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Origin of symmetry breaking in the grasshopper model
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The planar grasshopper problem, originally introduced by Goulko and Kent [Proc. R. Soc. A 473, 20170494

(2017)], is a striking example of a model with long-range isotropic interactions whose ground states break

rotational symmetry. In this paper we analyze and explain the nature of this symmetry breaking with emphasis on

the importance of dimensionality. Interestingly, rotational symmetry is recovered in three dimensions for small

jumps, which correspond to the nonisotropic cogwheel regime of the two-dimensional problem. We discuss

simplified models that reproduce the symmetry properties of the original system in N dimensions. For the full

grasshopper model in two dimensions we obtain quantitative predictions for optimal perturbations of the disk.

Our analytical results are confirmed by numerical simulations.
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I. INTRODUCTION

Goulko and Kent [1] introduced the following problem in

geometric combinatorics: A grasshopper lands at a random

point on a planar lawn of area one. It then jumps once, a fixed

distance d , in a random direction. What shape should the lawn

be to maximize the chance that the grasshopper remains on the

lawn after jumping?

The original motivation [2] to study the grasshopper prob-

lem was to formulate and analyze new Bell inequalities for the

setup where two parties carry out spin measurements about

randomly chosen axes separated by a fixed angle and obtain

the spin correlations. For this purpose Ref. [2] formulated the

problem on the surface of a sphere, where the grasshopper’s

jump corresponds to the separation of the measurement axes

on the Bloch sphere, and presented some partial results. More

detailed analytical results for the grasshopper problem on the

surface of the sphere were presented in Ref. [3]. Reference

[3] also analyzed the problem on the one-dimensional circle,

which characterizes a physically significant subset of qubit

measurements often considered in quantum cryptography and

quantum information theory.

Here we discuss the planar grasshopper problem and its

analogues in higher dimensions. One surprising discovery
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from Ref. [1] is that, while the jump setup is rotationally sym-

metric, the resulting optimal lawn shapes are not rotationally

symmetric in two dimensions. This is true for arbitrary small

jumps d > 0. The specific shapes of the optimal lawns were

computed numerically for a range of d . For small jumps, d �
R0,2, where R0,2 = 1/

√
π is the radius of the two-dimensional

ball with unit volume, i.e., a unit area disk, the optimal lawns

shapes resemble cogwheels. The distance between the cogs

is approximately the jump length d . The periodic structure

of the lawn boundary implies that the rotational symmetry of

the jump setup reduces to a dihedral symmetry in two dimen-

sions. While numerical results for the optimal lawn shapes

and an analytical proof that the disk shaped lawn is never

optimal have already been obtained, so far a fundamental

understanding of this symmetry breaking was lacking. The

goal of this paper is to systematically study the nature of the

emergent symmetry breaking and its implications on the opti-

mal grasshopper lawn shapes. As we will see, the symmetries

of the solutions depend strongly on the dimensionality of the

problem.

II. PROBLEM AND METHODS

For a formal statement of the grasshopper problem in N

dimensions, we denote the lawn domain as � ⊂ R
N and de-

fine the lawn function μ(r) : R
N → {0, 1} as the indicator

function of �, i.e., such that μ(r) = 1 if and only if r ∈ �.

Then
∫

�

dV =
∫

RN

dN r μ(r) = 1. (1)

Note that in the most general version of the problem, lawns

may have continuous density in the range (0, 1]. The known

numerical and theoretical results are consistent with there
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always being an optimal lawn with density 1. The version of

the problem restricting to density 1 lawns is also natural, and

we consider it here.

The grasshopper probability functional pμ(d ) is then

given by

pμ(d ) =
1

S(N, d )

∫

�

dV1

∫

�

dV2 δ(‖r1 − r2‖ − d )

=
1

S(N, d )

∫

RN

dN r1

∫

RN

dN r2 μ(r1)μ(r2)

× δ(‖r1 − r2‖ − d ), (2)

where S(N, d ) is the surface area of the N-dimensional sphere

with radius d , i.e., the area of the region accessible to one

jump. Specifically, in two dimensions, the surface area (cir-

cumference) of the two-dimensional sphere (disk) equals

S(2, d ) = 2πd , and in three dimensions, the corresponding

area equals S(3, d ) = 4πd2.

The grasshopper probability (2) can be evaluated exactly

when the lawn shape is an N-ball with radius R0,N , by per-

forming the integral (2) explicitly in generalized spherical

coordinates. For the special case of a 2-ball, i.e., disk, the

probability equals

pdisc(d ) = 1 −
2

π

⎛

⎝

d

2R0,2

√

1 −
(

d

2R0,2

)2

+ arcsin

(

d

2R0,2

)

⎞

⎠

(3)

assuming d � R0,2. The success probability approaches one

as d → 0 and decreases monotonically with increasing d .

In three dimensions, the corresponding probability for jumps

smaller than the 3-ball radius, d � R0,3 = (3/(4π ))1/3, can be

computed as

pball(d ) = 1 −
3

4

d

R0,3

+
1

16

(

d

R0,3

)3

(4)

Working with the double area integral of a δ distribution is

difficult in more complicated geometries. To overcome this,

we exploit the insight that the general probability functional

from Eq. (2) can be recast as a boundary rather than a volume

integral, following a procedure previously used in the study of

magnetic fluid monolayers [4–6]. Specifically,

pμ(d ) =
∫

�

dV1

∫

�

dV2 f (‖r1 − r2‖)

= −
∫

∂�

dS1

∫

∂�

dS2 �(‖r1 − r2‖)(n̂1 · n̂2), (5)

where ∂� denotes the boundary of the lawn �. Here we

abbreviate the interaction as

f (r) =
1

S(N, d )
δ(r − d ) (6)

and define � to be a radially symmetric solution to ∇2�(r) =
f (r) (in spherical coordinates). The vectors n̂ are the normal

unit vectors orthogonal to the lawn boundary and dS denotes

the surface area element corresponding to the volume element

dV .

