
Understanding the Impact of Branch Edit Features for the
Automatic Prediction of Merge Conflict Resolutions
Waad Aldndni
Virginia Tech

Blacksburg, VA, U.S.A.
waada@vt.edu

Francisco Servant
ITIS So昀琀ware, Universidad de Málaga

Málaga, Spain
fservant@uma.es

Na Meng
Virginia Tech

Blacksburg, VA, U.S.A.
nm8247@vt.edu

ABSTRACT
Developers regularly have to resolve merge con昀氀icts, i.e., two con-
昀氀icting sets of changes to the same 昀椀les in di昀昀erent branches, which
can be tedious and error-prone. To resolve con昀氀icts, developers
typically: keep the local version (KL) or the remote version (KR) of
the code. 吀栀ey also sometimes manually edit both versions into a
single one (ME). However, most existing techniques only support
merging the local and remote versions (the ME strategy).

We recently proposed RPRedictoR, a machine learning-based
approach to support developers in choosing how to resolve a con-
昀氀ict (by KL, KR, or ME), by predicting their resolution strategy. In
its original design, RPRedictoR uses a set of Evolution History Fea-
tures (��� s) that capture: the magnitude of the changes in con昀氀ict,
their evolution, and the experience of the developers involved.

In this paper, we proposed and evaluated a new set of Branch
Edit Features (��� s), that capture the 昀椀ne-grained edits that were
performed on each branch of the con昀氀ict. We learned multiple
lessons. First, ��� s provided lower e昀昀ectiveness (F-score) than the
original ��� s. Second, combining ��� s with ��� s still did not
improve the e昀昀ectiveness of ��� s, it provided the same f-score.
吀栀ird, the feature set that provided highest e昀昀ectiveness in our ex-
periments was the combination of ���B with a subset of ��� s that
captures the number of insertions performed in the local branch,
but this combination only improved ��� s by 3 pp. f-score. Finally,
our experiments also share the lesson that some feature sets pro-
vided higher C-score (i.e., the safety of the technique’s mistakes)
as a trade-o昀昀 for lower f-scores. 吀栀is may be valued by developers
and we believe that it should be studied in the future.

ACM Reference Format:
Waad Aldndni, Francisco Servant, and Na Meng. 2024. Understanding the
Impact of Branch Edit Features for the Automatic Prediction of Merge Con-
昀氀ict Resolutions. In 32nd IEEE/ACM International Conference on Program
Comprehension (ICPC ’24), April 15–16, 2024, Lisbon, Portugal. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3643916.3644433

1 INTRODUCTION
In collaborative so昀琀ware development, developers o昀琀en create sep-
arate branches to handle di昀昀erent tasks simultaneously (e.g., add
new features, 昀椀x bugs, or refactor code). When developers merge

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro昀椀t or commercial advantage and that copies bear this notice and the full citation
on the 昀椀rst page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
ICPC ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0586-1/24/04
https://doi.org/10.1145/3643916.3644433

changes from various branches, edits that were made to the same
line of code can con昀氀ict with each other.

吀栀e manual resolution of such con昀氀icts is typically quite chal-
lenging and time-consuming. A previous study [47] found that 56%
of developers postponed resolving merge con昀氀icts for various rea-
sons, most of them related to the complexity of the con昀氀icts.

Master branch

New-feature branch

=git merge

new-feature=

Local version

Remote version

A merged version

with conflicts

reported

Figure 1: Developers use textual merge (e.g., git-merge) to
merge branches and reveal con昀氀icts.

吀栀emost popular merge tools are text-based (e.g., git-merge [1])
and assist developers in tentatively merging the latest version of
their own branch (i.e., local version (L)) with the latest version
of a speci昀椀ed branch (i.e., remote version (R)), and in detecting
textual con昀氀icts in this process (see Figure 1). Because such tools
treat programs as plain text, they can merge the code in ways that
are syntactically or semantically incorrect, due to codemismatches
between branches [15, 48, 61]. To improve over textual merge, re-
searchers proposed tools that analyze the syntactic structures of
programs to be琀琀er detect and resolve con昀氀icts [9, 10, 62, 68]. For in-
stance, JDime [9] matches Java code based on abstract syntax trees
(ASTs). It conducts tree-based merge instead of text-based merge
for each matching node pair, to be琀琀er align code and integrate as
many edits as possible between branches.

吀栀ese techniques mainly focus on merging the local and remote
branches into a single version, by adapting them. However, devel-
opers resolve con昀氀icts via three main strategies: choosing the lo-
cal version while discarding the remote one (KL), choosing the re-
mote version while discarding local (KR), or modifying edits from
either or both branches for edit integration (ME), e.g., [8, 25]. Fur-
thermore, Yuzuki et al. [66] found that developers resolved 99%
of con昀氀icting methods by keeping only one of the con昀氀icting ver-
sions (KL or KR). In a di昀昀erent dataset, Ghio琀琀o et al. [25] found
that developers resolved 56% of cases by KL or KR.

Inspired by these studies, we created RPRedictoR [8], a novel
approach that resolves merge con昀氀icts by considering developers’
preferences. Given a merge con昀氀ict, RPRedictoR recommends to
resolve it by KL, KR, orME, based onwhat it predicts that the devel-
oper will prefer. Developers can bene昀椀t from RPRedictoR in two
ways. First, when it predicts KL or KR, RPRedictoR could automat-
ically apply the strategy and resolve the con昀氀ict, saving developers
time and manual e昀昀ort (that they could invest in be琀琀er resolving
other con昀氀icts). Since the KL and KR strategies are the most popu-
lar ones [25, 66], this can produce very high e昀昀ort savings. Second,

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adldndni et al.

when RPRedictoR predicts ME, developers would be reminded to
be cautious in the resolution.

In this paper, we aim to improve RPRedictoR’s e昀昀ectiveness
with an alternative set of prediction features, inspired by the re-
search literature. RPRedictoR uses a Random Forest classi昀椀er, orig-
inally based on a set of Evolution History Features (��� s) that cap-
ture: the magnitude of the con昀氀icting changes, their evolution, and
the experience of the developers involved [8]. We propose a new
set of Branch Edit Features (��� s), that capture the 昀椀ne-grained
edits that were performed on each con昀氀icting branch. Past work
observed that the modi昀椀ed code elements on each branch [25], the
edit types applied to them [61], or the complexity of the changed
code [65] could in昀氀uence how developers resolve the con昀氀ict.

We de昀椀ned a collection of 396 ��� s that capture the number of
changes performed over 66 昀椀ne-grained code elements, for 3 edit
types, on each of the two con昀氀icting branches. 吀栀en, we selected
among them the 122 ��� s that we found to di昀昀er with statistical
signi昀椀cance for the three resolution strategies —- since they would
be promising for prediction. We evaluated the prediction power of
these 122 ��� s, in di昀昀erent ways. First, we compared the e昀昀ec-
tiveness provided by ��� s as features in RPRedictoR with that
provided by its original design using ��� s. 吀栀en, we measured
the e昀昀ectivenes of combining both ��� s and ��� s. 吀栀en, we also
studied in 昀椀ner granularity the e昀昀ectiveness provided by 6 sub-
sets of ��� s, (based on each branch and edit type) as well as their
combination with ��� s. We performed this evaluation over 15,899
resolved con昀氀icts from 377 so昀琀ware projects, for both the within-
project and cross-project prediction contexts.

Our experiments provided multiple 昀椀ndings. First, using ��� s
for con昀氀ict resolution prediction did not improve the e昀昀ectiveness
of RPRedictoR— ��� s provided slightly lower e昀昀ectiveness than
��� s. Second, combining ��� s and ��� s for prediction also did
not improve the e昀昀ectiveness of using only��� s— both approaches
provided the same f-score. 吀栀ird, among all our studied feature
sets, the best-performing one was ��� s and ���!� , but it only
improved the e昀昀ectiveness of ��� s by 3pp. f-score. We are un-
sure if developers would consider such an incremental improve-
ment worth the e昀昀ort of writing the code for collecting the addi-
tional ���!� features, and maintaining it over time. Finally, some
of the feature sets that could not improve the e昀昀ectiveness of ��� s
were still able to improve their C-score, e.g., ���'� provided 18pp.
higher C-score with the trade-o昀昀 of 3pp. lower f-score. 吀栀is moti-
vates futurework to studywhat kinds of trade-o昀昀s between f-score
and C-score developers would prefer.
Research Artifact Availability. Our research artifact can be ac-
cessed online [4].

2 APPROACH
We previously proposed RPRedictoR [8] to automatically predict
the resolution strategy for developers to resolve merge con昀氀icts,
among: choosing the local version while discarding the remote one
(KL), choosing the remote version while discarding local (KR), or
modifying edits from either or both branches for integration (ME).
We represent RPRedictoR in Figure 2.

Resolution

Strategy

(KL/KR/ME)

Local

Version

Remote

Version

Software

Repository

Local

Version

Remote

Version

Software

Repository

 Prediction Features

Random

Forest

Phase I :Training

Feature Extraction (see above) Classifier

Phase II :Testing

Resolution

Strategy

Resolved

version

(for KL or KR)

Feature Extraction

Training

Data

Testing

Data

Figure 2: RPRedictoR has two phases: training and testing
RPRedictoR uses a random forest (RF) algorithm to make its

predictions. First, in its training phase, it analyzes the merge con-
昀氀icts that were resolved in the past (from the same and/or other
so昀琀ware projects) to build its prediction model. 吀栀en, for a given
merge con昀氀ict, it uses this model to predict whether developers
will resolve it by KL, KR, or ME (as a three-class classi昀椀er). We
implemented RPRedictoR using using scikit-learn [52].
Original: Evolution History Features (���s). Our original de-
sign of RPRedictoR [8] used features that aimed to capture some
of the dimensions that we believed would in昀氀uence developer de-
cisions when resolving a merge con昀氀ict. 吀栀ey focused on the mag-
nitude of the changes, their evolution, and the experience of the
developers involved. We report them in Table 3.
New: Branch Edit Features (���s). In this paper, we propose
a new set of Branch Edit Features (��� s) and study whether they
could improve RPRedictoR’s e昀昀ectiveness. ��� s capture the 昀椀ne-
grained edits on each of the branches involved in the merge con-
昀氀ict. Past work observed that the strategy that developers followed
to resolvemerge con昀氀icts could be in昀氀uenced by the code elements
that were modi昀椀ed on each branch [25], the edit types applied to
them [61], or the complexity of the changed code [65]. Our intu-
ition is that our new branch edit features could capture these con-
cepts and be琀琀er inform RPRedictoR to make its predictions.

