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Consider the random matrix model A/2U BU*A/2 where A and B are
two N x N deterministic matrices and U is either an N x N Haar unitary or
orthogonal random matrix. It is well known that on the macroscopic scale
(Invent. Math. 104 (1991) 201-220), the limiting empirical spectral distribu-
tion (ESD) of the above model is given by the free multiplicative convolution
of the limiting ESDs of A and B, denoted as puq X up, where o and g
are the limiting ESDs of A and B, respectively. In this paper, we study the
asymptotic microscopic behavior of the edge eigenvalues and eigenvectors
statistics. We prove that both the density of w4 X pup, where ;14 and pup are
the ESDs of A and B, respectively and the associated subordination functions
have a regular behavior near the edges. Moreover, we establish the local laws
near the edges on the optimal scale. In particular, we prove that the entries of
the resolvent are close to some functionals depending only on the eigenvalues
of A, B and the subordination functions with optimal convergence rates. Our
proofs and calculations are based on the techniques developed for the addi-
tive model A+ U BU* in (J. Funct. Anal. 271 (2016) 672-719; Comm. Math.
Phys. 349 (2017) 947-990; Adv. Math. 319 (2017) 251-291; J. Funct. Anal.
279 (2020) 108639), and our results can be regarded as the counterparts of
(J. Funct. Anal. 279 (2020) 108639) for the multiplicative model.

1. Introduction. Large-dimensional random matrices play important roles in high-
dimensional statistics. More specifically, given a data matrix Y, studying the eigenvalues and
eigenvectors of YY* and Y*Y has been known to be an effective approach to analyze the data.
There have been many different models for ¥ depending on the nature of data it represents,
and the most fundamental one is the sample covariance matrix [49]. In this context, Y can
be written as ¥ = A!/2X, where A is the population covariance matrix and X contains i.i.d.
centered random variables. An extension of the sample covariance matrix is the separable
covariance matrix [15, 22, 23, 41, 47], where ¥ = A1/ 2X BY/2 with another positive definite
matrix B.

Even though the assumption that X has i.i.d. entries is popular and useful in the literature,
its applications are limited to data composed of linear functions of independent samples. An
important example that such an assumption cannot cover is the Haar distributed random ma-
trix, which has been used in the literature of statistical learning theory [24, 35, 38, 48]. More
specifically, we consider X = U to be either an N x N random Haar unitary or orthogonal
matrix so that

(1.1) Yy =A2UB'2.

In other words, we study a general class of separable random matrices beyond the i.i.d. as-
sumption; indeed, the model (1.1) covers the case where X consists of i.i.d. Gaussian random
variables due to invariance. We mention that the data matrix (1.1) has appeared in the study
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of high-dimensional data analysis, for instance, data acquisition [19], matrix denoising [14,
15] and random sketching [24, 48].

The empirical spectral distribution (ESD) of YY* in (1.1) has been studied in the literature
of free probability theory. Denote

(1.2) H=AUBU*,

which has the same eigenvalues with Y Y*. In the influential work [45], Voiculescu studied
the limiting spectral distribution of the eigenvalues of H and showed that it was given by the
free multiplicative convolution of w, and pg, denoted as q X g, where g and ug are
the limiting ESDs of A and B, respectively; see Definition 2.7 for a precise statement. More
recently, in [31], the author investigated the behavior of py X g by analyzing a system of
deterministic equations, known as subordination equations, that defines the free convolution;
see equation (2.14) for details. They also proved that under certain regularity assumptions,
the density of jq X g had a regular square root behavior near the edges of its support.

However, on the microscopic level, the singular value and vector statistics of Y, as well as
the local laws, have not been established so far. The aim of this paper is to fill this gap near the
regular edges. Before proceeding to our main focus, we pause to discuss the additive model,
that is, A + U BU*. The ESD of the additive model converges to the free additive convolution
of g and ug, denoted as o H g [45]. More recently, the local laws as well as eigenvalues
and eigenvectors statistics have been extensively studied in the series of papers [2-4, 6,
7]. Our arguments are strongly inspired by these works and our results can be regarded as
multiplicative counterparts of [7]. In what follows, we highlight and summarize the results
and techniques of the additive model [2—4, 7] in Section 1.1. Then we explain how we adapt
their approaches with some modifications to obtain the results for the multiplicative model
(1.2) in Section 1.2.

1.1. Local laws for addition of random matrices. In this subsection, we review the re-
sults and techniques for the addition of random matrices A + U BU™* in the series of papers
[2-4, 7].

In [2-4], the authors studied the local laws in regular bulk spectrum of the free additive
convolution. Chronologically, in [2], the authors proved that the system of the subordination
equations, defining the free additive convolution, was stable away from the edges of the sup-
port and singularities. In particular, on one hand, they showed that the system was stable and
the imaginary parts of the subordination functions were bounded below in the regular bulk;
on other hand, they proved a local stability result of the free additive convolution. Based on
[2], in [3], they proved that the local laws held in the bulk of the spectrum down to the optimal
scale N~177 forany y > 0, which improved a result obtained in [2]. Particularly, they proved
a version of averaged local law that the ESD of A + U BU™* concentrated around p4 H up
where (4 and pp denote the ESDs of A and B, respectively. They also proved the entrywise
local law that the every entry of the resolvent G := (A + UBU* —z)™ !, z=E +ine Cy,
was well estimated at deterministic functions of z. As a byproduct, they showed that the bulk
eigenvectors were completely delocalized. Later on, in [4], the authors obtained the optimal
convergence rate (N7)~! in the bulk for the local laws which improved the result of [3] where
the convergence speed was shown to be of smaller order than (N7)~!/2.

We highlight several important technical components and insights of the aforementioned
three works. Since [4] established the local laws down to the optimal scale with optimal
precision which refined the results of [2, 3], we focus our discussion on [4]. The core is to
explore the system of subordination functions globally and locally. First, since the additive
model lacks the independence of matrix elements, they employed a partial randomness de-
composition (see (3.1) in the present paper) of the Haar measure which enabled them to take
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partial expectations of the entries of the resolvent. Second, to connect the resolvent with the
subordination functions, they used the approximate subordination functions which depend
only on the resolvent of A + U BU*. In particular, their choices for these approximates can
be considered as a random version of those used in [32, 40]; see equation (3.18) of [4]. With
such choices, they were able to work on a new system of self-consistent equations. Surpris-
ingly, it suffices to monitor only two auxiliary quantities to analyze the system. With the
aid of the local stability results of [2], they connected the partial expectations of the entries
of the resolvent with the subordination functions. Third, they proposed a novel strategy to
handle the fluctuation averaging mechanism for Haar random matrices. More specifically,
instead of working directly with N~!'Y"; G;;, they first considered generic averages of an
auxiliary quantity which was a carefully chosen linear combination of G;; and (UBU*G);;.
Such a particular choice made the leading order terms within its average cancel algebraically,
and the auxiliary quantity can be passed to G;; by taking different weights for this aver-
age. Finally, to streamline the calculation, instead of directly computing high moments of the
essential auxiliary quantities, they used the so-called recursive moment estimates, in which
high-moments were estimated in terms of the lower moments with the aid of integration by
parts.

Armed with the above techniques and results, in [7], they were able to investigate the local
laws near the regular edges in the sense that ;4 B ¢ p had a regular behavior near the edges.
More specifically, they presented the local laws near the edges on the optimal scale with
optimal precision. Based on these results, they were able to prove the edge eigenvalue rigidity
and edge eigenvector delocalization. On the technical level, they used and generalized the
strategies and inputs of [2—4] as summarized in the previous paragraph. Since the eigenvalues
around the edges are sparse and fluctuate more, in order to guarantee the regular behavior of
wa H pp, they first established the square root decay of their limiting counterpart pq B pg.
Under suitable assumptions on the Lévy distances, with the local stability, the measure p 4 H
W p inherits the regularity up to the optimal scale. In addition, the probabilistic part of [4]
is not sufficient around the edges as the subordination functions become unstable and the
improvement from fluctuation averaging in [4] is suboptimal. In order to compensate this
instability, they established a very accurate estimate on the approximation error. To achieve
this goal, they carefully identified a new pair of auxiliary quantities; see equations (4.14) and
(4.15) of [7]. In particular, one of the auxiliary quantities in [7] has an additional counter term
compared to the one used in [4]. We mention that [7] required the assumption that at least
one of the Stieltjes transforms of 1, and g was bounded from above. This assumption can
be removed using their recent results in [6].

In summary, using addition of random matrices as an example, the authors in [2—4, 7] have
developed a general framework and powerful techniques to study the local laws of random
matrix models where the main source of randomness is the Haar matrix. Since multiplication
of random matrices is another typical example using Haar matrix, it is natural to study the
multiplication of random matrices using the techniques developed for the additive model.
This will be discussed in the next subsection, Section 1.2.

1.2. From addition to multiplication: An overview of our results. In this subsection, we
explain how to adapt the techniques of the additive model [2—4, 7] as summarized in Sec-
tion 1.1 to obtain the results for the multiplicative model (1.2). The main purpose of this
paper is to present a comprehensive edge local law on the optimal scale and with optimal
convergence rates for the multiplicative model, which is the counterpart of [7]. In what fol-
lows, we give an overview of our results and explain how to handle the multiplicative model
adapting the techniques of the additive model in [4, 7].

