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A B S T R A C T

In collaborative software development, programmers create branches for simultaneous program editing, and
merge branches to integrate edits. When branches divergently edit the same text, the edits conflict and cannot
get co-applied. Tools were built to automatically merge software branches, to detect conflicts, and to resolve
conflicts along the way. However, there is no third-party benchmark or metric to comprehensively evaluate
or compare those tools.

This paper presents ConflictBench, our novel benchmark to evaluate software merge tools. ConflictBench
consists of 180 merging scenarios extracted from 180 open-source Java projects. For each scenario, we
sampled a conflicting chunk (i.e., conflict) reported by git-merge. Because git-merge sometimes wrongly reports
conflicts, with our manual inspection, we labeled 136 of the 180 chunks as true conflicts, and 44 chunks as false
conflicts. To facilitate tool evaluation, we also defined a systematic method of manual analysis toanalyze all
program versions involved in each merging scenario, and to summarize the root causes as well as developers’
resolution strategies. We further defined three novel metrics to evaluate merge tools. By applying five state-
of-the-art tools to ConflictBench, we observed that ConflictBench is effective to characterize different tools. It
helps reveal limitations of existing tools and sheds light on future research.

1. Introduction

In collaborative software development, programmers can create
software branches for tentative feature addition and bug fixing. Peri-
odically, they may merge (i.e., integrate) the program changes from
distinct branches to release software with new features or bug fixes.
Unfortunately, such a merge process is not always smooth due to the
existence of conflicts. Here, conflict means that when branches edit
the same text in divergent ways, the edits are incompatible with each
other and cannot get co-applied to the same version of software (Git
merge conflicts, 2023). For instance, as shown in Fig. 1, Ă-branch
deletes a for-loop while Ĉ-branch updates the loop header. The two
sets of edits cannot get applied simultaneously, so they conflict. Ghiotto
et al. (2020) showed that 8%–21% of the merge trials in 5 open-source
projects fail due to conflicts.

Version control systems (e.g., git) provide the basic tools (e.g., git-
merge (Git - git-merge, 2023)) to merge branches and detect conflicts.
Such tools treat programs as plain text and merge edits line-by-line.
However, because they neglect the domain knowledge of program-
ming languages and have implementation flaws, prior work pinpoints
that these tools are weak in expressing differences and handling con-
flicts (Mens, 2002; Apel et al., 2011; Shen et al., 2019). To overcome
the limitations of basic merge tools, researchers proposed new tools
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that observe the Java program syntax, to improve over the basic
tools when merging Java programs (Apel et al., 2011, 2012; Zhu and
He, 2018; Shen et al., 2019). Although the syntax-based merge tools
have different approach design, little is known about the empirical
comparison among those tools. When creating a software merge tool,
researchers typically construct their own dataset to evaluate their
own tool. No third-party benchmark is available to comprehensively
evaluate all merge tools, and no systematic investigation has been done
to compare those tools.

We believe that it is always important to define a third-party bench-
mark of software merge data for two reasons. First, by evaluating merge
tools on the same third-party benchmark, researchers can empirically
compare tools in a fair manner. Second, by revealing the limitations
of existing tools, the benchmark can help reveal new directions for
future tool design and implementation. Therefore, for this paper, we
created a benchmark of real-world software merge conflict data. Before
constructing the benchmark, we conducted a literature review for
existing merge tools (Apel et al., 2011, 2012; Zhu and He, 2018; Shen
et al., 2019, 2023; Zhu et al., 2022) and empirical studies on merge
techniques (Cavalcanti et al., 2015, 2017, 2019; Seibt et al., 2022). We
observed and discussed how merge tools were evaluated, identifying
the following requirements that a good benchmark should satisfy:
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• Diversity: It should cover a wide range of scenarios where merge
happens, so that the dataset is representative.
• True Conflicts: It should include true conflicts between branch
edits, to assess whether merge tools can identify the conflicts
when two branches edit the same text in different ways.
• False Conflicts: It should include false conflicts, to assess whether
a merge tool wrongly reports conflicts when the branches do not
edit the same text simultaneously.
• Conflict Resolutions: It should include developers’ resolutions to
reported conflicts, to evaluate whether the tool-generated resolu-
tions match human-crafted ones.

