e.g., Table 12(b)); three conflicts are among edits to Java and other files (i.e., .xml or
.groovy); one conflict is among non-Java files (e.g., Table 12(a)); and seven conflicts were caused
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Table 12. Two Representative Test Conflicts

(a) An exemplar conflict of update vs. add [10]

Changes in l :
In KotlinJsonAdapter.kt, code implementation is updated

Changes in r :
In KotlinJsonAdapterTest.kt, a new test is added to invoke functions defined in KotlinJsonAdapter.kt

Additional edits in m for conflict resolution:
In KotlinJsonAdapterTest.kt, an assertion is revised to match the updated implementation logic of invoked functions.
(b) An exemplar conflict of add vs. add [4]

Changes in l :
In test/.../SampleObjects.java, developers defined a new method public long getId(){...}

Changes in r :
In test/.../SampleObjects.java, developers also defined the same method public long getId(){...} in the same way.

Additional edits in m for conflict resolution:
In test/.../SampleObjects.java, keep the defined method from r

by unknown reasons. All these conflicts involve simultaneous edits to test oracles and/or software
implementation. Compared with Figure 5, we have more test conflicts due to unknown reasons
(i.e., 7 vs. 2). This is because build errors usually report the program elements that break def-use
links, which helped us manually identify root causes. On the other hand, test errors only report
the locations where abnormal program behaviors are observed. These locations may be far away
from the places where program states initially become erroneous. Without project-specific domain
knowledge and dynamic analysis tools, it is hard for us to manually reason about all root causes.

We classified conflicts into four categories in terms of edit types: (1) update vs. add, (2) add

vs. add, (3) delete vs. add, and (4) unknown. Update vs. add has four subcategories: declaration-
reference, super-sub, dependency-code, and implementation-oracle. The first three subcategories
are similar to the subcategories (a), (b), and (d) mentioned in Section 5, and they all break def-
use links. However, these conflicts trigger test errors instead of build errors because part of the
conflicting edits were applied to test code, which is only compiled in the testing instead of the
build phase.

The subcategory implementation-oracle means that a conflict happens if one branch changes
program implementation, while the other branch adds test code whose oracle matches the original
implementation. For instance, in Table 12(a), l updates the implementation of KotlineJsonAdapter

and r adds a test case to KotlineJsonAdapterTest in order to test the original implementation. The
co-application of both edits triggers an assertion error “Expecting message: < “Non-null value “a”
was null at $” > but was: < “Non-null value “a” was null at $.a” >”. It indicates that there is a
semantic mismatch between the code implementation and test oracle.

Add vs. add means that l and r add the same method at distinct program locations of the same
file, causing one method to have duplicated definitions. Take Table 12(b) as an example. Because
both branches simultaneously define the same method getId() in a file inside the test folder, the
co-application of both edits triggers an error “method getId() is already defined in class Employee”.
Notice that such duplicated definition errors were introduced by git-merge, as text-based

merge naïvely combines the edits simultaneously applied to distinct program locations

by branches. These errors are only reported by automated testing instead of software build be-
cause the edits were applied to test files.

The single delete vs. add conflict was introduced when one branch deletes a class, and the other
branch adds a test class to refer to that deleted class. This subcategory is similar to the delete vs. add

category mentioned in Section 5. The only difference is that the added reference exists in a test
class, which is compiled in the testing instead of the build phase and thus triggers test errors.
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Table 13. Developers’ Resolutions for Test Conflicts

Edit
Types

L R M L+R L+M R+M L+R+M X

Update
vs. add

1 3 - - - - 21 -

Add
vs. add

- 13 - - - - - -

Delete
vs. add

- 1 - - - - - -

Total 1 17 - - - - 21 -

Summary. We noticed three interesting phenomena. First, many of the observed test errors
are compilation errors in test cases. They are revealed in the testing phase just because the test
cases get complied within this phase. We currently count the conflicts triggering these errors as test
conflicts simply because the compiler-based detection of build conflicts is insufficient and produces
false negatives. Second, the add-add conflicts are false negatives of the text-based merge. Git-merge
naïvely introduced them into Am without comparing the edits co-applied to different locations for
conflict detection or resolution. Third, among the inspected 46 test conflicts, we observed 11 related
to mismatches between code implementation and test oracles.

