Check for
Updates

Compiler-directed Migrating API Callsite of Client Code

Hao Zhong
Shanghai Jiao Tong University, China
zhonghao@sjtu.edu.cn

ABSTRACT

API developers evolve software libraries to fix bugs, add new fea-
tures, or refactor code, but the evolution can introduce API-breaking
changes (e.g., API renaming). To benefit from such evolution, the
programmers of client projects have to repetitively upgrade the
callsites of libraries, since API-breaking changes introduce many
compilation errors. It is tedious and error-prone to resolve such
errors, especially when programmers are often unfamiliar with the
API usages of newer versions. To migrate client code, the prior
approaches either mine API mappings or learn edit scripts, but both
the research lines have inherent limitations. For example, mappings
alone cannot handle complex cases, and there is no sufficient source
(e.g., migration commits) for learning edit scripts.

In this paper, we propose a new research direction. When a li-
brary is replaced with a newer version, each type of API-breaking
change introduces a type of compilation error. For example, renam-
ing the name of an API method causes undefined-method errors
at its callsites. Based on this observation, we propose to resolve
errors that are introduced by migration, according to their locations
and types that are reported by compilers. In this way, a migration
tool can incrementally migrate complex cases, even without any
change examples. Towards this direction, we propose the first ap-
proach, called LiBCATcH. It defines 14 migration operators, and in a
compiler-directed way;, it exploits the combinations of migration op-
erators to generate migration solutions, until its predefined criteria
are satisfied. We conducted two evaluations. In the first evaluation,
we use LIBCATCH to handle 123 migration tasks. LIBCATCH reduced
migration-related compilation errors for 92.7% of tasks, and elimi-
nated such errors for 32.4% of tasks. We inspect the tasks whose
errors are eliminated, and find that 33.9% of them produce identical
edits to manual migration edits. In the second evaluation, we use
two tools and LIBCATCH to migrate 15 real client projects in the
wild. LIBCATCH resolved all compilation errors of 7 projects, and
reduced the compilation errors of 6 other projects to no more than
two errors. As a comparison, the compared two tools reduced the
compilation errors of only 1 project.

CCS CONCEPTS

- Software and its engineering; - Software creation and
management — Software evolution; « Software notations and
tools — Software maintenance tools;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3639084

Na Meng
Virginia Polytechnic Institute and State University, USA

nm8247@cs.vt.edu

KEYWORDS
Code migration, Compiler, and API library

ACM Reference Format:

Hao Zhong and Na Meng. 2024. Compiler-directed Migrating API Callsite
of Client Code. In 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE "24), April 14-20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3597503.3639084

1 INTRODUCTION

API developers constantly repair bugs and implement new features
for libraries. To benefit from a new library, programmers shall
update their code to call newer versions. For example, the cyberse-
curity & infrastructure security agency (CISA) warns that the no-
torious vulnerability, cvE-2021-44228, affects Apache log4j 2.0-beta9
to 2.14.1 [4]. After Apache developers fix this vulnerability, they
ask client programmers to update their libraries and call newer
versions [3]. When updating libraries, programmers must resolve
many compilation errors, since new libraries contain API-breaking
changes [43, 67]. It is tedious, repetitive, and error-prone to re-
solve such compilation errors. Programmers typically are unfamil-
iar with the API usages of newer versions, but only about 20% of
API-breaking changes are documented [20].

Researchers have proposed various approaches to assist the mi-
gration of client code, and these approaches can be roughly divided
into two research lines. The first line of approach mines API map-
pings from clients, libraries, and other sources. For example, Dage-
nais and Robillard [21] infer API method mappings by comparing
how API methods are called by two versions of libraries. If API
methods are renamed, after the library is replaced, their callsites
cause undefined method errors. Replacing old API methods with
new ones can reduce undefined method errors, but mappings alone
are insufficient to migrate many other compilation errors caused
by API-breaking changes. The second line of approaches infers edit
scripts from change examples, and applies them to new code loca-
tions. As a typical approach in this research line, Meng et al. [51]
can handle more complicated edits. However, change examples are
often unavailable or expensive to craft manually. To handle this
problem, researchers extract migration commits as change exam-
ples [24, 78]. To support the migration from v1 to v, the library
versions of migration commits must be exactly from v1 to vz, since
other versions of libraries typically provide different APIs. Even
from large code repositories and with the support of advanced
techniques [41, 59], it is unlikely to extract many exactly matched
migration commits for learning. For example, in total, Xu et al. [78]
extract 3,674 migration commits from 465 projects. Among these
commits, Xu et al. [78] report that their most frequent Android
version pair (19-21) has only 63 migration commits. Migrating real
Android applications must handle more API-breaking changes. The
limitations of the above two research lines are inherent.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Each type of API-breaking change causes its corresponding com-
pilation errors. For example, renamed API methods cause undefined
method errors, and can be resolved by replacing methods. Besides
providing hints to migrate client code, compilers report which er-
ror locations require migration edits. Based on these observations,
instead of following the prior directions, we redefine the problem
of migrating client code and propose a new research direction. This
paper makes the following contributions:

e A new research direction that uses compilation errors
to guide the migration process. We reduce the migration
process to an optimization problem [14], and our direction
does not suffer from the limitations of the prior approaches.
Besides the definition itself, the inputs of our directions are
both different from the prior research lines.

e The first approach, called LiBCaTcH, that illustrates
our new direction. We propose an pragmatic, sensible ap-
proaches to migrate API callsites based on our predefined
migration operators, and it can handle more than 94% of
API-breaking changes that were reported by the prior stud-
ies [15, 16, 36]. To handle complex cases, we further propose
a migration algorithm to guide the migration process. It ap-
plies our migration operators incrementally, according to
the types and locations of compilation errors.

e Positive results on our tasks. Among our 123 migration
tasks, LIBCATCH reduced the compilation errors of 114 tasks
(95.1%), and removed all the compilation errors of 61 tasks
(49.6%). Among the 61 tasks, our edits of 24 tasks are identical
to those from programmers (39.3%). In 33 tasks, our edits
resolve all compilation errors, but programmers forget to
update them (54.1%).

e Migrated real projects in the wild. As the first attempt
to migrate real projects, we use LIBCATCH and two prior
approaches [21, 78] to migrate 15 real projects. LIBCATCH
resolved all compilation errors in 7 projects, and reduced
most errors in 6 projects. As a comparison, in total, as an API
mapping approach, SemDiff [21] resolves only 2 errors from
1 project, and as a learning script approach, Meditor [78]
resolves no compilation errors.

More details of the evaluations are listed on our website:
https://github.com/drhaozhong/libcatch.

2 RELATED WORK

The prior approaches fall into two research lines:

Mining API mapping. This research line mines API mappings
between two versions of a library. Between two versions, some
APIs are unchanged. Wu et al. [74] extract mappings of changed
methods based on how they call unchanged methods. Dagenais and
Robillard [21] extend their approach with more advanced matching
algorithms. Chen et al. [17] encode API calls and comments into
vectors and mine mappings by their distances. Meng et al. [52] com-
pare the revisions of libraries to mine API mappings. Kalra et al. [38]
match execution traces of two libraries to detect their mappings.
Xing and Stroulia [76] use the UMLDIff algorithm [77] to infer API
mappings from recorded UML changes. Besides the mappings in
the same language, researchers [56-58, 80] also mine API map-
pings across languages. Balaban et al. [13] proposed an approach to

Hao Zhong and Na Meng

Description Location

Resource
‘a The method hexToBytes(String) is undefined for the tyg SimpleAuthenticator... line 111
4 username cannot be resolved or is not a field SimpleAuthority java line 119
= Type mismatch: cannot convert from Set<Permission> 1 SimpleAuthorityjava line 128

4 ConfigurationException cannot be resolved to a type SimpleAuthenticator... line 135

(a) The reported compilation errors

1| -—authenticated = MessageDigest.isEqual (..., FBUtilities.
hexToBytes (props. getProperty (username)));

+authenticated = MessageDigest.isEqual (..., ByteBufferUtil.
hexToBytes (props. getProperty (username)).array ());

o

(b) The migration of hexToBytes

—-if (reader.equals(user.username))
+if (reader.equals(user.getName()))

~

(c) The migration of username

Figure 1: Migration instances of our example

modify client code when mapping relations of libraries are already
available. Liu et al. [46] recommend similar APIs based knowledge
graphs. The prior studies [20, 44] show that replacements alone are
insufficient to migrate many cases, but our approach can generate
more complicated edits than replacements.