To satisfy all requirements mentioned above, we created our bench-
mark by crawling 208 popular open-source Java repositories (Shen
et al., 2023). For each repository, we randomly sampled a commit
that attempts to merge software branches via git-merge, and manually
inspected the conflicts reported by git-merge to pick one satisfying our
selection criteria (see Section 3). After including all picked conflicts
into our dataset, we formulated our benchmark named ConflictBench.
Among the 180 conflicts it contains, there are 136 true conflicts and
44 false ones. To facilitate tool comparison, we also classified conflicts
based on the types of branch edits, the types of edited files, and
developers’ resolution strategies.

We applied five state-of-the-art merge tools to ConflictBench, to
check whether our benchmark is effective in characterizing tools’ effec-
tiveness and in revealing differences between tools. The tools include
KDiff3 (Eibl, 2007), FSTMerge (jFSTMerge, 2021; Apel et al., 2011),
JDime (Apel et al., 2012), IntelliMerge (Shen et al., 2019), and Au-
toMerge (Zhu and He, 2018). We observed the following interesting
phenomena in our experiments. KDiff3 has wider applicability than
the other tools. JDime reported conflicts with the highest precision
(92%), while AutoMerge reported the fewest conflicts (i.e., 17). KDiff3
achieved the highest resolution desirability (83%), meaning that the
majority of merged versions it produces match developers’ hand-crafted
versions.

In this paper, we made the following research contributions:

• We defined a novel systematic method to classify merge-conflict
data, and applied that method to manually create a benchmark
of merge-conflict data named ConflictBench. This benchmark in-
cludes 180 merging scenarios with labeled true/false conflicts,
types of branch edits, types of edited files, and developers’ res-
olution strategies. No prior work characterizes conflicts in such a
comprehensive and rigorous way.
• We defined three novel metrics to evaluate software merge tools:
tool applicability, detection precision, and resolution desirability.
• We comprehensively evaluated five state-of-the-art software
merge tools using ConflictBench, and observed interesting phe-
nomena in terms of tool applicability, conflict-detection precision,
and conflict-resolution desirability. No prior work does such an
empirical evaluation of these tools or presents the novel findings
we have.

In the following part of our paper, we will introduce the technical
background (Section 2), our methodology of benchmark creation (Sec-
tion 3), the ConflictBench dataset (Section 4), and experiments with
ConflictBench (Section 5).

2. Background

This section first clarifies the terms used in software merge (Sec-
tion 2.1). It then describes the three-way merge approach implemented
by textual merge tools (e.g., git-merge), and tree-based software merge
tools (Sections 2.2 and 2.3). Finally, it introduces the studies conducted
to assess software merge tools, limitations of current studies, and our
research motivation (Section 2.4).

Fig. 1. An exemplar merge conflict.

Fig. 2. Text-based merge tools (e.g., git-merge) can be used to merge software branches
and reveal conflicts.

2.1. Terminology

In software repositories, basic merge tools (e.g., git-merge) can be
used to tentatively merge software branches, and to detect conflicts in
this process. Fig. 2 illustrates such a merge process. In this figure, the
two horizontal lines visualize two software branches in a repository: the
main branch and bug-fixing branch. Each node (except ýă) represents
a program commit checked in. When a developer uses the command
‘‘git merge āĀ ’’ to incorporate changes from the named commit āĀ to
the current commit āℎ, git-merge treats the developer’s commit āℎ as
local version (l), considers the named commit āĀ as remote version
(r), locates the common ancestor (i.e., predecessor) of both commits as
base version (b), in order to conduct three-way merge (see Section 2.2)
and produce an automatically merged version (ýċ).

If git-merge detects no conflict, ýă shows the merged software
that incorporates all edits. Otherwise, if conflicts are detected, ýă also
denotes conflicts with specialized marks. For instance, Fig. 3 shows a
conflict reported by git-merge, due to the divergent updates applied
by Ă and Ĉ; git-merge generates a conflicting chunk in ýă to mark the
conflicting edits. The tool uses ‘‘lll<’’ and ‘‘=======’’ to mark the
unique edits from Ă; it also uses ‘‘=======’’ and ‘‘kkk>’’ to mark the
unique edits from Ĉ. Depending on their needs, developers may further
edit ýă before committing a final merged version ă to the repository.
Therefore, ă may be identical to or different from ýă. We usemerging
scenarios to refer to developers’ merge trials. In software repositories,
a typical merging scenario involves five program versions: the base Ā,
the local Ă, the remote Ĉ, the automatically merged version ýă, and
developers’ merged version ă.