RQ1 answer summary: We analyzed in total 46 test conflicts, and managed to locate the root causes

for 39 conflicts. All of these 39 conflicts are due to the edit integration that either breaks def-use

links, repetitively adds new code, or causes mismatches between implementation and oracles.

6.2 RQ2: Resolutions of Test Conflicts

For the 39 conflicts with revealed root causes, we further classified the corresponding manual res-
olutions. As shown in Table 13, developers resolved 21 conflicts via L+R+M, and all these conflicts
belong to the update vs. add category. For instance, to resolve the conflict shown in Table 12(a),
developers kept edits from branches and revised the test oracle to match with the output of the up-
dated implementation. Additionally, developers resolved 13 conflicts via R, all of which belong to
the add vs. add category. For instance, to resolve the conflict listed in Table 12(b), developers kept
the right version because the methods repetitively added by branches cannot coexist in the same
program context. We believe that the developers prefer L+R+M over other resolution strategies.

Similar to what we found among resolutions to build conflicts, the additional edits M applied to
resolve test conflicts have two important characteristics. First, all edits were applied to fix def-use
links or match test oracle with code implementation. For simplicity, we also refer to such edits
with adaptive changes. Second, they were usually consistent with the adaptive edits applied in
one branch. Take Table 12(a) as an example. When developers updated the implementation of
KotlinJsonAdapter in l , they also adapted assertions (i.e., test oracles) in KotlinJsonAdapterTest to
ensure test success. If we compare their adaptive changes in l and the additional edits in m (see
Table 14), the two change-sets are identical albeit distinct program contexts. Among the 21 conflicts
resolved via L+R+M, 12 conflicts have M similar or identical to the adaptive edits in one branch.

RQ2 answer summary: When developers resolved test conflicts, they usually prefer L+R+M over

other strategies; and the extra edits M seem predictable from adaptive edits applied in one branch.

6.3 RQ3: Discussion on Existing Tool Design

Limitations of Conflict Detectors. Table 2 lists three detectors for test conflicts. Both Crys-
tal and WeCode rely on automated testing to reveal test conflicts so that they can cover all test
conflicts mentioned in Section 6.1. However, according to our experience, the common methodol-
ogy of both tools suffers from five limitations. First, when test conflicts coexist with other types of
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Table 14. Comparison Between the Adaptive Changes in l and the Extra Edits M

in Manual Resolution

Adaptive changes in l :
jsonAdapter.fromJson(‘‘{\’’a\‘‘:null}’’)
fail()

} catch (expected: JsonDataException) {
- assertThat(expected).hasMessage(‘‘Non-null value ‘a’ was null at \$’’)
+ assertThat(expected).hasMessage(‘‘Non-null value ‘a’ was null at \$.a’’) }

Extra edits M in m:
jsonAdapter.fromJson(‘‘{\’’a\‘‘:\’’hello\‘‘}’’)
fail()

} catch (expected: JsonDataException) {
- assertThat(expected).hasMessage(‘‘Non-null value ‘a’ was null at \$’’)
+ assertThat(expected).hasMessage(‘‘Non-null value ‘a’ was null at \$.a’’) }

conflicts, automated testing is infeasible. Developers have to resolve the other two kinds of conflicts
before getting a chance to run code with test cases and explore test conflicts. During our manual
analysis of textual conflict scenarios, we observed test conflicts to coexist with textual ones. For
such scenarios, neither Crystal nor WeCode reveals any test conflict. Second, when multiple test
conflicts coexist, the runtime errors triggered by some conflicts can stop program execution and
prevent testing from detecting other conflicts. In other words, testing-based conflict detection can
be slow and may require lots of test runs. Third, it is time-consuming for developers to write test
cases and ensure sufficient coverage of testing. Fourth, both tools can only reveal the symptoms
(i.e., runtime errors) instead of root causes for any test conflict. They do not provide further assis-
tance in conflict localization. Fifth, there are flaky tests that pass and fail nondeterministically in
different program runs. For such scenarios, automated testing cannot effectively reveal symptoms
of conflicts, and we did not include such scenarios in our dataset.