Learning edit scripts. This research line learns edit scripts
from given change examples. Given an original file and its modified
file, Andersen et al. [12] extract a set of term replacements. Meng
et al. [50, 51] learn edit scripts that support more complicated edits
than replacements. Rolim et al. [66] search for a transformation that
is consistent with all given change samples. Long et al. [47] infer
AST templates from patches. Nguyen et al. [59] mine graph change
patterns from change examples. Given only a change example, Jiang
et al. [37] and Haryono et al. [31] mine where and how to apply its
transformation. Mesbah et al. [53] learn edit scripts from bug fixes
and use learned scripts to repair compilation errors. Gao et al. [28]
introduce clustering techniques to learn better scripts. Chow and
Notkin [19] apply client-code changes if API changes and transfor-
mation rules are manually defined. Henkel and Diwan [34] capture
and replay API refactoring actions to update the client code. Fazzini
et al. [24] learned scripts to migrate Android client code, and Hary-
ono et al. [32] migrate Python machine-learning APIs. Ketkar et al.
mine type mappings from a code repository [40] and apply mined
type mappings systematically [39]. Xu et al. [78] learn edit scripts
from migration commits. Wasserman [71] proposes a tool called
Refaster that refactors code based on given examples. Ossendrijver
et al. [62] extend Refaster to migrate client code. Although edit
scripts can handle complicated edits, it is challenging to extract
sufficient change examples or migration commits for mining, but
our approach does not suffer from this limitation.

3 MOTIVATING EXAMPLE

The examples directory of cassandra 1.0.0 provides an API example.
We replace its cassandra library with 3.0.e, and the replacement
causes 20 compilation errors. These compilation errors provide
valuable hints for migration. Xing and Stroulia [76] list such com-
pilation errors and ask programmers to apply migration edits.

We notice that it is feasible to apply migration edits according
to the types of compilation errors. Although applying an edit can
introduce more compilation errors, we can reduce the migration
process to an optimization problem if we define a suitable fitness

Compiler-directed Migrating API Callsite of Client Code

Table 1: API-breaking changes

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Brito et al. [16] [Brito et al. [15] [Jezek et al. [36]
[Type [% [MA [Type [% [MA [Type [% [MA
DM 44% | MA1,MA2 MA4MA7MA14 | MM 19% | MA1,MA2,MA4,MA7 1C 18% | MA1,MA2
RF 12% | MA1L,MA2,MA3 DC 17% | MA1 M 16% | MA1L,MA2,MA4MA7,MA10
RM 6% | MA1L,MA2,MA4,MA7 CPL 15% | MA6 AMC | 16% | MA13
CRT 6% | MAS RM 14% | MA1L,MA2,MA4MA7 DM 15% | MA1L,MA2,MA4MA7,MA14
CFDV | 6% | n/a MC 14% | MA1,MA2 DC 14% | MA1
AFM 10% | MA11 DF 13% | MA1,MA2,MA3
DM 5% | MA1,MA2MA4MA7MA14 | IF 8% | MA1L,MA2MA3
CRT 3% | MAS
CFDV 2% n/a
AMC 2% | MA13

DM: deleted method; MM: moved method; RM: renamed method; IM: incompatible method (e.g., changed parameter types); DC: deleted class; MC: moved class; IC: incompatible
class; DF: deleted field; RF: renamed field; IF: incompatible field; AMC: access modifier change; CRT: change in return type; CFDV: changes in field default value; CPL: changed

parameter list; AFM: added final modifier.

Table 2: Our migration operators.

[Category] Id] Migration action] Target compilation error]
MA1 Replacing undefined API elements with mappings undefined types, methods, and variables
Missing API MA2 Replacing undefined API elements with compatible ones | undefined methods and variables
elements (ME) MA3 Replacing undefined fields with getters/setters undefined fields
MA4 Replacing undefined constructors with creators undefined constructors
MA5 Generating explicit conversions class hierarchy changes (incompatible types)
Incompatible API | MAG6 Reducing or swapping method parameters incompatible methods
elements (IE) MA7 Replacing static calls with instance calls and vice versa undefined and incompatible methods
MAS Exploring declared fields and methods incompatible actual parameters
MA9 Generating method stubs unimplemented methods
More or fewer - : -
API calls (MF) MA10 | Handling exceptions unhandled exceptions
MA11 | Removing API calls undefined methods and variables
Other issues MA12 | Resolving ambiguous types ambiguous types
(Oth ;1 MA13 | Replacing invisible fields with getters and setters invisible fields
i MA14 | Removing @Override annotations deleted methods in super types

function. The prior empirical studies [15, 16, 36] report the types
of introduced compilation errors. To fulfil our vision, we design
migration operators, and our operators cover all their reported com-
pilation errors. For example, as the hexToBytes method is moved from
the FBUtilities class to the ByteBufferutil class, its callsites produce
undefined method errors as shown in the first row of Figure 1a.
For this compilation error, we define a migration operator that re-
places undefined methods with similar methods of the new library.
As this migration operator fits the compilation error, LIBCATCH re-
places the call of the hexToBytes method with a new method declared
by the ByteBufferutil class. Although the mapping is correct, the
replacement causes a type-mismatch error, since the return type
of the hexToBytes method is modified from an array to ByteBuffer.
Furthermore, we design a migration algorithm to combine simple
edits into more complicated edits. For example, based on another
migration operator that matches input and output types, LiBCATCH
explores all the methods that are declared by ByteBuffer, and calls
the array method as shown in Figure 1b. As another example, as
the Authenticateduser class hides the username field, the accesses of
this fields produce unresolved field errors as shown in the second
row of Figure 1a. LIBCATcH finds that the Authenticateduser class de-
clares a getName () method, and replaces the username field access with
this method call as shown in Figure 1c. Section 4 introduces how
LiBCarcH works, and Section 5 presents more migrated examples.

API mappings alone are insufficient to migrate this task. As
shown in this example, replacing the old hexToBytes method declared
by FBUtilities with its mapped method declared by ByteBufferutil
causes another compilation error, since its mapped method returns
a different type. Learning edit scripts from migration commits can

support challenging migrations [50, 51]. However, if a migration
commit is useful, this commit must migrate the cassandra library
exactly from 1.0.0 to 3.0.0. As cassandra has many versions, it is
unlikely to obtain sufficient useful migration commits. Section 6
presents more comparisons with the two research lines.

4 APPROACH

We use s to denote an initial solution whose library is replaced
with a newer version. To resolve the compilation errors in s, we
define a set of migration operators (A), and we use § to denote a
migration operator. If a solution has compilation errors, based on
the types of compilation errors, we select the suitable migration
operators, and apply them to the corresponding error locations. For
a given initial solution (s), after applying on s, s is modified to a
new solution, s’ € S’, where S’ is the set of new solutions. When
programmers migrate the initial solution, they must resolve all its
compilation errors. As a result, for a candidate solution (s”), we
define its fitness function value as the number of compilation errors
f(s”). We thus reduce the migration process to an optimization
problem that minimizes the following function:

min £(s'))

Our approach includes predefined migration operators (Sec-

tion 4.1) and a guidance algorithm (Section 4.2).

4.1 Migration Operator

Table 1 lists the API-breaking changes reported by the prior stud-
ies [15, 16, 36] and our corresponding migration operators. For

ICSE °24, April 14-20, 2024, Lisbon, Portugal

example, oM denotes that an API method is deleted. If it is a con-
structor, MA5 resolves the problem; if it is a static method, MA7 resolves
it; and MA1 and MA2 handle the other cases. Among all the breaking
changes, only the changes in field default values (CFDVs) are unhan-
dled by our migration operators, and they account for 2% to 6% of
the total changes. As they introduce no compilation errors, they are
not API-breaking changes, and other researchers (e.g., [15, 16, 36])
do not consider CFDVs as API-breaking changes either. CFDVs is a
type of behavioral backward incompatibility as reported by Mostafa
et al. [55].

Table 2 shows our migration operators and target compilation
errors. For each category, we recreate its challenges when designing
its migration operators. When we design our migration operators,
we learn how the prior approaches in Section 2 resolve correspond-
ing compilation errors. After that, we learn how to handle related
compilation errors, and construct our migration operators. We im-
plement our migration operators on Spoon [63], which is a library
that allows the analysis and modifications of Java code. Although
our initial solutions have compilation errors, it is still able to gener-
ate correct modifications, since replacing libraries does not intro-
duce syntactical errors.

4.1.1 Missing APl elements. This category includes undefined types,
undefined methods, undefined fields, invisible code elements, and
incompatible methods. LiIBCaTcH implements the following migra-
tion operators to resolve these types of compilation errors:

MA1. Replacing API elements with mappings. For two API ele-
ments of the same type, LIBCATCH uses the Levenshtein edit dis-
tance of their full code names to calculate their distance. The Hun-
garian algorithm [42] is a classical algorithm to extract the best map-
pings between two sides of items. This algorithm has been used to
compare the graphs of buggy and fixed files [81]. LIBCATCH uses the
Hungarian algorithm to search for the mappings that can minimize
the overall distance. The prior approaches mine API mappings from
clients, documents, and traces. They will fail when such sources
are unavailable. As a comparison, we can mine more mappings,
since all APIs have names. For an undefined element, MA1 queries
mined API mappings using the full name of the code element as the
keyword. If a replacement is found, MA1 replaces the undefined ele-
ment with the replacement. For the example in Section 3, LIBCATCH
replaces the missing IAuthority interface with the IAuthenticator in-
terface, since the mapping IAuthority—IAuthenticator is extracted.
Like most approaches in the first research line of Section 2, Lis-
CATCH mines only one-to-one mappings, but it can combine simple
edits to migrate complicated cases (see Section 4.2).