2.2. Line-based three-way merge

Given three program versions (i.e., base Ā, local Ă, remote Ĉ), the
three-way merge approach in basic tools takes two steps to produce the
automatically merged version ýă. First, it locates the textual difference
between Ă and Ā and that between Ĉ and Ā, treating them as line-based
edits by individual branches. Second, if Ă and Ĉ apply identical edits,
the common edits are applied once to produce ýă; if only one version
applies edits to a particular line, the edits are integrated into ýă;
otherwise, conflicts are reported as the branches apply divergent edits
to the same line(s).

Line-based three-way merge has two major limitations: (1) content
misalignment and (2) insufficient capabilities of combining edits. First,
when it incorrectly aligns lines from different versions, the reported
conflicts can be wrong. For instance, Fig. 4(a) is a wrongly reported
conflict for a real-world merging scenario (Merge branch, 2014), where
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Fig. 3. A conflict reported by git-merge.

Ă deletes two lines and Ĉ updates a third line. Although the edits ma-
nipulate different lines and have no conflict, a typical line-based merge
tool git-merge incorrectly aligns them and reports a conflict. Second,
when branches simultaneously edit distinct parts of the same line, line-
based merge cannot integrate those edits. As shown in Fig. 4(b), Ă
updates the parameter list of a declared method and Ĉ updates the
method name. Line-based merge considers both edits applied to the
same text and thus reports a conflict. These limitations motivated
current research of creating better merge tools.

2.3. Tree-based or syntax-based software merge tools

Various tree-based merge tools (Apel et al., 2011, 2012; Zhu and
He, 2018; Shen et al., 2019) were recently created to overcome the two
limitations mentioned above for line-based merge tools. For instance,
FSTMerge (Apel et al., 2011) and IntelliMerge (Shen et al., 2019)
parse Java programs, and create simplified parsing trees or graphs
to represent the parent–child relationship between program entities
(i.e., classes, methods, and fields). By matching entities across versions
based on entity names and/or code content, both tools attempt to
avoid entity-level misalignment. JDime (Apel et al., 2012) and Au-
toMerge (Zhu and He, 2018) create abstract syntax trees (ASTs) to
model all syntactic constructs in Java code; they both compare and
integrate branch edits based on tree-node matching to overcome the
two limitations mentioned above. However, it is unknown how well
these state-of-the-art tools overcome the limitations of line-based merge
tools or how they compare with each other. Although some researchers
conducted experiments to assess merge tools’ capabilities of conflict
detection (Cavalcanti et al., 2015, 2017, 2019; Seibt et al., 2022), they
did not leverage any benchmark that labels true/false conflicts to mea-
sure the precision of tools’ conflict detection capability. Also, existing
studies do not leverage any benchmark that labels developers’ manual
conflict resolution strategies, to assess the desirability of tool-generated
conflict resolutions.

2.4. Current assessments of software merge tools

A few studies were done to empirically compare software merge
tools (Cavalcanti et al., 2015, 2017, 2019; Seibt et al., 2022). Specifi-
cally, Cavalcanti et al. (2015) applied a line-based tool and a semistruc-
tured merge tool to the same set of subject programs, to compare the
number of conflicts reported. However, they did not analyze conflict
reports to characterize false alarms. Another study by Cavalcanti et al.
(2017) conducts pattern matching, to estimate the number of scenarios
where FSTMerge and KDiff3 (a line-based merge tool similar to git-
merge) can have false positives or false negatives. As described in

the paper, the pattern-matching approach is designed to overestimate
the additional false positives and false negatives of FSTMerge, while
underestimating the additional false positives and false negatives of
KDiff3. Thus, the estimates cannot precisely quantify the effectiveness
comparison between tools. Two studies (Cavalcanti et al., 2019; Seibt
et al., 2022) involve the manual inspection of 54–92 merging scenarios,
to explore the false positive and false negative issues in conflicts
detected by variants of the same tool or two distinct tools.

