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a b s t r a c t

In collaborative software development, developers simultaneously work in parallel on different
branches that they merge periodically. When edits from different branches textually overlap, conflicts
may occur. Manually resolving conflicts can be tedious and error-prone. Researchers proposed tool
support for conflict resolution, but these tools barely consider developers’ preferences. Conflicts can
be resolved by: keeping the local version only KL, keeping the remote version only (KR), or manually
editing them (ME). Recent studies show that developers resolved the majority of textual conflicts by
KL or KR. Thus, we created a machine learning-based approach RPredictor to predict developers’
resolution strategy (KL, KR, or ME) given a merge conflict.

We did large-scale experiments on the historical resolution of 74,861 conflicts. Our experiments
show that RPredictor achieved 63% F-score for within-project prediction and 46% F-score for cross-
project prediction. Compared with other classifiers, RPredictor provides the highest effectiveness
when using a random forest (RF) classifier. Finally, we proposed a variant technique RPredictorv ,
which enables developers to customize its prediction conservativeness. For a highly conservative
setting, RPredictorv achieved 34% effort saving while minimizing the risk of producing incorrect
prediction labels.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

In collaborative software development, programmers often
reate separate branches to perform distinct maintenance tasks
e.g., add new features, fix bugs, or refactor code) in parallel.
hen developers merge edits from different branches, separate

dits that were simultaneously applied to the same line of code
an conflict with each other.

.1. Background

Manual resolution of such conflicts is usually challenging and
ime-consuming. A prior study (Nelson et al., 2019) shows that
6% of developers deferred resolving a merge conflict due to
arious reasons (e.g., the complexity, large size, or big number
f locations of conflicting code). In the period of time between
onflicts occur and they get resolved, conflicts can grow and
ecome more difficult to resolve (Nelson et al., 2019). Vale et al.
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(2021) identified factors that make conflicts hard to solve, in-
cluding the number of conflicting lines of code, the number of
conflicting chunks, the number of lines of code changed, and the
number of files changed. By conducting surveys with developers,
Costa et al. (2014) showed that the developer performing a merge
might not fully understand the changed code or the rationale
behind the change, or may not have the expertise to determine
the impact of the change. Nelson et al. (2019) interviewed 10
software developers, and revealed that developers need better
tools to facilitate the understanding and resolution of merge
conflicts. All these studies motivated us to explore new ways of
automatic conflict resolution.

As illustrated in Fig. 1, developers typically adopt text-based
tools (e.g., git merge, 2021) to tentatively merge the latest version
of their own branch (i.e., local version (L)) with the latest version
f a specified branch (i.e., remote version (R)), and to detect
extual conflicts in this process. Because such tools treat programs
s plain text, they can merge the code in ways that are syntacti-
ally or semantically incorrect, due to code mismatches between
ranches (Cavalcanti et al., 2017; Nguyen and Ignat, 2018; Shen
t al., 2023). To improve over textual merge, researchers proposed
ools that analyze the syntactic structures of programs, to better
etect and resolve conflicts (Apel et al., 2011, 2012; Zhu and

e, 2018; Shen et al., 2019). For instance, JDime (Apel et al.,
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Fig. 1. Developers use textual merge (e.g., git-merge) to merge branches and
reveal conflicts.

Fig. 2. Versions related to a merge conflict.

012) matches Java code based on abstract syntax trees (ASTs). It
onducts tree-based merge instead of text-based merge for each
atching node pair, to better align code and integrate as many
dits as possible between branches.
Existing tools resolve conflicts by integrating edits with the

est effort, but they overlook the preferences of developers. Two
ecent studies show that when resolving conflicts, instead of
erging edits from both branches, developers often keep edits

rom the local (L) or remote (R) version (Yuzuki et al., 2015;
hiotto et al., 2018). Specifically, Yuzuki et al. (2015) examined
79 Java merge conflicts, and found that developers resolved 99%
f conflicting methods by keeping only one of the conflicting
ersions. Similarly, Ghiotto et al. (2018) inspected 616 textual
onflicts; they observed that developers resolved 56% of cases
y keeping only the L or R version. As the studies were done
y different researchers on distinct datasets and the adopted
ranularity (method vs. line) varies, the reported percentages are
ifferent.
Fig. 2 shows an exemplar conflict manually resolved by de-

elopers. For this example, L and R simultaneously updated the
ersion number of a library dependency in distinct ways. As a
esult, the text-based merge (e.g., git-merge) reveals a conflicting
hunk, which uses the format ‘‘<<<<<<< HEAD ... =======
.. >>>>>>>’’ to mark the conflicting edits between versions.
To resolve the conflict, developers simply picked the edit from
one version (i.e., L) instead of trying to combine the branch edits
somehow.

1.2. Motivation

Generally speaking, developers resolve conflicts via three main
strategies: choosing the local version while discarding the remote
one (KL), choosing the remote version while discarding local (KR),
2

or modifying edits from either or both branches for edit inte-
gration (ME). Inspired by the two studies mentioned above, we
wanted to create a novel approach that resolves merge conflicts
by considering developers’ preferences. As our new approach
predicts the resolution strategy for any given conflict, we expect
it to help developers in two ways. First, when it correctly predicts
the KL or KR strategy, the approach can automatically apply the
strategy and resolve the conflict. This will save developers time
and manual effort, which would have been spent on understand-
ing and resolving that conflict. The effort savings provided by
this automatic prediction are potentially very high, since past
evidence shows that the majority of conflicts get resolved by KL
and KR (Yuzuki et al., 2015; Ghiotto et al., 2018). Second, when
our approach predicts the ME strategy, it reminds developers
to carefully inspect the local and remote branches, in order to
cautiously handle the given conflict.

1.3. Our research

To explore the feasibility of creating a predictor for conflict-
resolution strategies, we first did an empirical study to character-
ize the conflicts in software version history that get resolved with
different strategies. We gathered 15,758 conflicts from 100 open-
source software repositories, and studied 12 features to char-
acterize each conflict from different perspectives. Our statistical
analysis shows a strong correlation between the resolution deci-
sions of developers and all features, indicating a strong potential
for successfully building a resolution predictor.

Leveraging the 12 features revealed by our study, we de-
signed and implemented an approach—RPredictor—to automati-
cally predict resolution strategies. As shown in Fig. 3, RPredictor
has two phases: training and testing. In Phase I, RPredictor
extracts features for each conflict in a set of merge conflicts
that were already resolved in the past, and trains a three-class
random forest (RF) classifier. In Phase II, RPredictor takes in any
new conflict together with the software repository holding that
conflict, extracts features, and applies the trained classifier to
recommend a strategy. When the strategy is KL or KR, RPredictor
also outputs the resolved version.

To evaluate RPredictor, we conducted large-scale experi-
ments with 74,861 conflicts extracted from the version history
of 482 open-source projects. We applied RPredictor to perform
both within-project and cross-project prediction tasks. For the
within-project setting, in each repository, we used the oldest
90% of resolved conflicts to train RPredictor and the remain-
ing 10% of resolved conflicts for testing. RPredictor predicted
resolutions with 63% F-score. For the cross-project setting, we
performed 10-fold cross validation. Namely, we divided the 482
software repositories evenly into 10 folds. In each experiment,
we leveraged the conflict data in nine folds for training and used
the conflict data from the remaining fold for testing. We repeated
the experiment 10 times, with each experiment using a different
fold for testing. RPredictor recommended resolutions with 46%
F-score.

We also evaluated the sensitivity of RPredictor to differ-
ent amounts or ages of training data, and to different machine
learning (ML) algorithms. We found that as more training data
is provided, RPredictor’s effectiveness either increases or stabi-
lizes; nevertheless, it does not change consistently with the age of
training data. Compared with other ML algorithms, random forest
leads to the best effectiveness of RPredictor. Finally, we designed
a customizable variant, RPredictorv , which allows developers to
customize how conservatively they want RPredictorv to make its
predictions, i.e., how inclined it should be to predict the ME reso-
lution, to reduce the ratio of incorrectly predicted KL or KR. For a
highly conservative setting (94% C-score), RPredictor achieved
v
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Fig. 3. RPredictor has two phases: training and testing.
4% effort savings; making RPredictorv less conservative but
eeping its conservativeness score (C-score) over 80%, we got
Predictorv to achieve up to 64% effort savings. We made the
ollowing contributions in this paper:

• A novel empirical study of 12 characteristics of 15,758 con-
flicts, to understand their correlation with resolutions KL,
KR, or ME.

• A novel tool RPredictor, that leverages machine learning
(ML) to predict the resolution strategy for a given conflict.

• A comprehensive evaluation to assess the prediction effec-
tiveness of RPredictor, with 74,861 conflicts from 482 Java
open-source repositories.

• An evaluation of RPredictor’s sensitivity to different con-
figurations related to ML, including (1) the ratio of training
and testing data, (2) the balanced or unbalanced data distri-
bution among resolution strategies, (3) the age of training
data, and (4) the choice of learning algorithms.