To prove Eq. (5) we use the divergence theorem (Gauss’s

theorem) [7]. We also use the fact that ∇1�(‖r1 − r2‖) =
−∇2�(‖r1 − r2‖). We write

pμ(d ) =
∫

�

dV1

∫

�

dV2 ∇2
1�(‖r1 − r2‖) =

∫

�

dV1

∫

�

dV2 ∇1 · ∇1�(‖r1 − r2‖)

=
∫

�

dV2

∫

∂�

dS1 · ∇1�(‖r1 − r2‖) = −
∫

�

dV2

∫

∂�

dS1 · ∇2�(‖r1 − r2‖)

= −
∫

∂�

∫

∂�

dS1 · dS2 �(‖r1 − r2‖). (7)

In the last step we used the gradient version of the diver-

gence theorem. Note that dS = n̂ dS, matching (5).

We can work out explicitly the form of the function �

in the surface integrals. The Laplacian equation for radially

symmetric functions in N dimensions is

1

S(N, d )
δ(r − d ) = f (r) = ∇2�(r) =

1

rN−1

∂

∂r

(

rN−1 ∂�

∂r

)

.

(8)

This can be solved by explicit integration. For 2d, the

result is

�(r) =
1

2π
�(r − d ) log

r

d
, (9)

while for all N > 2 the result is

�(r) =
d

(N − 2)S(N, d )

[

�(r − d )

(

1 −
dN−2

rN−2

)

− 1

]

,

(10)

where � is the Heaviside function. � is not unique, since

one can add to it any function with zero Laplacian and still

satisfy its definition. For N > 2 we have chosen a convention

where �(r) approaches zero at large r, which will be useful

in the next section when we want to neglect the contribution

of distant boundaries.

III. A MINIMAL MODEL: THE INFINITE HALF-SPACE

The goal of this section is to analyze the stability of the

isotropic lawn in the limit of small d in a way that generalizes

to arbitrary dimension N . We will see that in two dimensions

there is the potential for instability to small perturbations, as

found for the disk in [1], while three and higher dimensions

such instabilities do not exist.

The starting point is the isotropic solution. Intuitively, one

could think that in the limit d ≪ 1 this can be approximated as

having zero curvature, i.e., as a half-plane (2d) or half-volume
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(3d). One needs to be careful in basing arguments on this

intuition, since the problem is defined globally rather than lo-

cally, and since optimal lawns for small d need not necessarily

have small curvature. Also, since the half-spaces have infinite

volume, the lawn volume is not normalizable, and (2) is not

well defined. Nonetheless, as we will explain, a perturbative

analysis of the half-space problem in N dimensions gives very

useful insights into the standard problem framed above.

One could define a version of the problem on the half-space

by assuming that the perturbed lawn boundary is a periodic

function of a lattice, then normalizing by restricting to one

lattice cell and to jumps from initial points within some given

distance D from the unperturbed boundary, then taking the

limit of large D. Here we simplify the discussion by consider-

ing the contribution of small plane wave perturbations, which

are periodic in one direction rather than N − 1 independent

directions (i.e., are the general periodic perturbations only

for N = 2). We calculate their differential contribution to an

expression of the form (2) for the half-space, which is a mean-

ingful expression assuming a normalization as described.

Let x ∈ R
N−1 parametrize the boundary of the lawn

and r ∈ R
N . We consider a boundary defined by r(x) =

(x, ǫh(x)), where the height function h gives a smooth pertur-

bation from the isotropic solution and its magnitude ǫ is such

that ǫ ≪ d . The unnormalized normal vector to this surface

is n(x) = ∇r(rN − ǫh(x)) = ( − ǫ∇xh(x), 1), where rN is the

N th component of r. Then, the unnormalized probability of

remaining on the lawn is given by the double surface integral

p = −
∫

RN−1

dx dy n(x) · n(y) �(‖r(x) − r(y)‖)

= −
∫

RN−1

dx dy
(

1 + ǫ2∇h(x) · ∇h(y)
)

�(‖r(x) − r(y)‖).

(11)

The stability of the flat plane to small perturbations is gov-

erned by the coefficient for p at second order in ǫ. Expanding

p − p0 in ǫ, we find

p − p0 = −ǫ2

∫

RN−1

dx dy

[

∇h(x) · ∇h(y) �(‖x − y‖)

+
1

2

(h(x) − h(y))2

‖x − y‖
�′(‖x − y‖)

]

+ O(ǫ4). (12)

To examine the effect of plane-wave perturbations, we take

h(x) = cos(kx1). We expect the effect of such a perturbation

to be proportional to the volume of the surface, so we define

the stability coefficient δpk (d ) to be

p − p0 = δpk (d )ǫ2LN−1 + O(ǫ4), (13)

where L is the linear dimension of the problem, which we will

eventually take to infinity. Details of the calculation of this

coefficient can be found in Appendix A. The result is

δpk (d ) =
Ŵ( N

2
)

2
√

πd

[

J N−3
2

(kd )

(kd/2)(N−3)/2
−

1

Ŵ
(

N−1
2

)

]

, (14)

FIG. 1. The stability of flat half-space in N dimensions to plane-

wave perturbations of wavenumber k. All values are negative except

at k = 0 (which corresponds to translation of the interface and is not a

probability-conserving perturbation) and for kd that are multiples of

2π in the case N = 2. These values are zero, meaning that there is a

marginal stability to perturbations with wavenumber commensurate

with d in two dimensions but not an instability. For larger dimen-

sion N of space, the result becomes increasingly insensitive to the

commensurability of k and d .

where Jm is the mth Bessel function. For N = 2 and N = 3,

we have

δp
(N=2)
k

(d ) =
1

2πd
[cos(kd ) − 1],

δp
(N=3)
k

(d ) =
1

4d
[J0(kd ) − 1], (15)

respectively.