Existing studies have three limitations. First, they do not often
examine the precision of the conflict detection capability for merge
tools; the only two studies that inspected false positives and false
negatives so far (Cavalcanti et al., 2019; Seibt et al., 2022) focused on
a relatively small set of merging scenarios (i.e., 54–92 scenarios). We
believe it necessary to characterize the limitations of current tools with
more rigor by defining more metrics and using well-labeled datasets, so
that researchers can come up with better tools in the future to detect or
resolve conflicts more effectively. Second, no existing study examines
how well the tool-generated conflict resolutions match developers’
resolutions. If tools always generate resolutions differently from devel-
opers, developers cannot fully trust tool-generated merge results. Third,
each of the current studies compared two or three approaches/tools
simultaneously. We believe it necessary to compare more tools on the
same dataset, to better understand the advantages or disadvantages of
different tool implementations and merge algorithms.

The datasets used by existing studies only record the merging
commits in various open-source projects. They do not label any merging
scenario to have true/false conflicts, neither do they summarize or label
developers’ manual conflict resolution strategies. Thus, these datasets
do not quite help researchers assess the precision of conflict detectors,
neither do they facilitate people to evaluate the desirability of conflict
resolutions proposed by merge tools.

The limitations of current studies and datasets motivated us to
create a large-scale labeled dataset for the evaluation of software merge
tools. The ground-truth labels should include merging scenarios with
true conflicts as well as false conflicts, scenario characterizations in
terms of branch-edit types or file types, and the merged versions
produced by developers for those scenarios. We envision with such
a benchmark, researchers and tool developers can better characterize
the strengths and weaknesses of various merge tools, characterize the
scenarios where certain tools succeed or fail, create better tools, and
fairly compare tools in terms of conflict detection as well as resolution.

3. Methodology

This section first introduces our process of benchmark creation (Sec-
tion 3.1), and then explains our manual analysis—the most important
and challenging part in the whole process (Section 3.2).

3.1. The whole process of benchmark creation

As mentioned in Section 1, we considered four requirements when
building the benchmark: diversity, true conflicts, false conflicts, and
conflict resolution. To satisfy all requirements, we started our
benchmark-construction process with the 208 open-source Java repos-
itories mentioned by prior work (Shen et al., 2023). Shen et al. (2023)
recently created a dataset of 208 open-source repositories that have
merge conflicts. Specifically, the researchers ranked Java projects on
GitHub based on their popularity (i.e., star counts), and cloned reposi-
tories for the top 1000 projects as their initial dataset. They then refined
the dataset with two heuristics. First, they only kept the projects that
can be built with Maven, Ant, or Gradle to ensure high software quality
and program executability. Second, they removed tutorial projects as
those projects are not real Java applications and may not show real-
world merging scenarios. By crawling these repositories, we intended
to quickly locate and extract diverse merging scenarios.
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Fig. 4. Two exemplar conflicts to show limitations of line-based three-way merge.

Fig. 5. Our crawling process takes five steps to identify conflict samples.

Table 1
Statistics of the 208 open-source repositories.

#of Stars Repository
lifetime

# of Con-
tributors

# of
Commits

Program
size (kB)

Minimum 2,225 4 yrs 8 mos 1 5 77
Maximum 71,169 14 yrs 10 mos 403 45,983 5,147,485
Median 6,046 9 yrs 7 mos 61 1,550 16,355

To investigate the representativeness of program data from Shen
et al.’s work (Shen et al., 2023), after downloading the 208 repositories
from GitHub, we measured 3 aspects of the projects: project popularity
(i.e., number of stars), project maturity (i.e., lifetime of repositories),
and level of development activity (e.g., number of contributors, number
of commits, and program size). As of November 2023, all projects have
been very popular, receiving 2225 – 71,169 stars. As shown in Table 1,
these projects also seem mature, with their lifetime spanning between
4 years 8 months and 14 years 10 months. Each project has 1–403
contributors. The number of commits also varies a lot, in the range
[5, 45,983]. The dataset has programs of very small sizes (e.g., 77 kB)
and programs with very big sizes (e.g., 5,147,485 kB). The diversity of
numeric measurements we obtained for individual projects implies the
representativeness of this dataset.