• A customizable variant RPredictorv , which enables devel-
opers to choose more or less conservative results at the
trade-off of lower or higher effort savings, respectively.

. Dataset construction

Ghiotto et al. (2018) recently conducted an empirical study
n merge conflicts, and created a dataset of conflicts from 2731
itHub repositories. To study developers’ preferences on conflict
esolution and to explore new approaches of resolution pre-
iction, we decided to create our datasets based on their data
ecause of its comprehensiveness and representativeness.
To create the dataset, Ghiotto et al. first used the GitHub API to

elect 1,997,541 projects. Then they collected information about
ach project such as the last update date, the size of its develop-
ent team, and the code size. Next, they selected all Java projects

hat have at least one commit during January 2015 and March
016. A project is considered a Java project if the percentage of
ource code written in Java is greater than that of code written
n any of the other languages. Finally, they discarded the projects
hat were forks of other projects in the dataset or had no conflict
eported by git-merge in Java files for any merge commits. This
ed to 2731 projects with 175,805 conflicting chunks.

For our study, we downloaded Ghitto’s dataset and refined
t by taking two steps. First, we removed the projects whose
evelopers resolved conflicts by taking only one or two ma-
or strategies, e.g., jsoup (2023) and platform_frameworks_base
3

Fig. 4. Distribution of conflicting chunks among the 582 projects.

Table 1
Characteristics of the 582 software repositories included by our dataset.

Min Max Mean Standard
deviation

Number of developers 2 426 25 43
Number of commits 24 190,851 2820 9022
Number of merges 2 22,020 323 1045
Number of chunks 5 5,114 156 368

(2023). Namely, if a project (1) has at least 50% of conflicts
resolved via a single strategy (KL, KR, or ME) or (2) never uses a
certain strategy (e.g., KL), we remove the project. In this way, we
ensured that each of the remaining repositories had a relatively
balanced distribution of conflicts among KL, KR, and ME. After this
step, 609 projects remained in our dataset (e.g., xCoLab (2023)
and JGraLab (2023)). Second, we removed the projects whose
codebases were no longer available on GitHub, and our final
corpus became 582 projects. Table 1 shows some characteristics
of the 582 software repositories. As shown in the table, each
project involves at least 2 developers and at most 426 developers,
with the mean value 25 and standard deviation 43. Each repos-
itory has at least 24 commits, and at most 190,851 commits. In
each repository, there are 2–22,020 merging scenarios, while the
number of conflicting chunks varies in 5–5,114. All these numbers
imply that the software projects are not toy examples; many of
them are large or complex projects involving many developers
and having long version histories.

Moreover, we analyzed the distribution of conflicting chunks

among projects. As shown in Fig. 4, 58 out of the 582 projects
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ave 2–10 conflicting chunks in version history; 366 projects
ave 11–100 chunks; 139 have 101–1000 chunks; and 19 projects
ave over 1000 chunks. Such a distribution implies that some
rojects contribute a lot more chunks than the others, and may
ias our experiment results. However, in total the dataset in-
ludes 90,619 conflicting chunks, while the largest number of
onflicting chunks contained by any single project is 5114. It
eans that there is no project dominating the whole dataset, so

he impact of any potential bias is limited.
As shown in Table 2, after refining the original dataset of

hitto et al. we obtained 582 software repositories. Among the
0,619 conflicts contained by these repositories, there are 32,065,
4,423, 34,131 conflicts separately resolved via KL, KR, and ME.
We randomly sampled 100 repositories in the 582 repos-

tories, to conduct a characterization study of conflicts (see
ection 3). This sample set includes 15,758 conflicts, among
hich 5519 conflicts were resolved via KL, 4357 conflicts were
esolved via KR, and 5882 conflicts were resolved via ME. Based
n the characterization study, we created RPredictor, and evalu-
ted the tool using all data from the remaining 482 repositories.
y making observations on a subset of data and assessing new
pproaches on the remaining data, we can examine whether the
nsights gained from some data are generalizable to other unseen
ata.

. Our characterization study

We characterized all resolved conflicts in the randomly sam-
led 100 repositories by defining and measuring 12 features. We
efined these features based on the insights we learnt from prior
tudies (Ghiotto et al., 2018; Nelson et al., 2019; Brindescu et al.,
020b; Vale et al., 2021), concerning factors that may impact
evelopers’ decisions on conflict resolution. We organized the
eatures into four categories: (C1) content of the merge conflict,
C2) the scenario in which the conflict happened, (C3) software
volution that led to the conflict, and (C4) experience of the
eveloper(s) involved in the conflict. We describe them in more
etail below.
1. Conflict Content: We hypothesize that developers often
bserve the conflict content when they try to resolve a con-
lict (Ghiotto et al., 2018; Nelson et al., 2019; Brindescu et al.,
020b; Vale et al., 2021). We defined four features to characterize
he content of a conflicting chunk:

F1. Size of Chunk counts the lines of code (LOC) contained by
any given conflicting chunk.

F2. Size of Local Version counts the LOC between ‘‘<<<<<<<
HEAD’’ and ‘‘=======’’. Namely, for each conflicting chunk,
it counts the unique code coming from the local version.

F3. Size of Remote Version counts the LOC between ‘‘====’’
and ‘‘>>>>>>>’’. Namely, for each chunk, it counts the
unique code derived from remote.

F4. File Type reflects the type of the file containing the conflict-
ing chunk. Different resolutions may be popular in different
types of files.

Notice that F1 > F2 + F3, because a conflicting chunk consists of
(1) the unique code from L and R and (2) some common code (e.g.,
rogram context) shared between versions. We believe that when
evelopers resolve merge conflicts, the surrounding context is
mportant for them to decide (i) which branch edits fit better
nd (ii) how to integrate branch edits into the context. Thus,
oth the conflicting edits and surrounding context can influence
evelopers’ resolution strategies, and we included F1–F3 into our
tudy.
2. Merging Scenarios: The complexity of a merging scenario

(i.e., the scenario where git-merge is applied to merge two branch
4

Table 2
The datasets used in our research.

# of # of Conflicts resolved by

Repositories KL KR ME Total

Data used in our
characterization study

100 5,519 4,357 5,882 15,758

Data used in the tool
evaluation

482 26,546 20,066 28,249 74,861

Total 582 32,065 24,423 34,131 90,619

versions) could make developers defer their responses to con-
flicts (Ghiotto et al., 2018; Nelson et al., 2019; Brindescu et al.,
2020b; Vale et al., 2021). We defined two features to capture the
complexity:

F5. Number of Conflicting Chunks counts the conflicting
chunks reported by git-merge for a merging scenario.

F6. Number of Conflicting Files counts the number of conflict-
ing files in a merging scenario.

C3. Evolution of Changes: It is possible that for a given conflict,
how local and remote versions separately evolved can influence
developers’ resolution strategies (Nelson et al., 2019; Brindescu
et al., 2020b). We hypothesize that branches with longer history
are less likely to be discarded, and defined the following three
features accordingly:

F7. Number of Commits before Local counts the commits or
versions standing between the base and local versions, on
the branch where the local version resides.

F8. Number of Commits before Remote counts the commits or
versions standing between the base and remote versions, on
the branch where the remote version resides.

F9. Date Difference between Local and Remote counts the
time interval (i.e., days) between the check-in dates of local
and remote. We hypothesized that an increasing number
of days between the check-in dates of local and remote
versions can make a conflict harder to solve, and thus may
influence developers’ decisions for its resolution.

C4. Developer Experience: The experience of developers can con-
siderably impact how they understand and resolve conflicts (Nel-
son et al., 2019; Brindescu et al., 2020b; Vale et al., 2021). We
hypothesize that the number of historical commits checked in
by a developer can reflect his/her experience with the software
project. We extracted the user IDs of developers, and defined the
following three features:

F10. Number of Commits by The Owner of Local: If a devel-
oper checked in the local commit for the current merging
scenario, we consider that developer as the owner of local.
While multiple developers might contribute changes to the
local branch, we assign the ownership of local version to
the last committer. This is because committers often review
all existing code (including other developers’ edits) and
their modifications before committing changes. This feature
counts the commits checked in by the owner of local, before
that developer committed the local version.