MA2. Replacing undefined API elements with compatible ones. If a
method or a field is undefined, MA2 searches the code elements of
the newer library, to locate its compatible matches. A compatible
code element has a similar name, and introduces no more compi-
lation errors, after it replaces the missing one. The similarity is
defined as the reciprocal of the Levenshtein edit distance between
code names. Based on our empirical results, we consider only the
top ten similar items. Our other migration operators have other
default values and settings, but we cannot evaluate all their impact
due to space limit. We list all these issues in Section 8, and leave
the tuning problem to future work.

Hao Zhong and Na Meng

MAZ3. Replacing undefined fields with getters or setters, and vice
versa. If a field is missing, MA3 will replace it with its getters or
setters. When this happens, a field name is typically similar to the
names of its getter and setter. For example, the sample of Section 3
uses the username field of the Authenticateduser type. In 3.0.0, this
public field is changed to private. To handle the problem, LiBCATCH
replaces the field with the getName method. Here, it first removes get
or set from getters and setters. After that, it calculates the Leven-
shtein edit distances between the remaining method names and the
field names, and selects the one with the least distance. Meanwhile,
if a getter or a setter of a field is deleted, LiBCATcH will try to
replace it with the field.

MA4. Replacing undefined constructors with creators. To imple-
ment a Factory design pattern, API developers can delete or hide
the constructors of a class, and implement creators for the class.
MA4 will replace such deleted and hidden constructors with their
creators. For example, the samples of cassandra 0.8.8 call the con-
structor of the ColumnFamily type, but the constructor is hidden in
later versions. Instead, columnFamily implements a set of static meth-
ods to create the type. LIBCATCH replaces the constructor with these
creators to resolve the compilation error. LIBCATCH determines that
a method is a creator, if its name contains “create” and its return
type is the declaring class.

4.1.2 Incompatible API elements. This category includes conver-
sion errors, and incompatible/undefined methods. LiBCATCH imple-
ments the following migration operators:

MAS5. Generating explicit conversions. To resolve type conver-
sion errors, MA5 adds cast expressions. For example, the types of
following statement are mismatched:

1

authorized = Permission.ALL; ‘

To resolve the problem, LiBCaTcH adds an explicit cast:

1

authorized = (EnumSet<Permission >) Permission.ALL; ‘

MAG6. Reducing or swapping method parameters. When the signa-
ture of a method is changed, JDT can report incorrect overridden
methods if the method is overridden, or incompatible methods if
the method is directly called. Lamothe and Shang [44] also notice
the problem, and introduce a case (i.e, the queue(Bytebuffer, int)
method), in which the second actual parameter must be removed.
Following their suggestions, LIBCATCH compares the new signa-
ture of its actual parameters of a callsite. If a parameter is deleted,
LiBCATCH removes its corresponding actual parameter from the
callsite. Alternatively, if the parameter order is changed, LIBCATCH
reorders the parameters based on parameter types.

MA7. Replacing static calls with instance calls, and vice versa. If a
static method is deleted, MA7 will replace it with instance methods,
and vice versa. For example, the samples of cassandra 0.8.0 call Byte-
BufferUtil.bytes(key) to obtain the bytes of key, but later versions
delete the static method. The type of key is Text, and in the later
versions, an instance method getBytes() is added to Text to obtain
the bytes of key. To resolve the error, LIBCATCH replaces the static
method call with key.getBytes().

MAS. Exploring declared methods and fields of an incompatible
type. If a method has an actual parameter whose type is Type1 but the
desirable one is Type2, MA8 explores all the fields and methods that

Compiler-directed Migrating API Callsite of Client Code

are declared by Type1. If the type of a field is Type2, MA8 modifies
the actual parameter to reference this field. Similarly, if the return
type of a method is Type2, MA8 modifies the actual parameter to
call this method.

4.1.3 More or fewer API calls. Programmers can add or delete API
calls to resolve compilation errors during migration. LIBCATCH
imitates the process to resolve these errors.

MAD9. Generating method stubs. Suppose that a client-code class
(cc) extends an API abstract class (ac) and implements an interface
(A1), and in a follow-up version, a new abstract method is added to
AC, or a new method is added to AI. cc must implement the newly
added method in both cases to avoid compilation errors. If JDT re-
ports that a type (c) does not implement a method (m), MA9 searches
the super classes of ¢ for the signature of m. With the found sig-
nature, LIBCATCH generates a method stub for c. For example, the
example of 0.8.0 has a SimpleAuthenticator class, which implements
the IAuthenticator interface. A later version adds more methods to
the interface, but the class does not implement the added methods.
As a result, the migrated example produces a compilation error:
“The type SimpleAuthenticator must implement the inherited abstract
method IAuthenticator.requireAuthentication()”. To resolve the prob-
lem, LIBCATCH generates a method stub inside SimpleAuthenticator:

public boolean requireAuthentication () {
//todo: Please implement the method.
return false;}

N

w

After the method stubs are generated, programmers have to
implement its method body. As this migration operator indicates,
programmers have to implement new code, when they migrate
code to call newer APIs.

MA10. Handling exceptions. If the thrown exceptions of a method
are modified, JDT can report exception-related errors. MA10 adds
throw expressions or try-catch statements at error locations to re-
move such errors. For example, the keyspace method of cassandra
1.2.0 throws two exceptions, but later versions throw three excep-
tions. As a result, when we migrate the examples of cassandra 1.2.0
to later versions, JDT reports a compilation error that an exception
is not handled. LiBCATcH produces a solution with an added throw
expression and a solution with an added try-catch statement.

MAT11. Removing API calls. Programmers can remove API calls,
since their corresponding API elements are removed. For example,
an example of poi 3.16 calls the following method:

1| boldFont.setBoldweight (...COLOR NORMAL.BOLDWEIGHT_BOLD) ;

As the later versions delete BOLDWEIGHT_BOLD, the above code pro-
duces a compilation error during migration. In the newer version of
this example, programmers delete this code line to resolve the com-
pilation error. Section 5.3.2 provides another similar example from
cassandra 1.2.0-beta3. This migration operator imitates the above
manual edits. To reduce the possibility of removing useful code
lines, LIBCATCH removes at most one line each time. As removing
useful code lines introduces compilation errors, applying this mi-
gration operator often produces solutions with more compilation
errors, and Line 18 of Algorithm 1 is unlikely to add such solutions
to the next pool.

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Algorithm 1: the migration Algorithm

Input:

p is the project whose library is replaced with a newer version.
Output:

p’ is the migrated project.

N add)
1: errors«— compile(p); poole— p; nobetter«— 0; generation«— 0;
2: while errors # () and nobetter<10 and generation<100 do
3: nextpoole 0 ;
4 for p € pool do
5 errors«— compile(p);
6: for error € errors do
7 op«— operator(error); solution« apply(op, p);
8

add .
: nextpool«— solution;
9: end for
10: end for
11: best« best(pool); nextbest«— best(nextpool);
12: if compile(nextbest)<compile(best) then

13: errors«—compile(nextbest);
14: nobetter«0;p’ « nextbest;
15: else
16: nobetter«—nobetter+1;
17: end if
)) topl0
18: generation«— generation+1; pool «— nextpool;

19: end while
20: p’ « best(pool);

4.14 Other issues. LIBCATCH implements several migration oper-
ators to handle other issues of updating client code.

MA12. Resolving ambiguous types. This migration operator is
designed to resolve ambiguous types. If JDT reports that a type is
ambiguous, MAI2 generates a precise import statement to resolve
the problem. As LiBCATCH works in a try-and-validate manner, it
does not have to determine which type is the correct type. Instead,
it generates a solution for each ambiguous type. For example, the
examples of cassandra 1.2.0 import all the types of two packages:

import org.apache.cassandra.db.«;
import org.apache.cassandra. thrift .«;

~

As the later versions implement two ConsistencyLevel types un-
der the above packages, JDT reports that the type is ambiguous.
LiBCaTcH replaces the above statements with:

1| import org.apache.cassandra.db. ConsistencyLevel;

LiBCATCH generates a solution for each possible type. In the
other solution, it replaces the above statement with the consistency-
Level type under the thrift package. This solution is discarded, since
it introduces more errors.

MA13. Replacing invisible fields with getters and setters. If an up-
dated library hides visible fields, JDT reports that fields are invisible.
MA13 replaces such field accesses with getters and setters. Figure 1c
presents an example.

MA14. Removing the eoverride annotation. If a client-code method
overrides an API method, this client-code method will be marked
with a eoverride annotation. If this API method is deleted, the an-
notation will cause a compilation error. To resolve the error, MA14
removes the eoverride annotation from the client-code method.