We further clustered projects based on the number of conflicting
merging scenarios they contain. As shown in Fig. 6, 25 of the projects
contain no merge conflict in their repositories, 19 project repositories
contain single conflicting scenarios, and 164 project repositories have
multiple conflicting scenarios. Apache Cassandra contains the largest
number of conflicting merging scenarios: 4172. All these numbers moti-
vated us to sample one conflicting merging scenario in each repository,

because (1) the number of conflicting merging scenarios varies so
much across projects, and (2) our sample dataset can cover diverse
scenarios from more repositories when each repository has a scenario
sampled.

For the repositories downloaded from GitHub, we took five steps
to search for merging scenarios in each repository, and to sample
conflict data in those scenarios (see Fig. 5). With more details, in each
repository, if a program commit has two parent commits (predecessors),
we name it a merging commit, and use it to retrieve or restore the
five program versions (Ă, Ĉ, Ā, ýă, ă) related to a merging scenario.
Namely, the two parent commits are used as local version Ă and remote
version Ĉ; the common ancestor of the parents is treated as base version
Ā; ýă is restored as git-merge is applied to Ă and Ĉ; the merging
commit is considered as developers’ merged version ă. In Step 3, if
the automatically merged version ýă shows no conflicting chunk, we
discard the merging scenario as it contains no conflict-related data.
Otherwise, in Step 4, we further check whether ă has any conflicting
chunk reported by git-merge. If so, we discard the merging scenario
because it lacks information of developers’ conflict resolutions. At the
end of Step 4, we obtained refined sets of conflict-related merging
scenarios in 182 of the 208 repositories. Note that 26 of the repositories
were filtered out because they have no merging commit satisfying the
requirements mentioned above.

In Step 5, we manually inspected the refined set of each repository,
to find conflicts to include into ConflictBench. If multiple scenarios are
found in a repository, we randomly sampled one scenario for further
analysis. If the sampled scenario has multiple conflicts reported by git-
merge, we went over the conflict reports in sequence until finding one
that satisfies the following criteria.



The Journal of Systems & Software 214 (2024) 112084

5

B. Shen and N. Meng

Fig. 6. Project distribution based on the number of merging scenarios with conflicts.

1. If both branches revise parts of the same file, we looked for the
first conflicting chunk that involves no more than 20 lines of
unique text from either branch.

2. If one branch or both branches edit the file as a whole (e.g., by
deleting or moving it), the 20-line limit mentioned above does
not apply. We simply included the conflict into our dataset.

We used the 20-line limit, because conflicts always become harder
for comprehension and characterization when they involve more edits.
Based on our experience so far, we are confident to properly analyze
the conflicting chunks that involve no more than 20 lines of unique text
by either branch.

At the end of this step, ConflictBench includes 180 conflicts from
180 of the repositories. We removed 2 repositories from the refined
182 repositories, because those 2 repositories have no conflict meeting
the criteria mentioned above. For each conflict, we further labeled (1)
whether it is a true conflict, (2) the types of edits applied by each
branch, (3) the types of edited files, and (4) developers’ resolution
strategies. Section 3.2 details on our labeling procedure.

3.2. Details of our manual analysis

In our manual analysis, we took the open coding method to char-
acterize and classify conflicts. Specifically, the two authors separately
inspected some merge conflicts reported by git-merge, to come up with
four initial classification methods: conflict classification based on the
(1) relative positions of branch edits (i.e., applied to the same over-
lapping text regions or not), (2) edit type contrasts between branches,
(3) types of edited files, and (4) developers’ resolution strategies. For
each merging scenario, we inspected five program versions: the base
Ā, the local Ă, the remote Ĉ, the automatically merged version ýă,
and developers’ merged version ă. Afterwards, both authors inde-
pendently inspected all conflicts, to manually characterize and label
those conflicts. Finally, we compared the labels, to discuss and refine
classification methods whenever divergence occurred. The discussion
continued until we reached a consensus. After several iterations of
discussion and reclassification, the authors settled down all categories
and the classification labels.

3.2.1. Edit comprehension
To diagnose whether a reported conflict is true or false, we need

to first comprehend the branch edits contributing to that conflict.
Typically, git marks Ă- and Ĉ-edits with added lines (denoted with
‘‘+’’) and/or deleted lines (denoted with ‘‘−’’), as shown in Fig. 4.
However, such denotation is insufficient because it does not relate
added with deleted lines to capture update operations. To facilitate the

edit comparison between branches and conflict diagnosis, we tried to
identify line updates in given branch edits. If (1) a number of deleted
lines are followed by the same number of added lines, and (2) each added
line is similar or identical to the corresponding deleted line, then we interpret
the edits as updates. Here, to calculate the similarity of two given lines,
we computed longest common character subsequence between those
lines, and considered them similar if the subsequence contains at least
50% of characters from both lines. By detecting update operations, we
can better align lines and edits across branches, to decide whether edits
are applied to the same, overlapping, or different regions.