F11. Number of Commits by The Owner of Remote: If a devel-
oper checked in the remote commit for the current merging
scenario, we consider that developer as the owner of re-
mote. When multiple developers contribute changes to the
remote branch, we assign the ownership of remote version
to the last committer. This is because the last committer
typically reviews all existing code and his/her own changes
before checking in the commit. This feature counts the
commits checked in by the owner of remote, before that
developer committed the remote version.
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Table 3
The statistical analysis results for F1–F3 and F5–F12.
Fi Mean ranks P-value

CL CR CM

F1. Size of Chunk 25 26 72 0.000046
F2. Size of Local Version 11 13 35 0.000093
F3. Size of Remote Version 14 12 37 0.000129
F5. Number of Conflicting Chunks 55 61 29 0.000000
F6. Number of Conflicting Files 24 28 16 0.000000
F7. Number of Commits before Local 62 62 43 0.000000
F8. Number of Commits before Remote 91 138 96 0.000000
F9. Date Difference between Local and Remote 5 5 4 0.000055
F10. Number of Commits by The Owner of Local 655 558 603 0.000051
F11. Number of Commits by The Owner of Remote 530 530 548 0.002683
F12. Number of Commits by The Resolver of Conflict 621 540 584 0.010751
Table 4
Data distribution of conflicts between the two file categories.
File category # of files in each group Total

CL CR CM

Source-code file 3930 3375 4565 11,870
Non-code file 1591 983 1319 3,893

F12. Number of Commits by The Resolver of Conflict: If a
developer checked in the merging commit with conflict
resolution for the current merging scenario, we consider
that developer as the resolver of conflict. We believe that
the resolution strategies vary with resolvers. In reality, to
predict developers’ resolution strategy for a given conflict,
it is hard to know beforehand who will resolve the con-
flict. However, it is still useful to explore the prediction
power of this feature, because the potential predictors-to-
build can take in manually entered resolver’s user ID to
predict the resolution strategy for a specified conflict. This
feature counts the commits checked in by the developer
who resolved a given conflict, before that conflict resolution.

To study whether these 12 features impact developers’ resolution
strategies, we applied statistical analysis to compare the values of
these features for conflicts separately resolved by KL, KR, and ME.
As mentioned in Section 2, in this study, we used in total 15,758
conflicts from 100 randomly sampled repositories.

3.1. Statistical analysis via H test

Among the 12 features mentioned above, there are 11 features
(except F4) that have numeric values. For each of these features
Fi (i ∈ [1, 12], i ̸= 4), we measured its value for each conflict.
We separated merge conflicts into three groups, according to the
resolution strategies applied to them. We use CL to refer to the
conflicts resolved by KL, use CR to refer to the conflicts resolved
by KR, and use CM for those resolved by ME.

To study whether any of these features can be used to predict
developers’ resolution strategies, we applied the Kruskal–Wallis
H test (McDonald, 2014; MacFarland and Yates, 2016; Kruskal and
Wallis, 1952); it is a statistical test to decide if three or more
groups of samples come from the same distribution on a variable
of interest (e.g., chunk size or number of conflicts). H test is a non-
parametric test, as it does not assume a normal data distribution
(none of our studied features follow a normal distribution). For
each group of samples, H test sorts data into ascending order,
assigns ranks to the sorted data points, and thus converts the
given values into their ranks. Namely, in the conversion process,
the smallest value gets a rank of 1, the next smallest gets a rank
5

of 2, and so on. Among the given three or more sample groups,
H test is applied to validate the following hypotheses:

• H0: The mean ranks of different groups are the same.
• H1: The mean ranks of different groups are not the same.

Table 3 presents the H test results for all features except F4.
For any feature Fi, a p-value lower than 0.05 implies that the
groups (i.e., CL, CR, and CM ) are from significantly different data
distributions, which means that the corresponding feature could
help predict developers’ resolution strategies. As shown in the
table, all of the 11 features have p-values lower than 0.05; thus,
we decided to use these features to train a resolution predictor
in Section 4.

Finding 1: The H test shows that all 11 numeric features
(F1–F3 and F5–F12) of conflicting chunks can help predict
developers’ resolution strategies.

3.2. Statistical analysis via chi-square test

F4 is different from the other features, because it is a cate-
gorical variable to characterize file types for conflicts, while the
other features are numeric variables to count numbers related
to a given conflict. To study whether file types help predict de-
velopers’ resolution strategies, we decided to use the chi-square
test (Pearson, 1900)—a statistical test applicable to sets of cat-
egorical data, to evaluate how possibly any observed difference
between the sets happened by chance. Specifically, in our study,
after extracting all file-type information for conflicts, we clus-
tered the file types into two big categories: source-code files
and non-code files. We then counted the frequency of each cat-
egory for each resolution strategy to obtain a contingency table
(see Table 4). Source-code files include files written in any pro-
gramming language, such as Java and Python; non-code files
include all other kinds of files, such as configuration files and
documentation.

Notice that we decided not to use file types as they are to
create the contingency table for two reasons. First, we observed
96 file types in the 100 studied Java projects. Among those types,
Java is the biggest one and covers thousands of conflicts, while
many rare file types only cover one or two conflicts. Such an
extreme unbalanced conflict distribution among file types can
make our statistical analysis useless or even misleading. To en-
sure the relatively balanced data distribution across categories,
we decided to create the 2 big categories out of 96 file types. Sec-
ond, if we used the file types as they are, our statistical analysis
results may be limited to the 96 file types we studied, but not
generalize well to larger datasets that have a lot more file types.
Clustering raw file types into two big categories helps ensure
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he generalizability of our study results, because the two big
ategories remain the same no matter how many more concrete
ile types are included by larger datasets.

We defined the following hypotheses for our chi-square test:

• H0: No association exists between file categories and reso-
lution strategies.

• H1: There is association between file categories and resolu-
tion strategies.

Our statistical analysis results have chi-square = 77.5874, and
= 0.0000. The results imply that file categories are related to
evelopers’ resolution strategies, so we can exploit F4 to train a
esolution predictor (Section 4).

Finding 2: The Chi-square test shows that the file categories of
conflicting chunks (F4) can help predict developers’ resolution
strategies.

4. Approach

Our characterization study (see Section 3) shows the feasibil-
ty of training a machine-learning model to predict developers’
esolution strategies for conflicts. Therefore, we designed and
mplemented a new approach RPredictor. As shown in Fig. 3,
Predictor has two phases: training and testing. Phase I an-
lyzes the conflicts already resolved by developers to train a
hree-class classifier. Phase II takes a merge conflict from a soft-
are repository, and leverages the trained classifier to predict
hether developers will resolve it via KL, KR, or ME. If KL or
R is predicted, in addition to outputting the resolution strategy,
Predictor also outputs the resolved version to automate conflict
esolution and thus improve programmer productivity. In both
hases, RPredictor extracts 12 features for each conflict. For
mplementation, we used scikit-learn (Pedregosa et al., 2011)—
Python machine-learning library to train and test a classifier.
he scikit-learn library features various classification, regression,
nd clustering algorithms. By invoking APIs provided by the li-
rary, RPredictor uses random forest (RF) to train its three-class
lassifier.
Because 11 of the 12 features are numeric variables (i.e., F1-

3 and F5-F12), we provided their numeric values as inputs to
Predictor. One feature (F4) is categorical, with two category la-
els as ‘‘source code file’’ and ‘‘non-code file’’. To provide numeric
alues to RPredictor for F4, we applied one-hot encoding (Harris
nd Harris, 2007) for category-to-vector conversion. Namely, we
sed the vector [1, 0] to represent the first category, and used [0,
] to represent the second.

. Evaluation

We conducted a variety of experiments to investigate the
ollowing seven research questions (RQs):

• RQ1: How effectively can RPredictor predict developers’
resolutions in the within-project setting?

• RQ2: How effectively can RPredictor predict developers’
resolutions in the cross-project setting?

• RQ3: How effectively can RPredictor predict developers’
resolutions given projects with unbalanced distributions of
resolution strategies?

• RQ4: How sensitive is RPredictor to the amount of training
data?

• RQ5: How sensitive is RPredictor to the age of training
data?

• RQ6: How sensitive is RPredictor to the adopted machine-
learning algorithm?
6

• RQ7: How sensitive is RPredictorv to different prediction
thresholds?

his section will first introduce our evaluation metrics (Sec-
ion 5.1), and then present our experiments as well as the results
or each research question (Sections 5.2–5.8).

.1. Evaluation metrics

In our experiments, we executed our studied techniques to
btain a prediction for each one of the merge conflicts in our
tudied dataset. As ground truth for each conflict, we observed
the resolution strategy employed by the developer that resolved
it in our dataset. We then assessed the effectiveness of a tech-
nique by comparing its prediction to the ground truth for each
conflict, applying multiple metrics. To facilitate discussion, in this
section, we index the three conflict resolution strategies and refer
to them as Si(i ∈ [1, 3]). Namely, S1 refers to KL (keep the local
version); S2 refers to KR (keep the remote version); S3 refers to
ME (resolution with manual edits). We defined and calculated the
following metrics to evaluate effectiveness:

Precision (Pi) measures, among all the conflicts labeled with
Si by a technique, what ratio of them were actually resolved by
Si.

Pi =
# of conflicts correctly labeled as ‘‘Si’’
Total # of conflicts labeled as ‘‘Si’’

(1)

Recall (Ri) measures, among all conflicts that were resolved
by Si, what ratio of them were labeled by a technique as Si.

Ri =
# of conflicts correctly labeled as ‘‘Si"

Total # of conflicts that were resolved via Si
(2)

Both precision and recall vary within [0%, 100%]. The higher, the
better.