For our newBranch Edit features, we identi昀椀ed a collection of 66
昀椀ne-grained elements in Java, and 3 types of edits that could have
been performed in them, i.e., Insertion, Update, Deletion (Table 1).
We studied the 66 elements that we observed being inserted, up-
dated, or deleted in our studied dataset (see §3.1). Our features de-
昀椀ne Java elements, but they could be extended to other languages.

For a given con昀氀icting chunk, our new branch edit features (��� s)
measure, separately, the number of Insertions (�), Updates (*), or
Deletions (�) thatwere performed to each Java element (��8), within
each of the Local (!) or Remote (') branch. For example feature
���!� � �1

measures the number of Variable Declaration Statements
(��1) that were inserted (�) in the local branch (!). In total, our
��� s capture 396 aspects of a con昀氀icting chunk (2 branches × 3
edit types × 66 Java elements). We represent them in Table 2.

We also divide our Branch Edit Features into 6 subsets, to sepa-
rately represent each edit type and branch. For example, ���!� is
the subset of 66 features that capture the number of Insertions (�)
that were performed in the Local (!) branch for each one of the 66
Java elements. 吀栀at is, ���!� contains the 66 features ���!� � �1

–
���!� � �66

. We represent them in the bo琀琀om row of Table 2.

Understanding the Impact of Branch Edit Features for the Automatic Prediction of Merge Conflict Resolutions ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Table 1: 吀栀e 66 昀椀ne-grained Java elements (��8) for which we measure our new proposed branch edits (���s).
Java elements (� �8)

(� �1) Variable Declaration Statement, (� �2) Expression Statement, (� �3) Enhanced For Statement, (� �4) If Statement, (� �5) Method Invocation Receiver, (� �6) Simple Name, (� �7)
Method Invocation, (� �8) Break Statement, (� �9) Return Statement, (� �10) Class Instance Creation, (� �11) Number Literal, (� �12) Simple Type, (� �13) Method Invocation Argument,
(� �14) Assignment, (� �15) For Statement, (� �16) Super Constructor Invocation, (� �17) Block, (� �18) String Literal, (� �19) Type Declaration Statement, (� �20) Variable Declaration
Fragment, (� �21) Boolean Literal, (� �22) In昀椀x Expression, (� �23) Method Declaration, (� �24) Type Declaration, (� �25) Type Literal, (� �26) Modi昀椀er, (� �27) Field Declaration, (� �28)
Single Variable Declaration, (� �29) Try Statement, (� �30)儀甀ali昀椀ed Name, (� �31) Primitive Type, (� �32) Array Access, (� �33) Variable Declaration Expression, (� �34) Continue State-
ment, (� �35) Synchronized Statement, (� �36) Null Literal, (� �37) Pre昀椀x Expression, (� �38)吀栀row Statement, (� �39)Marker Annotation, (� �40) Cast Expression, (� �41) Parenthesized
Expression, (� �42) Parameterized Type, (� �43) Anonymous Class Declaration, (� �44) In昀椀x Expression Operator, (� �45)While Statement, (� �46) Switch Statement, (� �47) Field Access,
(� �48) Assignment Operator, (� �49) Array Type, (� �50) Post 昀椀x Expression, (� �51) Conditional Expression, (� �52) Catch Clause, (� �53) Initializer, (� �54) 吀栀is Expression, (� �55)
Dimension, (� �56) Array Initializer, (� �57) Array Creation, (� �58) Normal Annotation, (� �59) Member Value Pair, (� �60) Empty Statement, (� �61) Union Type, (� �62) Character
Literal, (� �63) Constructor Invocation, (� �64) Pre昀椀x Expression Operator, (� �65) Labeled Statement, (� �66) Single Member Annotation.

Table 2: Our new proposed Branch Edit Features (���s). 吀栀ey measure the number of edits performed for each: branch, edit
type, and Java element. We divide them into 6 subsets, each representing all Java elements for a branch and edit type.

Branch Local (!) Remote (')
Edit type Insertions (�) Updates (*) Deletions (�) Insertions (�) Updates (*) Deletions (�)

� �1 ���!� � �1 ���!* � �1 ���!�� �1 ���'� � �1 ���'* � �1 ���'�� �1

Java element (� �8) … … … … … … …
� �66 ���!� � �66 ���!* � �66 ���!�� �66 ���'� � �66 ���'* � �66 ���'�� �66

��� subset with all Java elements
(� �1–� �66) for a branch and edit type

���!� ���!* ���!� ���'� ���'* ���'�

Table 3: 吀栀e Evolution History Features (���s) used by the
original design of RPRedictoR for its predictions.

Evolution History Features (���8)
(���1) Size of Chunk
(���2) Size of Local Version
(���3) Size of Remote Version
(���5) Number of Con昀氀icting Chunks
(���6) Number of Con昀氀icting Files
(���7) Number of Commits before Local
(���8) Number of Commits before Remote
(���9) Date Di昀昀erence between Local and Remote
(���10) Number of Commits by 吀栀e Owner of Local
(���11) Number of Commits by 吀栀e Owner of Remote
(���12) Number of Commits by 吀栀e Resolver of Con昀氀ict

3 RESEARCH METHOD
We study the impact of our new ��� s over the e昀昀ectiveness of
RPRedictoR, using multiple experiments. First, we measure the
correlation of these features with the resolution strategies of de-
velopers in a large dataset of merge con昀氀icts. 吀栀en, we evaluate
RPRedictoR’s predictions when using di昀昀erent combinations of
feature sets. We study the following research questions:
RQ1: What ��� s di昀昀er signi昀椀cantly for di昀昀erent strategies?
RQ2: How e昀昀ective is using ��� s vs. ��� s?
RQ3: How e昀昀ective is combining ��� s with ��� s?
RQ4: How e昀昀ective is using subsets of ��� s?
RQ5: How e昀昀ective is combining ��� s with subsets of ��� s?

3.1 Dataset Construction
Ghio琀琀o et al. [25] conducted an empirical study on merge con昀氀icts
and created a dataset of con昀氀icts from 2,731 GitHub repositories.
For the original evaluation of RPRedictoR, we created our dataset
based on Ghio琀琀o et al.’s, because of its comprehensiveness and
representativeness [8]. Our focus in this paper is only on Java 昀椀les.
吀栀erefore, we re昀椀ned the dataset that we described in [8] by taking
two steps. First, we eliminated all con昀氀icting chunks that were not

Table 4: 吀栀e dataset used in our research
of # of Con昀氀icts resolved by

Repositories KL KR ME Total

Data used in our
characterization
study (RQ1)

70 1,102 774 1,511 3,387

Data used in the
tool evaluation
(RQ2–RQ5)

377 5,139 3,823 6,937 15,899

Total 477 6,241 4,597 8,448 19,286

of the Java type. Second, we removed projects for which their code-
bases were no longer accessible on GitHub. As shown in Table 4,
a昀琀er re昀椀ning the prior dataset to align with our new study scope,
we obtained 477 so昀琀ware repositories. Among the 19,286 con昀氀icts
contained by these repositories, there are 6,241 con昀氀icts separately
resolved via KL, 4,597 by KR, and 8,448 by ME.

To perform our study of which features di昀昀er signi昀椀cantly for
di昀昀erent strategies (RQ1), we randomly selected 100 projects from
our dataset. 吀栀en, we applied the two 昀椀ltering criteria mentioned
above, which resulted in 70 repositories. 吀栀is sample set includes
3,387 con昀氀icts, among which 1,102 con昀氀icts were resolved via KL,
774 via KR, and 1,511 via ME.

We studied RQ1 over this sample of projects to avoid over昀椀琀琀ing.
As in our previous work [8], we used the features that di昀昀er signi昀椀-
cantly (observed in RQ1) as prediction features to use for RPRedic-
toR. We studied RQ1 in these randomly selected 70 projects, and
we studied RQ2–RQ5 in the remaining 377 projects (see Table 4).
吀栀at way, the selection of features in RPRedictoR’s predictions
was not in昀氀uenced by the projects in which we evaluated it.

For each one of the merge con昀氀icts in our studied dataset, we
measure the numeric value of our studied features (see §2). We
measure the value of ��� s as in our original evaluation of RPRe-
dictoR [8], and we measured ��� s using Gumtree v3.0.0 [23].

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adldndni et al.

3.2 Method for RQ1
We 昀椀rst study which ones of our newly proposed ��� s di昀昀er sig-
ni昀椀cantly for di昀昀erent con昀氀ict resolution strategies, applying sta-
tistical analysis.Wemeasured the value of our��� s for each one of
3,387 con昀氀icting chunks, from 70 randomly sampled repositories
(§3.1). We separate these con昀氀icts into three groups, according to
the resolution strategy that was applied to them (KL, KR, or ME).

To study which of these features di昀昀er signi昀椀cantly for di昀昀er-
ent resolution strategies, we applied the Kruskal-Wallis H test [3,
41, 44] as we did to originally design RPRedictoR [8]. 吀栀e Kruskal-
Wallis H test assesses if three ormore groups of samples come from
the same distribution on a variable of interest. Our studied features
do not follow a normal distribution, and the Kruskal-Wallis H test
is non-parametric (i.e., it does not assume a normal distribution
of the data). For each group of samples, the H test sorts data into
ascending order, assigns ranks to the sorted data points, and thus
converts the given values into their ranks. Namely, in the conver-
sion process, the smallest value gets a rank of 1, the next smallest
gets a rank of 2, and so on. Among the given three or more sample
groups, the H test validates the following hypotheses:

• H0: 吀栀e mean ranks of di昀昀erent groups are the same.
• H1: 吀栀e mean ranks of di昀昀erent groups are not the same.