Some of the resulting functions can be seen plotted in

Fig. 1. First, notice that for N � 3 and k 
= 0, the result is

always negative. This means that for three and higher di-

mensions the lawn is stable to plane wave instabilities. For

N = 2, there is a point of marginal stability for each integer

multiple of kd/2π , which corresponds to wavenumbers that

are commensurate with the jump size d . As N is increased,

the dependence on commensurability with d becomes steadily

weaker. There is a simple intuition for this. The average ab-

solute value of the overlap of two random unit vectors in N

dimensions is 1√
N

. Hence the expected projection of the jump

onto the wavevector of a plane wave instability shrinks like

dN−1/2. The diminishing probability of alignment between

the jump and the wavevector pushes any oscillations to higher

wavevectors and the variation of this alignment causes the

oscillations to decay. Indeed, the curves for various N collapse

like N−1/2d δpk (N1/2x/k) with x = N−1/2kd , approaching a

limit curve of the form

lim
N→∞

N−1/2d δpk (N1/2x/k) =
1

2
√

2π
(e−x2/2 − 1), (16)

with oscillations totally suppressed.

Before delving into the instabilities inherent to the two-

dimensional disk, it is worth commenting on the potential

role of higher-order perturbations, i.e., ǫ4 and greater, in

determining the fate of marginal stability for N = 2. One

might argue that a complete picture would require incorpo-

rating these higher-order terms. However, our study focuses

on a finite jump size d , and as we will show, this alone is

sufficient to drive a compact system from a marginally stable
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state to true instability. Thus, while high-order perturbations

may offer nuanced insights into stability in the half-space

version of the problem, they are not relevant to our present

investigation of the stability of compact regions in the plane,

which centers on the transition driven by finite-size effects.

IV. INSTABILITIES OF THE TWO-DIMENSIONAL DISK

Even with the simplification of moving from the area

integrals to line integrals, there are few two-dimensional ge-

ometries where the problem is analytically tractable. Besides

the half-space analyzed above, the disk can also be treated

explicitly, as well as small perturbations around the disk.

Here, we will compute the second variation of the grasshopper

probability for the disk with respect to small perturbations

of various discrete symmetry breaking orders, explicitly con-

firming the findings of [1].

The information provided by this calculation will not tell

when a cog of a given number of teeth will be the most

stable configuration, since the cog is a large perturbation to

the circle. Instead, this variation of the probability describes

a kind of spinodal: When does an infinitesimal deformation

of the disk towards a given cog raise the probability instead

of lowering it? These spinodal points therefore provide some

information about when symmetry breaking of a given kind

becomes advantageous to isotropy.

Consider a two-dimensional lawn whose boundary is given

parametrically in standard polar coordinates by

rn,ǫ (θ ) = Rǫ + ǫ cos(nθ ). (17)

The lawn function, also in polar coordinates, is

μn,ǫ (r) =
{

1 r < rn,ǫ (θ ),

0 otherwise.
(18)

Here, the radius Rǫ is picked to preserve the area of the lawn.

We are interested in small perturbations, and in particular in

the stability of the probability of the disk. Specifically, we will

evaluate

pn,ǫ (d ) = pdisc(d ) + δpn(d )ǫ2 + O(ǫ4). (19)

When the coefficient δpn(d ) is negative, the perturbation low-

ers the probability and the circular lawn is stable to sinusoidal

perturbations of n-fold symmetry. When it is positive, the

probability is increased by the perturbation and the circular

lawn is unstable.

Because we only evaluated the quadratic coefficient of the

probability in ǫ, we only need the area Rǫ to quadratic order.

Since normalization requires that

1 = A =
∫

R2

dr μn,ǫ (r) =
∫ 2π

0

dθ

∫ rn,ǫ (θ )

0

dr r

=
1

2

∫ 2π

0

dθ (Rǫ + ǫ cos(nθ ))2 = πR2
ǫ +

1

2
πǫ2, (20)

we must set

Rǫ =
√

R2
0,2 −

1

2
ǫ2 = R0,2 −

1

4R0,2

ǫ2 + O(ǫ4), (21)

where R0,2 = 1/
√

π . To treat the line integral, we change the

variable of integration from the line element dS to the angular

one dθ . This produces a correction to the measures given by

the norm of the tangent to the curve, or

dS

dθ
= ‖r′

n,ǫ (θ )‖, (22)

where the prime denotes the derivative of a function with

respect to its parenthetical argument. Noticing that n̂1 · n̂2 =
t̂1 · t̂2 (the scalar product of unit normals is the same as the

scalar product of unit tangents for a 1d curve), and that t̂ =
r′(θ )/‖r′(θ )‖, we find

pn,ǫ (d ) = −
∫ 2π

0

dθ1 ‖r′
n,ǫ (θ1)‖

∫ 2π

0

dθ2 ‖r′
n,ǫ (θ2)‖

× �(‖rn,ǫ (θ1) − rn,ǫ (θ2)‖) n̂(θ1) · n̂(θ2)

= −
∫ 2π

0

dθ1

∫ 2π

0

dθ2 �(‖rn,ǫ (θ1) − rn,ǫ (θ2)‖)

× r′
n,ǫ (θ1) · r′

n,ǫ (θ2), (23)

where the scalar product is now between the unnormalized

tangent vectors. Finally, we change integration variables to

θ = θ1, φ = θ2 − θ1, and have

pn,ǫ (d ) = −
∫ 2π

0

dθ

∫ π

−π

dφ �(‖rn,ǫ (θ ) − rn,ǫ (θ + φ)‖)

× r′
n,ǫ (θ ) · r′

n,ǫ (θ + φ), (24)

a convenient expression because the integrand in the limit ǫ =
0 is everywhere symmetric in φ �→ −φ.

The detailed expansion of (24) to second order in ǫ and

the evaluation of the resulting integrals can be found in Ap-

pendix C. The resulting stability coefficient is

δpn(d ) = −
cos φ0 − cos(nφ0)

sin φ0

, (25)

where φ0 is given by

φ0 = cos−1

(

1 −
d2

2R2
0,2

)

(26)

for 0 � d �
2√
π

= 2R0,2. This corresponds to the angle at

which ‖rn,0(θ ) − rn,0(θ + φ0)‖ = d , i.e., the difference in an-

gle along the circle at which that distance between two points

is equal to the jump size. This function is plotted for several n

in Fig. 2; one can see that the local maxima of each curve are

positive, indicating instabilities in their vicinity.