F-score (Fi) is the harmonic mean of precision and recall. It
rovides a way to measure a model’s accuracy based on precision
nd recall. F also varies within [0%, 100%]. The higher value we
et, the better.

i =
2 × P × R
P + R

(3)

Aggregated (Overall) metrics (P, R, F): With the above ef-
fectiveness metrics computed for each resolution strategy, we
further evaluated the overall effectiveness of a technique by
computing the weighted average among all strategies. Formally, if
we use Γ to represent P or R, and use ni to represent the number
f testing samples in Si, then the overall effectiveness in terms of
recision and recall can be computed as

overall =

∑3
i=1 Γi ∗ ni∑3

i=1 ni
(4)

Finally, the overall F is computed with:

Foverall =
2 × Poverall × Roverall

Poverall + Roverall
(5)

Conservativeness Score (C) or C-score: We defined this met-
ric because different prediction mistakes have different conse-
quences. If a conflict resolved by KL or KR is incorrectly predicted
as ME, the technique makes a conservative mistake: it misses
the opportunity of saving developers’ manual effort, but does
not mislead developers to blindly take resolution suggestions.
However, if a conflict resolved by ME is incorrectly predicted
as KL or KR, the technique makes a more serious mistake: it
automatically resolves the conflict using a different strategy than
what the developer would have preferred, and thus produces an
incorrectly merged version. We created a C metric to measure the
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Table 5
The prediction counts for RPredictor and Baseline in the within-project
etting.
Ground # of conflicts RPredictor Baseline

Truth Training Testing KL KR ME KL KR ME

KL 23,610 2936 1815 318 803 1002 977 957
KR 18,087 1979 343 931 705 678 649 652
ME 25,472 2777 361 356 2060 984 892 901
Total 67,169 7692 2519 1605 3568 2664 2518 2510

Table 6
Effectiveness measurements for within-project prediction.

# of conflicts RPredictor Baseline

Training Testing P R F C P R F C

KL 23,610 2936 72% 62% 67% – 37% 34% 35% –
KR 18,087 1979 58% 47% 52% – 25% 32% 28% –
ME 25,472 2777 58% 74% 65% – 35% 32% 34% –
Overall 67,169 7692 63% 62% 63% 82% 34% 33% 33% 54%

ratio of predictions that are conservative, i.e., that do not cause any
ncorrect automatic resolution. Conservative predictions include
1) correct predictions, and (2) any conflict resolved via KL or KR
ut labeled as ME. C scores range within [0%, 100%]; the higher,
he better.

=
# of conflicts conservatively labeled

All predictions
(6)

5.2. RQ1: Effectiveness of within-project prediction

For each software project in our dataset, we leveraged 90%
of the oldest resolved conflicts to train RPredictor, and then
used the remaining 10% of resolved conflicts to test RPredictor.

e intentionally used older data for training and newer data for
esting. This is because such a setting can mimic the real-world
cenarios, where RPredictor can only refer to a project’s history
ata to suggest resolutions for future conflicts of that project.

.2.1. Baseline
No prior work predicts developers’ resolution preferences, so

e could not compare RPredictor with any existing tool. How-
ver, we were still interested in how RPredictor compares with
weighted random predictor. Thus, we created a baseline tech-

nique. We assumed that baseline somehow knows the ratios of
conflicts separately resolved via KL, KR, or ME, and randomly pre-
dicts a label each time based on those ratios. As shown in Table 5,
in the test set, there are 2936, 1979, and 2777 conflicts separately
resolved via KL, KR, and ME. Therefore, given a conflict, baseline
predicts KL with a 38% probability (i.e., 2936/(2936 + 1979 +

777)), and predicts KR and ME with 26% and 36% probabilities,
espectively. Notice that the baseline technique is stronger than
naïve random classifier that predicts all resolutions with equal
ossibilities (i.e., 33%). In reality, it is also hard for any classifier
o foresee the conflict distribution among all strategies. We made
uch a strong assumption to ensure that baseline is nontrivial, and
o check whether RPredictor outperforms it.

5.2.2. Comparison with baseline
Table 5 counts the predictions of both RPredictor and base-

ine for individual resolution strategies. According to the table,
Predictor correctly labeled 1815, 931, and 2060 conflicts with
L, KR, ME, respectively. Meanwhile, baseline correctly labeled
nly 1002, 649, and 901 conflicts with KL, KR, ME, respectively.
hese observations mean that RPredictor predicts resolutions

with much higher accuracies than baseline.
7

Table 7
Effectiveness measurements for cross-project prediction.
Experiment Id RPredictor Baseline

(Testing fold #) P R F C P R F C

1 46% 46% 46% 77% 34% 34% 34% 59%
2 49% 51% 50% 81% 35% 35% 35% 56%
3 47% 47% 47% 79% 33% 34% 33% 58%
4 50% 50% 50% 75% 34% 35% 34% 57%
5 41% 41% 41% 64% 38% 35% 36% 60%
6 42% 44% 43% 75% 34% 33% 34% 55%
7 44% 47% 46% 78% 36% 34% 35% 53%
8 47% 49% 48% 79% 36% 35% 36% 55%
9 50% 50% 50% 77% 34% 34% 34% 57%
10 44% 48% 46% 76% 34% 32% 33% 52%

Overall (All folds) 46% 47% 46% 76% 34% 34% 34% 57%

With the numbers reported in Table 5, we further measured
effectiveness for both techniques using the metrics described
in Section 5.1. As shown in Table 6, RPredictor outperformed
baseline for all metrics. For instance, for conflicts resolved by KR,
RPredictor achieved 58% precision, 47% recall, and 52% F-score;
meanwhile, baseline only obtained 25% precision, 32% recall, and
28% F-score. RPredictor showed an overall effectiveness of 63%
precision, 62% recall, 63% F-score, and 82% C-score; in contrast,
baseline provided an overall effectiveness of 34% precision, 33%
recall, 33% F-score, and 54% C-score. Both techniques worked
more effectively to predict KL and ME, than to predict KR. This
may be because there are fewer conflicts in the training set that
were actually resolved by KR.

Finding 3: For within-project prediction, RPredictor’s overall
effectiveness measurements include 63% precision, 62% recall,
63% F-score, and 82% C-score. It outperformed baseline.

5.3. RQ2: Effectiveness of cross-project prediction

In this experiment, we evaluated the real-world scenarios
where a given project has little version history for RPredictor to
leverage. In such scenarios, RPredictor can train a classifier with
the conflict data from other repositories, and use that classifier to
predict resolutions for the given project. We conducted 10-fold
cross validation to evaluate RPredictor’s effectiveness. Namely,
we divided the 482 software projects randomly into 10 groups
roughly evenly. For each group Gi(i ∈ [1, 10]), we ran an experi-
ment by using the conflict data in the remaining nine groups for
training, and adopting the data in Gi for testing. We calculated
the effectiveness measurements for each of the 10 runs, and then
computed the aggregated metrics of P, R, F, C among all runs.

5.3.1. Baseline
Similar to what we did for RQ1 (Section 5.2.1), we also created

a weighted random classifier for cross-project prediction. In each
of the 10 experiments mentioned above, baseline did not involve
any training. Instead, it randomly assigned labels to conflicts
based on the conflict distribution among three strategies in the
test set. By empirically comparing RPredictor with baseline,
we explored how RPredictor improves over weighted random
prediction.

5.3.2. Comparison with baseline
As shown in Table 7, RPredictor outperformed baseline for all

metrics in all 10 experiments. By aggregating our measurements
for all folds, we got the overall effectiveness of RPredictor as 46%
precision, 47% recall, 46% F-score, and 76% C-score. Meanwhile,
the overall effectiveness of baseline is 34% precision, 34% recall,
34% F-score, and 57% C-score. Due to the space limit, we do
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Fig. 5. The resolution distributions among 582 balanced repositories.

ot present tools’ effectiveness measurements for each resolution
trategy. However, when we checked the detailed results for each
trategy, we noticed that both tools predicted ME more accurately
han predicting the other two strategies. In particular, RPredictor
lways predicted ME more accurately than baseline; in 8 out of
0 experiments, RPredictor suggested KL more accurately than
aseline; in 9 out of 10 experiments, baseline suggested KR more
ccurately than RPredictor.

Finding 4: In cross-project prediction, RPredictor achieved
41%–50% precision, 41%–51% recall, 41–50% F-score, and 64%–
81% C-score. It outperformed baseline for all studied folds.