The first part of our results concerns the regularity of w4 X wp and the subordination
functions. More specifically, in Proposition 2.11 below, we establish the stability properties
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of the subordination functions near the regular edges and provide some crucial estimates.
Here we point out that, instead of using the conventional n-transform [10, 44] to define the
subordination functions and free multiplicative convolution, we use a simple conjugate of
it known as M-transform (cf. Definition 2.1) [16, 31]. One technical advantage of using M-
transform is that it makes the similarity between the additive and multiplicative models more
evident, which enables us to adapt the techniques of [4, 7] more directly and easily. The proof
of Proposition 2.11 follows from its counterpart for the additive model in [7] (see Proposi-
tion 3.1 therein) which can be split into two steps. In the first step, the results are proved for
the limiting measures (g, and pg under some regularity assumptions (cf. Assumption 2.2).
In the second step, assuming that (4, up and j1y, ug are close enough (cf. Assumption 2.4),
the statements can be carried over to the measures ;4 and wp. As mentioned earlier, in [7],
the authors proved analogous results for the additive model assuming that at least one of the
Stieltjes transforms of w, and ug was bounded from above (see (iii) of Assumption 2.1 in
[7]), which could be removed using their recent results in [6]. For our multiplicative model,
since the analog of [6] has been established by the second author in [31], we will not need
this condition in our Assumption 2.2.

The second part of our results focuses on establishing the optimal edge local laws on the
optimal scale for the multiplicative model. In Theorem 2.13 below, we provide accurate esti-
mates for the entries of the resolvent and also prove the averaged local law. The convergence
rates are optimal up to some N€ factor. As two consequences, we prove the rigidity of the
edge eigenvalues in Theorem 2.15 and the complete delocalization of the edge eigenvectors
in Theorem 2.16. On the technical level, the proof of Theorem 2.13 follows closely from
its counterpart for the additive model [7] (see Theorem 2.5 therein) as summarized in Sec-
tion 1.1. In what follows, we highlight the key ingredients on the adaption of their arguments.
Thanks to the M-transform, the approximate subordination functions for the multiplicative
model (cf. Definition 3.1) can be easily identified. To control the errors between the subordi-
nation functions and their approximates, we first explore some hidden relations. For instance,
in (3.7) and (3.10) we represent the error in terms of the resolvents. This enables us to find
the key auxiliary quantities to work with. Then we use integration by parts to start the re-
cursive estimates to obtain bounds for high moments of these essential quantities. In order to
establish the optimal convergence rates, as mentioned in [7], the weights in the fluctuation
averaging mechanism needed to be properly chosen. In our case, these weights (cf. equa-
tions (B.31) and (B.32) in our supplementary file [18]) can be constructed using the hidden
identities obtained earlier. Finally, we point that due to the structural difference between the
additive and multiplicative models, many errors in our model need more careful treatment.
For example, in the fluctuation averaging mechanism, our error terms €;1 in (4.24) and e;» in
(4.49) will generate some O (N —1/2) terms. The weighted summations of these terms will
be canceled out algebraically after we explore some hidden identities; see (B.14)—(B.17) and
the associated discussion in [18] for more details.

As mentioned in [7], the results of the addition of random matrices demonstrate that the
Haar randomness in the additive model leads to an analogous behavior to the Wigner matrices
[28] in the sense of strong concentration of the eigenvalues and eigenvectors. In the same
spirit, the Haar randomness in our multiplicative model (1.1), results in a similar behavior as
the separable covariance matrices as in [22, 47]. Finally, we mention that the arguments of
the current paper can be carried out to study the bulk eigenvalues and eigenvectors as in [2—4]
which deals with additive model. The results obtained here can also be used to study other
models and statistics, for example, the deformed invariant model [11] and the Tracy—Widom
distribution for the edge eigenvalues. We will pursue these topics in future works.

The rest of the paper is organized as follows. In Section 2, we introduce the necessary
notation and state the main results. In Section 3, we present a structural summary of our
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proof. In Section 4, we prove a subordination property for the resolvent entries. The proof of
fluctuation averaging lemmas, along with some auxiliary lemmas and technical proofs, are
collected in our supplementary file [18].

Conventions. For M, N € N, we denote {k e N: M <k < N} by [M, N]. For N € N and
i € [1, N], we denote by el(N) € RY with (e;) j = 8i;. We often omit the superscript N to write
egN) = e;. We use [ for the identity matrix of any dimension. For an N-dimensional real or
complex random vector g = (g1, ..., gn), we write g ~ Ng(0, 02Iy) if g1, ..., gy arei.id.
N (0, 0?) random variables, and we write g ~ N¢(0, 021y) if g1, ..., gn areiid. Nc(0, 0%)
variables, where g; ~ N¢ (0, 02) means that Re gi and Im g; are independent N (0, %) ran-
dom variables. For any matrix A, we denote its operator norm by || A|| and for a vector v, we
use ||v|| for its £, norm.

2. Main results.

2.1. Notation and assumptions. For any N x N matrix W, we denote its normalized
trace by tr W, that is,

1 N
2.1 trW=— Wii.
2.1 r N; ii

Moreover, its empirical spectral distribution (ESD) is defined as

1 N
= — S (W
Mw NE A (W)

In the present paper, even if the matrix is not of size N x N, the trace is always normalized
by N~! unless otherwise specified.
Consider two N x N real deterministic positive definite matrices

AEAN:diag(al,...,aN), BEBN:diag(bl,...,bN),

where the diagonal entries are ordered as a; >ap > --->ay >0and by > by > --- > by >
0. Let U = Uy be a random unitary or orthogonal matrix, Haar distributed on the unitary
group U (N) or the orthogonal group O(N). Denote A :=U*AU, B:=UBU*, and

H:=AUBU*,  H:=U*AUB, H:=A"2BA'? and
2.2)

H:=B'/?AB'/?
Note that we only need to consider diagonal matrices A and B since U is a Haar random
unitary or orthogonal matrix. Moreover, H and H are Hermitian random matrices.

Since H, H, H and H have the same eigenvalues, in the sequel, we denote the eigenvalues
of all of them as A; > Ao > --- > Ay without causing any confusion. Further, we define the
ESDs of the above matrices by

1 1 1

N N N

MAEM.(A):N E Sai’ MBEM%):N E 817,‘7 ILHEM(I'I)::N E 5)”-.
i=1 i=l

i=1
For z € C4 :={z € C:Imz > 0}, we define the resolvent of H as
(2.3) G(z):=H-z)"".

Similarly, the resolvents of H, H and H are defined as G(z), G(z) and G(z), respectively. In
the rest of the paper, we usually omit the dependence on z and simply write G, G, G and G.
The following transforms will play important roles in the current paper.
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DEFINITION 2.1. For any probability measure p defined on Ry, its Stieltjes transform
m, is defined as

1
mM(Z):/‘Ed,U/(X) fOI'ZE(C\R+.
Moreover, we define the M-transform M, and L-transform L, on C\ R as

M, (z
L,(z):= “;Z).

3 X —1_ zm(2)
Q4 Mu@)=1- (f Ed“(’”) )

Let m g (z) be the Stieltjes transform of the ESD 0~f H.Since H, H, H and H are similar
to each other, we have that mpy (z) =tr G =trG = tr G = tr G. Moreover, we have

(2.5) Gij=.lai/a;Gij,  Gij=/b;j/biGij.

With the above preparation, we introduce the main assumptions. Analogous to [7],
throughout the paper, we assume that ;14 and pwp converge to some N-independent abso-
lutely continuous probability measures i, and 1g. We start with stating the assumptions on
Mo and pg, which is an analog of the additive model as in [7], Assumption 2.1.

ASSUMPTION 2.2. Suppose the following assumptions hold true:

(i) me and g have densities p, and pg, respectively. For the ease of discussion, we
assume that both of them have means 1.
(ii) Both py and pg have single nonempty intervals as supports, denoted as [E¥, E] and
[E E E p ], respectively. Here E¢, Eﬂ‘r, E E ,and E ﬁ are all positive numbers. Moreover, both
of the density functions are strictly positive in the interior of their supports.
(iii) There exist constants —1 < ¢, tf: < 1l and C > 1 such that

- Pa(x) « pa

Cls —— = <C Vxe[E% E{],
(x — EZ)=(EL — x)'+

c'< Pp0) <c vxe[E? EP).

(x — EPYP(ER — o)

REMARK 2.3. First, the assumption that both 4 and g have means 1 in (i) is intro-
duced for technical simplicity and can be removed easily; see Remark 3.2 of [31]. Second, the
assumption (iii) is introduced to guarantee the square root behavior near the edges of the free
multiplicative convolution of 1, and pg. When this condition fails, the behavior of uy X g
near the edge can be very different from our current discussion; see [34] for more details.
Third, as we are only interested in the edge statistics near the upper edge in Section 2.3, the
assumptions (ii) and (iii) can be relaxed by only imposing conditions on EY and Eﬁ We
keep the current form involving E% and E P since our results also hold near the lower edge
with minor modification. Finally, for the additive model, the counterpart is Assumption 2.1
of [7]. It requires that at least one of the Stieltjes transforms of i, and ug is bounded from
above (see (iii) of Assumption 2.1 in [7]), which could be removed using their recent results
in [6]. We will no longer need this condition since the counterpart of [6] for our model has
been established in [31].