The limit of (25) as n → ∞ asymptotically approaches the

result (15) found in the previous section for the infinite half-

space, as expected. The convergence can be seen in Fig. 3.

The mechanism by which the disk is unstable at small d for

a large number of oscillations n is revealed: the approach

of the finite-n curves to the zeros of the limit curve is from

above. Therefore, the points at which the wavevector k is com-

mensurate with the jump size d , which are marginally stable

perturbations of the flat interface, become unstable in this

case. The curves of other finite geometries might approach

the limit from the other direction, in which case they would

be stable against perturbations of this type.

The first zero of δpn(d ) for fixed n is significant because

it indicates the smallest jump size d for which the disk
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FIG. 2. The coefficient of stability for the disk to small perturba-

tions of n-fold symmetry. A large dot is drawn at the smallest value

of d where each curve first becomes positive. The black bar shows

the point in d at which the transition to disconnected shapes occurs

as measured in [1].

is unstable to infinitesimal perturbations of n-fold symme-

try of the form (17). The first zero of δpn(d ) for given n

corresponds to

φ0 =
2π

n + 1
, (27)

which corresponds to zeros at

d0 = R0,2

√

2(1 − cos φ0) =

√

2

π

(

1 − cos
2π

n + 1

)

(28)

whose large-n behavior is d0 ≃ 2
√

πn−1, in agreement with

the prediction from [1].

The stability is examined by seeing where the function

first becomes positive. For instance, δp2(d ) is negative for

small d , and crosses zero at d =
√

3/π , where the circular

lawn becomes unstable to elongation. This expression, along

with all even-order perturbations, diverges at d = 2R0,2, the

diameter of the disk, while odd-order perturbations approach

zero. Intuitively, the even-order perturbations allow longer

jumps across the disk’s diameter, while the odd ones do not.

FIG. 3. The scaled coefficient δpn for increasing n on the disk

as a function of kd =
√

πnd , along with the result for the semi-

infinite plane (n = ∞) from (14). As n is increased, the disk result

asymptotically approaches that of the semi-infinite plane. Since the

finite-n curves tend to the zeros of the limit curve from above, the

marginally stable points of the half-plane are destabilized at finite n.

FIG. 4. First and second most unstable modes n at a given d for

n � 18. The blue and yellow lines show the location of the first and

second peak in δpn(d ), respectively. The location of the first peak is

extremely similar to (3.4) of [1] but not identical. If the cutoff in n

is increased, more bands appear at higher n. Black markers denote

the corresponding numbers of cogs for the optimal solutions found

through numerical simulation in Ref. [1] (the same data are shown in

the left panel of Fig. 5 in Ref. [1]). The numerical results from [1]

are in very close agreement with the current prediction.

In addition to the first moment of instability, we can an-

alyze which modes are maximally unstable for a given d ,

i.e., which modes maximize δpn(d ). For almost all d , any

purported maximum at some value n will be improved by

another much higher value. However, we expect that these

high-frequency modes will be severely penalized by higher-

order terms in the expansion of pn,ǫ (d ), and so to find better

candidates for the relevant symmetry-breaking modes it is

useful to truncate the range of n considered. In Fig. 4, we

show the values of the two most unstable modes n at a variety

of fixed d for n truncated at 18. As evidenced in the figure, the

first or second most unstable mode corresponds fairly closely

with the actual ground-state symmetry found numerically in

[1]. Both roughly follow a trend that is described by the

location of the first peak in δpn(d ).

The stability coefficient (25) is somewhat predictive of

what shapes are favored at nonzero ǫ. Figure 5 shows the

numerical probabilities for lawns with some fixed number

of cogs for two different values of d . The peaks of these

curves correspond well with those predicted by the peaks in

the stability coefficient. Moreover, when the probability is

rescaled by the amplitude of the cogs, the entire dependence

of its variation with n is roughly predicted by our formula. Of

course, they do not correspond exactly, since with nonzero ǫ

there are higher-order corrections that must enter. In addition,

we cannot predict the optimal amplitude ǫ without going to

higher order.

V. NUMERICAL RESULTS IN 3D

In previous study [1] numerical results were presented

for the grasshopper problem on the 2d plane. In this sec-

tion we present a similar discussion for three dimensions.

The numerical setup in 2d involves defining a discrete version

of the grasshopper problem by dividing the plane into grid

cells and assigning a spin variable si to the center of each

cell i, where si = 0 and si = 1 correspond to the cell being
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FIG. 5. (Left) Grasshopper probability for lawns with fixed cog number for two values of d , obtained numerically for discrete lawns with

10 000 cells. The maxima corresponding to the two leading unstable modes are clearly visible (n = 9 and n = 17 for d = 0.4; n = 7 and

n = 15 for d = 0.46) and are marked with thin vertical lines. These are indeed (local) maxima of the grasshopper problem. Horizontal-dashed

lines denote the corresponding disk probabilities given by Eq. (3). (Right) The same probability rescaled by the squared amplitude ǫ of the

cogs (symbols with error bars). Solid lines show δpn(d ) from (25), which corresponds roughly with the finite-ǫ numerical data.

unoccupied or occupied by the lawn, respectively. This setup

easily generalizes to higher dimensions. The discrete version

of the functional pμ(d ) from Eq. (2) becomes

P{s}(d ) =
1

S(N, d )

1

M2h

∑

i, j

sis jφ

(

‖ri − r j‖ − d

h

)

, (29)

where M denotes the number of spins and h the edge length

of a unit cell. The normalization is MhN = 1. The discretiza-

tion involves a smoothed approximation δ(r) → δh(r) =
φ(r/h)/h to the (one-dimensional) δ function, which appears

in (2). As in [1], we choose φ(r/h) = (1 + cos( πr
2h

))/4 if

‖r‖ � 2h and 0 otherwise, following [8].