4.2 Guiding the Migration Process

As shown in Algorithm 1, LiBCATCH works in a try-and-validation
manner. Line 2 stops when (1) a solution without compilation errors
is synthesized; (2) no better solutions are found in the recent ten

ICSE °24, April 14-20, 2024, Lisbon, Portugal

generations; or (3) it fails to resolve all the compilation errors within
one hundred generations. For each solution in our pool, Line 5
compiles it to collect its compilation errors. An error location is
a code element, which introduces a compilation error after API
libraries are updated. L1BCATcH uses JDT [1] to extract compilation
errors, since we focus on updating Java code and JDT is the built-in
compiler of the Eclipse IDE. When JDT locates a compilation error,
it reports the code range of the error. Based on each code range and
its corresponding Abstract Syntax Tree (AST), LIBCATCH locates
its code element with errors. Besides code ranges, JDT reports the
types of compilation errors. For example, if it fails to resolve a
type named A, JDT reports its error message: “A cannot be resolved
to a type” From JDT, LiBCATCH extracts the types of compilation
errors. As shown in Line 7, for each type of compilation error,
LiBCATCH enumerates all feasible migration operators as defined in
Section 4.1 to generate solutions. Line 8 adds new solutions to a new
pool. Line 11 obtains the best solutions from both pools. The best
solution has the fewest compilation errors. Line 12 compares the
best solutions from the two pools. If the new pool does not contain
a better solution, Line 16 increases nobetter. If it does, Lines 13 and
14 reset the variable and assign the better solution to p’. Line 18
increases generation, and selects the top ten unique solutions from
the new pool. It determines that two solutions are duplicated, if
their compilation errors are identical.

Ni et al. [60] propose an approach that migrates deep learning
clients from calling TensorFlow to PyTorch. They use the messages
of compilation errors to guide their migration process. LIBCATCH is
built upon JDT [1]. JDT produces a unique error ID for each type of
compilation errors. LIBCATCH uses the Ids to select operators, since
they are more reliable than messages. In addition, JDT reports the
code elements that trigger compilation errors. LIBCATCH applies
selected migration operators to such code elements. For example,
if an error Id is related to undefined methods, according to Table 2,
LiBCATCH can select MA1 and apply the change to the method call
inside the code element that triggers the error.

Many other software engineering problems can be reduced to op-
timization problems [30], and similar algorithms have been widely
used in various SE research topics such as generating test cases [68],
planning release time [29], repairing bugs [54, 73], refactoring [61],
and estimating development cost [35]. When repairing bugs [54, 73],
researchers [65] criticize that some bugs are not fully fixed, due to
various technical challenges. For example, one of the challenges
lies in the difficulty to generate full test inputs and oracles [45]. Al-
though our migration algorithm also works in a try-and-validation
manner, our target problem is simpler. We do not take test cases as
our inputs, and our approach is less suffered from the challenges of
repairing bugs.

5 EVALUATION ON BENCHMARK

We conduct evaluations to explore the research questions:

(RQ1) How effective is LiBCATCH (Section 5.2)?

(RQ2) What are the differences between manual updates and those
from LiBCATCH (Section 5.3)?

(RQ3) How effective are only API mappings (Section 5.4)?

Hao Zhong and Na Meng

Table 3: The subjects.
Name [FV | LV [TV [Class | Field [Method

accumulo | 1.3.6 1.9.2 29 99 119 182
cassandra | 0.8.0 | 3.11.2 | 162 82 57 63
karaf 1.6.0 4.23 72 19 7 25
lucene 1.9.0 7.4.0 92 169 173 107
poi 3.0 4.0.1 21 458 833 1,193

5.1 Benchmark and Measure

Table 3 shows the subjects to build our benchmark. We select these
projects, since they provide the archives of all their versions and
they provide API usage examples in their released source files. In
this section, all the projects are collected from the Apache Foun-
dation, but in Section 6 we select projects from Github to collect
diverse subjects. Column “FV” lists the first versions. Column “LV”
lists the last versions when we wrote the paper. Column “TV” lists
the number of the total versions. We select their API usage exam-
ples to build our migration tasks. For these examples, Columns
“Class”, “Method”, and “Field” show the number of unique class
APIs, method APIs, and field APIs that are used by those examples.

The tasks of the prior benchmarks [24, 28] are derived from
migration commits, but most commits have compilation errors that
are unrelated to differing versions of libraries [69]. As such errors
mislead our approach, we do not reuse the prior benchmarks [24,
28]. Still, even if we did not include their tasks, our migration
tasks involve many more APIs than the combination of all prior
benchmarks. For example, the migration tasks of Gao et al. [28]
involve 13 APIs, and those of Fazzini et al. [24] involve 20 APIs.
As migration commits are difficult to obtain, the prior benchmarks
use only several pairs of library versions. As a comparison, our
tasks involve hundreds of API classes, and more than one hundred
version pairs. Section 5.2.1 introduces how to build our tasks.

To evaluate the correctness of migrated code, researchers calcu-
late the compilation errors of migrated code [56, 80] or compare
migration code with the results of humans [24, 28]. We followed
the same practice and used both measures. In RQ1 and RQ3 of this
section, we calculate the compilation errors of migrated code. In
RQ2, we compare our fully migrated code with manual edits. In
Section 6, we calculate the compilation errors of migrated projects,
and we manually analyze the root causes of unsuccessful cases.

5.2 RQ1. Reduced Compilation Errors

5.2.1 Setup. When an API usage example is shipped with a library
whose version is v1, the example must call the APIs that are declared
by vi. For each example, we replace its library dependency from
v1 to the next version, v2, to build a migration task. If an example
produces compilation errors after its library is replaced, we consider
this example as a migration task. In Table 4, Column “Total” shows
the total number of tasks. There are fewer tasks than the total
combinations of version pairs, since some next versions do not
introduce API-breaking changes or such changes are not called.

5.2.2 Result. Table 4 shows the result. Column “Total” lists the
total tasks. Column “LiBCATCH” lists our migration results. As
defined in the semantic versioning [2, 49], the first number of a
version indicates that the library has API-breaking changes. We
notice that this rule is do not apply in all libraries. For example,

Compiler-directed Migrating API Callsite of Client Code

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Table 4: The migration results on our benchmark.

LiBCATCH MA1 (Only mappings)

Name Total [[T[+JRl] % Jerror[solution | -] | [+]fll[% [error [solution
accumulo 4] 2310 11[458% [36 1740 23] 1] 0J00%][-13 0.2
cassandra | 72 | 71 [1] 0] 43[597% [37 179 [3] 66 [3] 0]00% [00 0.2

karaf 3| 210 1]333% 23 1730 3[0] ofo00%n| 00 0.0

lucene 13] 9fafo] 2]154%| 90 256 3] 100 o]o00%| 15 0.6

poi 1] 9fz2]o0] 4[364% | 135 417 [1] 9] 1] o]o0%]| o2 0.6
[total [123[114[9J 0] 61[496% [51[207[7[11[5] 0]00%] -01] 03]

Table 3 shows that the first number of accumulo does not change,
but we builds 23 tasks from this library. In the contrast, as accumulo
more strictly follows this rule, we build only three tasks from this
library (1.6.0->2.0.0, 2.1.2->2.1.3, and 4.2.2->4.2.3), and two tasks
are between major versions.

Subcolumns “-”, “|”, and “+” show tasks whose compilation er-
rors are reduced, unchanged, and increased, respectively. LIBCATCH
reduces the compilation errors for 95.1% (114/123) of tasks, without
increasing such errors in any tasks. Subcolumns “full” shows the
number of migrated tasks whose compilation errors are eliminated.

Subcolumns “%” are calculated as %. In total, LiBCATCH elimi-
nates compilation errors in 49.6% of tasks. Subcolumns “error” show
the averages of reduced compilation errors per task. Subcolumns
“solution” show the averages of generated solutions per task.

As the next versions of libraries often have trivial changes,
most tasks have few compilation errors. In 48 tasks, each task
has only a compilation error. LiBCATcH fully fixed 45 of them. The
other 16 fully fixed tasks have more compilation errors. Several
tasks have hundreds of compilation errors. LiBCaTcH did not fully
fix them but reduced their compilation errors. For example, the
lucene4.6.1->lucene4.7.0 task has 141 compilation errors, and Li-
CarcH reduced them to 73. Intuitively, a migration task becomes
more challenging if two versions are more different. Open source
communities have implemented tools to warn programmers of dep-
recated libraries. For example, Github has released Dependabot [75].
If Dependabot is enabled, it can submit pull requests if new ver-
sions of libraries are released. He et al. [33] report that Dependabot
reduces the time of upgrading libraries. With such supports, pro-
grammes can update libraries between near versions, which are
less challenging for tools like LiBCATCH.