Additionally, when a branch revises multiple lines, we used the
following criteria to characterize branch edits:

• If only one type of edits are applied by a branch, we use I, D,
or U to label the branch edits, which letters separately denote
insertion, deletion, and updates.
• If two types of edits are applied by a branch, we use DI (meaning
deletion and insertion), DU, and IU to label the branch edits.
• When all three types of edits are applied, we simply use DI to label
those edits for two reasons. First, the updated lines are closely
related to surrounding added or deleted lines. Second, our 50%-
threshold is imperfect and sometimes interpret similar edits in
divergent ways.

With the labeling criteria mentioned above, we can characterize the
edit types contributing to each reported conflict, classify samples ac-
cordingly to present the dataset diversity, and contrast the effectiveness
of merge tools when they deal with different kinds of conflicts.

3.2.2. Conflict diagnosis
As git-merge may falsely report conflicts (see Section 2.2), we

manually applied the following criteria in sequence to compare branch
edits and to decide whether a sampled conflict is true or false:

• If branch edits manipulate different lines and there is no overlap
between the manipulated lines, we label the reported conflict
‘‘False’’. For instance, Fig. 4(a) shows a false conflict, because
the deleted lines in Ă and the updated line in Ĉ share no code in
common.
• If branch edits are applied to overlapping or the same region, the
reported conflict is labeled ‘‘True’’. Fig. 4(b) shows a true conflict,
because Ă and Ĉ update the same line in divergent ways.
• If both branches insert distinct text at the same location (e.g., be-
tween two existing lines), we label the reported conflict ‘‘True’’.
This is because even though both insertions can get applied
simultaneously, it is hard to automatically decide the sequential
order between them.
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• If one branch inserts text between two existing lines, while the
other branch deletes or updates both lines, we label the conflict
‘‘True’’. This is because if we consider the two lines as anchors
to mark the insertion location, any update or removal of them
both can make it very difficult to position insertion in the merged
software.

3.2.3. Developers’ resolutions
As with prior work (Shen et al., 2023), we adopted seven labels to

describe developers’ resolution strategies for true conflicts:

• KL: Keep all edits from Ă.
• KR: Keep all edits from Ĉ.
• KL+KR: Keep all edits from both branches.
• ME: Apply new manual edits, but no edit from Ă or Ĉ.
• KL+ME: Apply Ă-edits and new manual edits.
• KR+ME: Apply Ĉ-edits and new manual edits.
• KL+KR+ME: Apply edits from both branches, together with new
manual edits.

The above-mentioned labels are self-explanatory, indicating distinct
types of resolution strategies taken by developers. For instance, in
a merging scenario, if all edits from Ă are included into developers’
resolution and no edit from Ĉ is included, we use KL to summarize the
resolution strategy. Nevertheless, there are still corner cases ambiguous
to label, due to the similarity or relevance between branch edits. Thus,
we further defined the following criteria to handle those complicated
scenarios and to ensure consistent labeling:

• If branch edits are similar to each other while developers’ merged
version is identical to Ă (or Ĉ), we use KL (or KR) to summarize
the resolution.
• If branch edits and the edits in developers’ merged version (ă) are
all similar but not identical, we calculate the similarity between
the edits in ă and the edits by either branch. If the edits in ă

is more similar to Ă-edits, we label it KL+ME; otherwise, we use
KR+ME.
• If Ă and Ĉ edit different parts of the same line and ă applies both
edits to the same line, we use KL+KR to label the resolution.

4. The dataset of conflictbench

In our dataset, we created a folder for each conflict sample. Inside
that folder, we created four folders to keep track of separate versions
of the single edited file. The four versions include Ā, Ă, Ĉ, and ă;
we denote the four folders with ĂĀ, ĂĂ, ĂĈ, and Ăă. If one version
deletes the file, the corresponding folder is empty. We also created a
spreadsheet to record additional information (e.g., classification labels
and conflicting chunks) for all samples. Table 2 shows the 180 conflict
samples included into ConflictBench. In this table, we classify conflicts
based on the (1) truth or falsity of conflicts, (2) types of branch edits,
and (3) types of edited files.