In the continuum limit, P{s}(d ) → pμ(d ). To resolve the

jump distance d we require h ≪ d . We look for spin config-

urations that maximize P{s}(d ), which represent solutions to

the discrete grasshopper problem considered. This problem

is equivalent to finding the ground state of a spin system

with Hamiltonian H = −P{s}(d ). This spin system is a con-

served spin Ising model with fixed-range interactions, where

the interaction range d is large. The optimal configurations

are found using simulated annealing or parallel tempering

algorithms [1].

To quantify discretization effects in three dimensions, in

Fig. 6 we compare the probability for the discretized solid

3-ball to the exact continuous model probability (4). An anal-

ogous analysis for two dimensions was presented in [1]. We

can see that as in [1] the discrete model is an excellent ap-

proximation of the continuous grasshopper problem and the

discretization errors are of the order of 0.3% or less at the

highest resolution considered.

In contrast to 2d, in 3d the isotropic solid ball configu-

ration was found to be optimal for jump lengths d � R0,3,

in agreement with our analytical results presented in the

preceding sections. For jumps that slightly exceed R0,3 the

configuration remains isotropic by developing a spherical hole

in the center of the ball. We refer to these configurations

as shells, specifically 3-shells for N = 3. It is easy to see

that the ball cannot be the optimal solution for d > R0,3,

since in this case a grasshopper starting out near the center

FIG. 6. Study of discretization effects. (Left) The exact continuous probability functional pμ(d ) for the solid 3-ball of unit volume given

by Eq. (4) (red solid line) compared with the corresponding discrete P{s}(d ) (black dots) as function of the grasshopper jump distance d . For

d � R0,3 the 3-ball configuration is the optimal lawn shape. (Right) Relative deviation of P{s}(d ) for the solid 3-ball configuration from the

corresponding pμ(d ) as function of the lattice spacing h for two representative values of the grasshopper jump: d = 0.2 ≈ 0.3R0,3 (blue dots

and line) and d = 0.5 ≈ 0.8R0,3 (red dots and line). For the highest resolutions considered (M ≈ 113 000) the discretization error is well below

0.3%. Lines are to guide the eye.
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FIG. 7. Study of discretization effects. (Left) The exact continuous probability functional pμ(d ) for the 3-shell where the inner radius

is selected as Ri,3 = d − R0,3 (solid blue line) compared with the corresponding discrete P{s}(d ) (black dots) as function of the grasshopper

jump distance d � R0,3. The corresponding probability for the solid 3-ball (red line) is also shown for comparison. For d > R0,3 the 3-shell

has a higher success probability than the 3-ball. (Right) Relative deviation of P{s}(d ) for the 3-shell configuration from the corresponding

pμ(d ) as function of the lattice spacing h for two representative values of the grasshopper jump: d = 0.94 ≈ 1.5R0,3 (blue dots and line)

and d = 0.77 ≈ 1.25R0,3 (red dots and line). The inner radius for each d is Ri,3 = d − R0,3, as before. For the highest resolutions considered

(M ≈ 162 000) the discretization error is below 1%. Lines are to guide the eye.

of the ball would land outside of the lawn with probabil-

ity one. Thus it seems intuitive that an optimal lawn may

be obtained by removing the central part with radius of the

order of Ri,3 = d − R0,3 from the 3-ball and redistributing it

elsewhere. This intuition is confirmed by numerics. In Fig. 7

we analyze discretization effects for the 3-shell configuration.

As for the solid 3-ball, the errors due to discretization are very

small. Figure 8 shows cross sections of numerically found

optimal grasshopper lawn shapes for two representative jump

lengths below and above R0,3. The precise optimal inner

radius of the 3-shell configurations can be computed directly,

by evaluating the grasshopper probability integral (2) for the

radially symmetric 3-shell of a given inner radius in spherical

coordinates, and then finding the maximum of the resulting

expression as function of inner radius for a given jump. The

3-shell probability at fixed jump length is a simple function

of the inner radius with exactly one maximum whose location

FIG. 8. (Left) Cross section of the optimal configuration for d =
0.64R0,3 found numerically for a system with M = 160 000 spins.

The configuration has the shape of a solid 3-ball. This configuration

was found to be optimal for all d � R0,3. (Right) Cross section of

the optimal configuration for d = 1.32R0,3 found numerically for a

system with M = 160, 000 spins. If the jump length exceeds R0,3

the configurations remain isotropic (for d � 1.4R0,3) but develop

a spherical hole in the center; the radius of the hole grows with

increasing d . Note that the outer radius of the configuration is slightly

larger than R0,3 to ensure that it has unit volume.

can be found using standard maximization methods. Figure 9

shows the analytical results together with the numerically

found values for different jumps. Numerical simulations show

that the isotropic 3-shell configuration ceases to be optimal

for jumps exceeding a critical value of approximately 1.4R0,3,

when the shell starts exhibiting periodic perturbations: eight-

fold perturbations (resembling a rounded cube) were observed

for 1.4R0,3 � d � 1.58R0,3 and sixfold perturbations (resem-

bling a bulbous octahedron) were observed for 1.58R0,3 �
d � 1.68R0,3. This breaking of full rotational symmetry into

a discrete subgroup parallels the symmetry breaking to di-

hedral symmetry that occurs in the two-dimensional model.

However, in three dimensions symmetry is only broken for

sufficiently large jumps. Both 3d shapes in this category that

were observed numerically appear to have full octahedral

symmetry (i.e., appear to be invariant under the 48 element

group Oh) and appear to correspond to spherical harmonic

modulations of the 3-shell. It is conceivable that additional

shapes with higher symmetry orders emerge near the tran-

sition. These could potentially be observed numerically at

higher resolution. A quantitative procedure to asses whether

a given numerical configuration is rotationally symmetric is

depicted in Fig. 10. We histogram the radial coordinates of

all boundary points of a configuration, and compare these

histograms with the known values of the outer and inner radii

of the corresponding optimal isotropic configurations. As can

be seen in the left panel of Fig. 10, in the 3-shell regime the

boundary histograms indeed overlap with the expected values,

and their width is of the order of the lattice cell width h. In the

symmetry-broken regimes on the other hand, the distribution

widths substantially exceed h.