5.3.3. Comparison between cross-project and within-project predic-
tion

We also compared RPredictor’s cross-project prediction re-
ults (see Table 7) against its within-project prediction results
see Table 6). Generally speaking, both experiments have very
imilar data-splitting methodologies: they both use 90% of data
i.e., conflicts or projects) for training and use 10% of data for
esting. Nevertheless, RPredictor predicted resolutions more ef-
ectively in the within-project setting, for all metrics. This may be
ecause it is easier to predict the future resolution strategies of
evelopers based on their resolution decisions for old conflicts. In
ontrast, it may be relatively harder to predict these developers’
esolution strategies based on the resolution decisions made by
ther developers in other projects. We also noticed that baseline
chieved very similar effectiveness for the within-project and
he cross-project settings. This is because the baseline technique
oes not have a training step. Its predictions are purely based
n the random guesses derived from distributions of resolution
trategies in test sets. No matter what data distribution we have
or any test set, the random guesses typically achieve 33%–34%
verall F-scores.

Finding 5: RPredictor predicted resolutions more effectively in
the within-project setting than in the cross-project setting.

5.4. RQ3: Prediction effectiveness on unbalanced data

As mentioned in Section 2, we used the conflict data of 100
epositories to characterize conflicts, and adopted the conflict
ata of another 482 repositories to train and test RPredictor.
ll these 582 repositories have balanced distributions of differ-
nt resolution strategies, which imply that developers did not
how strong personal biases towards certain strategies; instead,
hey might decide upon resolutions solely based on branch edits,
rogram context, and software evolution. To further investigate
ow effectively RPredictor works given unbalanced data, we
onducted another experiment. Specifically, among the 2122 (i.e.,
8

Fig. 6. The resolution distributions among 100 unbalanced repositories.

Table 8
RPredictor’s effectiveness of within-project prediction given unbalanced data.

P R F C

KL 86% 91% 89% –
KR 79% 76% 77% –
ME 64% 53% 58% –
Overall 81% 69% 74% 86%

2731-609) repositories discarded in Section 2 due to the unbal-
anced distribution of different resolution strategies, we picked
the most popular 100 repositories based on their star counts on
GitHub, and experimented with them for both within-project and
cross-project prediction. To facilitate discussion, Figs. 5 and 6 sep-
arately visualize the overall distributions of resolution strategies
in the 582 balanced repositories and 100 unbalanced ones. As
shown in Fig. 6, the unbalanced data has the majority of conflicts
(61%) resolved via KL, and least conflicts (15%) resolved via ME.
Meanwhile, the balanced data has 35%, 27%, and 38% of conflicts
separately resolved via KL, KR, and ME.

5.4.1. Effectiveness of within-project prediction on unbalanced data
Similar to what we did for Section 5.2, in each of the 100

repositories with unbalanced data, we used the oldest 90% of
resolved conflicts to train RPredictor and used the remaining
conflicts for testing. Table 8 shows our experiment results. By
comparing this table against Table 6, we observed that RPredic-
tor worked much better when given unbalanced data for within-
project prediction. Among the 100 repositories, it achieved 81%
precision, 69% recall, 74% F-score, and 86% C-score; all the mea-
surements are higher than those calculated for the balanced
dataset (i.e., 63%, 62%, 63%, 82%). In particular, RPredictor ob-
ained as high as 91% recall when predicting KL in the unbalanced
ataset, probably because developers demonstrate very strong
iases towards KL in that dataset and thus make that strategy
asier to predict.

Finding 6: For within-project prediction tasks, RPredictor pre-
dicted resolutions more effectively in the unbalanced dataset
than in the balanced dataset.

5.4.2. Effectiveness of cross-project prediction on unbalanced data
As with what we did for Section 5.3, we randomly split

the 100 repositories into 10 groups with each group having 10
repositories, and performed 10-fold cross validation. As shown in
Table 9, overall, RPredictor achieved 53% precision, 43% recall,
47% F-score, and 49% C-score. Meanwhile, its overall metrics in
the balanced dataset include 46% precision, 47% recall, 46% F-
score, and 76% C-score (see Table 7). Given unbalanced data,
RPredictor obtained roughly the same F-score but a much lower
C-score than what it did given balanced data; unbalanced data
makes cross-project resolution prediction even harder. Namely,
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Table 9
RPredictor’s effectiveness of cross-project prediction given unbalanced data.
Experiment Id P R F C
(Testing fold #)

1 41% 42% 41% 55%
2 63% 44% 52% 47%
3 42% 40% 41% 48%
4 52% 46% 49% 51%
5 44% 37% 41% 52%
6 52% 46% 49% 57%
7 34% 31% 33% 50%
8 38% 30% 33% 38%
9 47% 42% 44% 53%
10 51% 38% 43% 59%

Overall (All folds) 53% 43% 47% 49%

Table 10
RPredictor’s effectiveness of within-project prediction, when different amounts
of training data are provided in different iterations.
Iteration Id Data portions RPredictor

Training Testing P R F C

1 p10 p11 42% 45% 43% 66%
2 p9 , p10 p11 51% 52% 51% 71%
3 p8–p10 p11 54% 55% 54% 72%
4 p7–p10 p11 52% 52% 52% 72%
5 p6–p10 p11 54% 54% 54% 75%
6 p5–p10 p11 55% 56% 56% 75%
7 p4–p10 p11 56% 56% 56% 76%
8 p3–p10 p11 56% 56% 56% 75%
9 p2–p10 p11 56% 56% 56% 75%
10 p1–p10 p11 56% 56% 56% 76%

if developers show extreme personal biases towards distinct res-
olution strategies in different projects, it can be very challenging
to correctly predict the resolution strategies in one project based
on strategies observed in other projects. Actually, among the 10
groups of our unbalanced dataset, there are 4 groups with strong
preferences towards KL (i.e., over 50% of conflicts were resolved
ia KL) and 3 groups with strong biases towards KR. The classifiers
rained with such unbalanced data predict KL or KR most of the
imes but seldom predict ME, although ME is a more conservative
trategy than KL and KR. Consequently, such classifiers earn much
ower conservativeness scores.

Finding 7: For cross-project prediction tasks, RPredictor pre-
dicted resolutions less conservatively in the unbalanced dataset
than in the balanced one.

5.5. RQ4: Sensitivity to the amount of training data

In our experiment settings, by default, we typically used 90%
f overall data for training and 10% of data for testing. However,
t is unknown how the amount of training data can influence
Predictor’s effectiveness. Therefore, we performed another ex-
eriment of within-project prediction, by tuning the amount of
raining data in use. Specifically, in the balanced dataset (i.e., 482
epositories), we split the conflict data of each repository into
1 portions evenly (each portion having the same number of
onflicting chunks): p1, p2, . . . , p11. Here, p1 represents the oldest
ata portion in history and p11 is the newest one. We trained and
ested RPredictor 10 times, with each of the iterations using p11
s the testing data but using a distinct set of portions for training.
s shown in Table 10, the 1st iteration adopts p10 for training;
he 2nd iteration exploits both p9 and p10 to train RPredictor;
he 10th iteration uses 10 portions p1–p10 in training.

RPredictor’s effectiveness increases or roughly remains the

ame when the amount of training data grows. Specifically when

9

Table 11
RPredictor’s effectiveness of within-project prediction, when differently aged
data is provided for training.
Iteration Id Data portions RPredictor

Training Testing P R F C

1 p10 p11 43% 44% 43% 66%
2 p9 p11 48% 49% 49% 69%
3 p8 p11 45% 48% 46% 68%
4 p7 p11 42% 43% 43% 74%
5 p6 p11 45% 47% 46% 81%
6 p5 p11 34% 38% 36% 70%
7 p4 p11 37% 41% 39% 69%
8 p3 p11 44% 43% 44% 80%
9 p2 p11 42% 44% 43% 83%
10 p1 p11 39% 42% 41% 63%

only p10 was provided, RPredictor obtained 42% precision, 45%
recall, 43% F-score, and 66% C-score. During the first three iter-
ations, as the training data increased from one portion to three
portions, all measurements increased steadily. Meanwhile, during
the last six iterations, while the training data increased from
five to ten portions, RPredictor’s effectiveness stabilized with-
out much change. One possible reason to explain the observed
increase is that when training data is insufficient, providing more
data enables RPredictor to better characterize diverse conflicting
scenarios and thus better predict resolutions. However, once the
training data is sufficient, offering more data does not necessarily
improve RPredictor’s effectiveness. Consequently, all measure-
ments stabilize. Based on this experiment, we decided for our
other experiments (except for RQ4 and RQ5), by default, we used
90% of data for training and 10% of data for testing, in order to
train RPredictor with sufficient data and to observe the best
effectiveness measurements achievable by RPredictor.

Finding 8: RPredictor’s effectiveness improves or stabilizes
when more training data is provided.

5.6. RQ5: Sensitivity to the age of training data

When looking at Table 10, one may be tempted to wonder
whether the age of training data also influences RPredictor’s
effectiveness. Actually, between different iterations shown in
Table 10, both the (1) age and (2) amount of training data are
different. To explore the influence of each factor, we conducted
an additional experiment with the 11 data portions mentioned in
Section 5.5 (each portion having the same number of conflicting
chunks). In this experiment, we repetitively trained RPredictor
with a distinct data portion but always tested it with p11. As
shown in Table 11, the 1st iteration uses p10—the youngest
portion within [p1, p10]—as the training data; the 2nd iteration
uses p9; the 10th iteration uses the oldest data p10. Because the
training data in each iteration has roughly equal numbers of
data points, the comparison of effectiveness measurements across
iterations reflects the impact of data age.