SafeMerge is designed to statically reason about program semantics to overcome all limitations
of testing-based conflict detection. However, due to its complex modeling for program semantics,
SafeMerge cannot relate edits applied to distinct Java methods, neither can it analyze edits applied
to non-code files. Therefore, SafeMerge cannot reveal any test conflict caused by the edits simulta-
neously applied to distinct program elements (i.e., files or classes). Our study found all 39 conflicts
to be introduced by simultaneous edits to different program elements, limiting the usefulness of
SafeMerge in real-world scenarios. In fact, we tried to apply SafeMerge to test conflicts but without
success. Therefore, we were unable to conduct a pilot study to validate the tool’s capability.

Opportunities of Conflict Detectors. SafeMerge demonstrates a promising way to detect test
conflicts via static program analysis. However, SafeMerge is limited to intra-procedural analysis,
while most conflicts we observed require inter-procedural analysis. The mismatch between the
problem domain and the current solution indicates great opportunities for conflict detectors based
on inter-procedural static program analysis.

Limitations and Opportunities of Conflict Resolvers. We were unaware of any tool that
can resolve test conflicts, so we conducted a pilot study by applying four syntax-based tools (i.e.,
FSTMerge, JDime, IntelliMerge, and AutoMerge) to 15 merging scenarios with known test conflicts.
Among the scenarios, 10 conflicts belong to add vs. add, which were wrongly introduced by git-
merge and five conflicts belong to update vs. add. As syntax-based tools were designed to align Java
methods between branches based on method signatures and implementation, they should be able
to detect or even resolve the add vs. add conflicts. Unsurprisingly, our study shows that the four
tools resolved all 10 conflicts successfully. Specifically, these tools all recognized the duplicated
addition of the same methods in 10 scenarios and included single copies of those methods in the
merged versions. In other words, our pilot study confirmed that JDime, IntelliMerge, FSTMerge,
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and AutoMerge could nicely address the add vs. add conflicts incorrectly introduced by git-merge.
Meanwhile, no syntax-based tool can detect or resolve the other five test conflicts (update vs. add).
This is because these tools do not model or compare any program semantics for co-applied edits.

There is no tool that automatically resolves semantic mismatches in test conflicts. Based on
our conflict characterization, nevertheless, we see great research opportunities to create conflict
resolvers. Similar to the future tool design described in Section 5.3, a promising approach can infer
systematic editing patterns from the adaptive changes in l or r and customize the inferred patterns
to resolve conflicts in Am . Our insight is that if developers resolve test errors in one branch for edits

that either break def-use links or cause mismatches between code and tests, they are likely to resolve

the same errors in Am in similar ways. Among the 21 conflicts resolved with L+R+M, this proposed
approach will be able to resolve 12 conflicts.

RQ3 answer summary: Existing detectors of test conflicts are insufficient in four aspects: applica-

bility, effectiveness, efficiency, and program coverage. Currently, no resolver can fix the semantic

mismatches between co-applied edits to remove test conflicts.

7 OUR RECOMMENDATIONS

Based on our study, we would like to provide the following recommendations for future research.

Resolution Prediction for Textual Conflicts. According to our analysis, it seems too ambi-
tious to build a tool that automatically resolves all conflicts because the additional edits M involved
in some strategies are specific to projects and domains. However, it is promising to predict develop-
ers’ resolution strategies, as the developers of different projects implicitly share decision-making
patterns like preferring L and R over other strategies. Future tools can characterize merging sce-
narios from different perspectives (e.g., the file types, edit types, edit content, program contexts,
authors, and timestamps) and train machine-learning models for strategy prediction. As develop-
ers resolve most conflicts by keeping all edits from one branch, a highly accurate prediction model
can automatically resolve those conflicts with high success rates to reduce manual effort.

Detection of Higher-order Conflicts. Existing tools mainly detect higher-order conflicts via
automatic compilation and testing. Both compilation and testing heavily rely on the existence
of merged versions and require intensive human-in-the-loop interactions before uncovering all
conflicts. Therefore, the applicability and capability of such tools are not always satisfactory.