3.3 Method for RQ2–RQ5
To study RQ2–RQ5, we run multiple variants of RPRedictoR to
obtain a prediction for each one of the merge con昀氀icts in our stud-
ied dataset. We study these variants in a within-project and cross-
project usage context. We evaluate them with various metrics.
Training and Testing Process. We train and test our evaluated
variants of RPRedictoR in two di昀昀erent ways, to study the within-
project and the cross-project usage context. For variants that we
report as using ��� s or one of their 6 subsets (or a combination
including them), we in fact only use (or combine) for training their
speci昀椀c Java elements that we observed in RQ1 to di昀昀er with sta-
tistical signi昀椀cance (reported in Table 5).
Within-Project Prediction. For each so昀琀ware project in our dataset,
we leveraged 90% of the oldest resolved con昀氀icts for training, and
then used the remaining 10% of resolved con昀氀icts for testing. We
intentionally used older data for training and newer data for test-
ing. 吀栀is is because such a se琀琀ing can mimic real-world scenarios,
where a technique can only refer to a project’s history data to sug-
gest resolutions for future con昀氀icts of that project.
Cross-Project Prediction. In this experiment, we evaluated the real-
world scenarios where a given project has li琀琀le version history
to leverage. In such scenarios, RPRedictoR can train a classi昀椀er
with the con昀氀ict data from other repositories and use that clas-
si昀椀er to predict resolutions for the given project. We conducted
10-fold cross validation to evaluate the e昀昀ectiveness of each vari-
ant of RPRedictoR. Namely, we divided the 377 so昀琀ware projects
randomly into 10 groups roughly evenly. For each group �8 (8 ∈

[1, 10]), we ran an experiment by using the con昀氀ict data in the re-
maining nine groups for training, and adopting the data in �8 for
testing. We calculated the e昀昀ectiveness for each of the 10 runs, and
then also aggregated it among all runs.

Ground Truth. As ground truth, we used the resolution strategy
that the developer applied to resolve each con昀氀ict in our dataset.
Evaluation Metrics. In this paper, we will focus on measuring
the e昀昀ectiveness of a technique by its F-score. However, for com-
pletion, we will also measure the metrics used in the original eval-
uation of RPRedictoR [8]: Precision, Recall, and C-score. To facil-
itate discussion, in this section, we index the three con昀氀ict resolu-
tion strategies and refer to them as (8 (8 ∈ [1, 3]). Namely, (1 refers
to KL (keep the local version); (2 refers to KR (keep the remote ver-
sion); (3 refers to ME (resolution with manual edits). We measured
all metrics on a scale ranging from [0%, 100%], and higher values
indicate be琀琀er performance.

Precision (P8) measures, among all the con昀氀icts labeled with
(8 by a technique, what ratio of them were actually resolved by (8 .

%8 =
of con昀氀icts correctly labeled as “(8 ”
Total # of con昀氀icts labeled as “(8 ”

(1)

Recall (R8)measures, among all con昀氀icts that were resolved by
(8 , what ratio of them were labeled by a technique as (8 .

'8 =
of con昀氀icts correctly labeled as “(8 ”

Total # of con昀氀icts that were resolved via (8
(2)

F-score (F8) is the harmonic mean of precision and recall. It
allows us to measure technique e昀昀ectiveness in a single metric.

�8 =
2 × % × '

% + '
(3)

Aggregated (Overall) metrics (P, R, F).We also measured our
metrics by computing the weighted average across all strategies.
Speci昀椀cally, if we denote Γ as either precision (P) or recall (R) and
use =8 to represent the number of testing samples in (8 , then the
overall e昀昀ectiveness in terms of precision and recall can be com-
puted as follows:

Γ>E4A0;; =

∑
3
8=1 Γ8 ∗ =8
∑
3
8=1 =8

(4)

吀栀us, the overall F is computed with:

�>E4A0;; =
2 × %>E4A0;; × '>E4A0;;

%>E4A0;; + '>E4A0;;
(5)

Conservativeness Score (C) or C-score. Di昀昀erent prediction
mistakes have di昀昀erent consequences. If a con昀氀ict resolved by KL
or KR is incorrectly predicted as ME, the technique makes a con-
servative mistake: it misses the opportunity of saving developers’
manual e昀昀ort, but does not mislead developers to blindly take res-
olution suggestions. However, if a con昀氀ict resolved by ME is in-
correctly predicted as KL or KR, the technique makes a more seri-
ous mistake: it automatically resolves the con昀氀ict using a di昀昀erent
strategy than what the developer would have preferred, and thus
produces an incorrectly merged version. We created a C metric to
measure the ratio of predictions that are conservative, i.e., that do
not cause any incorrect automatic resolution. Conservative predic-
tions include (1) correct predictions, and (2) any con昀氀ict resolved
via KL or KR but labeled as ME.

� =

of con昀氀icts conservatively labeled
All predictions (6)

Understanding the Impact of Branch Edit Features for the Automatic Prediction of Merge Conflict Resolutions ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Table 5: RQ1.吀栀e Java Elements in each ��� subset that showed statistically signi昀椀cant di昀昀erences for di昀昀erentmerge con昀氀ict
resolution strategies (Kruskal-Wallis H test). We use these for prediction.

Branch Local (!) Remote (')
Edit type Insertions (�) Updates (*) Deletions (�) Insertions (�) Updates (*) Deletions (�)
��� subset ���!� ���!* ���!� ���'� ���'* ���'�

Statistically
Signi昀椀cant
Java Elements
(� �8)

2, 5, 6, 7, 10, 12, 13,
14, 17, 36, 57

1, 6, 12, 17, 20, 48,
58, 59

1, 2, 4, 5, 7, 9, 10, 13,
18, 19, 20, 22, 23, 24,
25, 27, 28, 29, 30, 31,
34, 37, 38, 39, 40, 41,
43, 44, 45, 49, 51, 52,
53, 54, 55, 57, 64

5, 6, 7, 10, 13, 14, 17,
26, 32, 36, 37, 47, 48,
58, 59, 64, 66

1, 6, 12, 17, 20, 26 1, 2, 4, 5, 6, 7, 9, 10,
11, 12, 13, 14, 18, 19,
20, 21, 22, 23, 24, 25,
27, 28, 29, 30, 33, 34,
36, 37, 38, 39, 40, 42,
43, 44, 48, 49, 52, 53,
55, 58, 59, 62, 64

Table 6: RQ2. Within-project e昀昀ectiveness of ���s vs. ���s.
��� s only ��� s only

P R F C P R F C
KL 37% 27% 31% - 49% 40% 44% -
KR 34% 29% 31% - 37% 34% 35% -
ME 44% 57% 49% - 53% 63% 58% -

Overall 39% 40% 39% 71% 47% 48% 47% 72%

4 RESULTS
RQ1:What���sDi昀昀er Signi昀椀cantly forDi昀昀erent Strategies?
We applied the Kruskal-Wallis H test to all our 396 newly proposed
��� s (see §2) for all our 3,387 studied con昀氀icting chunks (see §3.1).
We found that 122 of them showed values with a statistically sig-
ni昀椀cant di昀昀erence (p-value lower than 0.05) for chunks that were
resolved with di昀昀erent strategies (KL, KR, or ME). 吀栀is indicates
that these ��� s may be useful to predict developers’ resolution
strategies. We report them in Table 5.

Most of the ��� s with a statistically signi昀椀cant di昀昀erence be-
long to the ���!� and ���'� subsets. 吀栀is means that there were
many Java elements that, when deleted on either branch, could
be predictive of the 昀椀nal resolution strategy. Similarly, there were
relatively few Java elements that, when updated on either branch,
they could be predictive of the 昀椀nal resolution strategy — few Java
elements with a statistically signi昀椀cant di昀昀erence belong to the
���!* and ���'* subsets.

For the remaining experiments (RQ2–RQ5), for variants that we
report as using ��� s or one of their 6 subsets (or a combination in-
cluding them), we in fact only use (or combine) for training their
speci昀椀c Java elements that we observed in RQ1 to di昀昀er with sta-
tistical signi昀椀cance (reported in Table 5).
Finding 1: 122 of our 396 proposed ��� s di昀昀er with statistical
signi昀椀cance for di昀昀erent con昀氀ict resolution strategies.

RQ2: E昀昀ectiveness of ���s vs. ���s. First, to understand the
e昀昀ectiveness that RPRedictoR would provide when using ��� s
vs. ��� s, we created two variants of RPRedictoR: one that uses
only ��� s to make its predictions, and one that uses only ��� s
(this la琀琀er one is the original design of RPRedictoR [8]). We sep-
arately trained and tested both variants for the within-project and
cross-project usage contexts (see §3.3) over 15,899 con昀氀icts from
377 projects (see §3.1). We report the results obtained by both tech-
nique variants for all our studied metrics (see §3.3) in Table 6 for
within-project prediction and in Table 7 for cross-project predic-
tion. We should note that ��� s obtained slightly di昀昀erent results
than in its original evaluation [8], since we now use a slightly dif-
ferent dataset (it only contains Java projects).

Table 7: RQ2. Cross-project e昀昀ectiveness of ���s vs. ���s.
��� s only ��� s only

Test Fold # P R F C P R F C
1 40% 43% 41% 90% 40% 43% 41% 80%
2 38% 42% 40% 90% 39% 41% 40% 78%
3 34% 43% 38% 90% 47% 49% 48% 81%
4 53% 58% 55% 92% 63% 65% 64% 84%
5 43% 44% 43% 92% 39% 40% 39% 81%
6 42% 50% 46% 89% 42% 44% 43% 72%
7 35% 39% 36% 81% 34% 38% 36% 72%
8 33% 31% 32% 93% 41% 35% 38% 87%
9 40% 49% 44% 87% 53% 57% 55% 86%
10 42% 46% 44% 89% 46% 48% 47% 77%

All Folds 39% 43% 41% 90% 43% 44% 44% 80%

E昀昀ectiveness of Within-project Prediction. When trained over the
same so昀琀ware project (within-project context), RPRedictoR pro-
vides lower e昀昀ectiveness when using ��� s than when using its
original ��� features, for all our studied metrics (Table 6). 吀栀is
means that our proposed ��� s did not help RPRedictoR improve
its e昀昀ectiveness. Even though the research literature suggests that
the strategy used to resolve merge con昀氀icts could be in昀氀uenced
by the speci昀椀c branch edits (���) that happened on each branch,
e.g., [25, 61, 65], our results show that they did not help the predic-
tions of our machine-learning predictor RPRedictoR as much as
its original features did (��� features).
Finding 2: In the within-project usage context, RPRedictoR pro-
vided lower e昀昀ectiveness when using our new ��� s than when
using its original ��� s.

E昀昀ectiveness of Cross-project Prediction. When trained over di昀昀er-
ent so昀琀ware projects (cross-project context), RPRedictoR also pro-
vided lower e昀昀ectiveness when using ��� s than when using its
original ��� features, in terms of precision, recall, and f-score, ag-
gregated for all test folds (Table 7). 吀栀is trend was also clear in
most individual test folds. 吀栀e counterbalance to these results is
that RPRedictoR using ��� s provided higher Conservativeness
(C) Score (90% vs. 80%) than when using ��� s, for all our eval-
uated (and aggregated) test folds.