At even larger jumps the numerically found optimal con-

figurations become disconnected. For 1.7R0,3 � d � 2.45R0,3

the optimal shapes consist of a ring with two caps, and for

larger jumps of two nested crescents. We show representa-

tive shapes obtained numerically and the corresponding phase

diagram with optimal probabilities in Fig. 11. For better vi-

sualization from different perspectives, animations of the 3d

shapes are included within the Supplemental Material [14].
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FIG. 9. (Left) The optimal inner radius Ri,3 of the 3-shell vs grasshopper jump. The numerically found inner radii (black dots) match

very well the analytical result (red solid line). The value d − R0,3 (blue-dashed lines) is shown for comparison. (Right) The corresponding

optimal grasshopper probabilities for the optimal inner radius (red-solid line for analytical value and black dots for the numerical value) and

for d − R0,3 (blue-dashed lines). The isotropic 3-shell ceases to be optimal for jumps exceeding a critical value of approximately 1.4R0,3.

VI. SUMMARY AND DISCUSSION

The setup of the grasshopper problem is rotationally sym-

metric: The starting point and the direction of the jump are

both chosen uniformly. For small jumps, in order for the

grasshopper to be able to land outside the lawn, the starting

point needs to be close enough to the boundary. Thus one

might intuitively assume that the optimal grasshopper lawn

shape for small jumps would minimize the boundary. The

shape that minimizes the boundary at fixed volume is the

N-ball, which in two dimensions corresponds to the disk.

However, numerical simulations in 2d revealed that optimal

lawn shapes were not rotationally symmetric for any jump

length, and this result was also proven analytically [1]. For

small jumps, full rotational symmetry was found to be reduced

to dihedral symmetry Dn, where the number n of remaining

rotational symmetries is determined by the number of edges of

a polygon inscribed in the unit area disk, such that the polygon

edge length is close to the length of the grasshopper jump d .

In this paper we answered the open question regarding the

origin of the symmetry breaking in the grasshopper model.

In the limit of small jumps, d → 0, a disk-shaped lawn can

be approximated as having zero curvature. We showed that in

this minimal model of an infinite half-plane, periodic pertur-

bations of the boundary that are commensurate to the jump

lengths d are only marginally stable. For the same model in

higher dimensions we showed that all perturbations are stable

and the result becomes increasingly insensitive to the com-

mensurability between the perturbation and jump. Numerical

simulations in three dimensions confirm that optimal solutions

are indeed isotropic: for small jumps the lawns are 3-balls,

which subsequently develop spherical holes as the jump size

increases. Rotational symmetry is only broken for large values

of the jump (d � 1.4R0,3).

To show that marginally stable perturbations of the min-

imal model indeed become unstable in the full model, we

analyzed the instabilities of the 2d disk with respect to small

perturbations of different discrete symmetry breaking orders

n. We confirmed the dihedral symmetry breaking described

in Ref. [1] and found additional discrete rotationally sym-

metric solutions that are advantageous compared to the disk.

While this perturbative calculation does not directly describe

the optimal grasshopper shapes found numerically, there is

remarkable agreement between the perturbative predictions

and the numerical results. Moreover, the n → ∞ limit asymp-

totically approaches the result of the minimal model.

The analytical and numerical techniques we have de-

veloped hold promise for broader applications, partic-

ularly in elucidating long-range interaction effects in

FIG. 10. Histograms of the radial coordinates of the configuration boundary points for, from left to right, d = 1.39R0,3 (isotropic 3-shell),

d = 1.42R0,3 (eightfold perturbation), and d = 1.58R0,3 (sixfold perturbation). Results shown were obtained for systems with M = 160 000

spins. The vertical-red lines denote the theoretical values for the optimal (for the respective value of d) inner and outer radii of the corresponding

3-shell configurations. The shaded regions mark the ±h interval around the optimal radii.
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FIG. 11. Maximal values found numerically for the discrete grasshopper lawn probability P{s}(d ). Results shown were obtained for systems

with M = 40 000 spins. Vertical lines denote boundaries between the different regimes. From left to right these are: isotropic solid ball, isotropic

shells, eightfold shell perturbations, sixfold shell perturbations, ring with caps, nested crescents. Insets show examples of representative

configurations. 3d animations displaying in full the features summarized here are given within the Supplemental Material [14].

ultracold-atom-based quantum emulators and prototype quan-

tum computers. Several optimal grasshopper shapes, in-

cluding cogwheel patterns, suggest intriguing parallels with

dipolar Bose-Einstein condensates, where similar patterns

at droplet boundaries have been reported [9,10]. Another

promising application of our techniques is the domain dy-

namics of quantum Ising spins in Rydberg atom arrays [11].

Therefore, our paper serves not only as an illuminating anal-

ysis of symmetry breaking in the grasshopper model but

also as a stepping stone for the study of complex quantum

many-body systems with long-range interactions. In addition,

recent advances in the creation and control of Rydberg atom

arrays with distance-selective interactions [12,13] present an

exciting opportunity to directly build and study two- and

three-dimensional grasshopper-type spin systems in ultracold

atoms experiments.
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APPENDIX A: DETAILS OF THE

HALF-SPACE INTEGRATION

To further evaluate the half-space integral, note that be-

cause of the absence of boundaries, the integration variables

can be shifted arbitrarily. We therefore take �x = y − x,

yielding

δpk (d ) = − lim
L→∞

1

LN−1

∫

RN−1

dx d�x

×
[

k2 sin(kx1) sin(k(x1 + �x1)) �(‖�x‖)+

+
1

2

[cos(kx1) − cos(k(x1 + �x1))]2

‖�x‖
�′(‖�x‖)

]

.