The following Assumption 2.4 ensures that 14 and pp are close to uy and ug, respec-
tively. Specifically, it demonstrates that the convergence rates of 4 and g to e and ug
are bounded by an order of N ™!, so that their fluctuations do not dominate that of . Its
counterpart for the additive model is [7], Assumption 2.2.
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ASSUMPTION 2.4. Suppose the following hold true when N is sufficiently large:
(iv) For the Lévy distance L(-, -), we have that for any small constant € > 0

d:=L(g, 1a)+ L(up, up) < N~

(v) For the supports of ;4 and wp, we have that for any constant § > 0
supppua C [EX — 8, ES + 4], supp,uBC[Eé—(S,Ei—i-(S].

REMARK 2.5. We remark that we will consistently use € as a generic sufficiently small
constant whose value may change from one line to the next. The assumption (v) assures that
both of the upper edges of 4 and up are bounded.

As proved by Voiculescu in [44, 45], under Assumptions 2.2 and 2.4, i i converges weakly
to the free multiplicative convolution of u, and g, denoted as e X ug.

LEMMA 2.6 (Proposition 2.5 of [31]). There exist unique analytic functions Qq, Qg :
C\ Ry — C\ Ry satisfying the following:

(1) Forall z € C4, we have
(2.6) arg Q2 (z) > argz and argQp(z) > argz.

(2) Forall z € C4,

2.7 lim Q4(z)= lim Qp(z) = —oo.
2.7 im «(2) Aim p(2)

(3) Forall z € C\ Ry, we have
(2.8) My, (R28(2)) = 2M 1, (Q20/(2) = Qa(2)2p(2).

The analytic functions €2, and g are referred to as the subordination functions. We re-
mark that the same functions as well as M-transforms also appeared in [16], called Z and

K -functions, respectively. Similarly, we can denote 24 and Qp by replacing (o, ) with
(A, B). With the aid of Lemma 2.6, we can define the free multiplicative convolution.

DEFINITION 2.7. Denote the analytic function M : C\R; — C\R by
(2.9) M(z) = Mua(Qﬂ(Z)) :Mﬂﬂ(Qa(z)).

Then the free multiplicative convolution of i, and wg is defined as the unique probability
measure ., denoted as 0 = 1y X g such that (2.9) holds for all z € C\ R,.. In other words,
M (z) = M},,®p,(2) 1s the M-transform of p1y X pug. Furthermore, we define j14 X pp so that
M, (Qp(2) =M, ;,(24(2)) = M, ;& () holds for all z € C\ R

Note that a consequence of (2.8) and the definition of M (z) is the following identity:

(2.10) / At B ) () = R @y (25(2)) + 1 = / X_#W dptg (%),

REMARK 2.8. Since all of 4, 4g, 4 and p g are compactly supported on (0, 00), sim-
ilar results hold for py X g and s X . Specifically, according to [46], Remark 3.6.2(ii1),
we have

(2.11) supp o X pp C [EﬁEE,EiEf_], supp ua X up C [anby, a1b].
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In fact, we can conclude from [31], Theorem 3.1, that, if (i) and (ii) of Assumption 2.2 hold,
e X g is absolutely continuous and supported on a single nonempty compact interval on
(0, 00), denoted as [E_, E], that is,

(2.12) E_ :=infsupp(ue X up), E :=supsupp(ue X pg).

Let the density of y XX g be p. For small constant T > 0, with (iii) of Assumption 2.2, we
have

(213) p(x)N,/E_,_—x, XE[E+—T, E+]

Furthermore, as we will see in Lemma A.3 of our supplement [18], the subordination func-
tions €2, and Qg also have square root behaviors near the edges. The regularity behavior is
assured by the fact that the subordination functions €2, and g are well separated from the
supports of g and py, respectively; see (i) of Lemma A.1 in [18]. In fact, from the proof
of Proposition 5.6 of [31], we see that the assumption (iii) of Assumption 2.2 implies this
stability condition.

REMARK 2.9. It is known from [9, 31] that Assumption 2.2 ensures that the subordina-
tion functions Q4|c, and 2g|c, can be extended continuously to the real line. Throughout
the paper, we will write 4 (x) or Q4(x) for x € R to denote the continuous extensions. In
particular, €2, (x) and Qg(x) always have nonnegative imaginary parts for all x € R.

2.2. Properties of subordination functions. In this subsection, we state the results regard-
ing the local properties of the subordination functions and related quantities near the regular
edge. These results will be used in the proof of the local laws. We first introduce some nota-
tion. Note that the system of subordination equations (2.8) can be rewritten as

(2.14) Pop(R20(2), 2(2), 2) =0,
where we denote ®q5 = (Pq, Pg) : {(w1, @2,2) € (Ci sargwy, argwy > argz} — C2 by

M, (w w
215)  Gu(wr, wn, 2) = (@D _ 01 D (w1, w2, 7) = :
w? Z w1 Z

Myug(@1) o

Here @44 should be regarded as a function of three complex variables. We will also use the
following quantities, which are closely related to the first and the second derivatives of the
system (2.14). Recall (2.4). Denote

(2.16)  Sup(2) :=7L},, ()L, () -1,
1
@17 Ta(@):= 5 [eLy, (@)L, (26@) + (L), (2 ()L, (2@)].

1
Ta(@) = 5 eL}, (0L, (@) + (L}, (25(2) L], ()]

By replacing the pair (o, 8) with (A, B), we can define ®4p, Sap, T4 and Tp analogously.
We remark that analogous quantities have been defined and used for the additive model in
[7]; see equation (3.1) therein.

REMARK 2.10. We provide a few remarks on the usefulness for the above quantities.
First, the edges E+ of j1o X g can be completely characterized by the equation Spp(E+) =
0; see [31], Section 5, for mode details. Second, the above quantities are closely connected
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with the subordination equation system (2.14). Let D be the differential operator with respect
to w; and wy. Then we find that the first derivative of ®4g is given by

-7 L, (w2)>

2.18) DPap(@1, @2, 2) := (L;ﬁ (@) —z

Moreover, its determinant is equal to —z_ZSO,,g (z) at the point (24(2), 25(z), ). Similarly,
using ®q4(R24(2), 24(2), 2) =0, we find that

3
Ta(e) = z[— det D®ys (@1, 2Ly, (1), z)} ,
dwi 1= (2)

ad
773(Z) =Z|:— detD(Daﬂ(ZLMa(a)z),a)z,Z)] .
dan =24 (2)
As will be seen later in the proof, we need to show that €2, and g are close to £24 and Qp,
respectively. The arguments are based on the stability analysis of ® 4p, which require sharp
estimates of the above quantities.

We collect the key properties of the subordination functions in Proposition 2.11. It is the
counterpart of Proposition 3.1 of [7] which concerns the additive model. For the ease of
statements, we only provide the results near the upper edge E defined in (2.12). Similar
results hold for the lower edge E_. For z = E +in € C, denote
(2.19) k=k(z):=|E—E4|.

For some given constants 0 <a < b and 0 < T < min{ E*;E‘ , 1}, we define the following
set of spectral parameters by

(2.20) D.(a,b):=|z=E+ineCy:Ey —t<E<t ',a<n<b).
Further, for any small positive constant y > 0, we let
(2.21) n=nr(y):=N""7,

and let nyy > 1 be a large N-independent constant.
PROPOSITION 2.11. Suppose Assumptions 2.2 and 2.4 hold. Then for any fixed small
constant T > 0 and sufficiently large N, the following hold:
(1) There exists some constant C > 1 such that

min|a; — Qp(2)| > C7, min|b; — Qa(z)| = C71,
1 l

cl'<laal<c, sl <C,
uniformly in z € Dr(nr, ny).
(ii) Forall z € D:(ny,ny), we have
vik+n fEe€suppuasXug,
Mm@y @D 1 i E ¢ suppja B .

VK 4N
(iii) Forall z € D;(nL, ny), we have the following bounds for Sag, Ta, and Tp,
Sap~i¥n,  |Ta@[<C,  |Tz@|=<C.

Furthermore, if |z — E4| < § for sufficiently small constant § > 0, we also have the lower
bounds for Ty and Tp such that for some small constant ¢ > 0

|TA()| > c, |Te(2)| = c.
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(iv) For the derivatives of Q4, Qg and Sap, we have

Q4| =<C Q)| =C |Syp(2)| <C

1 1 1

uniformly in z € D:(nL, nu).

Proposition 2.11 will be proved in Section A of our supplement [18]. First, the first equa-
tion in (i) states that the subordination functions are well separated from the supports of
ua and pp. This regularity further implies the square root behavior of the subordination
functions; see Lemmas A.3 and A.7 of [18]. The second equation in (i) shows that the sub-
ordination functions are bounded from both below and above. Second, (ii) offers a standard
estimate for the Stieltjes transform, which follows from the square root behavior of ps X p.
Third, (iii) and (iv) prepare some estimates for the related quantities. All these will be used to
prove the closeness between €2, Q25 and 24, Q2p; see Section A.3 of [18] for more details.