4.1. True or false conflicts

As shown in Table 2, 136 conflicts are labeled with ‘‘True’’ because
branches apply divergent or incompatible edits to overlapping text
regions; 44 conflicts are labeled as ‘‘False’’ because the branch edits
are applied to non-overlapping regions, and they should have been
co-applied automatically to the merged version. Notice that in our
sampling process (see Section 3), we had no control over whether
the selected conflicts are true or false. Therefore, the considerably
large number of false conflicts (i.e., 44) implies (1) a lot of noises
produced by git-merge when it reports conflicts, and (2) a significant
improvement space for better merge tools.

Table 2
The 180 samples included in ConflictBench.

True? Edit types File types Total per

False? Java Non-Java edit types

I vs. I 20 18 38

U vs. U 14 16 30

U vs. D 15 11 26

DI vs. DI 6 3 9

U vs. DI 5 3 8

D vs. DI 2 2 4

True DI vs. DU 3 1 4

Conflicts IU vs. U 2 2 4

IU vs. DI 3 1 4

D vs. I 3 0 3

DI vs. I 2 0 2

D vs. D 0 1 1

U vs. I 1 0 1

U vs. DU 0 1 1

D vs. DU 1 0 1

Subtotal 77 59 136

I + U 7 1 8

I + D 7 0 7

I + DI 2 4 6

I + N 4 1 5

U + IU 2 1 3

False DI + IU 1 2 3

Conflicts DI + U 3 0 3

U + U 1 1 2

N + DI 0 2 2

U + D 1 0 1

D + DI 0 1 1

D + D 1 0 1

D + DU 0 1 1

I + IU 0 1 1

Subtotal 29 15 44
Total 106 74 180

D means deletion. I means insertion. N means no edit from a branch contributing to
the conflicting chunk. U means update.

4.2. Conflict classification based on edit types

Table 2 uses ‘‘vs.’’ to contrast the edit types applied by individual
branches for each true conflict, and uses ‘‘+’’ to compare the types of
edits applied by separate branches for false conflicts. In addition to
the edit types (i.e., I, D, U) mentioned in Section 3, this table also
adopts N to mark two subcategories of false conflicts. Here N means
that one of the branches contribute no edit at all to the reported
conflicting chunk. As shown in Fig. 7, although Ă applies no edit while Ĉ
deletes and inserts some text, git-merge wrongly interprets the scenario
and falsely reports a conflict. By comparing edits across branches, we
identified 15 subcategories in true conflicts. In particular, I vs. I is
the largest subcategory of true conflicts, capturing scenarios where
branches insert distinct content at the same location. We also identified
14 subcategories in false conflicts, with I + U as the largest one.

4.3. Conflict classification based on file types

Although all conflict samples are from Java repositories, we noticed
that many of them reside in non-Java files. Thus, we also classified
samples based on file types. As shown in Table 2, among the 136 true
conflicts, there are 77 conflicts located in Java files and 59 ones located
in non-Java files. Among the 44 false conflicts, 29 conflicts are from
Java files while 15 conflicts are from non-Java files. In particular, the
74 non-Java files include 22 XML files, 13 Markdown documentation
(.md), 10 Gradle files (.gradle), 7 property files (.properties), and 22
miscellaneous files. In our sampling process, we did not control what
file to sample. Therefore, the conflict distribution among file types
implies the diversity of our dataset.
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Fig. 7. A false conflict belonging to N + DI, where N means no edit from a branch contributing to the conflicting chunk and DI means a mixture of line deletion and insertion.

Table 3
Developers’ resolutions to all conflict samples.

Strategy # of true conflicts # of false conflicts Total

KL 61 11 72

KR 36 11 47

KL+KR 15 16 31

ME 3 1 4

KL+ME 2 1 3

KR+ME 5 0 5

KL+KR+ME 14 4 18

Sum 136 44 180

KL means ‘‘keep local version’’. KR means ‘‘keep remote version’’. KL+KR means ‘‘keep
edits from both versions’’. ME means ‘‘apply manual edits’’. KL+ME means ‘‘apply local
edits and new manual edits’’. KR+ME means ‘‘apply remote edits and new manual
edits’’. KL+KR+ME means ‘‘apply edits from both branches and new manual edits’’.