吀栀e higher C score provided by RPRedictoR using ��� s can
be explained by it being more e昀昀ective at predicting the ME reso-
lution strategy. We observed this by checking its results in more
detail. However, due to the space limit, we do not report the in-
dividual e昀昀ectiveness measurements for each resolution strategy.
We observed that RPRedictoR using ��� s predicted ME more of-
ten, which meant that it less o昀琀en predicted KL and KR incorrectly

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adldndni et al.

Table 8: RQ3.Within-project e昀昀ectiveness of ���s and ���s
combined vs. ���s only.

��� s and ��� s ��� s only
P R F C P R F C

KL 47% 38% 42% - 49% 40% 44% -
KR 38% 35% 36% - 37% 34% 35% -
ME 53% 64% 58% - 53% 63% 58% -

Overall 47% 48% 47% 72% 47% 48% 47% 72%

Table 9: RQ3. Cross-project e昀昀ectiveness of ���s and ���s
combined vs. ���s only.

��� s and ��� s ��� s only
Test Fold # P R F C P R F C

1 42% 45% 43% 72% 40% 43% 41% 80%
2 36% 41% 39% 81% 39% 41% 40% 78%
3 52% 50% 51% 88% 47% 49% 48% 81%
4 67% 68% 68% 93% 63% 65% 64% 84%
5 42% 43% 43% 88% 39% 40% 39% 81%
6 40% 46% 43% 78% 42% 44% 43% 72%
7 32% 37% 34% 81% 34% 38% 36% 72%
8 41% 35% 38% 90% 41% 35% 38% 87%
9 52% 56% 54% 84% 53% 57% 55% 86%
10 45% 50% 48% 85% 46% 48% 47% 77%

All Folds 44% 45% 44% 82% 43% 44% 44% 80%

(increasing its C score), but also less o昀琀en predicting them cor-
rectly (decreasing all other metrics). 吀栀is shows that, overall, the
��� s also did not improve the e昀昀ectiveness of RPRedictoR for the
cross-project usage context.
Finding 3: In the cross-project usage context, RPRedictoR also
provided lower e昀昀ectiveness (Precision, Recall, and F-score) when
using ��� s for its prediction than when using its original ��� s.

RQ3: E昀昀ectiveness of ���s and ���s vs. ���s only. In RQ2,
we observed that RPRedictoR did not provide higher e昀昀ectiveness
when using ��� s than when using its original set of ��� features.
Next, we study whether ��� s and ��� s can help each other, i.e.,
whether RPRedictoR can provide higher e昀昀ectiveness by using
combining both. 吀栀us, we evaluated a new variant of RPRedic-
toR that uses the union of ��� s and ��� s for its predictions. We
report the results that we obtained for thewithin-project and cross-
project usage contexts in Tables 8 and 9, respectively. We also pro-
vide the results of the original design of RPRedictoR (using ��� s
only) in these tables, for ease of comparison.
E昀昀ectiveness of Within-project Prediction. Table 8 shows that com-
bining ��� s and ��� s in the feature set of RPRedictoR provided
very similar e昀昀ectiveness than when RPRedictoR used only its
original ��� s, for the within-project usage context. 吀栀e variant of
RPRedictoR that used both ��� s and ��� s was slightly be琀琀er at
predicting the KR resolution (and higher precision and recall) and
slightly worse at predicting KL. However, overall, the precision, re-
call, and f-score provided by using ��� s and ��� s was about the
same as when using only ��� s.

吀栀is result is consistent with what we observed in RQ2, since
��� s by themselves made RPRedictoR provide lower e昀昀ective-
ness. However, RQ3 shows us that, when combining ��� s and
��� s, RPRedictoR was able to not allow the worse prediction
power of ��� s hurt the be琀琀er prediction power of ��� s, i.e., com-
bining ��� s and ��� s did not produce worse results than using

Table 10: RQ4. Within-project e昀昀ectiveness of ��� Subsets.
Feature Set P R F C
��� s only 47% 48% 47% 72%
��� s only 39% 40% 39% 71%
��� s and ��� s 47% 48% 47% 72%
���!� only 39% 40% 39% 72%
���!* only 37% 39% 37% 72%
���!� only 37% 39% 37% 72%
���'� only 37% 38% 37% 69%
���'* only 38% 40% 38% 72%
���'� only 38% 40% 38% 72%

Table 11: RQ4. Cross-project e昀昀ectiveness of ��� Subsets.
Feature Set P R F C
��� s only 43% 44% 44% 80%
��� s only 39% 43% 41% 90%
��� s and ��� s 44% 45% 44% 82%
���!� only 38% 43% 40% 93%
���!* only 31% 44% 36% 99%
���!� only 38% 43% 40% 98%
���'� only 38% 43% 41% 93%
���'* only 21% 44% 29% 99%
���'� only 39% 44% 41% 98%

��� s only. It is also possible that combining ��� s and ��� s could
not improve the e昀昀ectiveness of RPRedictoR because the within-
project usage context provides a limited amount of data for train-
ing (it only uses the same project’s historical data). 吀栀erefore, it is
also worth investigating the cross-project usage context.
Finding 4: For the within-project usage context, combining
��� s and ��� s provided about the same e昀昀ectiveness as when
RPRedictoR used ��� s only.

E昀昀ectiveness of Cross-project Prediction. Table 9 shows that when
RPRedictoR combined ��� s and ��� s in the cross-project usage
context, it again provided about as high e昀昀ectiveness as when it
used ��� s only. We can only observe a small di昀昀erence: over-
all, combining ��� s and ��� s provided 1% higher precision, 1%
higher recall, and 2% higher C-score, but the same F-score.

吀栀is time, combining ��� s and ��� s provided a small e昀昀ective-
ness improvement to RPRedictoR in the cross-project usage con-
text. In very few cases, the RPRedictoR variant that predicts based
on both ��� s and ��� s predicted the KL and KR resolutions cor-
rectly when the original variant based on ��� s only did not. How-
ever, the overall f-score of the predictions stayed the same for both
technique variants, keeping them equally e昀昀ective. We conclude
that the technique variant that combines ��� s and ��� s also did
not provide an important increase in e昀昀ectiveness.
Finding 5: For the cross-project usage context, combining ��� s
and ��� s provided 1pp. higher precision, 1pp. higher recall, and
2pp. higher C-score, but the same F-score.

RQ4: E昀昀ectiveness of the 6 Separate ��� Subsets. In RQ1,
we noticed that the majority of ��� s that showed statistically sig-
ni昀椀cant di昀昀erences for di昀昀erent con昀氀ict resolution strategies be-
longed to the ���!� and ���'� subsets, i.e., they captured the
Deletion (D) Edit Type, in the Local (L) and Remote (R) branches.
吀栀is observation motivated us to explore the separate in昀氀uence of
each ��� subset into the e昀昀ectiveness of RPRedictoR.

Understanding the Impact of Branch Edit Features for the Automatic Prediction of Merge Conflict Resolutions ICPC ’24, April 15–16, 2024, Lisbon, Portugal

We created 6 separate variants of RPRedictoR, each one using
only one of the ��� subsets for its predictions, namely: ���!� ,
���!* , ���!� , ���'� , ���'* , and ���'� . We described these
��� subsets in §2. We evaluated each variant in both the within-
project and cross-project usage contexts, as we did in previous re-
search questions. We report the results that we obtained for the
within-project and cross-project usage contexts in Tables 10 and 11,
respectively. For ease of comparison, we also include in these ta-
bles the overall results of the other three variants of RPRedictoR
that we studied in previous research questions, i.e., that used: ��� s
only, ��� s only, or ��� s and ��� s combined.
E昀昀ectiveness of Within-project Prediction. We can observe in Ta-
ble 10 that, in thewithin-project usage context, the variant of RPRe-
dictoR that used only ���!� for prediction was the one that pro-
duced the highest e昀昀ectiveness, for all metrics, among all the vari-
ants that we evaluated in this research question. In fact, ���!�
slightly improved over ��� s in terms of C-score (72% vs. 71%, re-
spectively), while alsomaintaining the same e昀昀ectiveness (in terms
of precision, recall, and f-score). Still, when compared with RPRe-
dictoR’s original design of ��� s-only, all variants provided lower
e昀昀ectiveness, i.e., an F-score lower than 47%.
Finding 6: For within-project prediction, all of our studied ���
subsets provided lower e昀昀ectiveness than the original design of
RPRedictoR that used ��� s only.

E昀昀ectiveness of Cross-project Prediction. In the cross-project usage
context, the RPRedictoR variant that performed best was ���'� .
Both ���'� and ���'� provided the highest F-score among vari-
ants, but ���'� provided a higher C-score than ���'� .

In this case, we found it interesting that the ���'� variant pro-
vided be琀琀er scores than the variant using all ��� s. 吀栀ey both pro-
vided the same F-score, but using���'� onlywas highly conserva-
tive (its C-score reached 98%). 吀栀is means that, when ���'� mis-
predicted truly-KL or truly-KR con昀氀icts, it was more inclined to
mispredict them as ME. 吀栀is high conservativeness (98% C-score)
of ���'� may be a welcome characteristic for developers. How-
ever, it may not be enough for them to prefer ���'� over the
higher-e昀昀ectiveness ��� s variant, since ��� s provides higher ef-
fectiveness (44% vs. 41% F-score).

In this study we focus on the e昀昀ectiveness of our studied RPRe-
dictoR variants, i.e., in their precision, recall, and f-score metrics.
吀栀erefore, we conclude that, in cross-project prediction, none of
the studied variants was able to provide higher e昀昀ectiveness than
the original design of RPRedictoR using ��� s only (they all pro-
vided f-score lower than 44%).
Finding 7: For cross-project prediction, all of our studied ���

subsets provided lower e昀昀ectiveness than the original design of
RPRedictoR that used ��� s only.