2.3. Local laws for free multiplication of random matrices. In this subsection, we state
the results of the local laws. We will need the notion of stochastic domination. It was first in-
troduced in [26] and subsequently used in many works on random matrix theory. It simplifies
the presentation of the results by systematizing statements of the form “Xy is bounded by
Yy with high probability up to a small power of N”.

DEFINITION 2.12. For two sequences of random variables { Xy }nyen and {Yn}yen, we
say that X is stochastically dominated by Yy, written as Xy < Yy or Xy = O (Yy), if for
all (small) € > 0 and (large) D > 0, we have

P[|Xn| > N€|YN|] < NP,

for sufficiently large N > Ny(e, D). If X (v) and Yy (v) depend on some common parameter
v, we say Xy < Yn uniformly in v if the threshold Ny(e, D) can be chosen independent of
the parameter v. Moreover, we say an event = holds with high probability if for any constant
D > 0,P(8) > 1— NP for large enough N.

The following theorem establishes the local laws for the matrices H, H , H and H near the
upper edge E. Analogous results can be obtained for the lower edge E_. It can be regarded
as the counterpart of [7], Theorem 2.5.

THEOREM 2.13. Suppose Assumptions 2.2 and 2.4 hold. Let Tt and y be fixed small
positive constants. Given any deterministic vector v = (vy, ..., vy) € C such that ||v]e <1,
the following hold true:

(1) For the matrix H and its resolvent G(z), we have

1Y a;
(2-22) ‘ﬁ Zvi <ZGii(Z) +1- m) <

uniformly in z € Dy (nr, nu) with nr in (2.21) and any fixed constant ny . Particularly,

1
Nn

9

i=l

(2.23) Imu(z) —my, xu, @) < N
Moreover, we have the following entrywise local law:

- Qp(2) 1

V@) —an| YN

Similar results hold true by replacing H and G(z) with H and G(z), respectively.

(2.24) max|G;j(z) — 6
iJ
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(2) For the matrix H and its resolvent G(z), we have

(2.25) liv-( g--(>+1—L) DS
‘ N bi—Qa@)| " N

i=1

and

Imy(2) — MuaRup (2)] <

’

Nn
uniformly in z € Dy (L, nu). Moreover, for the entrywise local law, we have
N Qa(2) - 1

Y2Qa) —b)| T /N’

Similar results hold true by simply replacing H and G(z) with H and G(z), respectively.

(2.26) max|G;;(z) — 6
L]

REMARK 2.14. We provide a few remarks for Theorem 2.13. First, since the goal of
[7] is to establish the spectral rigidity for the additive model, they only need the averaged
local laws so the entrywise local laws are not presented explicitly there. However, it is easy
to check that such entrywise laws also hold for the additive model following their proofs. In
fact, the entrywise local laws are stated explicitly for the additive model in the regular bulk in
their work [3] (see Theorem 2.5 therein). Second, it is not hard to check that for the entrywise
local laws, the convergence rates can be replaced by

Imm =, (2) I L
Nn Nn’

which matches the typical forms of the bounds of local laws in the random matrix theory
literature; see the monograph [28]. We keep the current form to highlight the similarities
between our multiplicative model and the additive model in [7]. Third, in [7], the authors
also state the averaged local law far away from the edges such that the error bound (N7)~!
could be replaced by (N (x + ))~'. Such an improvement also holds for our multiplicative
model. In fact, in this case, we can also improve the convergence rates for the entrywise
local laws from (\/N—n)_l/2 to N~12(k + 17)_1/4. Together with these results, we will be
able to study the deformed invariant model [11]. These will be studied in our future works.
Finally, while we restricted ourselves to the edge local law for the sake of simplicity, the same
argument can be used to prove Theorem 2.13 in the bulk, by replacing the spectral domain

D:(nr, nu) with
2.27) Dok ={z=FE+ineCr E_+t<E<E;—1,n <n<nu},

for any fixed constant T > 0. In fact, the proof will be simpler in this regime. We refer the
readers to Remark 3.2 for more details.

Next, we state two important consequences of the local laws: edge eigenvalue rigidity and
edge eigenvector delocalization. Denote y; as the jth N-quantile (or classical location) of
e X g such that

dpe M pup(x) = .
i o N

Similarly, we denote )/j’.k to be the jth N-quantile of uq X pup. Recall that A1 > Xy > --- > AN
are the eigenvalues of AUBU™.
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THEOREM 2.15. Suppose Assumptions 2.2 and 2.4 hold true. For any small constant
0 <c < 1/2,we have that forall 1 <i <cN,

i — ¥ < i VAN,

Moreover, the same conclusion holds if v is replaced with y;.

Denote the singular value decomposition (SVD) for Y in (1.1) as

N
Y=Y Viwv,
i=1
where {u}; and {v;} are the left and right singular vectors of Y, respectively.

THEOREM 2.16. Suppose Assumptions 2.2 and 2.4 hold true. For any fixed small con-
stant 0 < ¢ < 1/2, we have that for all 1 <i <cN,

m/flx|u,~(k)|2 + mlilx|v,- (M)|2 <5

REMARK 2.17. We provide some further remarks here. First, in the current paper, the
deterministic matrices A and B are both assumed to be positive definite so that A'/? and
B'/? are well defined. This ensures the model is symmetric in the sense that A and B can be
interchanged freely, and we often use such an argument along our proofs. In particular, we
actually use all four matrices in (2.2) and their resolvents; see (4.42) for an illustration, where
we apply the Ward identity to the resolvents of H and H. Moreover, this symmetry played
an important role in [31] and in earlier appearances of subordination functions on which our
results relied, for example, [10, 13]. In this sense, even though taking (only) one of A and B
to be nonpositive in H = AU BU* still gives real eigenvalues, some arguments in the present
paper cease to work because the model is no longer symmetric and either H or H in (2.2)
is not defined. Nonetheless, we believe that the result remains true in this case, and it might
be possible to prove with an application of linearization trick. We explain more details on
difficulties arising in applications of the linearization trick in the next paragraph.

Second, in [29] the author proved a weak local law for generic self-adjoint polynomials
of A and B (recall B=UBU *), on the scale of N~1/12, This work and its deterministic
precursor [12] suggest that an analogous result to the present paper and [7] should hold for
generic polynomials. The main idea in [29] was to use the linearization trick to consider the
sum of tensors x4 ® A + xg ® B for suitably finite and Hermitian matrices x,, xg, instead
of the given polynomial. Moreover, we point out that this can also apply to the case with a
nonpositive matrix, say B, by considering +/A BJAasa polynomial of ~/A and B. Although
it is feasible that the techniques of the current paper and those in [2—4, 7] can apply to the
general model in [29], there are two major difficulties in accommodating these arguments to
the linearized models. On one hand, it is a nontrivial task to study the limiting distribution
and its regularity for the general free polynomial model. In particular, there are no known
natural and suitable conditions on p, and pg like Assumption 2.2, and on the generic poly-
nomials so that the free polynomial is regular, especially near the edge. On the other hand,
as will be seen in Section 3.2 below, the proof of local laws relies on many auxiliary scalar
quantities; see (3.9) and (3.11) for examples. However, for the general model in [29], due to
the linearization, all these quantities should be matrices instead of scalars. Hence, finding the
nonscalar equivalents of these auxiliary quantities in the general setting can be challenging.
At the current stage we are not aware of a systematic approach to find them in general, ex-
cept that in the bulk regime some related techniques have been developed for polynomials of
Wigner matrices recently in [27].
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2.4. Statistical applications. In this subsection, we briefly discuss some applications of
our results to high-dimensional statistics. First, our results can be used to detect the existence
of signals in the signal-plus-noise model when the noise part is of the form A'/2UBU*A'/2,
Consider

Y=8+4+72,

where S and Z stand for the signal and noise parts, respectively. Such a model finds important
applications in many scientific endeavors. Especially in many cases S is a low-rank symmetric
matrix, for example, diffusion tensor imaging (DTI) analysis [42], Z, synchronization [30],
community detection using stochastic block model (SBM) [1], matrix denoising and recovery
[25, 37] and signal processing [43]. While most of the existing literature focuses on the setting
that Z is a Wigner matrix, the free multiplicative noise is also considered in the literature [14,
15]. Therefore, we can apply our results to study the signal-plus-noise model when Z =
A'2UBU*A'/?, that is,

(2.28) Y =S+ A2uBUu*aAl/?,

A fundamental task is to recover the signal matrix S from the observed sample Y in (2.28),
and the very first step is to know whether there exists any such signal. From the random matrix
theory viewpoint, the eigenvalues of the signal part S can be viewed as outliers which detach
from the bulk of u4 X pp. Our Theorem 2.15 can be used to achieve this goal, especially
when we can employ the following Onatski’s statistic [39]:

A (Y) — Aoy (Y
(2.29) Tom max ) =Hn®)
1<i<C Ai+1(Y) — Ai42(Y)

where C > 0 is some pre-chosen large integer and {A;(Y)} are the eigenvalues of Y which are
ordered decreasingly. We now explain how the statistic T works by considering the simplest
case with rank-one alternative. Note that rank-one S already has important applications in Z,
synchronization [30] and SBM [1]. Formally, we consider the hypothesis test

(2.30) Hy:S=0 versus H,:S=duu",

for some large constant d > 0. On one hand, according to Theorem 2.15, under the null
hypothesis Hy, the statistic T should satisfy that T =1 + o<(1). On the other hand, if H,
holds, when d is above some threshold, that is, the signal is relatively strong so that A;(Y)
detaches from the spectrum of © 4 X @ p, we shall have that with high probability T > 1+t
for some constant T > 0. Consequently, we can use T to detect the existence of the signal
matrix. We mention that the exact characterization of d, that is, the BBP transition, often
requires a sophisticated perturbation argument involving optimal local laws, Theorem 2.13.
Moreover, to formally perform the test (2.30), we need to find the distribution of T. Since
these are beyond the focuses of the current paper, we defer these problems to future works.