According to Table 11, as the training data gets older, the
effectiveness measurements either increase or decrease, without
presenting a consistent change trend. For instance, in the 1st
iteration, RPredictor obtained 43% precision, 44% recall, 43%
F-score, and 66% C-score. In the 9th iteration, RPredictor achieved
a slightly lower precision (42%), the same recall (44%), the same
F-score (43%), but the highest C-score (83%). However, in the 10th
iteration, it acquired the lowest measurements: 39% precision,
42% recall, 41% F-score, and 63% C-score. The phenomena imply
that data age does not have a consistently positive or negative im-
pact on prediction results. The prediction effectiveness increased
probably because the training data became more similar to the
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Fig. 7. RPredictor using different ML algorithms for within-project prediction.

esting data, and decreased probably due to the less similarity
etween training and test data. Therefore, both the consistent
ffectiveness improvements and stabilized measurements we
bserved in Table 10 are mainly contributed by the increase of
raining data, instead of data aging.

Finding 9: RPredictor’s effectiveness does not consistently
change with the age of training data.

5.7. RQ6: Sensitivity to the adopted machine-learning algorithm

When designing RPredictor, we did not know what machine-
earning (ML) algorithm was more suitable. Thus, we experi-
ented with four ML algorithms in both the within-project and
ross-project settings, to observe how RPredictor’s effectiveness
aries with the adopted algorithm. We studied Adaboost, decision
ree (DT), naïve bayes (NB), and random forest (RF). As mentioned
n Section 5.2, for the within-project setting, we used 90% of
he oldest resolved conflicts in each project’s version history for
raining, and 10% of conflicts (the most recent ones) for testing.
or the cross-project setting, we used 10-fold cross validation
as in Section 5.3). In all of our experiments, we leveraged the
L implementation provided by scikit-learn (Pedregosa et al.,
011), and used the default parameter settings for all adopted ML
lgorithms.
As shown in Figs. 7 and 8, RPredictor achieved the high-

st effectiveness when using RF. For within-project prediction,
F obtained 63% precision, 62% recall, 63% F-score, and 82%
-score. DT had lower effectiveness than RF, but better than the
ther two alternatives; it obtained 60% precision, 60% recall, 60%
-score, and 77% C-score. NB was the least effective and got 47%
recision, 46% recall, 47% F-score, and 61% C-score. For cross-
roject prediction, RF obtained 46% precision, 47% recall, 46%
-score, and 76% C-score. Adaboost performed worse than RF; it
ot 41% precision, 43% recall, 42% F-score, and 71% C-score. NB
chieved the most interesting results. Among the four algorithms
tudied, NB acquired the lowest precision (32%), lowest recall
37%), and lowest F-score (34%); nevertheless, it acquired the
ighest C-score (79%). This is mainly because NB predicted a
ot more ME resolutions than the other algorithms. Comparing
he effectiveness of distinct algorithms in both within-project
nd cross-project settings, we decided to use RF as the default
L algorithm in RPredictor because RF often outperformed the
thers.

Finding 10: Among the four experimented machine learning
algorithms, RF generally outperformed the others when being
used in RPredictor.

5.8. RQ7: Sensitivity to threshold setting

In the experiments mentioned above, the highest C-score
Predictor achieved is 82%. It means that 82% of the resolu-
10
Fig. 8. RPredictor using different ML algorithms for cross-project prediction.

tion strategies recommended by RPredictor are conservative; in
other words, they correctly predict the developers’ preference, or
ask developers to resolve the conflict manually. However, some
developers may prefer RPredictor to provide lower C-scores (i.e.,
to predict more KL or KR labels) in order to save more effort,
even if the predictions are more risky or less precise. Such pref-
erences are meaningful for projects with very good test suites, in
which developers can trust automated testing to reliably decide
the correctness of any program version whose conflicts were
automatically resolved. Other developers may prefer RPredictor
to achieve higher C-scores (i.e., to predict ME more often) in
order to avoid prediction errors, even though the predictions
save less effort. Such preferences are important for projects with
very limited test suites, in which developers cannot blindly trust
automated testing to always validate the correctness of programs.

To give developers more control over RPredictor’s predic-
ions, we created a configurable variant of RPredictor—
Predictorv , which offers a parameter thM so that developers can
ine-tune automatic prediction based on their relative tolerance
or incorrect KL or KR predictions.

.8.1. A threshold-based variant approach: RPredictorv

Fig. 9 shows our approach for RPredictor’s customizable vari-
nt. Similar to RPredictor, this variant also trains a classifier
o predict the resolution strategy for any given merge conflict.
owever, this variant now allows its users to increase (or de-
rease) its prediction preference for ME. Given a merge conflict
nd its related software repository, a classifier generates three
redicted likelihoods: pKL, pKR, and pME . These likelihoods indicate
ow likely the predictor believes that the conflict should be
esolved via KL, KR, or ME. All likelihoods vary within [0, 1];
KL + pKR + pME = 1. The original approach RPredictor returns

its prediction based on the highest likelihood among pKL, pKR,
and pME . In contrast, the customizable variant RPredictorv first
compares pME with the user-configured threshold thM . As shown
in Fig. 9, if pME ≥ thM , then RPredictorv predicts ME; otherwise,
it predicts one of the other two strategies, the one with the higher
likelihood (KL or KR).

In this way, developers can modify thM to tune RPredictorv ’s
conservativeness. When thM = 0, it predicts all conflicts conser-
vatively as ME. In this scenario, developers would not get any
incorrect KL or KR predictions, but they would not benefit from
RPredictorv automatically acting on the KL or KR predictions (i.e.,
it would not save effort). On the other extreme, when thM =

1.0, all conflicts are predicted to resolve via either KL or KR. In
this scenario, RPredictorv would save developers high effort (it
would automatically resolve all conflicts by KL or KR), but some of
those KL or KR resolutions would not be what the developers pre-
ferred (they would be incorrect predictions). With other values
of thM , developers can decide their own personal middle-ground
between these two extreme points.
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Fig. 9. RPredictorv—our customizable variant of RPredictor, which uses a threshold thM to fine-tune the prediction results.
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.8.2. Experiment with RPredictorv

To study the trade-offs between F-score, C-score, and the
otential effort-saving by automatic resolution that developers
ould obtain with RPredictorv , in this experiment we tuned thM
rom 0.1 to 1, with 0.1 increments. For each threshold setting, we
pplied RPredictorv to perform both within-project and cross-
roject prediction. For this section, we defined another metric to
easure the potential effort-saving by automatic resolution:
Effort-saving (E) Score or E-score measures among all pre-

ictions, for how many of them RPredictorv outputs KL or KR
nd automatically resolves the conflict. The score is within [0%,
00%].

=
# of conflicts automatically resolved via KL or KR

All predictions
(7)

Fig. 10 shows RPredictorv ’s performance for within-project
prediction. As thM increased, C-score consistently decreased and
E-score increased. F-score was stable when thM ∈ (0, 0.7]; it de-
reased as thM increased from 0.7 to 1. For the most conservative
threshold (thM = 0.1), RPredictorv labeled many conflicts with
E; it only labeled them KL or KR when the predicted likelihoods
ere very high (RPredictorv was quite sure about those predic-
ions). In this scenario, RPredictorv achieved a C-score of 94%,
-score of 34%, and F-score of 68%. This shows that RPredictorv

an achieve as much as 34% effort savings (E-score) by also very
arely predicting KL or KR incorrectly (with very high C-score).
or the most liberal threshold (thM = 1.0), RPredictorv labeled
o conflict with ME. Instead, it only produced KL and KR labels
o automate all resolutions. In such scenarios, RPredictorv incor-
ectly labeled many conflicts as KL or KR, applying a strategy that
as not preferred by the developers. Consequently, the achieved
-score was 50%, E-score was 100%, and F-score was 38%. This
ption would save all the effort of conflict resolution, but it would
ikely require additional mechanisms to detect incorrectly applied
L or KR resolutions, e.g., using a very strong test suite that is
ither manually crafted or automatically generated (e.g., via good
uzzy testing techniques).