RQ5: E昀昀ectiveness of ���s and each Separate ��� Subset.
In RQ4, we found that, in some cases, predicting with only one of
the ��� subsets improved the results of predicting with all ��� s
(although only in terms of C-score). For within-project prediction
���!� provided higher 1% C-score, and for cross-project predic-
tion, ���'� provided higher 8% C-score. In RQ2, we found that
combining ��� s with ��� s provided higher e昀昀ectiveness than us-
ing ��� s only (even though not enough to improve over ��� s

Table 12: RQ5.Within-project e昀昀ectiveness of ���s and ���

Subsets combined.
Feature Set P R F C
��� s only 47% 48% 47% 72%
��� s only 39% 40% 39% 71%
��� s and ��� s 47% 48% 47% 72%
��� s and ���!� 50% 51% 50% 73%
��� s and ���!* 48% 49% 48% 72%
��� s and ���!� 46% 47% 46% 71%
��� s and ���'� 49% 50% 50% 73%
��� s and ���'* 48% 48% 48% 72%
��� s and ���'� 49% 50% 49% 73%

Table 13: RQ5. Cross-project e昀昀ectiveness of ���s and ���

Subsets combined.
Feature Set P R F C
��� s only 43% 44% 44% 80%
��� s only 39% 43% 41% 90%
��� s and ��� s 44% 45% 44% 82%
��� s and ���!� 44% 45% 45% 82%
��� s and ���!* 42% 44% 43% 81%
��� s and ���!� 44% 46% 45% 83%
��� s and ���'� 43% 44% 44% 81%
��� s and ���'* 43% 45% 44% 80%
��� s and ���'� 43% 45% 44% 82%

only). 吀栀ese two 昀椀ndings motivated us to study the e昀昀ectiveness
of combining ��� s with separate ��� subsets.

We now evaluated 6 new variants of RPRedictoR, each one us-
ing for prediction: the ��� s and one of the 6 ��� subsets. We used
the same se琀琀ings as in previous experiments, for within-project
and cross-project prediction. We report the results of this evalu-
ation in Tables 12 and 13 for within-project and cross-project, re-
spectively. As in previous RQs, we also include the results of ��� s
only, ��� s only, and ��� s and ��� s combined for comparison.
E昀昀ectiveness of Within-project Prediction. In this research question,
the variant that provided the highest e昀昀ectiveness was the com-
bination of ��� s and ���!� (Table 12). In fact, ��� s and ���!�

provided higher e昀昀ectiveness than RPRedictoR’s original design
that uses ��� s only: 50% vs. 47% F-score, respectively. It also pro-
vided higher C-score: 73% vs. 72%.

We had observed in RQ2 and RQ3 that our proposed ��� s did
not improve the e昀昀ectiveness of RPRedictoR in its original design
(using ��� s only) neither by themselves nor in combination with
��� s.Wewondered if, by using somany features (122��� s), those
that were less-useful for prediction were not le琀琀ing RPRedictoR
take the full advantage of the most-useful ones. A昀琀er observing
the results of RQ5, that seems possible. Combining ��� s only with
���!� was more e昀昀ective than combining ��� s with all ��� s.

Finally, it is worth noting that, while combining��� s and���!�
improved the e昀昀ectiveness of ��� s, such improvement was rela-
tivelyminor, and thus the practical applicability of this variantmay
be up for discussion.
Finding 8: For within-project prediction, the combination of
��� s and ���!� provided a minor improvement over RPRedic-
toR’s original design using ��� s only. ��� s and ���!� pro-
vided higher: precision by 3pp., recall by 3pp., f-score by 3pp.,
and C-score by 1pp.

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adldndni et al.

E昀昀ectiveness of Cross-project Prediction.We can observe in Table 13
that, in the cross-project se琀琀ing, the variant that produced highest
e昀昀ectiveness was ��� s and ���!� . 吀栀is variant provided higher
results for all metrics when compared with RPRedictoR’s original
��� s only: 44% vs. 43% precision, 46% vs. 44% recall, 45% vs. 44%
f-score, and 83% vs. 80% C-score.

吀栀ese results again show us that combining ��� s with individ-
ual ��� subsets can be more bene昀椀cial than combining them with
all ��� s. ��� s and ���!� provided be琀琀er results than ��� s and
all ��� s. However, we also again observe that the best-performing
variant of this experiment only providedminor improvements over
the original ��� s. ��� s and ���!� improved ��� s only by: 1pp.
in precision, 2pp. in precision, 1pp. in f-score, and 3pp. in C-score.
Furthermore, more generally, all the technique variants that we
studied in the cross-project usage context provided lower e昀昀ective-
ness than the original ��� s did in the within-project se琀琀ing, i.e.,
they all provided f-scores that were lower than 47%.
Finding 9: For cross-project prediction, the combination of
��� s and ���!� provided a minor improvement over RPRe-
dictoR’s original design using ��� s only. ��� s and ���!�

provided higher: precision by 1pp., recall by 2pp., f-score by 1pp.,
and C-score by 3pp.

5 DISCUSSION
吀栀e best feature set provided only an incremental improve-
ment. A昀琀er multiple experiments, we found that the set of fea-
tures that provided the highest e昀昀ectiveness for RPRedictoR was
the combination of ��� s and ���!� in the within-project predic-
tion context. 吀栀is shows that RPRedictoR can be more e昀昀ective
when, in addition to its original ��� s, it also considers in its pre-
dictions the number of Java elements that were inserted in the local
branch, for a some Java elements.

However, unfortunately, the improvement in e昀昀ectiveness that
the newRPRedictoR ��� s and ���!� variant provided over RPRe-
dictoR’s original design (using ��� s only) was relatively minor:
only 3 pp. in precision, recall, and f-score. Such an incremental
improvement may make it hard for developers to justify the us-
age of this new variant. Capturing the additional 昀椀ne-grained fea-
tures of ���!� imposes the usage of additional parsing so昀琀ware
(Gumtree [23]). Writing such code for using Gumtree, and main-
taining it over time for compatibility with future releases comes
with its own cost. 吀栀us, we expect that developers may be wary of
increasing the complexity (andmaintenance cost) of their so昀琀ware
developement pipeline in exchange for the small e昀昀ectiveness in-
crement that the ��� s and ���!� variant provides.
Past studies suggested that ���s could be useful predictors.
We originally set out to study whether ��� s could improve the ef-
fectiveness of RPRedictoR motivated by previous studies that ob-
served that the speci昀椀c changes performed the branches of amerge
con昀氀ict could in昀氀uence developer decisions to resolve it. For ex-
ample, Shen et al. [61] found that when both branches of a merge
con昀氀ict contained many inserted elements, developers tended to
resolve it by keeping the content of both branches. However, they
also observed that when one branch deleted code and the other one
updated it, developers tended to exclusively keep edits from one
branch. Similarly, Ghio琀琀o et al. [25] found that developers tended

to resolve con昀氀icts via either combining edits from both branches
or introducing new code when con昀氀icts consisted of comments, if
statements, or method invocations. 吀栀ey also observed that devel-
opers tended to combine edits from both branches, or choose KL,
or KR when con昀氀icts consisted solely of variables or imports. An-
other study by Vale et al. [65] found that con昀氀ict resolution time
has a correlation with the complexity of the code in con昀氀ict.
Lesson learned: ���s and ���s are both useful predictors,
but they only lightly complement each other. We observed in
RQ2 that our motivation for this work was not entirely misguided.
In fact, RPRedictoR provided very similar levels of e昀昀ectiveness
when using ��� s than it did originally by using ��� s. 吀栀e results
obtained by both variants di昀昀ered in less than 10 pp. for all metrics.

Unfortunately, the predictive power of��� s do not seem to com-
plement well the one provided by ��� s. We observed in RQ3 that
combining both ��� s and ��� s still provided about the same ef-
fectiveness as using ��� s only. 吀栀is may mean that ��� s were
helpful in predicting the same kinds of con昀氀icts for which ��� s
were already good predictors, but they were not as helpful in pre-
dicting the ones that ��� s mispredicted. 吀栀erefore, future e昀昀orts
to improve the e昀昀ectiveness of RPRedictoR would have to use a
di昀昀erent strategy.
Lesson learned: Future work may study developer prefer-
ences of the trade-o昀昀 between C-score and F-score. Finally,
we also discovered in this study an unexpected potentially use-
ful future direction: increasing C-score at the expense of F-score.
We discovered that some of the variants that we studied provided
much higher C-score as a trade-o昀昀 for their lower f-score. 吀栀e
most clear example of this were the results of the ���'� variant
for cross-project prediction. It provided 41% f-score, which is 3pp.
lower e昀昀ectiveness than ��� s, but it also provided 98% C-score,
which is 18 pp. higher than ��� s. 吀栀is means that this technique
variant was less e昀昀ective than ��� s at recommending resolution
decisions for developers. However, it also means that it made safer
mistakes, i.e., it was much more inclined to wrongly recommend
ME (as opposed to wrongly recommending KL or KR).

In this study, our focus was on the prediction e昀昀ectiveness pro-
vided by RPRedictoR when using di昀昀erent feature sets. However,
the discovery of the ���'� variant makes us wonder if some de-
velopers would prefer sacri昀椀cing (some amount of) f-score for a
higher (some amount of) C-score. We believe that it would be valu-
able to run a future human study to understand developers opin-
ions about di昀昀erent trade-o昀昀s of e昀昀ectiveness (f-score) and recom-
mendation safety (C-score) they prefer, and under what circum-
stances they do so. 吀栀e results of such study could inspire future
technique designs.

6 RELATED WORK
Empirical Studies onMergeCon昀氀icts. Several studies have been
conducted to investigate the relationship between merge con昀氀icts
and various aspects of so昀琀ware maintenance [5, 22, 40, 43, 50]. For
instance, et al. [22] conducted a survey involving 105 student de-
velopers, discovering that the lack of awareness, speci昀椀cally the
knowledge of ”who’s changing what,” occurs more frequently than
merge con昀氀icts. Leßenich et al. [40] conducted a survey involving

Understanding the Impact of Branch Edit Features for the Automatic Prediction of Merge Conflict Resolutions ICPC ’24, April 15–16, 2024, Lisbon, Portugal

41 developers and pinpointed seven potential indicators, including
metrics like the number of changed 昀椀les in both branches, which
could be used to anticipate the occurrence of merge con昀氀icts. Fol-
lowing a further investigation of the indicators, the researchers
discovered that none of them had the capability to predict the fre-
quency ofmerge con昀氀icts. Likewise, Owhadi-Kareshk et al. de昀椀ned
nine features, including metrics such as the number of added and
deleted lines in a branch, to describe merging scenarios. 吀栀ey de-
veloped amachine-learningmodel that could predict con昀氀icts with
an accuracy ranging from 57% to 68% [50].

Like these previous studies, our study also characterizes merge
con昀氀icts. Nonetheless, it distinguishes itself in two key ways. First,
our study explores the various features that characterize how de-
velopers approach con昀氀ict resolution. Second, Our study is driven
by the goal of automating the prediction of resolution strategies,
whereas previous studies have primarily focused on automating
the prediction of con昀氀ict occurrences.