(A1)

The integral over x can be performed: N − 2 of the compo-

nents do not appear in the integrand and therefore produce

a factor of LN−2, while the component x1 gives the only

nontrivial integration. Upon integration and taking the limit,

we find

δpk (d ) = −
1

2

∫

RN−1

d�x

[

�′(‖�x‖)

‖�x‖
+ cos(k�x1)

×
(

k2�(‖�x‖) −
�′(‖�x‖)

‖�x‖

)

]

. (A2)

Now we switch to hyperspherical coordinates in �x, with

δpk (d ) = −
1

2

∫

dr rN−2 d�

[

�′(r)

r
+ cos(kr cos φ1)

×
(

k2�(r) −
�′(r)

r

)

]

, (A3)

where d� =
∏N−2

i=1 sinN−2−i(φi) dφi. The integrand is inde-

pendent of all φs except φ1, and the remaining integrals

for φ2, . . . , φN−2 can be performed to get the volume of
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an (N − 3)-sphere or

δpk (d ) = −
π

N−2
2

Ŵ
(

N−2
2

)

∫

dr dφ1 sinN−3(φ1) rN−2

[

�′(r)

r
+ cos(kr cos φ1)

(

k2�(r) −
�′(r)

r

)]

. (A4)

The integral over φ1 can be evaluated to yield

δpk (d ) = −
π

N−1
2

Ŵ
(

N−1
2

)

∫

dr rN−2

[

�′(r)

r
+ 0F1

(

; 1
2
(N − 1); − 1

4
(kr)2

)

(

k2�(r) −
�′(r)

r

)

]

, (A5)

where 0F1 is a hypergeometric function. Up to here, all this is valid for generic � so long as it vanishes at large argument.

Inserting our �, the Heaviside function breaks the radial integration into two pieces, giving

δpk (d ) =
Ŵ

(

N
2

)

2
√

πŴ
(

N−1
2

)

[

k2

N − 2

∫ d

0

dr
rN−2

dN−2 0F1

(

; 1
2
(N − 1); − 1

4
(kr)2

)

−
∫ ∞

d

dr

(

1

r2
−

(

1

r2
+

k2

N − 2

)

0F1

(

; 1
2
(N − 1); − 1

4
(kr)2

)

)

]

. (A6)

Finally, the integrals over r can be performed, yielding

δpk (d ) =
Ŵ

(

N
2

)

2
√

πŴ
(

N−1
2

)

d

[

(kd )2

N − 2

(

0F1

(

; 1
2
(N + 1); − 1

4
(kd )2

)

N − 1
− 1F2

(

1
2
; 3

2
, 1

2
(N − 1); − 1

4
(kd )2

)

)

+ 1F2

(

− 1
2
; 1

2
, 1

2
(N − 1); − 1

4
(kd )2

)

− 1

]

,

(A7)

which simplifies to

δpk (d ) =
Ŵ

(

N
2

)

2
√

πd

[

J N−3
2

(kd )

(kd/2)(N−3)/2
−

1

Ŵ
(

N−1
2

)

]

, (A8)

as in the main text. One might notice that in some intermediate

steps, the formulas for N = 2 are not always well defined.

However, by returning to (A3) and carrying out the calculation

for N = 2, one finds the same result as that predicted by (14),

so this formula is in fact general for N � 2.

APPENDIX B: ADDITIVE PERTURBATIONS

Our study of the minimal half-space model examined only

perturbations with the form of a sinusoid along one axis. It

is plausible, however, that other forms of perturbation are

more prone to instability. Here, we show that any sum of

finitely many sinusoids, whether along the same or different

axes, reduces to summing the results due to the two sinusoids

independently. This strongly motivates that the instability we

examine due to a single sinusoid is the most relevant for this

case, i.e., when the wavelength of the perturbation is very

small compared to the curvature of the surface.

Consider a perturbation that is instead the sum of two plane

waves along independent axes, like

h(x) = a1 cos(k1x1) + a2 cos(k2x2). (B1)

The first term in (12) explicitly breaks into two independent

terms along the two axes. The second is not linear and poten-

tially mixes their contribution. It gives

(

h(x) − h(y)
)2 = [a1 cos(k1x1) + a2 cos(k2x2) − a1 cos(k1y1) − a2 cos(k2y2)]2

= a2
1[cos(k1x1) − cos(k1y1)]2 + a2

2[cos(k2x2)

− cos(k2y2)]2 + 2a1a2[cos(k1x1) − cos(k1y1)][cos(k2x2) − cos(k2y2)]. (B2)

The first two terms are again just the sum of the two terms that would result from individual plane waves, while the third gives a

nontrivial mixture. So the only question to the effect of adding plane waves along different axes is how this final term contributes

to the stability. Changing coordinates to �x = y − x and integrating in x from − L
2

and L
2

(noting that the rest of the term in (12)

is independent of x after the coordinate transformation is made) gives

1

LN

∫ L
2

− L
2

dx[cos(k1x1) − cos(k1(x1 + �x1))][cos(k2x2) − cos(k2(x2 + �x2))]

=
1

L2

8

k1k2

[1 − cos(k1�x1)][1 − cos(k2�x2)] sin(k1L/2) sin(k2L/2). (B3)

Unlike the terms that decompose into additive pieces, this one vanishes in the limit of large L. Therefore, this term contributes

nothing to the stability of the plane.
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Now, consider a perturbation that is the sum of two plane waves along the same axes, like

h(x) = a1 cos(k1x1) + a2 cos(k2x1) (B4)

with k1 
= k2. This time, both terms in (14) mix the contributions, with the extra expression given by

−a1a2

[

k1k2(sin k1x1 sin k2y1 + sin k1y1 sin k2x1)�(‖x − y‖) +
1

2
(cos k1x1 − cos k1y1)(cos k2x1 − cos k2y1)

�(‖x − y‖)

‖x − y‖

]

.