We believe that other intermediate thresholds would be more
opular. Between thM = 0.1 and thM = 1.0, F-score was
table initially and then decreased. As thM increased, RPredictorv

chieved different trade-offs between precision and recall for
ach strategy. Fig. 10 also shows that developers could achieve
ncreasing effort savings (E-score), at the cost of accepting in-
reasing ratios of incorrect KL or KR predictions (lower C-scores).
owever, it is also worth noting that E-scores grew faster than
-scores fell, which means that multiple intermediate thresh-
lds may be attractive for different developers. For example, the
hresholds in (0, 0.5] achieved up to 64% effort savings with
-scores no lower than 80%.
Fig. 11 shows RPredictorv ’s performance for cross-project

rediction. As thM increased, C-score decreased first and then
tabilized when 0.7 ≤ thM ≤ 1; E-score increased first and
hen stabilized when 0.7 ≤ th ≤ 1. F-score vibrated in the
M

11
Fig. 10. RPredictorv ’s effectiveness measurements for within-project prediction.

Fig. 11. RPredictorv ’s effectiveness measurements for cross-project prediction.

ange [37%, 45%] when thM ≤ 0.9, and dropped afterwards.
e saw in RQ2 that RPredictor’s predictions are less effective

n the cross-project setting than in the within-project setting.
his is also reflected by Figs. 10 and 11, since RPredictorv gen-
rally produced a worse trade-off between effort savings and
onservativeness. In cross-project prediction, the most conserva-
ive threshold (thM = 0.1) provided almost no effort saving, and
f we wanted to keep C-score over 80%, we could only achieve up
o 26% effort savings (thM ≤ 0.3).

Finding 11: RPredictorv generally achieved better trade-offs
between effort savings and conservativeness in the within-
project setting than in the cross-project setting. For within-
project prediction, RPredictorv could save up to 63% of efforts
by lowering the C-score while keeping it above 80%.

6. Threats to validity

Threats to external validity. Our characterization study investi-
gates 12 candidate features, which are defined either based on
prior studies or our insights. It is possible that there are other
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eatures (e.g., types of edits in branches) that are potentially cor-
related with developers’ resolution strategies, and can be lever-
aged to better predict resolutions. In the future, we plan to define
and explore more candidate features, so that our characteriza-
tion study is more representative. By revealing and incorporating
new features, we can also strengthen the prediction capability of
RPredictor. Our study and experiments are done on Java projects,
although the methodology is generally applicable to programs
written in any language. It is possible that the results of our study
and evaluation do not generalize well to programs written in
other languages. In the future, we plan to conduct larger-scale
experiments to include non-Java programs.

Threats to construct validity. When crawling the owner develop-
rs of commits in software repositories, we assumed that there
s one-to-one mapping relationship between developers and user
Ds (i.e., email addresses). Namely, we assumed that each devel-
oper has only one user ID, which is not shared with any other
developer. However, in reality, it is possible that a developer
leverages multiple user IDs when checking in different commits
(i.e., one-to-many), while some developers share a single user ID
when committing program changes (i.e., many-to-one). Such one-
o-many and many-to-one relations between developers and user
Ds can make our data analysis imprecise. However, we believe
hat the corner cases of one-to-many and many-to-one mappings
re rare, causing little impact on our research findings.

. Discussion

In this section, we discuss various aspects of our approach to
urther clarify its applicability.

.1. The benefit of RPredictor’s recommendations for developers

Given a merge conflict, RPredictor predicts the resolution
trategy, and even recommends a merged version if the predicted
trategy is KL or KR. Readers may be tempted to underesti-
ate the usefulness of RPredictor, because KL and KR seem
uch simpler to execute than ME. However, we argue that con-

lict resolution involves not only resolution implementation, but
lso decision-making; RPredictor helps considerably reduce the
anual effort on the decision-making process.
Prior work (Nelson et al., 2019) mentions that 56% of devel-

pers have deferred at least once when responding to a merge
onflict, which makes conflict resolution more complex as time
asses; the key challenges that developers have to overcome
hen trying to resolve conflicts include (1) understanding the
onflicting code, and (2) getting enough metadata information
bout the conflict (e.g., who made the change, why, and when).
Predictor characterizes software conflicts from 12 distinct as-
ects, in order to automatically comprehend conflicts and retrieve
etadata information related to those conflicts. Therefore, when
Predictor correctly predicts KL and KR, developers do not need
o go through the painful process of conflict comprehension and
esolution.

As multiple studies (Shen et al., 2023; Cavalcanti et al., 2017;
an et al., 2021) show that the majority of conflicts are re-
olved via KL and KR, RPredictor’s good precision of predicting
L/KR can significantly save developers effort, effort that would
ave otherwise been spent to manually analyze and resolve such
onflicts.

.2. The impact of mispredictions and developers’ trust in automated
ecommendations

If RPredictor predicts ME and requires developers to manu-
lly resolve some conflicts, developers cannot save any manual
12
effort, but it also does not put any extra effort on those conflicts,
either.

In the scenarios when RPredictor incorrectly predicts KL or
KR, developers may need to put extra effort to examine the
tool-suggested strategies. However, if the test cases in software
projects (1) have sufficient coverage, (2) do not conflict with
each other across branches, and (3) reliably express the intended
behaviors of merged software, developers do not need to spend
more time reasoning about whether tool-generated resolutions
work. Instead, they can rely on testing to validate automated
resolutions.

Furthermore, developers may choose to manually double-
check if they personally agree with RPredictor’s prediction be-
fore applying it, which can reduce its ratio of mispredictions.
This mode of operation would imply a lower effort reduction for
developers, but it can still be more efficient than reviewing all
the details of the merge conflict.

At the end of the day, we expect different developers to
show different preferences in terms of how liberally they want
to directly apply RPredictor’s recommendations. That is why
we proposed a variant of RPredictor in Section 5.8, that gives
them flexibility to make RPredictor provide predictions that
save higher effort producing more mispredictions, the opposite
trade-off, or other points in between.

In future work, we will also explore how to use explainable
machine learning approaches to increase the trust of RPredictor’s
recommendations for developers, trying different approaches for
explaining why RPredictor is recommending a particular strat-
egy.

7.3. Applicability of RPredictor on less-balanced projects

We evaluated RPredictor in a dataset of projects that resolved
erge conflicts in a relatively balanced way, i.e., all decisions

were taken with relatively similar frequencies. We did this inten-
tionally to evaluate RPredictor in the kinds of projects for which
e estimate they would benefit from it most: those projects
hich do not have a very clear typical way to resolve conflicts,

i.e., those in which no choice is strongly overrepresented.
However, we believe that RPredictor could also benefit

projects in which KL or KR is the typical choice to resolve merge
conflicts, i.e., in which that strategy is chosen the majority of
the time. In such cases, developers would also benefit from
RPredictor, because it will capture this bias in its training and it
will in fact predict resolution strategies with higher accuracy. We
performed an experiment showing RPredictor’s higher accuracy
in an unbalanced dataset in Section 5.4 (RQ3).

The only case of projects that would not benefit as much
from RPredictor are those which choose ME to resolve their
merge conflicts the majority of the time — since RPredictor’s
recommendations are most beneficial when it predicts KL or KR.
However, such situations are less common — past work (Yuzuki
et al., 2015; Ghiotto et al., 2018) showed that KL and KR are the
most popular strategies to resolve merge conflicts.

7.4. What if a project has little training data available?

When using RPredictor, users do not have to train RPredic-
tor on a large dataset of software repositories. Instead, for the
within-project setting, they can use all conflicts extracted from
one project’s version history for classifier training, and leverage
that trained classifier to predict resolutions for any new con-
flicts in the same project. For the cross-project setting, users
can simply use the trained classifier open-sourced on our project
website (Aldndni et al., 2022), instead of training any classifier
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Table 12
RPredictor’s F-scores for 11 sampled projects for within-project prediction.
Rank Total # of

conflicts
# of conflicts used
for training

F-score

1st 5114 4603 92%
48th 405 365 58%
96th 150 135 45%
144th 85 77 37%
192th 62 56 27%
240th 44 40 27%
288th 30 27 17%
336th 24 22 22%
384th 17 15 0%
432th 11 10 0%
482th 11 10 0%

from scratch. In order to help users decide whether RPredic-
or should perform within-project or cross-project prediction for
heir circumstances, we actually ranked the 482 experimented
epositories in descending order of the number of conflicting
hunks they contain in version history. From that ranked list,
e sampled the 1st project (the one with the most conflicts),
he 482th project (the one with fewest conflicts), and 9 projects
tanding between at roughly 10%-interval of ranks. Table 12
hows all the sampled 11 projects, the total number of con-
licts contained by each project, the number of conflicts used
or training (i.e., 90% of the total), and the F-scores achieved by
Predictor for within-project prediction.
According to this table, as training data decreases, F-score

enerally decreases or stabilizes; this trend coincides with our
bservation in Section 5.5. The phenomenon implies that if a
ser’s software repository has a few resolved conflicts (e.g., less
han 135), she/he can consider using cross-project prediction
s the conflicts in version history seem insufficient to train
good within-project predictor. Otherwise, if the user’s soft-
are repository has sufficient resolved conflicts (e.g., hundreds
r even thousands of conflicts), she/he can apply RPredictor to
o within-project prediction for better accuracy.

. Related work

Our research is related to empirical studies on merge conflicts,
wareness-raising tools, and automated software merge.