Second, some simple extensions of our results can be applied to provide some insights on
the performance of random sketching in the setting of high-dimensional least square regres-
sion [24]. Suppose that we observe N data points (x;, y;), where x; € R? are the predictors,
and y; € R are the responses. Consider the linear model that y; = xiT B + €;, where B € RP
is an unknown parameter and €/s are the white noise error. The ordinary least squares (OLS)
estimator for 8 can be written as

B=(x"x)""x"y,

where X € RV*P collects all x; and y€E R collects all vi, 1 <i < N. The OLS estimator
is a gold standard when rank(X)= p. However, when both N and p are large, it is computa-
tionally expensive to get the OLS estimator. In the high-dimensional setting, sketching is an
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effective approach to reduce the size of the problem by multiplying an M x N matrix S to
obtain the sketched data (X, Y) = (SX, SY). Then the sketched OLS estimator is [24]

B=(XTX)'F
The computational cost will drop from Np? to Mp? by introducing the sketching matrix S.
The goal of sketching is to find an M < N so that the performance of 8 and g is similar.
One popular and efficient choice for S is the truncated Haar orthogonal matrix in the sense
that S is a submatrix of an N x N Haar orthogonal matrix. To analyze the performance of

B\s, the core is to study the projection matrix XTX. It is not hard to see that we can rewrite
D, := X " X as (see Section A.7 of [24])

_(Im O Ap O « (I O
(2.31) DS_(O O)U(O O)U 0 0}
where A, is the diagonal matrix containing the nontrivial eigenvalues of X TX. Dy includes
the truncated Haar matrices here due to the block structure of the deterministic matrices.

Based on the above discussion, we see that the core is to analyze the matrix Dy. In fact, the
above model is of the form (1.1) by setting

Iy O A, O

(2.32) A:(O 0), B:(OP O)'

For this particular case, even through the positive definite assumptions in Section 2.3 are
slightly violated, the results still hold true near the upper edge. These results, especially The-
orem 2.13 can be used to establish the convergent rates for the variance efficiency (VE) of Bs,
that is, the increase in parameter estimation error compared to using E directly. For instance,
together with Theorem 2.3 of [24], we will be able to show that when p is comparable to
both M and N

(2.33)

|m—mP_N—p+0(;J
IB=BI2  M—p  TT\YN/

(2.33) can be used as a starting point to choose a numerically efficient value of M for the
finite sample study. A rigorous discussion is out of the scope of this paper and we will pursue
this direction in future works.

Finally, we mention that the key matrices of many other problems are also in the form
of (1.2) or AY2UBU*A'/?. For example, many of the nonlinear kernel-based data acquisi-
tion algorithms can be reduced to studying a random matrix of the form (1.2) [19]. Conse-
quently, our results can be potentially applied to check whether common signals have been
properly captured by two different sensors using a statistic similar to (2.29) [20]. Moreover,
A2UBU*A'/? is also a natural model for spatiotemporal data analysis [15], where A and
B are respectively the spatial and temporal covariance matrices. In practice, a spiked model
analogous to [22] is more reasonable for real applications. The results in this paper are key
ingredients to study such a problem. We will pursue these directions in future works.

3. General structure of the proof.

3.1. Partial randomness decomposition. As mentioned earlier, the partial randomness
decomposition has been used as an important asset to handle the Haar random matrix in the
additive model [4, 5, 7]. For our multiplicative model, we also need to use this tool. The partial
randomness decomposition can be regarded as the counterpart of the Schur’s complement,
which plays a central role in the proof of the local laws [8, 21, 33, 36, 47] when X in (1.1)
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has i.i.d. entries. In what follows, we focus on introducing this technique for Haar unitary
matrix. We will also briefly discuss how the arguments apply to Haar orthogonal matrix.

Let U be an N x N Haar unitary random matrix. For all i € [1, N], define v; := Ue; as
the ith column vector of U and 6; as the argument of e v;. Following [17], we denote

—i6; 4.
B1)  UD——e O RU, where Ri =1 —rirt, ri = /21
lle; +e~%v;||

Since ||r;||?> = 2, we have that R; is a Householder reflection. Consequently, R} = R; and
Ri2 = . Furthermore, it is easy to see that U''e; = ¢; and el’.‘U“) = e;. This implies that
U is a unitary block-diagonal matrix. In other words, Ul.(f) =1 and the (7, i)-matrix minor
of U is Haar distributed on U(N — 1) and v; is uniformly distributed on the N — 1 unit
sphere. Denote

(3.2) B .— U<i>B(U<i>)*,
Since v; is uniformly distributed on the unit sphere Sg _1, we can find a Gaussian vector

g; ~Nc(0, N~'Iy) such that

~

(33) vi = fi .
gl
Armed with the above Gaussian vector, we further define
. . . 2

gi = e_lgigi, hi = gl = e—l@,' v;, Ei = 7f s
(3.4) gl le; + hill

& =g —giiei hi=h; — hie;.
It is easy to see from (3.1) that
(3.5) ri="{i(e; +h;), Rie; = —h;, Rih; = —e;,
which further implies that
(3.6) hiBYR =—eB,  e'BY'R,=—hiB=—bh}.

The above equations provide several convenient identities for the Haar unitary matrix. More-
over, since B is independent of both k; and R;, we can establish accurate large deviation
estimates for quantities related to (3.6); see Section 1.2 of [18] for more details. Finally, for
the Haar orthogonal random matrix on O (), the only difference lies in the partial random-
ness decomposition. In fact, we can decompose an orthogonal matrix U in the same way as
in (3.1), except that the factor e % in (3.1) should be replaced by sgn(e;v;). We refer the
readers to [3], Appendix A, for more details.

3.2. Sketch of the proof route. In this subsection, we summarize the main route of the
proof. Our proof basically follows [7] and we focus on explaining how to adapt their proof
strategies to study the multiplicative model. For a proof route of the additive model, we refer
the readers to [7], Section 4.2.

Recall (2.1). Without loss of generality, till the end of the paper, we assume that both A
and B are normalized such that tr A = tr B = 1. First, we introduce the random equivalents
of the subordination functions 24 and Qp in terms of the resolvents. They are the starting
points of the arguments and the counterparts of the additive model as in equation (5.2) of [7].
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DEFINITION 3.1 (Approximate subordination functions). For z € C\ Ry, we define

ztrEG Qf = Q% (2) = ztrAG _ ztrgg
1+ztrG’ B= B =T G T 1+z0G

G =Q4@) =

As mentioned earlier in Section 1, while the final goal is to prove (2.22), following the
strategy of [7], we actually work with the approximate subordination functions in Defini-
tion 3.1 and several auxiliary quantities. To identify these auxiliary quantities, we need sev-
eral crucial decompositions. By replacing 2 with Q% in (2.22), we observe that

a;

Gii+1)—
(Z ll+) a,‘—Q%

ai
a; — Q%

=a;(BG);; —
(3.7)

(142t G)(a; — Q%)
_ a;z
(I4+ztrG)(a; — Q%)

((ztr G 4+ 1)(a; — Q4)(BG)ii — (ztr G + 1))

(Gii tr(ABG) — tr(GA)(BG);i),

where we used the elementary identity (HG);; — zGi; = a; (EG),-i — zGj; = 1. In light of
Proposition 2.11 and (3.7), to prove (2.22), it suffices to control
(3.8) 0; :=G;itr(ABG) — tr(GA)(BG);;,

and show that Qp and Q¢ are sufficiently close. Note that Q; is the counterpart of equation
(4.11) of [7].

We first present the detailed decomposition of Q;. In particular, following [7], Section 4.2,
we discuss how to decompose and explore the independence structure of (BG);; using the
partial randomness decomposition. Using (3.2) and (3.4), we introduce the notation
(3.9

Si = h;"§<i>Gei, §i = il;kE<i>Ge,‘, Tl = h;"Ge,- :e‘gfe;"U*Gei, ﬁ = il;kGei,
where we used (e_iei ) = el By the construction of U ) in (3.1) and (3.5), we find that

(BG)ii =—h!BY'R;Ge;.
Using the definition of R; in (3.1) and r; = £;(e; + h;), we have the following expansion:
(BG)ii =—h!BVGe; + ¢2h; B (e; + h;)(e; + h)*Ge;.
Moreover, utilizing the notation in (3.9), we can write that
(BG)ii = —Si + £} (h; B e; + i BV h;)(Gii + Th).
Further, since R; is a projection satisfying (3.5), we have that
3.10) (BG)ij = —S; + £} (—bih} Rihi + hi BV h)(Gii + T)
= —8; + €} (bihi; + BBV h) (G + T)).