We recommend future tools to statically analyze and contrast software branches for conflict
detection without requiring branches to be merged or compiled successfully. Specifically, a new
approach can enumerate all situations where the naïve edit integration between branches can
cause build or test errors and define patterns to represent those situations. For instance, conflicting
situations can include (1) one branch renames or removes a program element (e.g., class, method, or
field), while the other branch adds references to the original element; (2) one branch adds a method
m() to a Java interface, while the other branch defines a new class to implement the interface but
does not define any method body for m(). With patterns defined for such conflicting situations,
the new approach can search for pattern matches between l and r in any given merging scenario
to detect conflicts. In this way, the future tool does not need automatic compilation or testing.

Resolution of Higher-order Conflicts. In our study, we observed that most conflicts were
resolved via L+R+M, and the additional edits M are often similar to the adaptive changes applied
to one of the branches. The rationale behind the observed similarity is that when developers apply

certain edits to remove the build or test errors in either branch, they are likely to apply similar edits

to remove the same build or test errors in the naïvely merged software Am .
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Some systematic editing tools like Sydit [45] and Lase [44] can generalize abstract program
transformations from concrete code change examples and repetitively apply similar edits to sim-
ilar code snippets. We see promise in extending these tools for automatic conflict resolution. For
instance, given edits from l and r producing a higher-order conflict, a future tool can extend Lase
to search for relevant adaptive changes applied to one branch. The tool can then extract systematic
editing patterns from those adaptive changes, customize patterns for particular program locations,
and apply the customized edits.

8 RELATED WORK

The related work includes empirical studies and change recommendation systems.

8.1 Empirical Studies on Merge Conflicts

Several studies were conducted to characterize the relationship between merge conflicts and devel-
opers’ coding activities [26, 35, 40, 43, 48, 52]. For instance, Leßenich et al. surveyed 41 developers
and identified seven potential indicators (e.g., # of changed files in both branches) for merge con-
flicts [40]. With a further empirical study of the indicators, the researchers found that none can
predict the frequency of conflicts. Similarly, Owhadi-Kareshk et al. defined nine features to charac-
terize merging scenarios and trained a machine-learning model that predicts conflicts with 57%–
68% accuracy [52]. Mahmoudi et al. observed that certain refactoring types (e.g., Extract Method)
are more related to merge conflicts [43]. These studies only focus on the relationship between
textual conflicts and other coding features (e.g., refactorings). They do not characterize any root
cause or resolution for conflicts, neither do they analyze higher-order conflicts.

Some other studies characterize the root causes and/or resolutions of textual conflicts [18, 29,
37, 50, 53, 58]. Specifically, Ji et al. studied the textual conflicts caused by Git Rebase—a practice to
merge program changes by rewriting the evolution history [37]. Our research scope is different,
as we focus on the conflicts revealed or caused by Git Merge–a more popularly used approach of
merging program changes. Yuzuki et al. inspected hundreds of textual conflicts [58]. They observed
that 44% of conflicts were caused by conflicting updates to the same line of code, and developers
resolved 99% of conflicts by taking either the left- or right- version of code. Pan et al. studied
271 merging scenarios with textual conflicts inside the repository of Microsoft Edge [53]. The
researchers clustered scenarios based on the file types, conflict sizes, conflict locations, and res-
olution patterns. They also showed the feasibility of using program synthesis to resolve merge
conflicts. Our study revealed similar findings for textual conflicts, but our analysis scope is wider
and deeper. Namely, we characterized the root causes and resolutions for higher-order conflicts;
we also analyzed the limitation of existing merge tools based on our conflict characterization.

Nguyen et al. [50] studied the version history of four projects and analyzed all merging scenarios
to assess (1) the integration and conflict rates between software branches and (2) the frequency of
rollbacks for merge operations. The researchers found that (i) a higher integration rate of a project
does not generate a higher unresolved conflict rate, (ii) developers rolled back merge operations for
5%–33% of cases, and (iii) git-merge falsely reports many textual conflicts when concurrent edits
are applied to adjacent code instead of same lines. Different from Nguyen et al., we characterized
conflicts from new perspectives. For textual conflicts, in addition to relative edit locations, we
characterized the edited files and edit types as root causes of conflicts. We also discussed all possible
strategies developers may take when resolving conflicts. Furthermore, we conducted a similar
characterization for both build and test conflicts.