.1. Empirical studies on merge conflicts

Several studies were conducted to characterize the relation-
hip between merge conflicts and other aspects of software main-
enance (Estler et al., 2014; Ahmed et al., 2017; Leßenich et al.,
018; Mahmoudi et al., 2019; Owhadi-Kareshk et al., 2019). For
nstance, Estler et al. (2014) surveyed 105 student developers, and
ound that the lack of awareness (i.e., knowing ‘‘who is changing
hat’’) occurs more frequently than merge conflicts. Leßenich
t al. (2018) surveyed 41 developers and identified 7 poten-
ial indicators (e.g., number of changed files in both branches)
or merge conflicts. With further investigation of the indicators,
he researchers found that none can predict the conflict fre-
uency. Similarly, Owhadi-Kareshk et al. defined nine features
e.g., number of added and deleted lines in a branch) to charac-
erize merging scenarios; they trained a machine-learning model
hat predicts conflicts with 57%–68% accuracy (Owhadi-Kareshk
t al., 2019).
Similar to these studies, our study also characterizes merge

onflicts. However, it is different in two aspects. First, our study
xplores how different features characterize developers’ strate-
ies of conflict resolution. Second, our study motivates our
13
research to automatically predict resolution strategies, while ex-
isting studies motivate research to automatically predict conflict
occurrence.

Some other studies characterize the root causes and/or reso-
lutions of textual conflicts (Yuzuki et al., 2015; Nguyen and Ignat,
2018; Ghiotto et al., 2018; Brindescu et al., 2020a; Pan et al.,
2021). Specifically, Yuzuki et al. inspected hundreds of textual
conflicts (Yuzuki et al., 2015). They observed that conflicting
updates caused 44% of conflicts to the same line of code, and de-
velopers resolved 99% of conflicts by taking either the left-version
or right-version of the code. Brindescu et al. (2020a) manually in-
spected 606 textual conflicts. They characterized merge conflicts
in terms of the AST diff size, LOC diff size, and the number of
authors. They identified three resolution strategies: SELECT ONE
(i.e., keep edits from one branch), INTERLEAVE (i.e., keep edits
from both sides), and ADAPTED (i.e., change existing edits and/or
add new edits). Pan et al. (2021) explored the merge conflicts
in Microsoft Edge; they classified those conflicts based on file
types, conflict locations, conflict sizes, and conflict-resolution pat-
terns. Driven by their empirical study, the researchers further
investigated to use program synthesis for conflict resolution. The
prototype of their resolution tool only tries to concatenate edits
from both branch versions, incapable of suggesting KL or KR
resolutions.

These studies inspired us to define and study candidate fea-
tures that may help predict developers’ resolution strategies for
conflicts. However, none of these studies conduct statistical anal-
ysis between any recognized features and developers’ resolu-
tions; our study performed that analysis.

8.2. Awareness-raising tools

Tools (Sarma et al., 2011; Servant et al., 2010; Biehl et al.,
2007; Brun et al., 2011; Guimarães and Silva, 2012; Brun et al.,
2013; Lanza et al., 2013; Kasi and Sarma, 2013; Maddila et al.,
2021) were created to monitor and compare programmers’ devel-
opment activities, in order to improve team activity awareness.
For instance, CASI (Servant et al., 2010) and Palantír (Sarma
et al., 2011) inform a developer of the artifacts changed by other
developers, calculate the severity of those changes, and visu-
alize the information. Cassandra (Kasi and Sarma, 2013) is a
conflict minimization technique. It observes the super-sub and
caller-callee dependencies between program entities. By treating
those dependencies as constraints on file-editing tasks, Cassandra
identifies tasks that will conflict when performed in parallel. It
then appropriately schedules tasks to recommend conflict-free
development paths. Crystal (Brun et al., 2011; Brun et al., 2013)
and WeCode (Guimarães and Silva, 2012) proactively detect col-
laboration conflicts via speculative analysis. They eagerly merge
the program changes applied to different software branches, even
before those changes are all pushed to the master repository
in the distributed version control system (DVCS). They leverage
textual merge, automatic build, and automatic testing in sequence
to reveal the potential conflicts between branches.

The tools mentioned above can proactively detect and report
merge conflicts. However, they do not characterize developers’
resolution preferences, neither do they automatically recommend
any resolution strategy.

8.3. Automated software merge

Tools were proposed to detect or resolve merge conflicts
(Mens, 2002; Apel et al., 2011, 2012; Leßenich et al., 2015;
Nishimura and Maruyama, 2016; Cavalcanti et al., 2017; Zhu and
He, 2018; Sousa et al., 2018; Shen et al., 2019; jFSTMerge, 2021;
Svyatkovskiy et al., 2022; Zhang et al., 2022; Dinella et al., 2023).
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ens (2002) published a survey on software merging techniques.
STMerge (Apel et al., 2011; Cavalcanti et al., 2017; jFSTMerge,
021) parses code for ASTs, and matches nodes between L and R
urely based on the class or method signatures; it then integrates
he edits inside each pair of matched method nodes via textual
erge. IntelliMerge (Shen et al., 2019) improves FSTMerge’s
ffectiveness by detecting and resolving refactoring-related con-
licts. Similar to FSTMerge, JDime (Apel et al., 2012; Leßenich
t al., 2015) also matches Java methods and classes based on syn-
ax trees. However, JDime merges edits inside matched methods
y matching and manipulating ASTs. AutoMerge (Zhu and He,
018) improves over JDime. When branch edits are incompatible
ith each other, AutoMerge attempts to resolve conflicts by
roposing alternative strategies to merge L and R, with each strat-
gy integrating the edits between branches in distinct ways. Safe-
erge (Sousa et al., 2018) checks if a merging scenario introduced
ew semantics. RPredictor complements all these techniques, as
t models and predicts developers’ resolution preferences.

MergeHelper (Nishimura and Maruyama, 2016) records the
hronological sequence of edit operations made by programmers
n the Eclipse Java editor. Given two branch versions —L and R—
hat conflict with each other, MergeHelper explores the recorded
dit sequences before both versions, to locate the most recent
napshot that appears in the evolution history and is consistent
ith L and R. In other words, MergeHelper rolls back edits ap-
lied by both branches, until finding an intermediate version that
ccurs just before the first conflict was introduced. It provides
etailed edit information to help developers understand how con-
licts got introduced, but does not suggest resolution strategies as
Predictor does.
DeepMerge (Dinella et al., 2023), MergeBERT (Svyatkovskiy

t al., 2022), and GMerge (Zhang et al., 2022) automatically
esolve conflicts using deep-learning methods. However, Deep-
erge only focuses on conflicts with less than 30 lines (Svy-
tkovskiy et al., 2022); it is not applicable to more complicated
onflicts. Given a textual conflict, both DeepMerge and Merge-
ERT are designed to integrate partial edits from L and R for
esolution, instead of proposing KL or KR. GMerge does not focus
n textual conflicts; instead, it deals with a different type of
erge conflicts where conflicting edits can be co-applied to the
erged version but trigger semantic errors. RPredictor comple-
ents the learning-based approaches mentioned above. That is,
Predictor can predict conflicts that get resolved by KL or KR

(the majority, according to the literature), and when Rpredictor
predicts ME, it can be complemented with an alternative method
(like DeepMerge or MergeBERT) to automate a resolution based
on the combination of lines.

9. Conclusion

Software merge is complex and time-consuming. People de-
ined the term ‘‘Integration Hell’’ to refer to the challenges of
ddressing merge conflicts. Although many tools were proposed
o detect and even resolve merge conflicts, little tool support
s available to automatically resolve conflicts by observing and
imicking developers’ resolution strategies. Consequently, exist-

ng tools mainly pinpoint issues of merge conflicts, rarely pro-
iding solutions to those issues. In this paper, we conducted
he first characterization study to explore any statistical corre-
ation between 12 features of merge conflicts and developers’
esolution strategies. Our study shows for the first time that all
f the explored features can help predict developers’ resolution
trategies.
Motivated by our study, we also designed and implemented

novel approach—RPredictor—to predict developers’ resolution
strategy, given a merge conflict and its related software reposi-
tory. Our comprehensive evaluation of the tool with a large-scale
14
dataset containing 74,861 resolved conflicts showed that RPre-
dictor effectively predicted resolutions. By training prediction
models with the random forest (RF) algorithm, RPredictor could
achieve 63% precision, 62% recall, 63% F-score, and 82% C-score
for within-project prediction; it also got 46% precision, 47% recall,
46% F-score, and 76% C-score for cross-project prediction. Our
sensitivity analysis shows that compared with other machine-
learning (ML) algorithms, RF achieved the best results when being
used in RPredictor; RPredictor is sensitive to both the amount
and age of training data; as more training data is provided,
RPredictor’s effectiveness increases or stabilizes. Developers can
also customize RPredictorv ’s thM threshold to more or less often
predict M resolutions, making it save less or more effort.

In the future, we will explore more features and more ML
algorithms, to further improve the representativeness of our char-
acterization study and to strengthen the capability of RPredictor.

Research artifact

We made available the research artifact for our paper (Aldndni
et al., 2022).
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