We will see later in our proof (e.g., (4.23)), the discussion boils down to controlling S; and
T;, which are the counterparts of equation (4.10) of [7].

In the actual proof, inspired by the arguments in [7], instead of working directly with S;
and T;, we deal with the following quantities:

Pi:=Q;+(Gii +T)T,

3.11 - ~
G1D Ki =T, +tr(GA)(b;T; + (BG)i) —tr(GAB)(G;; + T;),
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where T is defined as
(3.12) Y := (r(GAB))> —tr(GA) tr(BGAB) — tr(GAB) + tr(GA).

The analogs of the above quantities for the additive model have been defined in equations
(4.12), (4.14) and (4.15) of [7]. On one hand, P; and K; are closely related to §; and 7;. On
the other hand, they are easily handled. In fact, using GAB = ABG =zG + ] and r B =
trB=1, we recognize that Y is an average of Q;, that is,

=tr(ABG)(tr(zG + 1) — 1) — tr(GA)(tr(E(zG +1)) —tr B)

(3.13) = 7(tr(G) tr(ABG) — tr(GA) tr(BG) Z Qi.

The proof of the estimates of the above quantities relies on a two-level approach, which is
commonly used in the proofs of local laws for random matrices. On the first level, we provide
bounds for a fixed spectral parameter z under the condition that G;;, G;; and T; satisfy a weak
a priori bound (cf. Assumption 4.1). On the second level, we will verify the above a priori
bound and further prove they hold uniformly in z.

On the first level, the proof strategy contains three steps. In Step 1, we establish recursive
estimates for the high moments of P; and K;, that is, Proposition 4.2, which is the counterpart
of Proposition 5.1 of [7]. The main idea is to employ the (Gaussian) integration by parts with
respect to the coordinates of h; since B is independent of k;. This step concludes that all
the quantities P;, K;, T;, Q; and Y can be bounded by (N )~ '/2. The actual proofs will be
presented in Section 4. In Step 2, we derive a rough bound on the averaged quantities. Espe-
cially, since Q; is the most fundamental quantity, we focus on the form N~! 3" d; Q;, where
d;’s are some generic weights. The proof also concerns the recursive moment estimates as in
Step 1. This step yields that the averaged quantity can be bounded by «/Imm g (z)(Nn)~!,
which improves the bounds from Step 1. The arguments will be given in Section B.1 of [18].
In Step 3, we prove that for some specific weights d; (cf. (B.31) and (B.32)), the averaged
quantities can be bounded by Imm g (z)(Nn)~!. Note that the weights we choose here are
the counterparts of equation (7.12) of [7]. As a byproduct, we obtain a priori the bound for
|2p — Q%] and |24 — Q. In fact, controlling the differences above can also be reduced to
Y due to the following decomposition:

Q5 — M z
Gy Mun @ = om0
Z
T+ @y
where we used ABG = zG + 1. All these will be discussed in Section B.2 of [18].

On the second level, the proof consists of two parts. In Part 1, we establish the weak local
laws by verifying Assumption 4.1 and prove the uniformity of the estimates in z is obtained by
a continuity argument. The weak local laws state that most of the aforementioned quantities,
for example, P;, K; and (3.7) can be bounded by (N n)_l/ 2 uniformly in z. Moreover, |Qp —
Q%] and [Q4 — Q4| can be uniformly bounded by (N n)_l/ 3. The formal arguments are
given in Section C.1 of [18]. In Part 2, using the weak local laws, we complete the proof
of Theorem 2.13, which is referred to as strong local laws. The arguments can be found in
Section C.2 of [18]. Finally, we emphasize that even though the above strategy is sketched for
the diagonal entries, the off-diagonal entries can be handled similarly. We discuss this aspect
in detail at the end of Section C.1 of [18].

Once Theorem 2.13 is proved, other theorems can be justified based on it. First, Theorems
2.15 can be proved by translating the closeness of the resolvent into the closeness of the eigen-
values and the quantiles of ;4 X u p using the Helffer—Sjostrand formula, and Theorem 2.16
can be proved by exploring the imaginary part of the resolvents.

(r(GA) tt(BG) — tr(G) tr(ABG))
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REMARK 3.2. Before concluding this section, we briefly discuss how the above strategy
can be used to obtain the bulk local laws when the spectral parameter z is in Dyyx defined in
(2.27). Similar results have been proved for the additive model in [4].

In fact, in the bulk regime, the proof will be easier. The main reason is that when z € Dy,
the key parameter k = k(z) := min{|z — E_|, |z — E|} satisfies k ~ 1 so that \/k +n ~
1. Consequently, according to [31], in contrast to Proposition A.6 of our supplement [18],
the key quantities can be controlled more easily in the sense that Imm ,,x,,(z) ~ 1 and
|Sep(2)] ~ 1. Combining these updates with lines of the proof of Proposition 2.11, we can
update the results of Proposition 2.11 by inserting « ~ 1.

Next, we explain how the two-level approach applies and is easier. On the first level, the
bulk regime only needs Steps 1 and 2. The reason is that since when z € Dyyx we have
Imm,, x5 (z) ~ 1, Steps 1 and 2 will prove that Imm g (z) ~ 1 and the averaged quantities
will therefore be bounded by (N#5)~! which is already optimal. On the second level, in con-
trast to the edge regime where we have to decompose the edge spectral domain according
to different scales of \/k + n as in Section C.2 of our supplement [18], we can work on the
whole bulk spectral domain directly as « ~ 1.

4. Entrywise resolvent subordination. In this section, we prove a subordination prop-
erty for the resolvent entries, that is, Proposition 4.2. In particular, we prove (2.22) and (2.25)
of Theorem 2.13 and other related quantities for fixed spectral parameter z with a priori
bound, that is, Assumption 4.1. This completes Step 1 of the first level of our proof route as
summarized in Section 3.2. Moreover, the proof of Proposition 4.2, especially the recursive
moment estimates in Lemma 4.3, is a representative formal argument of our proof strategies
in the sense that Steps 2 and 3 follow a similar discussion. Analogous arguments have been
made for the additive model in Section 5 of [7].

We first introduce the assumptions. Denote

ai

4.1) Agi i =12Gii+1—

, Ag :=max Ay, A7 :=max|T;|.
a; — Qp i i

Similarly, we define Ay; and Aj by replacing 25 with its approximate Q7. Moreover, denote
Agi, Ag and A7 as

b;

b; — Qa4

Kd,' =1zG;; +1— s Kd = maXZN\di, ZN\T = max|e?‘Uge,'|.
i i

Furthermore, /N\fﬁ and 1~\§ are defined by replacing €24 with Q¢ . In this section, the statements
and proofs are based on Assumption 4.1, which provides a priori the bound for the essential
quantities. It will be verified in Section C.1 of [18].

ASSUMPTION 4.1. Recall (2.20). For the small constant ¥ > 0 in (2.21), fix z €
D:(nr, nu), we suppose the following hold true:

4.2) Ag(z) < N7V/4 Aa(z) < N7V/4 Ap <1, Ar < 1.

We now state the main result of this section, Proposition 4.2, that provides the estimates
for the diagonal entries of the resolvents and is an analogue of Proposition 5.1 of [7] for the
additive model. The arguments of the off-diagonal entries are similar and we refer the readers
to the discussion at the end of Section C.1 of [18] for more details. Throughout the paper, we
will consistently use the following control parameter:

4.3) W=W(y) = /Nin, M, =T10;(z) == \/Im G""(Z)N:Img“@.
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PROPOSITION 4.2. Recall (3.11). Suppose that the assumptions of Theorem 2.13 and
Assumption 4.1 hold. Fix z € D (np, ny). For all i € [1, N|, we have that

4.4) |Pi(2)| < W (2), Ki(2)] < ¥ (2).
Furthermore, we have
4.5 Ajx)<V¥(z), Ar=<¥(2), Kg<\ll(z), Ar < V¥ (2), T < W (2).
In the rest of this section, we follow the proof strategy of [7], Proposition 5.1, to prove
Proposition 4.2. The following resolvent identities will be frequently used in the proof:
(HG)ji — 2Gii = a;(BG)ii — 2Gj; =1,

(4.6) _
(GH)ii —2Gii =bi(GA)ii —2G;i = 1.

PROOF OF PROPOSITION 4.2. We first prove (4.5) assuming (4.4) holds. The arguments
rely on the estimate

4.7) T < N~/

where y > 0 is introduced in (4.2).
Before proving (4.5), we pause to justify (4.7). By (4.4) and (3.11), we have

(4.8)  Ti(14bitr(GA) —tr(GAB)) =tr(GAB)G;; — tr(GA)(BG);; + O (V).
By (4.6), we have that
7Gii + 1

ai

(4.9) (BG);i = Gii = %(ai(EG)ii —1).

Based on (4.9), on one hand, by (4.2), we find that

(4.10) (BG)ji = +OL(N77%),

ai — g

On the other hand, using the fact that tr (GAE ) =zmpg(z) + 1 and a relation similar to (2.10),
together with (4.2), we conclude that

~ X _ —
4.11) (GAB) = / a0y A OV =z (2) + 140N,
and
1 Qp 1 a; _
tr(GA) = — Y 4;Gjj = — — O<(N7/4
1‘( ) N Zal ! z N % a; —QB + -<( )
(4.12) ! !