In summary, our results show that LIBCATCH reduces the compi-
lation errors in 95.1% of tasks, and 49.6% of tasks are fully resolved.

5.3 RQ2. Comparison with Manual Migration

5.3.1 Setup. InRQ1, 61 tasks were fully migrated. In this RQ, we
manually inspected all these tasks. Each task illustrates a migration
process, in which the library of an example is replaced with the
next version. If programmers update API examples, we compare
the edits of programmers with the edits of LiBCaTcH. However,
programmers can forget to update API usage examples. First, as
early code repositories do not provide the support of continuous
integration, their compilation errors are not identified. Second, as
examples are used to illustrate API usage, they are shipped in the
format of source files. As they are not included in compiled code,
build scripts often exclude them from compilation. In these tasks,
LiBCATCH eliminates compilation errors but programmers leave

them unfixed. Here, we do not ask programmers to check our edits,
since they are interested in checking bugs in the latest versions but
most tasks are not built from the latest versions.

5.3.2 Result. Based on our inspection results, we classified the
tasks into four categories:

1. In 24 tasks, our migrated projects are identical to manual mi-
grations. For example, the task of cassandra 1.0.0 has an error: “The
method hexToBytes(String) is undefined for the type FBUtilities”.
LiBCatcH replaces the method call with hexToBytes(String) of the
ByteBufferUtil type, which is identical to manual migrations.

2. In 33 tasks, programmers forget to update obsolete API exam-
ples, but LIBCATCH removes all their compilation errors. These API
examples are confusing for client programmers, since they even
do not compile. For example, in the example of cassandra e.8.1, the
CassandraBulkLoader class is as follows:

1| baseColumnFamily = new ColumnFamily(ColumnFamilyType.Standard ,
DatabaseDescriptor.getComparator (keyspace , columnFamily),
DatabaseDescriptor.getSubComparator (keyspace, columnFamily
), CFMetaData. getld (keyspace , columnFamily));

As the columnFamily constructor is deleted since o.8.1, the above
code produces a compilation error. The compilation error is not
fixed from cassandra 0.8.1 to .8.10. Although programmers fix this
error in later versions, we cannot find a manual reference that
illustrates how to migrate the example frome.8.0 to 0.8.1. LIBCATCH
replaces the constructor with a creator:

1| baseColumnFamily = ColumnFamily.create (CFMetaData. getId (
keyspace, columnFamily));

3. In 2 tasks, programmers delete API examples. For example, the
task of cassandra 1.2.0-beta3 has a code line:

1| EnumSet<Permission> authorized = Permission .NONE;

As the type of Permission.NONE is modified to Set<Permission> in
the later versions, the above code example produces a type mis-
match. LIBCATCH adds an explicit cast to resolve it:

1| EnumSet<Permission > authorized = (EnumSet<Permission >)
Permission .NONE;

Programmers delete this example from the later versions, so we
cannot compare our modifications with manual migrations.

4. In 2 tasks, programmers modify library code. For example, in
our task, the example of lucene 4.0.0 has an error: “The constructor
TextField(String, BufferedReader) is undefined”, since its next ver-
sion deletes this constructor. LIBCATCcH modifies client code to call
other constructors. The programmers of lucene revert the deletion
to resolve the issue, but their API example is unchanged.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

In summary, in 24 tasks, our migration edits are identical to man-
ual modifications, and in 33 tasks, compilation errors are ignored
by programmers but are resolved by LiIBCATCH.

5.4 RQ3. Migrating with Only API Mapping

5.4.1 Setup. As mining API mappings is an important research
line, it is interesting to explore the effectiveness of our approach,
if it migrates code with only such mappings. In this research, we
enable only MA1 of LiBCATCH to update code, and compare its
results with those in RQ1.

5.4.2 Result. In Table 4, Column “MA1” lists the migration results
of only mappings. Compared with Column “LiBCATCH”, MA1 does
not change the compilation errors for more than 90% of tasks, and
for five tasks, it even increases errors. Although MA1 reduces the
compilation errors of seven tasks, it fails to fully migrate any task.
The results indicate the mappings alone are insufficient to migrate
many complex cases. The next section makes a further comparison.

6 MIGRATION IN THE WILD

In this section, we use LIBCATCH and other tools to migrate real
projects in the wild. LiBCaTcH takes different inputs from the prior
tools. As their inputs cannot be aligned, the comparison results
do not indicate better techniques. Still, it illustrates the situations,
when programmers use tools to migrate their code.

6.1 Compared Tools

As we introduced in Section 1, the prior approaches fall into two
research lines. From each research line, we select a typical approach.

For mining API mappings, we select SemDiff [21], since it won
the ACM SIGSOFT distinguished paper award and we are unaware
of more recent approaches in this research line. SemDiff [21] recom-
mends replacements for API methods. In this section, we compare
LiBCaTcH with SemDiff. As SemDiff does not include techniques
to modify client code, we assume that it can resolve a compilation
error, if it recommends a correct replacement.

For learning edit scripts, we select Meditor [78], since its project
website [11] provides both its source code and the collected migra-
tion commits. We do not select APIFix [28], since it has an unfixed
compilation error [5] and it does not released the collected mi-
gration commits. Meditor [78] infers edit scripts from migration
commits, and it extracts migration commits from Github. As Github
has a limit for retrieving its contents [8], retrieving migration com-
mits is troublesome, and it takes much more time than inferring
edit scripts. As Meditor releases their collected migration commits
on their website, we can save the collection effort.

6.2 Setting

As the first approach of a new research line, our approach takes
different inputs from the prior research lines. Our benchmark does
have some inputs that are required by the prior approaches. For
example, prior approaches [24, 28] need change examples to learn
edit scripts, but we do not need such inputs. Although it is infeasible
to conduct a fair controlled experiment, it is feasible to derive
interesting findings, if these tools are evaluated in the wild. The
results can be useful for understanding the benefits and pitfalls of

Hao Zhong and Na Meng

migration tools in real development. In Section 6, we select two
tools [21, 78] from the other research lines, and compared those
tools with LIBCATCH in terms of migrating real projects.

In this section, we focus on lucene, since it is a popular library.
Other researchers also select lucene in their studies. For example,
the only overlapped subject between Xu et al. [78] and ours is lucene.
All the subjects in Section 5 are collected from the Apache Founda-
tion. As a supplement, all the subjects in this section are collected
from Github. In particular, we select a project (p) if it satisfies the
following five criteria: (1) p uses any of lucene’s versions lower
than 7.4.0; (2) p uses Maven as the build system, because Maven
allows us to easily change the version information of any library
dependency; (3) p can be successfully built without any compi-
lation errors; (4) p is not a toy project according to the project’s
description, and we also require that p should be forked and have
stars; and (5) p does not call solr. If the version of solr does not
match the version of lucene, it causes compilation errors, but we
cannot resolve compilation errors in the jar files of solr. As a result,
we remove such projects. Table 5 shows our selected projects. In
total, we selected 15 projects. Here, as we need to manually inspect
whether the mappings from SemDiff are useful, we cannot afford
selecting more projects. Except in three projects, compilation errors
occur when the first number of the version changes.

Column “LOC” lists the lines of code. Column “EL” lists the ver-
sions of their existing lucene. Column “UL” lists the versions of the
updated lucene library. For each project, we increase the version of
its lucene library, until the breaking changes of that version cause
compilation errors. We use this strategy to minimize the compila-
tion errors in a task, since it takes too much manual effort to inspect
the results of SemDif.

Column “Compilation error” lists the number of compilation
errors, when lucene is updated to newer versions. The categories of
compilation errors are defined in Table 2. Subcolumn “All” lists all
compilation errors. As shown in Row “Total”, first, 39.2% of compi-
lation errors are caused by missing API elements. API mappings
can resolve these errors. Second, 20.7% of compilation errors are
caused by incompatible calls. These errors can be partially resolved
by swapping method parameters. Finally, 16.5% of compilation er-
rors need to add or remove API calls. These errors can be partially
resolved by generating method stubs. The remaining 6.0% of com-
pilation errors need other edits.

As we have no manually migrated references for these projects,
in this RQ, we use the number of compilation errors to measure the
quality of migrated projects. We released our migrated projects on
our website, so other researchers can recheck the correctness of
our migrated results.