Other studies also characterize the underlying reasons and/or
solutions for textual con昀氀icts [12, 25, 48, 51, 66]. In particular, Yuzuki
et al. inspected hundreds of textual con昀氀icts [66]. 吀栀eir observa-
tions revealed that 44% of con昀氀icts resulted from con昀氀icting up-
dates to the same line of code, and developers resolved 99% of
these con昀氀icts by choosing either the le昀琀- or right version of the
code. Brindescu et al. [12] conducted a manual inspection of 606
textual con昀氀icts.吀栀ey categorized merge con昀氀icts based on the dif-
ferences in the Abstract Syntax Tree (AST), the size of lines of code
(LOC), and the number of authors involved. 吀栀ey identi昀椀ed three
distinct resolution strategies: ”SELECT ONE” (retaining edits from
one branch), ”INTERLEAVE” (retaining edits from both branches),
and ”ADAPTED” (modifying existing edits and/or introducing new
edits). Pan et al. [51] delved into the analysis of merge con昀氀icts
within the context of Microso昀琀 Edge. 吀栀ey categorized these con-
昀氀icts according to 昀椀le types, con昀氀ict locations, con昀氀ict sizes, and
pa琀琀erns of con昀氀ict resolution. Building on the insights from their
empirical research, the researchers explored the application of pro-
gram synthesis techniques for con昀氀ict resolution. 吀栀e initial pro-
totype of their resolution tool only a琀琀empts to combine edits from
both branch versions and can’t suggest ”KL” (le昀琀-hand version) or
”KR” (right-hand version) resolutions.

Although these studies inspired us to de昀椀ne and investigate po-
tential features that can be valuable in predicting developers’ strate-
gies for con昀氀ict resolution, none of these prior studies conducted
statistical analyses to investigate the relationships between these
identi昀椀ed features and developers’ resolution strategies.
Awareness-Raising Tools. Tools [11, 13, 14, 26, 35, 38, 42, 53, 60]
were developed to keep track of and assess programmers’ progress
in their work, aiming to enhance team collaboration. For exam-
ple, CASI [60] and Palantír [53] notify a developer about the mod-
i昀椀cations made by their colleagues, determine the signi昀椀cance of
these modi昀椀cations, and present this information visually. Cassan-
dra [35] serves as a method to reduce con昀氀icts in so昀琀ware develop-
ment. It examines the relationships of super-sub and caller-callee
dependencies among program components. By considering these
dependencies as limitations on tasks involving editing 昀椀les, Cas-
sandra detects tasks that could clash when executed concurrently.

Subsequently, it schedules tasks in a way that suggests develop-
ment paths that avoid con昀氀icts. Crystal [13, 14] and WeCode [26]
take a proactive approach to identify collaboration con昀氀icts us-
ing speculative analysis. 吀栀ey proactively merge program modi-
昀椀cations made in various so昀琀ware branches before these changes
are fully integrated into the main repository within the distributed
version control system (DVCS). 吀栀ese tools employ a sequence of
textual merging, automatic building, and automatic testing to un-
cover potential con昀氀icts between branches.

吀栀e previously mentioned tools can proactively detect and no-
tify developers about merge con昀氀icts. However, they do not char-
acterize developers’ resolution preferences, nor do they automati-
cally recommend any resolution strategy.
Automated So昀琀wareMerge. Various tools have been introduced
to either detect or resolve merge con昀氀icts [2, 9, 10, 15, 19, 39, 45,
49, 62–64, 67, 68]. Mens et al. [45] conducted a survey on tech-
niques for merging so昀琀ware. FSTMerge [2, 10, 15] analyzes code to
create Abstract Syntax Trees (ASTs) and matches nodes between
versions L and R using only class or method signatures as crite-
ria. It subsequently incorporates themodi昀椀cationswithin each pair
of matched method nodes through a textual merging process. In-
telliMerge [62] enhances the e昀昀ectiveness of FSTMerge by iden-
tifying and resolving con昀氀icts related to code refactoring. Much
like FSTMerge , JDime [9, 39] also employs the matching of Java
methods and classes based on syntax trees. However, JDime di昀昀ers
in combining changes within matched methods; it accomplishes
this by matching and manipulating ASTs. AutoMerge [68] builds
upon JDime’s approach. When branch edits cannot be merged, Au-
toMerge endeavors to resolve con昀氀icts by suggesting di昀昀erent strate-
gies for merging versions L and R. SafeMerge [63] veri昀椀es whether
a merging scenario has introduced new semantics to the codebase.
RPRedictoR is complementary to these techniques by modeling
and predicting developers’ preferences for resolutions.

MergeHelper [49] records the chronological sequence of edit op-
erations programmers perform using the Eclipse Java editor.When
faced with con昀氀icting branch versions, L and R, MergeHelper ex-
amines the recorded edit sequences preceding both versions. Its
goal is to identify the most recent snapshot in the version history
that aligns with both L and R. In simpler terms, MergeHelper rolls
back the edits made by both branches until it reaches an interme-
diate version just before the initial con昀氀ict arises. While it o昀昀ers
detailed edit information to help developers understand con昀氀icts,
it does not provide resolution strategies as RPRedictoR does.

DeepMerge [19],MergeBERT [64], andGMerge [67] employ deep-
learning techniques to resolve con昀氀icts automatically, but Deep-
Merge is designed explicitly for con昀氀icts involving fewer than 30
lines of code [64]. It may not be suitable for more complex con昀氀icts.
When dealing with textual con昀氀icts, both DeepMerge and Merge-
BERT are designed to integrate partial edits from versions L and
R for resolution rather than proposing entirely new solutions rep-
resented as KL or KR. GMerge addresses a distinct type of merge
con昀氀ict, which involves edits that can be applied concurrently to
the merged version but result in semantic errors when combined.
In contrast, RPRedictoR complements the learning-basedmethods
discussed earlier and o昀昀ers additional capabilities or solutions be-
yond those methods. 吀栀at is, RPRedictoR is capable of predicting

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adldndni et al.

con昀氀icts that can be resolved using either KL or KR, which, accord-
ing to existing literature, are the most common resolution strate-
gies. Additionally, when RPRedictoR anticipates a Merge Error
(ME), it can be complemented with an alternative approach such
as DeepMerge or MergeBERT to facilitate an automated resolution
by merging lines from con昀氀icting versions.

MESTRE [21] has been introduced recently as a recommender
that predicts the merge resolution strategy. MESTRE predicts the
resolution strategy considering options such as using version 1,
and version 2, combining version 1 and 2 in di昀昀erent ways, merg-
ing lines from both versions, or creating new codemanually.While
both MESTRE and RPRedictoR aim to assist with merge con昀氀ict
resolution, they di昀昀er in their approach and the granularity of
their predictions. MESTRE focuses on high-level merge strategies,
whereas RPRedictoR provides 昀椀ne-grained predictions for con昀氀ict-
ing chunks, by considering a larger number of code elements and
the nature of edits, considering developer behavior and history.

7 THREATS TO VALIDITY
Construct Validity. 吀栀reats to construct validity refer to the con-
昀椀dence in our measurements and conceptual framework.

In our study, the accuracy and completeness of our measure-
ments of changes to 昀椀ne-grained code elements heavily depends
on the performance of the Gumtree tool [23]. Any limitations or
inaccuracies in Gumtree’s parsing algorithms could introduce er-
rors into our measurements. To mitigate this threat, we conducted
validation checks through the manual analysis of a subset of our
studied code elements. First, we conducted a meticulous manual
analysis for each sampled change hunk, and manually determined
the 昀椀ne-grained change operations and changed elements that hap-
pened between the two code versions. 吀栀en, we compared our as-
sessment with the results produced by Gumtree. We found no con-
tradictions between our manually extracted di昀昀erences and the re-
sults generated by Gumtree. So, while inaccuracies in Gumtree’s
analysis algorithm are possible, they did not seem to be common,
as per our validation process.

Another threat to construct validity is the fact that developers
may not accept the additional computational cost of computing
ASTs that ��� s require, particularly since they provide li琀琀le im-
provement in RPRedictoR’s predictions. To mitigate this threat,
RPRedictoR could perform its AST analysis in the background and
cache its results to reuse them at prediction time. Still, it would
be useful to be琀琀er understand developer preferences and limita-
tions in the automatic resolution of merge con昀氀icts through an
interview-based developer study. We plan to perform such a study
in the future (the cost to humans of ge琀琀ing automated recommen-
dations can be high e.g., [29]).
External Validity. 吀栀reats to external validity refer to the gener-
alizability of the observations of our study.

While we didn’t observe a strong improvement in the prediction
results of RPRedictoRwith our studied��� s, it is still possible that
��� s de昀椀ned for other code elements, or for other programming
languages may provide di昀昀erent results. It is also possible that our
studied ���B (or other ��� s) show di昀昀erent impact when studied
over other di昀昀erent so昀琀ware projects. 吀栀is might impact the gen-
eralizability of our 昀椀ndings. However, we believe that our study

provides reasonable generalizability, since it included a large num-
ber of studied samples and features. We evaluated ��� s and ��� s
over 15,899 code con昀氀icts within 377 so昀琀ware projects. Also, our
��� s captured 396 combinations of 3 types of changes applicable
to 66 昀椀ne-grained Java code elements over 2 code branches. Still, in
the future, we plan to conduct larger-scale experiments with more
projects and features for more types of code elements and changes.

Another threat to the generalizability of our approach is that
��� s only cover the Java programming language. 吀栀erefore, our
observations may or may not be applicable to other programming
languages. However, most of our studied ��� s capture Java ele-
ments that also exist inmany popular programming languages (see
Table 1). So, while our study only covered Java, we believe that it
could be easily replicated to cover other languages.

8 CONCLUSION
Resolving merge con昀氀icts is a tedious and error-prone process in
so昀琀ware development. Although many tools were proposed to de-
tect and even resolve merge con昀氀icts, li琀琀le tool support is available
to automatically resolve con昀氀icts by observing and mimicking de-
velopers’ resolution strategies. In past work, we proposed RPRe-
dictoR, which recommends developers strategies to resolve merge
con昀氀icts, based on a set of Evolution History Features (��� s) [8].

In this paper, we proposed a new set of Branch Edit Features
(��� s) to try to improve the e昀昀ectiveness of RPRedictoR, inspired
by observations in the literature of the speci昀椀c 昀椀ne-grained edits
of the con昀氀ict in昀氀uencing developer decisions to resolve it.