Q
= TB(ZmquuB(Z) +1)+ O<(N_V/4).

Combining (4.8), (4.10), (4.11) and (4.12), using (4.2), we have that

b;Q
Lo1)) =0 (v N,

(4.13) E(l + (amuamup (2) + 1)(

Moreover, invoking (2.4) and (2.8), we see that

Qp

_ 1) = (zmy =up () + 1)(biz

biQp

1+ (e @ + 1) — My 2) )

4.14) o
= (2mu 5 (2) + 1)73<bl~ — Q).
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By (4.14), a relation similar to (2.10), and (i) of Proposition 2.11, we have proved the claim
(4.7) using (4.13).
Then we prove (4.5). First, using (4.4) and the definitions in (3.11), we find that

1 1
(4.15) N 2P ="T5D aiGi+T) < ¥,
i i

where we used the fact that {a;} are bounded. By (4.15), (4.12) and (i) of Proposition 2.11,
we have proved that

(4.16) T <W.

Second, using the definition of P; in (3.11), the expansion (3.7), and (4.16), we have proved
that Ay < W. Third, by (4.8) and a discussion similar to (4.7) with the bound Ay < W, it
is easy to see that A7 < W(z). Finally, the proof for Aj and A7 follows from an argument
similar to (3.7) and (4.6). This completes the proof of (4.5).

It remains to prove (4.4), which is equivalent to the bounds for high moments of P; and
K;. More specifically, by the Markov inequality, it suffices to prove for all positive integer
p > 2, that the following hold:

(4.17) E[|P;|?P] < ¥?? and E[|K;|*"] < w?".
The proof of (4.17) makes use of the recursive estimates, that is, Lemma 4.3 below. Denote

(4.18) xP? .= pPp? and PP? = K'KY.

LEMMA 4.3.  For any fixed integer p >2 and i € [1, N|, we have that
4.19) E[xP?] <E[0.()x" " 40 (¥2)xP > 4o (w?)xP ),
(4.20) E[@lgp,p)] <E[0. (W)@l(p—l,p) + O<(\IJ2)iU§p_2’p) + O<(\D2)iD§p_1’p_l)].

We next explain how Lemma 4.3 implies (4.17) and will give the proof of Lemma 4.3 at
the end of this section. Recall that for any positive numbers u, v > 0 we have
um™ vt N |
(4.21) uv < — 4+ — where m, n > 1 are real numbers with — + — = 1.
m n m n

For k = 1, 2, any arbitrary small constant € > 0 and any random variable 91 = O_ (W*) satis-
fying E[|91]9] < W9¥, we have that

E[|[MP ] = E[|N|| N5 E B[]

2pe __2pe _
kN% . (2p—k)N @r-i? 2 p—k) 2P
(4.22) ==, EluT ]+ 2 E[| P %7057
kN CEH+De Qp — k)N 7
< w2r 4 2P E[| P;|?"],
2p 2p

where in the first inequality we used (4.21) withm =2p/k and n =2p/(2p — k), and in the
second inequality we used E[|9%]7] < W7*. Together with (4.19), it yields that
— __2pe
E[| PP < 2 n@rhegrr 1 2P =D =5 Sy p 20y,
~2p 2p

Since € > 0 is arbitrarily small, we can conclude the first part of (4.17). The second part can
be proved similarly and we omit the details here. This completes the proof of (4.4) and hence
the proof of Proposition 4.2. [J
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The rest of this subsection is devoted to the proof of Lemma 4.3. This type of estimates
have been used in Lemma 5.2 of [7] to study the analogous quantities for the additive model
and our arguments basically follow the proof therein. In particular, similar to equation (5.34)
of [7], integration by parts will be mainly applied to the term $; in (4.30) to generate several
hidden terms which will cancel many other existing larger order terms. Throughout the proof,
we will need some derivative formulas and large deviation estimates as our technical inputs.
These can be found in Lemmas 1.1-1.4 of our supplement [18].

PRQQF OF LEMMA 4.3. We start with the proof of (4.19). Recall (3.9). Since
h,-,-e;."B<l>Ge,- = b;h;; G;;, we can rewrite (3.10) as

(4.23) (BG)ij = —S; + £} (bihii + ki BVR;)(Gii + T) = =S; + Gii + T; + ei1,

where we denoted

(4.24) €j1:= (le — 1)b[h,'[G,',' + (fizh;kg(i)h,- — 1)(G,‘,‘ +T1;) +Zl~2b,‘h,‘iTi.
Recall g ~ N (0, N*IIN). By Lemma 1.2 of [18], we see that
(4.25) hii =181~ e &g, < N7/,

Consequently, using the definitions in (3.4), we obtain that

2 1
(4.26) = S = _
llei + k|l l—i—el.h,-

Moreover, by (3.1), (3.5), (3.3) and Lemma 1.2 of [18], we have

- ~ ~ 1
(4.27) hiB"'h; =hiR;BR;h; = ¢} Be; = AR
g

where we recall that B is normalized such that tr B = 1. Using the definition (4.24), by (4.25),
(4.26), (4.27) and (4.2), we conclude that

(4.28) lej1] < N~1/2,

=1 +O<(N_1/2).

giBE =1+0(N7'2),

Therefore, by (3.11), (4.23) and (4.28), we have shown that

E[x"P] = E[(Gii t(ABG) + (GA)(S)) + (Gii + T) (Y —tr(GA)))x P~ 7]

1

(4.29) 1
+Efe; tr(GA)XP~HP].

Next, we control all the terms on the RHS of (4.29). We mainly focus on the term involving
tr(GA)(S;). As we will see later, by exploring the hidden terms using integration by parts,
the term involving tr(GA)(S;) will generate several terms which would cancel the rest of the
terms on the RHS of (4.29) algebraically. Note that

o ok~ o % ~ ) 1 ~
(4.30) Si=h;B"Ge;=> h;eref B Ge; = Zgikme;B“)Ge,-,
k k i

where we use the shorthand notation Z,(f) to represent the sum over [1, N]\{i}. Our calcu-

lation relies on the following integration by parts formula for g ~ A'(0, o%) (see equation
(5.33) of [7]):

lgI?

e e
4.31) /C 7f(g.De o dPg=0o? /C 8, f(g. e oF dg,
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where f : C? — C is a differentiable function. By (4.30) and (4.31), we have

)
o 1 ~/
E[Si r(GA)XP~1P] =3 :E[gikmeZB(’)Gei tr(GA).’{(P_l’p)]
l

1
I *B(”Geitr(GA)%(p_l’p)]
8gtk

_Ll$hg [angl
N k

1 3(efBYGe;)

Q
+NZE[

(4.32) X llg;l 08ik

(i)
Z [e;B 'Ge; 8tr(GA)%(p_1’p)]
llg;l 0gik

tr(GA)%(pl’p)]

N k
p—1

1.7 1
[ e;BYGe; tr(GA) Fi xo2, P>]
N llg;:ll 0gik

1
+ 2R [—ekB Ger (G Ay L1 1>}

N ” l|| 8ik

where we recall that X(P=1:P) = pP~ le as defined in (4.18). We point out that the second
term on the RHS of (4.32) will prov1de some hidden terms for cancellation. Further, since
B} is independent of v;, we have that
8(e;’;B Gel) h 0G
0gik 0gik

We start with the analysis of the household reflection defined in (3.1). Recall r; = ¢;(e; +
h;) and ¢; defined in (3.4). By (I.1), (1.2) and (1.4) of [18], we have that

OR;
0gik

,’jB

e;.

=—0lg; | highii(e; + hi)(e; + h)*

— gl (exer — hin(hie + e;hY) + exh} — hizhih} — highihy).

We can further rewrite the above equation as

IR e
(4.33) = ——Ler(ef +h})+ ARG, k),
gik llg:ll
where we defined
o
AR(i, k) == —— = hihii(e; + h;i)(e; + h;)*
(4.34) llg:ll

+ g hir (hi€t + ek + 2hih).
By (4.33) and the fact that B is independent of g;x, we obtain that
52
dgik gl

(4.35) GA(er(ef +h})BYIR; + R BVer(ef +h}))G + Ag (i, k),

where

(4.36) AG(i, k) := —GA(ARG,k)BY'R; + R; B AR(i, k))G.
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We see from (4.35) and (1.8) of [18] that

4.37)
1 (@) i 9G
—ZeiB“) e
N k 8ik
2 (@) '
i ||NZ"k 'GA(ex(e} +h7)BY R+ RiBVer(e] + h}))Gei + 0(IT7)
4
@12
e IN % (axexBY Ger(~hi B — €] B)Ge; + BV GAR; B ex(Gii + hj Gei)]
i
+0-(I17)
£2 1 (@) . -
Tl N 2 w(BYG)y (~biTi — (BG)i)
I I
g v 25 VGAR B er)(Gii + Ti) + O(IT}),
i

where in the second equality we used (3.6) and in the third equality we used (3.6) and (3.9).
Moreover, by (4.2) and the assumption that {a;} and {b;} are bounded, we readily see that