6.3 Result

In Table 5, Columns “LibCatch”, “SemDiff”, and “Meditor” show
the results of the three tools, respectively. Subcolumn “#” lists the
number of total compilation errors in migrated projects, and Sub-
column “A” shows the number of reduced compilation errors. For
SemDif, we manually try its replacements to determine whether it
can resolve a compilation error. According to the results, we classify
the projects into three categories:

Compiler-directed Migrating API Callsite of Client Code

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Table 5: The migration results in the wild

Compilation error LibCatch | SemDiff | Meditor

Project LOC EL UL [ME [IE [MF [Other [All [# [A # [A]# A
explicit-semantic-analysis 1,146 | 4.8.1 5.0.0 15| 6 2 0] 23| 0 231 23| 0| 23| 0
flea-db 1,664 | 4.10.3 | 5.0.0 2 4 0 0 6 0 6 4| 2 6|0
IKAnalyzer 2,509 | 4.10.0 | 5.0.0 4 1 1 1 7 0 7 710 710
stemmer-sk 303 | 5.3.1 6.3.0 1 1 0 0 2 0 2 210 210
lucene-layer 2,377 | 4.4.0 4.5.0 0 0 10 0 10 0 10 10 0 10| 0
lucene-generic-highlighter 155 | 3.5.0 | 4.0.0 310 0 0 310 3 310 310
lucene-multilingual 488 | 3.6.0 | 4.0.0 91 0 0 0 91 0 91 0 910
Iqt 1,222 | 6.1.0 7.0.0 4 1 0 0 5 1 4 510 510
greplin-lucene-utils 3,957 | 3.5.0 | 3.6.0 41 0 1 12| 17| 1 16| 17| 0| 17| 0
LuceneQueryExpansion 5,566 | 4.8.1 500 | 14| 4 0 0| 18| 3 16| 18| 0| 18| 0
word2vec-query-expansion 986 | 4.6.1 5.0.0 7| 2 2 0 11 1 10 1] 0 11| 0
lire 20,342 | 42.0 | 500 | 23|15 0 1 39 1 38 39| 0| 39| 0
anserini 9,282 | 6.3.0 7.0.0 1 0 14 0 15 1 14 151 0 15| 0
lucene-interval-fields 503 | 3.5.0 |4.00 | 19| 7 9 0| 35| 9 26| 35| 0] 35| 0
marple 1,579 | 6.5.1 700 | 29| 8 0 0] 37|21 16 | 37| 0| 37| 0

[Total [52079 [n/a [n/a [93[49] 39 14[237[38] 200[235] 2[237[0]

EL: the existing lucene; UL: the updated lucene; ME, IE, MF, and Other are defined in Table 2; #: the compilation errors in updated code; and A: the reduced compilation errors.

1. In 7 projects (46.7%), LIBCATCH resolves all the compilation er-
rors; SemDiff can resolve the 2 compilation errors of only flea-db; and
Meditor resolves no compilation errors. flea-db [22] is a database that
supports the persistence of objects. It has 2,611 lines of code, and
is built on lucene 4.10.3. In this migration task, we also replaced
its lucene library with 5.0.0. The replacement introduced 6 compi-
lation errors, including 2 undefined methods and 4 incompatible
parameters. LIBCATCH resolved all the six compilation errors. After
inspecting its migration log, we find that MA6 resolved 3 compila-
tion errors; MA8 resolved 2 compilation errors, and MA11 resolved
1 compilation error. For example, a modification is as follows:

1| -TopFieldCollector.create (this.sort, 1, null, false, false,
false, false);

2| +TopFieldCollector.create (this.sort, 1, false, false, false,
false);

In 5.0.0, the third formal parameter of the create method is
deleted. MAS8 removed the corresponding actual parameter to solve
the problem. flea-db implements 15 test methods, and our migrated
code passed all its test cases. SemDiff located the correct replace-
ment for two method calls. In particular, it found the replacement
for the create method that is identical to LiBCATCH (the support is
1 and the confidence is 0.143). For the callsite of setIndexed(boolean),
LiBCATcH removed it with MA11, but SemDiff recommended re-
placing it with setIndexoptions(IndexOptions). As its support is 41 and
its confidence is 0.489, their recommended replacement can be more
frequent than our removals.

As another example, explicit-semantic-analysis [70] leverages
Wikipedia dumps to compare the semantic similarity between two
given texts. It is a research tool, and its papers are published in the
top Al venues [26, 27]. Google scholar reports that the two papers
have more than 3,000 citations. The latest explicit-semantic-analysis
has 1,514 lines of code, and is built on lucene 4.8.1. In this migra-
tion task, we replaced its lucene library from 4.8.1 to 5.0.0. After

that, explicit-semantic-analysis produced 23 compilation errors. L1B-
CATCH migrated explicit-semantic-analysis resolved all the compila-
tion errors. After inspecting the migration log, we find that MA6
resolved 16 compilation errors. For example, MA6 made a modifi-
cation as follows:

—-queryParser=new QueryParser (LUCENE_48, TEXT_FIELD,
+queryParser=new QueryParser (TEXT_FIELD, analyzer);

analyzer);

~

lucene 5.0.0¢ also removes the first parameter of the QueryParser
constructor. MA6 removed the actual parameter of the old version
to resolve this compilation error. MAS8 resolved 5 compilation errors,
and one is as follows:

FSDirectory .open(termDocIndexDirectory)){
FSDirectory.open(termDocIndexDirectory.toPath()){

In the above patch, the type of termDocIndexDirectory was File,
but the type of the formal parameter was changed to path. MA8
resolved the problem by calling the topath() method of the actual
parameter. In addition, MA9 generated stubs to resolve the remain-
ing 2 unimplemented methods. explicit-semantic-analysis has two
test methods, and our migrated code passed both test methods.

The 23 compilation errors include 9 unresolved variables, 6 un-
defined constructors or methods, 6 incompatible parameters, and 2
unimplemented methods. SemDiff has the potential to resolve the
6 undefined constructors and methods. However, it does not find
the replacement for the constructor, and the remaining 5 undefined
methods require adding method calls than replacements. As result,
SemDiff resolves no compilation errors.

Meditor fails to resolve any compilation errors. As the combi-
nation of versions are many, the migration edits for a specific pair
of versions are few. In total, Xu et al. [78] extracted 322 migration
commits of lucene, but even the most frequent lucene version pair
(3.0.2-4.0) has only 24 migration commits. Table 2 of Xu et al. 78]
presents the top ten release pairs of Lucene. We compare them

ICSE °24, April 14-20, 2024, Lisbon, Portugal

with the release pairs listed in Table 5 of our paper, but we find no
overlap. Their tenth release pair has only 8 migration commits, and
other pairs have even fewer commits. From all their migration com-
mits, they infer 153 edit scripts, but even if their inference is fully
accurate, their inferred scripts cannot migrate code of other version
pairs. For example, if programmers need to update the callsites of
lucene 3.0.2 to other versions, the migration commits from 3.0.2 to
4.0 are less useful, since other versions declare quite different APIs.

2. In 6 projects (40.0%), LIBCATCH resolved most compilation er-
rors, but the other two tools failed to resolve any compilation errors.
In flea-db and explicit-semantic-analysis, we introduce the cases
where both tools successfully resolve compilation errors. Here,
although our improvements over the other two tools are signifi-
cant, for the benefits of follow-up researchers, we analyze the cases
where both tools fail to resolve compilation errors. For example,
greplin-lucene-utils has the following code:

public class ForwardingIndexReader extends IndexReader {
private final IndexReader delegate;

@Override

public ... getFieldNames (final FieldInfos fldOption) {
return this.delegate.getFieldNames (fldOption);

1

- R T S

After we update the lucene library from 3.5.0 to 3.6.0, Line 3 of
the above code reports a compilation error, since the getFieldNames
method is removed from IndexReader. After MA8 removed the eoverride
annotation, this compilation error is resolved, but Line 5 still calls
the deleted method. Li1BCATCH does not resolve this issue. SemD-
iff does not recommend any replacements for this method either.
We manually inspect its documents and implementations, but find
no replacement. Instead, we find a message in the parameter type
FieldInfos:“WARNING: This API is experimental and might change
in incompatible ways in the next release.” According to this warning,
lucene may not implement replacements for getFieldNames, and even
FieldInfos can be deleted in future versions. We try to delete Lines 4
to 6 from the above code. After the deletion, the compilation error
is resolved, since this method is not called by other code locations.

As another example, LuceneQueryExpansion has the following code:

1| Directory dir = DirectoryReader.open(index);

Between lucene 4.8.1and 5.0.0, both the input type and the output
type of open are changed. A feasible migration can be as follows:

1| Directory dir = DirectoryReader.open(new SimpleFSDirectory (
index.toPath())).directory();

MAS has the potential to generate the above code. However, it
needs to apply at least three MAS edits, but the guidance algorithm
is not sufficiently smart to make the desirable combination.

SemDiff does not find replacements for this above API call, and
this error cannot be resolved by only replacements. For this example,
Meditor finds no migration commit from 4.8.1 to 5.0.0. In total, it
finds 11 migration commits whose source version is 4.8.1, but these
commits either migrate other APIs or do not modify source files. For
example, one of their collected migration commits is from 4.8.1 to
4.10.3 [9], but this commit does not modify source files. As another
example, a migration commit is from 4.8.1 to 5.5.4 [10], but the
source version of this commit does not call the relevant methods
(e.g., DirectoryReader.open()).