Brindescu et al. [29] manually inspected 606 textual conflicts. They characterized merge conflicts
in terms of the AST diff size, LOC diff size, and the number of authors. They reported that the vast
majority of merge conflicts are resolved by the author of one of the branches. They identified three
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resolution strategies: SELECT ONE (i.e., keep edits from one branch), INTERLEAVE (i.e., keep edits
from both sides), and ADAPTED (i.e., change existing edits and/or add new edits). Compared to
Brindescu’s work, our study characterizes textual conflicts in terms of the edited files, relative edit
locations, and edit types. We did not measure the diff size, count authors, or compare the authors of
branches with conflict resolvers. The three resolution strategies recognized by Brindescu et al. are
roughly equivalent to our eight strategies mentioned in Section 4.2. For instance, SELECT ONE
corresponds to L and R. However, our strategy classification is finer-grained. More importantly,
we studied higher-order conflicts and reasoned about the limitations of existing tools based on
characterized conflicts.

The study by Ghiotto et al. [18] is most relevant to our work. Ghiotto et al. focused on the textual
conflicts found in 2,731 open-source Java projects hosted by GitHub. Seeded by the manual analysis
of the history of five projects, their automated analysis of all 2,731 projects (1) characterizes the
merge conflicts in terms of the number of chunks, size, and programming language constructs
involved, (2) classifies the manual resolution strategies that developers use to address these merge
conflicts, and (3) analyzes the relationships between various characteristics of the merge conflicts
and the chosen resolution strategies. The researchers also provided recommendations for future
merge techniques based on their study.

We got inspired by Ghiotto’s work, but our study is unique in two aspects. First, in addition to
textual conflicts, we also mined, inspected, and characterized higher-order conflicts. Second, our
recommendations complement the suggestions by Ghiotto et al.. Two of our research recommen-
dations are related to higher-order conflicts. Without characterizing such conflicts or exploring
the relevant tools, no prior work recognizes the research opportunities as our study does.

8.2 Change Recommendation Systems

Based on the insight that similar code is likely to be changed similarly, researchers proposed tools
to recommend code changes or facilitate systematic program editing [38, 42, 44, 45, 47, 49, 51].
With more details, simultaneous editing enables developers to simultaneously edit multiple pre-
selected code fragments in the same way [47]. While a developer interactively demonstrates the
edit operations in one fragment, the tool replicates the lexical edits (e.g., copy a line) to other frag-
ments. CP-Miner identifies code clones (i.e., similar code snippets) and detects copy-paste-related
bugs if clones have inconsistent identifiers or context mappings [42]. Given two or more simi-
larly changed code examples, Lase extracts the common edit operations, infers a general program
transformation, and leverages the transformation to locate code for similar edits [44].

Although both software merge and change recommendation systems are active research areas,
our study is the first piece of work that methodically connects the two areas. Our study uncovers
various scenarios where developers repetitively applied similar edits to resolve conflicts. It enlight-
ens future research to improve change recommendations, such that conflict-specific systematic
edits are automatically created and applied.

9 THREATS TO VALIDITY

Threats to External Validity: Our study is based on the 538 conflicts extracted from 208 Java
project repositories on GitHub. The characterization of conflicts and the observed resolutions may
not generalize well to other conflicts, other projects, other programming languages, or other host-
ing platforms (e.g., Bitbucket). Our data collection started from the 208 popular open-source Java
projects in GitHub, but we only found 79 build conflicts and 33 test conflicts. Although we made
our best effort by spending one year in exploring all merging scenarios in those repositories, the
relatively small number of higher-order conflicts are the best dataset we can create at this point,
mainly due to the limitations of existing tool support. Consequently, the relatively low numbers
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can also limit the generalizability of our empirical findings. In the future, we plan to mitigate this
threat by creating and using better tools to reveal higher-order conflicts more effectively.

As with prior work [18, 29, 50, 58], we relied on the intuitive pattern “one child commit following
two parent commits” to recognize merging scenarios in the software version history. However, it
is possible that some developers may merge software branches without using the command git

merge or producing the commits matching our pattern. They may simply copy and paste code
from branches, manually integrate the edits of distinct branches, and then discard some branches.
As such non-typical software merge practices leave no obvious footprint in the software version
history, we were unable to identify or study such merging scenarios. Therefore, our empirical
findings may not generalize well to the non-typical merging scenarios.