(B5)

Like the case of the waves along independent axes above, when we take �x = y − x and integrate over x, the resulting integrals

vanish in the limit of large L. One gives

1

LN

∫ L
2

− L
2

dx (sin k1x1 sin k2(x1 + �x1) + sin k1(x1 + �x1) sin k2x1)

=
2

L2

(cos k1�x1 + cos k2�x1)

(k1 − k2)(k1 + k2)

[

k2 cos
k2L

2
sin

k1L

2
− k1 cos

k1L

2
sin

k2L

2

]

(B6)

while the other gives

1

LN

∫ L
2

− L
2

dx (cos k1x1 − cos k1(x1 + �x1))(cos k2x1 − cos k2(x1 + �x1))

=
2

L2

1

(k1 − k2)(k1 + k2)

[

cos
k2L

2
sin

k1L

2
(k1(1 − cos k1�x1)(1 − cos k2�x1) + k2 sin k1�x1 sin k2�x1)

− cos
k1L

2
sin

k2L

2
(k2(1 − cos k1�x1)(1 − cos k2�x1) + k1 sin k1�x1 sin k2�x1)

]

. (B7)

It follows that the stability coefficient resulting from the

sum of two plane waves is given in this case by the sum

of the coefficients due to the individual pure plane waves.

Therefore, the effect of more complicated perturbations than

those considered here can be reduced to that of the simple

ones, with the caveat that these results only strictly hold for

perturbations build from sums of finitely many oscillatory

terms.

APPENDIX C: DETAILS OF THE DISK CALCULATION

To make the expansion of (24) in ǫ, we need only expand

the integrand, since the limits of integration do not depend on

ǫ. The integrand has the form

i(ǫ) = �
(

g(ǫ)
)

f (ǫ), (C1)

where � is the Heaviside theta function and f and g are

functions of ǫ given by

g(ǫ) = ‖rn,ǫ (θ ) − rn,ǫ (θ + φ)‖ − d (C2)

and

f (ǫ) =
1

2π
log

[

1

d
‖rn,ǫ (θ ) − rn,ǫ (θ + φ)‖

]

r′
n,ǫ (θ )

· r′
n,ǫ (θ + φ). (C3)

Keep in mind that both g and f are functions of n, φ and θ , but

we have suppressed that dependence for clarity. We need the

second derivative of this expression with respect to ǫ, which

gives

i′′(0) = �(g(0)) f ′′(0) + δ(g(0))[2 f ′(0)g′(0) + f (0)g′′(0)]

+ δ′(g(0)) f (0)g′(0)2. (C4)

Then the expansion coefficient of the probability for small ǫ

is given by

δpn(d ) = −
1

2

∫ 2π

0

dθ

∫ π

−π

dφ i′′(0). (C5)

FIG. 12. The points give the difference in probability between

the perturbed disk and the disk as a function of perturbation size ǫ

for n = 2 and d = 0.98 > d0. They were computed using numeric

integration on the full expression. The solid line gives δp2(d )ǫ2. The

results agree at small ǫ, as expected.
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The argument of the Heaviside function g(ǫ) evaluated at ǫ = 0 is independent of θ , and gives

G(φ) = g(0) =
2

√
π

| sin(φ/2)| − d. (C6)

This has two zeros at ±φ0 for

φ0 = cos−1

(

1 −
πd2

2

)

(C7)

and is positive for |φ| > φ0. The integrals in θ can all be evaluated ignoring the distribution functions, giving

i1(φ) =
∫ 2π

0

dθ f ′′(0) = −
1

2
log

(

1 − cos φ

1 − cos φ0

)

[((n2 + 1) cos(nφ) − 1) cos φ − 2n sin φ sin(nφ)]

+
cos φ(1 + cos(nφ) − 2 cos φ)

2(1 − cos φ)
− 4 cos(nφ/2)2 sin(φ/2)2 cos φ − n sin φ tan(nφ/2)

1 − cos φ
, (C8)

i2(φ) =
∫ 2π

0

dθ [2 f ′(0)g′(0) + f (0)g′′(0)] =
1

8
√

π | sin(φ/2)|

{

16 cos φ cos(nφ/2)2 sin(φ/2)2

− [((5 cos φ − 3) cos(nφ) + cos φ − 3) cos φ + 8n sin(φ/2)2 sin φ sin(nφ)] log

(

1 − cos φ

1 − cos φ0

)}

, (C9)

i3(φ) =
∫ 2π

0

dθ f (0)g′(0)2 =
1

π
cos φ cos(nφ/2)2 sin(φ/2)2 log

(

1 − cos φ

1 − cos φ0

)

. (C10)

The first piece is proportional to the integral over a Heaviside theta, and this simply changes the limits of integration. We have

I1 =
∫ π

−π

dφ �
(

G(φ)
)

i1(φ) = 2

∫ π

φ0

dφ i1(φ) = [(2 − cos φ0) cos nφ0 − cos φ0] cot
φ0

2
. (C11)

Next, we have

I2 =
∫ π

−π

dφ δ
(

G(φ)
)

i2(φ) =
∫ π

−π

dφ

[

δ(φ − φ0)

|G′(φ0)|
+

δ(φ + φ0)

|G′(−φ0)|

]

i2(φ) = −4 cos φ0 tan
φ0

2
cos2 nφ0

2
. (C12)

Finally, we treat the last term. First, a helpful identity for evaluating an integral of the derivative of a δ function convolved with

a function. Note that ∂
∂x

δ(g(x)) = δ′(g(x))g′(x). Using manipulations and integration by parts, we have

∫

dx δ′(g(x)) f (x) =
∫

dx
f (x)

g′(x)

∂

∂x
δ(g(x)) = −

∫

dx δ(g(x))
∂

∂x

f (x)

g′(x)
= −

∫

dx δ(g(x))

[

f ′(x)

g′(x)
−

f (x)g′′(x)

g′(x)2

]

, (C13)

which is a general but extremely nonobvious identity. We now can write

I3 =
∫ π

−π

dφ δ′(G(φ))i3(φ) = −
∫ π

−π

dφ

[

δ(φ − φ0)

|G′(φ0)|
+

δ(φ + φ0)

|G′(−φ0)|

][

i′3(φ)

G′(φ)
−

i3(φ)G′′(φ)

G′(φ)2

]

= 2 cos φ0 tan
φ0

2
cos2 nφ0

2
. (C14)

Finally, we have

δpn(d ) = −
1

2
(I1 + I2 + I3) = −

cos φ0 − cos(nφ0)

sin φ0

. (C15)

A numerical verification of this result for n = 2 is shown in Fig. 12.
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