Hao Zhong and Na Meng

In Table 5, Subcolumn “ME” lists the compilation errors caused
by missing API elements. To resolve ME errors, a tool needs the
mappings of API classes, methods, and fields, but many approaches
do not mine all mappings. For example, SemDiff mines the mappings
of only API methods, and other approaches [56, 80] mine mappings
for API classes. While other approaches [17, 72] can mine more
mappings than SemDiff, their mined mappings can resolve only
the compilation errors in this subcolumn. As a result, they will
resolve fewer compilation errors than LIBCATCH (93 vs 200). It is
also unlikely that other tools can collect more useful migration
commits. For example, APIFix recommends to retrieves the clients
of a library through the Github dependency graph [6], but like
many other libraries, lucene does not list its dependents [7]. Without
migration commits, even if a tool (e.g., APIFix) can have more
advanced inference techniques than Meditor, it is unlikely to resolve
more compilation errors. Furthermore, programmers often need
to update their libraries to the latest versions, but the migration
commits whose target versions are the latest versions are even
fewer than other combinations of versions.

In summary, LIBCATCH resolves most compilation errors in 13 out
of our 15 projects; SemDiff resolves only two undefined methods;
and Meditor resolves no compilation errors. We further discuss our
unresolved compilation errors in Section 8.

7 THREATS TO VALIDITY

The threats to external validity include our limited subjects. To
reduce the threat, we select projects from both Apache and Github.
However, all our migration operators are designed for Java. The
threat can be mitigated by selecting subjects from more sources.
The internal threat to validity includes wrong manual labels. We
use manual migration edits as the true labels, but programmers
can forget to update their API examples. As a result, LIBCATCH can
be more effective than what we calculated. The problem can be
mitigated by migrating client code from more reliable sources.

8 CONCLUSION AND FUTURE WORK

The prior research directions mine API mappings or learn edit
scripts, but they have inherent limitations. To resolve their lim-
itations, we introduce a new research line that migrates clients
based on the feedback of compilers. As the first exploration, we pro-
pose LIBCATCH, and prepare 123 migration tasks in our benchmark.
Among them, L1BCATCH resolved all the compilation errors in 61
tasks, and produced edits that are identical to manual migrations
in 33 tasks. We evaluated LiIBCATCH in the wild. In 13 out of 15 real
projects, it reduced compilation errors to no more than two. Our
first exploration achieves promising results, and some potential
research opportunities are as follows:

Tuning LiBCaTcH. Tuning LIBCATCH can further improve its ef-
fectiveness. For example, (1) MA1 uses simple techniques to mine
API mappings, and advanced techniques can be useful. Some com-
plicated cases require many-to-many mappings, but it is still an
open question to mine such mappings [44, 80]. (2) MA2 selects only
the top ten candidates, but more solutions can be generated if we
select more candidates. (3) MA4 searches only with “create”, and
other words can retrieve more useful candidates; (4) MA6 can imple-
ment other merging strategies; and (5) MA10 can implement more

Compiler-directed Migrating API Callsite of Client Code

advanced handling techniques. As future libraries can introduce
unexpected changes to APIs, it is an endless task to explore a com-
plete set of migration operators. Migration operators can be derived
from various sources (e.g., revision histories [24, 78] and library
changes [52]). For migration algorithms, researchers [23, 48] pro-
posed various algorithms to resolve optimization problems. As the
quests for both migration operators and optimization techniques
are endless [25], our direction still has great research potential.

Migrating code in other languages and cross languages. Although
our tool is implemented to handle only Java code, our idea can work
on other languages and even cross languages, since the failures
of their API migrations cause compilation errors and such errors
provide valuable hints to migrate code. Still, such failures can cause
compilation errors that rarely appear in Java code. More migration
operators are required to handle such errors.

Detecting bugs in migrated code. Researchers [64, 65] show that it
is feasible to cheat an automatic measure. API changes can introduce
behavioral differences [18, 55, 79], but our fitness function does
not consider bugs caused by such differences. After we resolve all
compilation errors, it becomes feasible to detect such bugs with
testing techniques. Our overhead is less than automatic program
repair (APR), since we do not need the time to execute test cases
but we need the time to compile and modify code like APR does.

ACKNOWLEDGEMENT

We appreciate reviewers for their insightful comments. Hao Zhong
is sponsored by National Nature Science Foundation of China No.
62272295. Na Meng is sponsored by NSF-1845446.

REFERENCES

[1] 2019. JDT. http://www.eclipse.org/jdt/.
[2] 2019. Semantic versioning. https://semver.org/.
[3] 2022. Apache Log4j security vulnerabilities. https://logging.apache.org/log4j/2.
x/security.html.
[4] 2022. Apache Log4j vulnerability guidance. https://www.cisa.gov/uscert/apache-
log4j-vulnerability-guidance.
[5] 2023. APIFix bug. https://github.com/gaoxiang9430/APIFix/issues/1.
] 2023. APIFix miner. https://github.com/gaoxiang9430/APIFix/blob/master/doc/
miner.md.
[7] 2023. The dependents of lucene. https://github.com/apache/lucene/network/
dependents.
[8] 2023. Github limit. https://docs.github.com/en/apps/creating-github-apps/
registering-a- github-app/rate-limits-for- github-apps.
[9] 2023. lucene update of gora. https://github.com/apache/gora/commit/
29cbf8ab03eb68898db0014e416de27d4932231d.
[10] 2023. lucene update of maven-indexer. https://github.com/apache/maven-
indexer/commit/532ea64eecd499d047bf4211b6a5bde41f1a7c72.
[11] 2023. Meditor. https://bitbucket.org/shengzhex_research/meditor/.
[12] Jesper Andersen and Julia L Lawall. 2010. Generic patch inference. Automated
software engineering 17, 2 (2010), 119-148.
[13] I Balaban, F. Tip, and R. Fuhrer. 2005. Refactoring support for class library
migration. In Proc. OOPSLA. 265-279.
Anatole Beck. 1964. On the linear search problem. Israel Journal of Mathematics
2,4 (1964), 221-228.
Aline Brito, Marco Tulio Valente, Laerte Xavier, and Andre Hora. 2020. You broke
my code: understanding the motivations for breaking changes in APIs. Empirical
Software Engineering 25, 2 (2020), 1458-1492.
Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. APIDiff:
Detecting API breaking changes. In Proc. SANER. 507-511.
[17] Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent Ong Long Xiong. 2019.
Mining likely analogical APIs across third-party libraries via large-scale unsu-
pervised api semantics embedding. IEEE Transactions on Software Engineering 47,
3 (2019), 432-447.
Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang. 2020. Tam-
ing behavioral backward incompatibilities via cross-project testing and analysis.
In Proc. ICSE. 112-124.

[14

[15

[16

(18

[19

[20

[21

[22

[24]

[25

[26

[27

(28]

(30]

[31

[32

[33

&
=)

[35

[36

(37

[38

w
20,

[40

[41

[42]

[43

[44

S
&

[46

[47

(48

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Kingsum Chow and David Notkin. 1996. Semi-automatic update of applications
in response to library changes. In Proc. ICSM. 359-368.

Bradley E Cossette and Robert] Walker. 2012. Seeking the ground truth: a
retroactive study on the evolution and migration of software libraries. In Proc.
ESEC/FSE. 1-11.

Barthélémy Dagenais and Martin P Robillard. 2011. Recommending adaptive
changes for framework evolution. ACM Transactions on Software Engineering
and Methodology 20, 4 (2011), 1-35.

Ignacio del Valle Alles. 2019. org.brutusin:flea-db. https://github.com/brutusin/
flea-db.

Wu Deng, Junjie Xu, Yingjie Song, and Huimin Zhao. 2021. Differential evolution
algorithm with wavelet basis function and optimal mutation strategy for complex
optimization problem. Applied Soft Computing 100 (2021), 106724.

Mattia Fazzini, Qi Xin, and Alessandro Orso. 2019. Automated API-usage update
for Android apps. In Proc. ISSTA.

Dimitris Fouskakis and David Draper. 2002. Stochastic optimization: a review.
International Statistical Review 70, 3 (2002), 315-349.

Evgeniy Gabrilovich and Shaul Markovitch. 2006. Overcoming the brittleness
bottleneck using Wikipedia: Enhancing text categorization with encyclopedic
knowledge. In Proc. AAAL Vol. 6. 1301-1306.

Evgeniy Gabrilovich, Shaul Markovitch, et al. 2007. Computing semantic relat-
edness using wikipedia-based explicit semantic analysis.. In Proc. IcAl Vol. 7.
1606-1611.

Xiang Gao, Arjun Radhakrishna, Gustavo Soares, Ridwan Shariffdeen, Sumit
Gulwani, and Abhik Roychoudhury. 2021. APIfix: output-oriented program
synthesis for combating breaking changes in libraries. In Proc. OOPSLA. 1-27.
Des Greer and Guenther Ruhe. 2004. Software release planning: an evolutionary
and iterative approach. Information and software technology 46, 4 (2004), 243-253.
Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based
software engineering: Trends, techniques and applications. Comput. Surveys 45,
1(2012), 11.