We performed an extensive evaluation of Branch Edit Features
(��� s), studying various scenarios in which they could improve
e昀昀ectiveness: by themselves, combining them with ��� s, using
only subsets of them, and combining ��� s with subsets of ��� s.
Overall, we found that only one of our studied set of features im-
proved the e昀昀ectiveness of RPRedictoR, but did so very slightly:
the ��� s and ���!� set improved over ��� s by 3pp. f-score. We
believe that such an incremental improvement may be hard to jus-
tify for developers to spend the e昀昀ort to implement and maintain
the usage of the new ��� s. In the future, we will explore more
features and more ML algorithms, to further try to improve the
e昀昀ectiveness of RPRedictoR. For example, we will explore addi-
tional prediction features related to, e.g., code-change history [54–
56, 58, 59], testing activity, e.g., [24, 36, 37], decision-making meta-
data, e.g., [6, 7, 46], developer expertise, e.g., [16, 57], build failure
prediction e.g., [28, 30–34], security issue prediction e.g., [17, 27]
or cross-language issues, e.g., [18, 20].

ACKNOWLEDGEMENTS
We thank all reviewers for their valuable feedback. 吀栀is work was
partially funded by awards NSF CCF-1845446, NSF CCF-2046403,
Virginia Tech’s hiring package, by International Distinguished Re-
searcher award C01INVESDIST by Universidad Rey Juan Carlos,
by Saudi Arabian Cultural Mission (SACM), and by grant PID2022-
142964OA-I00 funded byMCIN/AEI/10.13039/501100011033/FEDER,
UE.

REFERENCES
[1] 2021. git merge - Integrating changes from another branch. https://www.git-

tower.com/learn/git/commands/git-merge.

Understanding the Impact of Branch Edit Features for the Automatic Prediction of Merge Conflict Resolutions ICPC ’24, April 15–16, 2024, Lisbon, Portugal

[2] 2021. jFSTMerge. https://github.com/guilhermejccavalcanti/jFSTMerge.
[3] 2023. Kruskal-Wallis Test. https://www.statisticssolutions.com/kruskal-wallis-

test/.
[4] 2024. Research Artifact for Paper: Understanding the Impact of Branch Edit

Features for the Automatic Prediction of Merge Con昀氀ict Resolutions. https:
//zenodo.org/doi/10.5281/zenodo.10553235.

[5] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma. 2017. An Empir-
ical Examination of the Relationship between Code Smells and Merge Con昀氀icts.
In 2017 ACM/IEEE International Symposium on Empirical So昀琀ware Engineering
and Measurement (ESEM). 58–67. https://doi.org/10.1109/ESEM.2017.12

[6] Khadijah Al Safwan, Mohammed Elarnaoty, and Francisco Servant. 2022. De-
velopers’ Need for the Rationale of Code Commits: An In-breadth and In-depth
Study. Journal of Systems and So昀琀ware (2022).

[7] Khadijah Al Safwan and Francisco Servant. 2019. Decomposing the Rationale
of Code Commits: 吀栀e So昀琀ware Developer’s Perspective. In Joint Meeting on
European So昀琀ware Engineering Conference and Symposium on the Foundations of
So昀琀ware Engineering.

[8] Waad Aldndni, Na Meng, and Francisco Servant. 2023. Automatic prediction
of developers’ resolutions for so昀琀ware merge con昀氀icts. Journal of Systems and
So昀琀ware 206 (2023), 111836. https://doi.org/10.1016/j.jss.2023.111836

[9] Sven Apel, Olaf Lessenich, and Christian Lengauer. 2012. Structured Merge with
Auto-tuning: Balancing Precision and Performance. In Proceedings of the 27th
IEEE/ACM International Conference on Automated So昀琀ware Engineering (Essen,
Germany) (ASE 2012). ACM, New York, NY, USA, 120–129. https://doi.org/10.1
145/2351676.2351694

[10] SvenApel, Jorg Liebig, Benjamin Brandl, Christian Lengauer, and Christian Kast-
ner. 2011. SemistructuredMerge: RethinkingMerge in Revision Control Systems.
In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Con-
ference on Foundations of So昀琀ware Engineering (Szeged, Hungary) (ESEC/FSE ’11).
ACM, New York, NY, USA, 190–200. https://doi.org/10.1145/2025113.2025141

[11] Jacob T. Biehl, Mary Czerwinski, Mary Czerwinski, Greg Smith, and George G.
Robertson. 2007. FASTDash: A Visual Dashboard for Fostering Awareness in
So昀琀ware Teams. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (San Jose, California, USA) (CHI ’07). ACM, New York, NY,
USA, 1313–1322. https://doi.org/10.1145/1240624.1240823

[12] Caius Brindescu, I昀琀ekhar Ahmed, Carlos Jensen, and Anita Sarma. 2020. An
empirical investigation into merge con昀氀icts and their e昀昀ect on so昀琀ware quality.
Empirical So昀琀ware Engineering 25, 1 (2020), 562–590. https://doi.org/10.1007/
s10664-019-09735-4

[13] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011. Proactive
Detection of Collaboration Con昀氀icts. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of So昀琀ware Engi-
neering (Szeged, Hungary) (ESEC/FSE ’11). ACM, New York, NY, USA, 168–178.
https://doi.org/10.1145/2025113.2025139

[14] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. 2013. Early Detection of Col-
laboration Con昀氀icts and Risks. IEEE Transactions on So昀琀ware Engineering 39, 10
(Oct 2013), 1358–1375. https://doi.org/10.1109/TSE.2013.28

[15] Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. 2017. Evaluating and
Improving SemistructuredMerge. Proc. ACM Program. Lang. 1, OOPSLA, Article
59 (Oct. 2017), 27 pages. https://doi.org/10.1145/3133883

[16] Lykes Claytor and Francisco Servant. 2018. Understanding and Leveraging De-
veloper Inexpertise. In International Conference on So昀琀ware Engineering: Com-
panion Proceeedings.

[17] James C Davis, Christy A Coghlan, Francisco Servant, and Dongyoon Lee. 2018.
吀栀e Impact of Regular Expression Denial of Service (ReDoS) in Practice: an Em-
pirical Study at the Ecosystem Scale. In 吀栀e ACM Joint European So昀琀ware Engi-
neering Conference and Symposium on the Foundations of So昀琀ware Engineering
(ESEC/FSE).

[18] James C. Davis, Louis G. Michael IV, Christy A. Coghlan, Francisco Servant,
and Dongyoon Lee. 2019. Why Aren’t Regular Expressions a Lingua Franca?
An Empirical Study on the Re-Use and Portability of Regular Expressions. In
Joint Meeting on European So昀琀ware Engineering Conference and Symposium on
the Foundations of So昀琀ware Engineering.

[19] Elizabeth Dinella, ToddMytkowicz, Alexey Svyatkovskiy, Christian Bird, Mayur
Naik, and Shuvendu Lahiri. 2023. DeepMerge: Learning to Merge Programs.
IEEE Transactions on So昀琀ware Engineering 49, 4 (2023), 1599–1614. https://doi.
org/10.1109/TSE.2022.3183955

[20] Mohammed El Arnaoty and Francisco Servant. 2024. OneSpace: Detecting cross-
language clones by learning a common embedding space. Journal of Systems and
So昀琀ware 208 (2024), 111911. https://doi.org/10.1016/j.jss.2023.111911

[21] Paulo Elias, Heleno de S. Campos, Eduardo Ogasawara, and Leonardo
Gresta Paulino Murta. 2023. Towards accurate recommendations of merge con-
昀氀icts resolution strategies. Information and So昀琀ware Technology 164 (2023),
107332. https://doi.org/10.1016/j.infsof.2023.107332

[22] H Christian Estler, Martin Nordio, Carlo A Furia, and Bertrand Meyer. 2014.
Awareness andmerge con昀氀icts in distributed so昀琀ware development. In 2014 IEEE
9th International Conference on Global So昀琀ware Engineering. IEEE, 26–35.

[23] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-Grained and Accurate Source Code Di昀昀erencing. In Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated So昀琀ware
Engineering (Vasteras, Sweden) (ASE ’14). Association for Computing Machin-
ery, New York, NY, USA, 313–324. https://doi.org/10.1145/2642937.2642982

[24] Aakash Gautam, Saket Vishwasrao, and Francisco Servant. 2017. An Empirical
Study of Activity, Popularity, Size, Testing, and Stability in Continuous Integra-
tion. In International Conference on Mining So昀琀ware Repositories.

[25] Gleiph Ghio琀琀o, Leonardo Murta, Márcio Barros, and André van der Hoek. 2018.
On the Nature of Merge Con昀氀icts: a Study of 2,731 Open Source Java Projects
Hosted by GitHub. IEEE Transactions on So昀琀ware Engineering (2018), 1–1. https:
//doi.org/10.1109/TSE.2018.2871083

[26] M. L. Guimarães and A. R. Silva. 2012. Improving early detection of so昀琀ware
merge con昀氀icts. In 2012 34th International Conference on So昀琀ware Engineering
(ICSE). 342–352. https://doi.org/10.1109/ICSE.2012.6227180

[27] Sk Adnan Hassan, Zainab Aamir, Dongyoon Lee, James C. Davis, and Francisco
Servant. 2023. Improving Developers’ Understanding of Regex Denial of Service
Tools through Anti-Pa琀琀erns and Fix Strategies. In 2023 IEEE Symposium on Secu-
rity and Privacy (SP). 1238–1255. https://doi.org/10.1109/SP46215.2023.10179442

[28] Xianhao Jin. 2021. Reducing Cost in Continuous Integration with a Collection of
Build Selection Approaches. In Joint Meeting on European So昀琀ware Engineering
Conference and Symposium on the Foundations of So昀琀ware Engineering.

[29] Xianhao Jin and Francisco Servant. 2018. 吀栀e hidden cost of code completion:
understanding the impact of the recommendation-list length on its e昀케ciency. In
Proceedings of the 15th International Conference on Mining So昀琀ware Repositories
(Gothenburg, Sweden) (MSR ’18). Association for Computing Machinery, New
York, NY, USA, 70–73. https://doi.org/10.1145/3196398.3196474

[30] Xianhao Jin and Francisco Servant. 2020. A Cost-e昀케cient Approach to Building
in Continuous Integration. In International Conference on So昀琀ware Engineering.

[31] Xianhao Jin and Francisco Servant. 2021. CIBench: A Dataset and Collection of
Techniques for Build and Test Selection and Prioritization in Continuous Inte-
gration. In International Conference on So昀琀ware Engineering: Companion Proceed-
ings.