1 9 1 1

(438) ( - — Zak kk = NaibiGii < N»
and

. ~ &) b; ~ 1
4.39)  w(BYGAR;BY) — — Zek 'GAR; B ey = —Nle;“GABh,- <5

We claim that we can replace BY) by B i 1n (4.38) and (4.39) without changing the error bound
in (4.37). In fact, by the definition of B, we have that

tr(ABG) — tr(AB") G) = tr(ABG) — tr(AR; BR; G)
(4.40) = tr(Ar;rfBG) + tr(ABr;r}G) — tr(Ar;r} BririG)
1 * D 1 * 53 1 * Dk
= Nri BGAr; + Nri GABr; — ﬁri Brir;GAr;.
Recall that r; = £;(e; + h;). Then we have
I .~ 1 ~ ~
i BGAn| S (IVAG Ber] |2 + |6 B )

~

(4.41) |
< N(e,-EGAG*Ee,' +b2hIGG*h;)"?,

where in the second inequality we used the fact that ||A|| is bounded. Moreover, using (B.2)
of [18], (2.5) and (2.2), it is easy to see that

e*/ABVAGG*AB *HGG*He; ~ G
(4.42) ¢'BGAG*B [VABVAGG'VABY Ae, = ) i miadia
a; a; aipn
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where in the last inequality we used the fact that G is Hermitian and the Ward identity

Z =(GG");; =

ImG”
n

Similarly, we can show that

o~ Im G,
(4.43) b?hiGG*h; = b}e;GG*e; = bje;GBG*e; < b;||B|| m i :
n

Since A, B, H are bounded, by (4.41), (4.42) and (4.43), we see that
< _(ImG” + Im’gﬁ,’)l/{

~ 1 1
By an analogous discussion, we can control the other two terms of the RHS of (4.40) as

’—r*BGAr,

I G ImG::\ 1/2

'—r GABr| < S <m ARt mg,,) )
n n

S\ 1/2

‘ ! *Br ir'GAr; §—<ImG” —I—Img”) .
N n n

Furthgrmore, from the spectral decomposition of H and ?—N[, it is clear that Im éii /n>c
and Im G;; /n > ¢ for some fixed constant ¢ > 0. This shows that for some constant C > 0,

i(lméii + Imgii>1/2 - glméii +ImG;;

N U - N U

Together with (4.40), we arrive at

(4.44) tf(ABYG) = r(ABG) 4+ O (IT3).

By a discussion similar to (4.44), we can get

(4.45) tf(B"GAR;B")) =tr (BGAB) + O(11?).
Therefore, by (4.37), (4.44) and (4.45), we conclude that

= CTII2.

= 1o (FABO(=biTi = (BG)ii) + r(BGAB) (Gii + ) + O<(ITy).

Note that compared to the expansion (4.29), the coefficient in front of tr (ABG) is still
different. We need to further explore the hidden relation. By a discussion similar to (4.46),
we have that

@

Zeka €
2

" gl
In light of (4.46), (4.47) and (4.29), it suffices to control

(4.47)
L (tr(GA)(—bi T; — (BG)ii) + (GAB)(Gii + Ty)) + O(TT;).

(i) ()

1 ~ G - 1 G
tr(GA)— Y efBY —e; —tr((ABG)— > ef —
1Ay T g HABG)T 2 ey, e

i k 8ik



MULTIPLICATION OF RANDOM MATRICES 3005

Combining (4.46) and (4.47), we have that

0 M)
G ~ 1 3G
tr(GA)— Y Bl —tr(ABG)— ) efj—e;
Z T gk N Zk: “ogik |
(4.48) - W(G” +T)(tr(GA) tr(BGAB) — tr(GAB) tr(GAB)) + O (11?)
l
2 ~
(G + T;) (=Y — tr(ABG) + tr(GA)) 4+ O(I1?),

g ,|I

where in the second equality we employed the definition of Y in (3.12). Denote

2
e = (HE ” 1) (=G w(ABG) ~ (Gis + TH(T - (GA)
(4.49)

62
+tr<ABG>(||g,||T—” || )
l

By a discussion similar to (4.28), we can conclude that
(4.50) leja] < N~1/2,

Moreover, by a simple algebraic calculation using (4.48) and (4.49), we find that

19 ) G
tr(GA)— e —e,~
Z k agik
(4.51) = |lg;I(=Gii tr(ABG) — (Gji + T;)(Y — tr(G A)))
(@)
+tr(ABG)( Zeka - ||gi||Ti) +ei2 + O (IT3).

With (4.51) and (4.32), we can now come back to discussing (4.29). More specifically, insert-
ing (4.51) into (4.32) and then (4.29), we have that

0
E[x""] —IE|:(1 Xl: L 06 7’~>tr(A§G)i{(p_l’p):|
i = € — i i

gl % ogin dgi

(@) 1
1 0 —
§:E|: ||gl|| ( G ltr(Gq)xl(P I,P)i|

08ik
19 VGe; [0G
Y Z [ lr( A)ae?”_l’p)}
llg;l 08ik !
(4.52)
p—1& 1 (p—2.p)
+ E[ NGe; tr(GA) 3€ }
N 2 I || ‘ dgik

k

(i)
1
—E:E[ B Geltr(GA) 36“’”’”]
— g, dgit

—l—E[(e“tr(GA) + ei» + O (H%))%EP—I,P)].

1
llgill
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We do one more expansion for the first term of the above equation. Recall the definitions in
(3.9). Applying the technique of integration by parts, that is, (4.31), we get that

()
5 1 1 G ~ _
EKE__Znnka )mMmﬁ?Lﬂ
8i

() 1

d ~ _

ZE[ ||agz ” Gki tI'(AB G)%l(l? 1,19)]
8ik

(@)
1 ~ 0G (p—1,p)
(4.53) + — § [ thr(B )xl’ P}
gl gik

k

p—1 a1 o,
+E_~ ZE[ tr(ABG) 36(" P)}
N 2 Ligl

)

_Z |: letr( G) x(l’ Lp— 1)]
—Lllgill

Combining (4.53) and (4.52), we can rewrite
(4.54) E[x"?] =E[¢, 7" + E[e,2P 2P + E[e;x P17V,

~ 3G
Gri tr(AB )
0gik

where the coefficients €, k =1, 2, 3 are defined as

@) —1
1 allg;l ~
¢ = M E <%Gk,~ tr(ABG) +

=\ dgix lg:]
L2 ! eiB"Ge; (3G
(4.55) gl O Ge; tr(GA) + e tr( A>
08ik llg;l 08ik
1 2
+ <e,-1tr(GA)+ Iz ”ei2+0<(1'[l.))),
(4.56) €5 4%( : DG tr(GA) Gy tr(A G)BP">
2= e;lr ki )
llg ,II 8gzk llg ,II 0gik
PG = =
(4.57) ¢3:—— ( NGe; tr(GA) Gy tr(ABG) )
E: g AI ’ a&k HgJI ’ dgik

To conclude the proof of (4.19), it suffices to control the coefficients €, k = 1, 2, 3. For €,
by Lemma 1.4 of [18], we find that

(4.58) ¢ < N2 112,

For ¢, by (I.5) and Lemma 1.4 of [18], we find that

(4.59) ¢ < 7.

Similarly, we can show that

(4.60) ¢ <12,

Using (4.3), we complete the proof of (4.19) using (4.58), (4.59), (4.60) and (4.54).
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Finally, due to similarity, we only briefly discuss the proof of (4.20). Using the definition
of K; in (3.11) and the fact that 7; — T; = h;;G;; < N~/2, we find that

E[Q""]=E[(T; + (GA)(b: T; + (BG)ir) — tr(GABG)(Gyi + T1) Vi’ ]
+E[OL (N2t

(@) =
4.61) _ ZE[ Bik 1 e lp)]

llg ||
k 8i
+E[(tr(GA) (b T; + (BG)ii) — r(GABG)(Gii + T))9 ™ "P]

+E[0(N"1)r ],

where in the second equality we used the definition in (3.9). Applying (4.31) to the first term
of the RHS of the above equation, we obtain

@) — @) 1

ik  « (p—1.p) 1 alg;ll * (p—1,p)
EE[ e.Ge): ]:—EE[i Ge?);

g Il N 3gik

k k

L (Zl):[ . 0G mwlm}

~ Lllgl Do
(4.62)
p—12 1 (p—2.p)
| e
N ; T ag,k
(i) (r—1 D
* p—Lp—
P @ }
Xk: |:||g1|| 8glk

Inserting (4.47) into (4.62) and then (4.61), by a discussion similar to the cancellation in
(4.52) and error controls in (4.28) and (4.50), we conclude that

-1 ()

E[9P] = 1(2’)21[5[3”&” i Ge 0 1p>}+ E[ L piGe, Kigyr- 2p>]
—_— e
° N~ ligdl " ’agl

(i) 57
IKi \(p—1.p-1) —1/2yoy(P—1.P)
+ = [ ;G ”"}+EON/<”"’.

; gl aglk@ [0-(N%; |
Using (1.6), Lemma 1.4 of [18] and a discussion similar to (4.58), (4.59) and (4.60), we can
finish the proof of (4.20). [
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SUPPLEMENTARY MATERIAL

Supplement to “Local laws for multiplication of random matrices” (DOI: 10.1214/22-
AAP1882SUPP; .pdf). In the supplementary file, we provide the technical proofs for our
main results in Section 2. We also collect and prove some auxiliary lemmas.
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