Stefanus A Haryono, Ferdian Thung, Hong Jin Kang, Lucas Serrano, Gilles Muller,
Julia Lawall, David Lo, and Lingxiao Jiang. 2020. Automatic Android deprecated-
API usage update by learning from single updated example. In Proc. ICPC. 401—
405.

Stefanus A Haryono, Ferdian Thung, David Lo, Julia Lawall, and Lingxiao Jiang.
2021. MLCatchUp: Automated Update of Deprecated Machine-Learning APIs in
Python. In Proc. ICSME. 584-588.

Runzhi He, Hao He, Yuxia Zhang, and Minghui Zhou. 2023. Automating depen-
dency updates in practice: An exploratory study on github dependabot. IEEE
Transactions on Software Engineering (2023).

Johannes Henkel and Amer Diwan. 2005. CatchUp! Capturing and replaying
refactorings to support API evolution. In Proc. ICSE. 274-283.

Sun-Jen Huang and Nan-Hsing Chiu. 2006. Optimization of analogy weights
by genetic algorithm for software effort estimation. Information and software
technology 48, 11 (2006), 1034-1045.

Kamil Jezek, Jens Dietrich, and Premek Brada. 2015. How Java APIs break—-an
empirical study. Information and Software Technology 65 (2015), 129-146.
Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Inferring
program transformations from singular examples via big code. In Proc. ASE.
255-266.

Sukrit Kalra, Ayush Goel, Dhriti Khanna, Mohan Dhawan, Subodh Sharma, and
Rahul Purandare. 2016. POLLUX: Safely Upgrading Dependent Application
Libraries. In Proc. ESEC/FSE. 290-300.

Ameya Ketkar, Ali Mesbah, Davood Mazinanian, Danny Dig, and Edward Af-
tandilian. 2019. Type migration in ultra-large-scale codebases. In Proc. ICSE.
1142-1153.

Ameya Ketkar, Oleg Smirnov, Nikolaos Tsantalis, Danny Dig, and Timofey
Bryksin. 2022. Inferring and Applying Type Changes. In Proc. ICSE.

Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. 2020. Understanding type
changes in java. In Proc. ESEC/FSE. 629-641.

Harold W Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83-97.

Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? Empirical Software
Engineering 23, 1 (2018), 384-417.

Maxime Lamothe and Weiyi Shang. 2018. Exploring the Use of Automated API
Migrating Techniques in Practice: An Experience Report on Android. In Proc.
MSR. 503-514.

Claire Le Goues, Stephanie Forrest, and Westley Weimer. 2013. Current challenges
in automatic software repair. Software quality journal 21 (2013), 421-443.
Mingwei Liu, Yanjun Yang, Yiling Lou, Xin Peng, Zhong Zhou, Xueying Du, and
Tianyong Yang. 2023. Recommending Analogical APIs via Knowledge Graph
Embedding. In Proc. ESEC/FSE. 1496-1508.

Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic inference of code
transforms for patch generation. In Proc. ESEC/FSE. 727-739.

Jayanta Mandi, Peter J Stuckey, Tias Guns, et al. 2020. Smart predict-and-optimize
for hard combinatorial optimization problems. In Proc. AAAL Vol. 34. 1603-1610.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

[49

[50]

[51

[52]

[53

o
it

[55

[56

[57]

[58

[59]

[60

[61

[62

[63

[64]

Stephen McCamant and Michael D Ernst. 2004. Early identification of incompati-
bilities in multi-component upgrades. In In Proc. ECOOP. 440-464.

Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. Systematic editing:
generating program transformations from an example. In Proc. PLDI. 329-342.
Na Meng, Miryung Kim, and Kathryn S. McKinley. 2013. LASE: Locating and
Applying Systematic Edits by Learning from Examples. In Proc. ICSE. 502-511.
Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. 2012. A history-based
matching approach to identification of framework evolution. In Proc. ICSE. 353~

Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandilian.
2019. DeepDelta: learning to repair compilation errors. In Proc. ESEC/FSE. 925~
936.

Martin Monperrus. 2018. Automatic software repair: a bibliography. Comput.
Surveys 51, 1 (2018), 1-24.

Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. 2017. Experience paper:
a study on behavioral backward incompatibilities of Java software libraries. In
Proc. ISSTA. 215-225.

Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N Nguyen.
2014. Statistical learning approach for mining API usage mappings for code
migration. In Proc. ASE. 457-468.

Anh Tuan Nguyen and Tien N Nguyen. 2015. Graph-based statistical language
model for code. In Proc. ICSE, Vol. 1. 858—868.

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2013. Lexical
statistical machine translation for language migration. In Proc. ESEC/FSE. 651~
654.

Hoan Anh Nguyen, Tien N Nguyen, Danny Dig, Son Nguyen, Hieu Tran, and
Michael Hilton. 2019. Graph-based mining of in-the-wild, fine-grained, semantic
code change patterns. In Proc. ICSE. 819-830.

Ansong Ni, Daniel Ramos, Aidan ZH Yang, Inés Lynce, Vasco Manquinho, Ruben
Martins, and Claire Le Goues. 2021. Soar: a synthesis approach for data science
API refactoring. In Proc. ICSE. 112-124.

Mark O Keeffe and Mel O Cinneide. 2008. Search-based refactoring for software
maintenance. Journal of Systems and Software 81, 4 (2008), 502-516.

Rick Ossendrijver, Stephan Schroevers, and Clemens Grelck. 2022. Towards
automated library migrations with error prone and refaster. In Proc. SAC. 1598—
1606.

Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2015. Spoon: A Library for Implementing Analyses and Transforma-
tions of Java Source Code. Software: Practice and Experience 46 (2015), 1155-1179.

Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014.
The strength of random search on automated program repair.. In Proc. 36th ICSE.
254-265.

(65

[66

[67

(68

=
20,

<
=

g
&

=
2

<
&

Hao Zhong and Na Meng

Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of patch
plausibility and correctness for generate-and-validate patch generation systems.
In Proc. ISSTA. to appear.

Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Bjérn Hartmann. 2017. Learning syntactic
program transformations from examples. In Proc. ICSE. 404-415.

Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. 2016. On the
reaction to deprecation of 25,357 clients of 4+1 popular Java APIs. In Proc. ICSME.
400-410.

Praveen Ranjan Srivastava and Tai-hoon Kim. 2009. Application of genetic
algorithm in software testing. International Journal of software Engineering and
its Applications 3, 4 (2009), 87-96.

Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again:
Can you compile that snapshot? Journal of Software: Evolution and Process 29, 4
(2017).

Philip van Oosten. 2019. ESA. https://github.com/pvoosten/explicit-semantic-
analysis.

Louis Wasserman. 2013. Scalable, example-based refactorings with refaster. In
Proc. WRT. 25-28.

Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song Wang.
2022. Clear: contrastive learning for API recommendation. In Proc. ICSE. 376-387.
Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
2009. Automatically finding patches using genetic programming. In Proc. ICSE.
364-374.

Wei Wu, Yann Gaél Guéhéneuc, Giuliano Antoniol, and Miryung Kim. 2010. Aura:
a hybrid approach to identify framework evolution. In Proc. ICSE. 325-334.
Marvin Wyrich, Raoul Ghit, Tobias Haller, and Christian Miiller. 2021. Bots
don’t mind waiting, do they? Comparing the interaction with automatically and
manually created pull requests. In Proc. BotSE. 6-10.

Zhenchang Xing and Eleni Stroulia. 2007. API-evolution support with Diff-
CatchUp. IEEE Transactions on Software Engineering 33, 12 (2007), 818-836.
Zhenchang Xing and Eleni Stroulia. 2007. Differencing logical UML models.
Automated Software Engineering 14, 2 (2007), 215-259.

Shengzhe Xu, Ziqi Dong, and Na Meng. 2019. Meditor: inference and application

of API migration edits. In Proc. ICPC. 335-346.
Hao Zhong, Suresh Thummalapenta, and Tao Xie. 2013. Exposing behavioral

differences in cross-language API mapping relations. In Proc. ETAPS/FASE. 130~
145.

Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang. 2010.
Mining API mapping for language migration. In Proc. 32nd ICSE. 195-204.

Hao Zhong, Xiaoyin Wang, and Hong Mei. 2022. Inferring bug signatures to
detect real bugs. IEEE Transactions on Software Engineering 48, 2 (2022), 571-584.

	Abstract
	1 Introduction
	2 Related Work
	3 Motivating Example
	4 Approach
	4.1 Migration Operator
	4.2 Guiding the Migration Process

	5 Evaluation on Benchmark
	5.1 Benchmark and Measure
	5.2 RQ1. Reduced Compilation Errors
	5.3 RQ2. Comparison with Manual Migration
	5.4 RQ3. Migrating with Only API Mapping

	6 Migration in the Wild
	6.1 Compared Tools
	6.2 Setting
	6.3 Result

	7 Threats to Validity
	8 Conclusion and Future work
	References