Threats to Construct Validity: Although we tried our best to manually inspect the sampled tex-
tual conflicts and all revealed build/test conflicts, it is possible that our manual analysis is subject
to human bias and restricted by our domain knowledge. To alleviate the problem, two authors
independently examined each sampled textual conflict, every reported build or test error in the
merged software Am , and related resolution edits applied by the developers. The two authors ac-
tively discussed the instances they disagreed upon until reaching a consensus. The root causes of
some observed compilation/test errors are not manually located, mainly because we are not famil-
iar with the project-specific software context. In the future, as we gain more knowledge of merge
conflicts and create better tools to reveal the root causes automatically, we can further improve
the quality of empirical findings.

Threats to Internal Validity: We adopted compilation and testing to reveal build and test errors
and then manually analyzed merging scenarios to locate conflicts responsible for those errors. Both
methodologies (i.e., compiler-based and testing-based conflict detection) have various limitations
(see Sections 5.3 and 6.3). For instance, the compiler-based method is inapplicable when build
conflicts coexist with textual conflicts. This is because the existence of textual conflicts prevents
git merge from creating a merged versionAm , making it impossible for a build process to tentatively
buildAm and to detect compilation errors. Similarly, the testing-based method is inapplicable when
test conflicts coexist with textual (or build) conflicts. Additionally, the testing-based method only
reports test failures or runtime errors; it does not directly pinpoint the conflicting edits responsible
for any abnormal program behavior. Therefore, the number of higher-order conflicts reported in
our study can be lower than the actual number of conflicts contained by the studied projects. In
the future, we would like to overcome this limitation by creating better approaches for conflict
detection.

Our current method automatically detects test conflicts only when (1) both l and r compile and
pass all tests, and (2) Am compiles but fails one or more tests. Given the fact that this method only
revealed 33 test conflicts in our study, people may be tempted to relax the filtering condition (2),
and only require Am to partially instead of fully compile but fail certain tests. We thought about
using this alternative method to enlarge the dataset of test conflicts, and believed the method to not
work for two reasons. First, we currently rely on Maven/Ant/Gradle to compile and test projects.
All build tools have their internal predefined workflows. In a typical workflow, the test phase
follows the build phase, and the test phase only starts when the build phase completes successfully.
We cannot manipulate this built-in process to run tests on partially compiled code. Even with the
straightforward and standard built-in process, we have already spent tremendous time and effort
on all studied merging scenarios. It is hard to imagine how much more time and effort we need to
put in order to customize the workflows for distinct projects. Second, when partial compilation is
successful and test failures occur, it can be even harder to manually diagnose the root cause of test
conflicts. This is because a test failure may be due to incomplete compilation or merged edits. It can
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be more time-consuming to triage the root causes of test failures produced by partially compiled
code. Meanwhile, we may lack the domain knowledge to always correctly triage the root causes.

10 CONCLUSION

Prior empirical studies showed that merge conflicts frequently occur, and conflict resolution is
important but challenging. This study comprehensively studied three kinds of conflicts and their
resolutions and characterized the conflicts that existing tools cannot handle. Unlike prior studies
that focus on textual conflicts, our study is wider and deeper for two reasons. First, we examined
higher-order conflicts in addition to textual conflicts, as (1) higher-order conflicts are harder to de-
tect and resolve and (2) few tools are available to handle those conflicts. Second, by comparing the
approach design or methodologies against characteristics of real-world conflicts, we identified the
limitations of current approaches and suggested future research to overcome those limitations.
Our study intends to (1) explore the gap between real conflicts and current tool support and
(2) suggest future research to close the gap. No prior work shares the same goals.

Our study provides multiple insights. First, developers usually resolved textual conflicts by keep-
ing all edits from one branch. Our empirical study characterizes the scenarios where a future tool
can accurately predict developers’ decision-making to select one branch over the other. Second,
current tools mainly rely on two methods to uncover higher-order conflicts: compilation and test-
ing. However, these tools are limited as (1) neither method is applicable when textual conflicts
exist between branches, and (2) both methods require heavy human involvement to locate all con-
flicts. Our research shows that higher-order conflicts present typical commonalities (e.g., broken
def-use links and test-implementation inconsistency), which future conflict detectors can leverage.
Third, developers usually resolved higher-order conflicts by applying similar edits to similar code
locations. By automating such practices, future tools can resolve higher-order conflicts.
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