[32] Xianhao Jin and Francisco Servant. 2021. What Helped, and What Did Not? An
Evaluation of the Strategies to Improve Continuous Integration. In International
Conference on So昀琀ware Engineering.

[33] Xianhao Jin and Francisco Servant. 2022. Which Builds are Really Safe to Skip?
Maximizing Failure Observation for Build Selection in Continuous Integration.
Journal of Systems and So昀琀ware (2022).

[34] Xianhao Jin and Francisco Servant. 2023. HybridCISave: A Combined Build
and Test Selection Approach in Continuous Integration. ACM Transactions on
So昀琀ware Engineering and Methodology 32, 4, Article 93 (may 2023), 39 pages.
https://doi.org/10.1145/3576038

[35] B. K. Kasi and A. Sarma. 2013. Cassandra: Proactive con昀氀ict minimization
through optimized task scheduling. In 2013 35th International Conference on So昀琀-
ware Engineering (ICSE). 732–741. https://doi.org/10.1109/ICSE.2013.6606619

[36] Ayaan M Kazerouni, James C Davis, Arinjoy Basak, Cli昀昀ord A Sha昀昀er, Francisco
Servant, and Stephen H Edwards. 2021. Fast and Accurate Incremental Feedback
for Students’ So昀琀ware Tests using Selective Mutation Analysis. Journal of Sys-
tems and So昀琀ware (2021).

[37] Ayaan M. Kazerouni, Cli昀昀ord A. Sha昀昀er, Stephen H. Edwards, and Francisco
Servant. 2019. Assessing Incremental Testing Practices and 吀栀eir Impact on
Project Outcomes.

[38] Michele Lanza, Marco D’Ambros, Alberto Bacchelli, Lile Ha琀琀ori, and Francesco
Rigo琀琀i. 2013. Manha琀琀an: Supporting real-time visual team activity awareness.
In 2013 21st International Conference on Program Comprehension (ICPC). IEEE,
207–210.

[39] Olaf Leßenich, Sven Apel, and Christian Lengauer. 2015. Balancing Precision
and Performance in Structured Merge. Automated So昀琀ware Engg. 22, 3 (Sept.
2015), 367–397. https://doi.org/10.1007/s10515-014-0151-5

[40] Olaf Leßenich, Janet Siegmund, Sven Apel, Christian Kästner, and Claus Hunsen.
2018. Indicators for merge con昀氀icts in the wild: survey and empirical study.
Automated So昀琀ware Engineering 25, 2 (2018), 279–313.

[41] 吀栀omas W. MacFarland and Jan M. Yates. 2016. Kruskal–Wallis H-Test for
Oneway Analysis of Variance (ANOVA) by Ranks. Springer International Pub-
lishing, Cham, 177–211. https://doi.org/10.1007/978-3-319-30634-6_6

[42] ChandraMaddila, Nachiappan Nagappan, Christian Bird, Georgios Gousios, and
Arie van Deursen. 2021. ConE: A Concurrent Edit Detection Tool for Large Scale
So昀琀ware Development. arXiv preprint arXiv:2101.06542 (2021).

[43] M. Mahmoudi, S. Nadi, and N. Tsantalis. 2019. Are Refactorings to Blame? An
Empirical Study of Refactorings in Merge Con昀氀icts. In 2019 IEEE 26th Interna-
tional Conference on So昀琀ware Analysis, Evolution and Reengineering (SANER).
151–162. https://doi.org/10.1109/SANER.2019.8668012

[44] J.H. McDonald. 2014. Handbook of Biological Statistics (3rd ed.). Sparky House
Publishing, Baltimore, Maryland, 157–164.

[45] T. Mens. 2002. A state-of-the-art survey on so昀琀ware merging. IEEE Transactions
on So昀琀ware Engineering 28, 5 (2002), 449–462. https://doi.org/10.1109/TSE.2002
.1000449

ICPC ’24, April 15–16, 2024, Lisbon, Portugal Adldndni et al.

[46] Louis G. Michael, James Donohue, James C. Davis, Dongyoon Lee, and Fran-
cisco Servant. 2019. Regexes are Hard: Decision-Making, Di昀케culties, and Risks
in Programming Regular Expressions. In International Conference on Automated
So昀琀ware Engineering.

[47] Nicholas Nelson, Caius Brindescu, Shane McKee, Anita Sarma, and Danny Dig.
2019. 吀栀e life-cycle of merge con昀氀icts: processes, barriers, and strategies. Empir-
ical So昀琀ware Engineering (02 2019). https://doi.org/10.1007/s10664-018-9674-x

[48] Hoai Le Nguyen and Claudia-Lavinia Ignat. 2018. An Analysis of Merge Con-
昀氀icts and Resolutions in Git-Based Open Source Projects. Computer Supported
Cooperative Work (CSCW) 27, 3 (01 Dec 2018), 741–765. https://doi.org/10.100
7/s10606-018-9323-3

[49] Yuichi Nishimura and Katsuhisa Maruyama. 2016. Supporting Merge Con昀氀ict
Resolution by Using Fine-Grained Code Change History. 2016 IEEE 23rd Inter-
national Conference on So昀琀ware Analysis, Evolution, and Reengineering (SANER)
1 (2016), 661–664.

[50] Moein Owhadi-Kareshk, Sarah Nadi, and Julia Rubin. 2019. Predicting Merge
Con昀氀icts in Collaborative So昀琀ware Development. https://arxiv.org/pdf/1907.0
6274.pdf.

[51] Rangeet Pan, Vu Le, Nachiappan Nagappan, Sumit Gulwani, Shuvendu Lahiri,
and Mike Kaufman. 2021. Can Program Synthesis Be Used to Learn Merge Con-
昀氀ict Resolutions? An Empirical Analysis. In Proceedings of the 43rd International
Conference on So昀琀ware Engineering (Madrid, Spain) (ICSE ’21). IEEE Press, 785–
796. https://doi.org/10.1109/ICSE43902.2021.00077

[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. 吀栀irion, O. Grisel, M.
Blondel, P. Pre琀琀enhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[53] Anita Sarma, David F Redmiles, and Andre Van Der Hoek. 2011. Palantir: Early
detection of development con昀氀icts arising from parallel code changes. IEEE
Transactions on So昀琀ware Engineering 38, 4 (2011), 889–908.

[54] Francisco Servant. 2013. Supporting Bug Investigation using History Analysis.
In International Conference on Automated So昀琀ware Engineering.

[55] Francisco Servant and James A Jones. 2011. History Slicing. In International
Conference on Automated So昀琀ware Engineering. IEEE.

[56] Francisco Servant and James A Jones. 2012. History Slicing: Assisting Code-
evolution Tasks. In International Symposium on the Foundations of So昀琀ware En-
gineering.

[57] Francisco Servant and James A Jones. 2012. WhoseFault: Automatic Developer-
to-Fault Assignment through Fault Localization. In International Conference on
So昀琀ware Engineering.

[58] Francisco Servant and James A Jones. 2013. Chronos: Visualizing Slices of
Source-code History. In Working Conference on So昀琀ware Visualization.

[59] Francisco Servant and James A Jones. 2017. Fuzzy Fine-grained Code-history
Analysis. In International Conference on So昀琀ware Engineering.

[60] Francisco Servant, James A Jones, andAndré VanDerHoek. 2010. CASI: prevent-
ing indirect con昀氀icts through a live visualization. In Proceedings of the 2010 ICSE
Workshop on Cooperative and Human Aspects of So昀琀ware Engineering. 39–46.

[61] Bowen Shen, MuhammadAli Gulzar, Fei He, and NaMeng. 2022. A Characteriza-
tion Study of Merge Con昀氀icts in Java Projects. ACM Trans. So昀琀w. Eng. Methodol.
(jun 2022). https://doi.org/10.1145/3546944 Just Accepted.

[62] Bo Shen, Wei Zhang, Haiyan Zhao, Guangtai Liang, Zhi Jin, and Qianxiang
Wang. 2019. IntelliMerge: A Refactoring-Aware So昀琀ware Merging Technique.
Proc. ACM Program. Lang. 3, OOPSLA, Article 170 (Oct. 2019), 28 pages. https:
//doi.org/10.1145/3360596

[63] Marcelo Sousa, Isil Dillig, and Shuvendu Lahiri. 2018. Veri昀椀ed 吀栀ree-Way Pro-
gram Merge. In Object-Oriented Programming, Systems, Languages & Applica-
tions Conference (OOPSLA 2018). ACM. https://www.microsoft.com/en-
us/research/publication/verified-three-way-program-merge/

[64] Alexey Svyatkovskiy, Sarah Fakhoury, Negar Ghorbani, Todd Mytkowicz, Eliza-
beth Dinella, Christian Bird, Jinu Jang, Neel Sundaresan, and Shuvendu K. Lahiri.
2022. Program Merge Con昀氀ict Resolution via Neural Transformers. In Pro-
ceedings of the 30th ACM Joint European So昀琀ware Engineering Conference and
Symposium on the Foundations of So昀琀ware Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
822–833. https://doi.org/10.1145/3540250.3549163

[65] Gustavo Vale, Claus Hunsen, Eduardo Figueiredo, and Sven Apel. 2021. Chal-
lenges of Resolving Merge Con昀氀icts: A Mining and Survey Study. IEEE Transac-
tions on So昀琀ware Engineering (2021), 1–1. https://doi.org/10.1109/TSE.2021.313
0098

[66] R. Yuzuki, H. Hata, and K. Matsumoto. 2015. How we resolve con昀氀ict: an em-
pirical study of method-level con昀氀ict resolution. In 2015 IEEE 1st International
Workshop on So昀琀ware Analytics (SWAN). 21–24. https://doi.org/10.1109/SWAN
.2015.7070484

[67] Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shuvendu K.
Lahiri. 2022. Using Pre-Trained LanguageModels to Resolve Textual and Seman-
tic Merge Con昀氀icts (Experience Paper). In Proceedings of the 31st ACM SIGSOFT
International Symposium on So昀琀ware Testing and Analysis (Virtual, South Korea)
(ISSTA 2022). Association for Computing Machinery, New York, NY, USA, 77–88.

https://doi.org/10.1145/3533767.3534396
[68] Fengmin Zhu and Fei He. 2018. Con昀氀ict Resolution for Structured Merge via

Version Space Algebra. Proc. ACM Program. Lang. 2, OOPSLA, Article 166 (Oct.
2018), 25 pages. https://doi.org/10.1145/3276536