4.4. Conflict classification based on resolution strategies

Table 3 presents our classification of conflict samples based on
developers’ resolution strategies. As shown in this table, most conflicts
were resolved by either KL or KR, meaning that developers often resolve
conflicts by keeping edits purely from one branch. KL+KR was adopted
to resolve slightly more false conflicts than true ones (16 vs. 15), and
13 of the resolved true conflicts belong to I vs. I. The fourth most
popular strategy is KL+KR+ME, which resolved 14 true conflicts and
4 false conflicts. The remaining three strategies (i.e., KL+ME, KR+ME,
and KL+KR+ME) were applied a lot less often.

5. Experiment

Our overall research problem is how well ConflictBench helps char-
acterize the effectiveness of existing software merge tools. To investi-
gate this problem, we applied 5 state-of-the-art tools to the 180 merging
scenarios and analyzed the tool results to explore 3 research questions
(RQs):

• RQ1: How widely is a software merge tool applicable to merging
scenarios?
• RQ2: When a software merge tool reports conflicts, how precise
are those reports?
• RQ3: If a software merge tool can resolve conflicts, how well do
those resolutions match developers’ resolutions?

This section first introduces the five tools we adopted (Section 5.1).
It then describes our experiment setting (Section 5.2), evaluation met-
rics (Section 5.3), and our experiment results for all three RQs (Sec-
tion 5.4).

5.1. Five software merge tools

Among the papers recently published on the research topic of soft-
ware merge, the following five tools have been frequently mentioned
and used:

KDiff3 (Eibl, 2007) is another line-based software merge tool. Ac-
cording to its online handbook (Eibl, 2007), the tool outperforms
other line-based merge tools by showing not only the changed lines,
but also what has changed within these lines. Namely, it presents
differences line-by-line and character-by-character. We downloaded the
latest version compatible with Ubuntu 22.04 (i.e., the OS we used for
our experiment)—1.9.5—via the command ‘‘apt install kdiff3’’.

FSTMerge (Apel et al., 2011; Cavalcanti et al., 2017; jFSTMerge,
2021), also referred to as semistructured merge, parses programs writ-
ten in Java, C#, or Python. For each parsing tree, it generates a
simplified program structure tree (PST). Within a PST, there is no
low-level statement or expression node. Each inner node represents a
high-level program structure (i.e., class, method, or field), and each
leaf node represents the body implementation of a method or field.
With PSTs, FSTMerge matches nodes between branches purely based
on signatures. For each pair of matched nodes, it compares and in-
tegrates branch edits applied to the body implementation via textual
merge (e.g., git-merge). We downloaded the latest version (commit ID:
81724157) of FSTMerge from its website (GitHub, 2017).

JDime (Apel et al., 2012), also referred to as structured merge,
is similar to FSTMerge by parsing Java programs for tree structures.
However, different from FSTMerge, JDime directly compares parsing
trees to identify and integrate branch edits. Given the trees of Ă and
Ĉ, JDime computes the largest common subtree, and adds matching
information to those trees. It then takes the three trees enriched with
matching information (i.e., trees of Ā, Ă, and Ĉ), to create a merged tree
as result. We downloaded the version (commit ID: 63ffc342) of JDime
from the tool’s website (GitHub, 2019).

AutoMerge (Zhu and He, 2018) extends JDime, so it also merges
software based on tree matching. While JDime does not attempt to
resolve any conflict it reveals, AutoMerge was designed as an inter-
active approach to propose alternative resolutions for the detected
conflicts. Each of the proposed resolutions may include some edits
from a single branch or integrate edits from both branches. AutoMerge
also has a mechanism of ranking alternative resolutions, so that the
top-ranked resolution is very likely to satisfy developers. We down-
loaded the latest version (commit ID: 4e00b8ad) from the tool’s web-
site (thufv/automerge, 2018).

IntelliMerge (Shen et al., 2019) creates program element graphs
(PEGs) to model program elements (e.g., Java classes, methods, and
fields), as well as the relationship between elements (e.g., containment
and access). It matches nodes based on the node content (e.g., method
signature and its body implementation), as well as surrounding context
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Fig. 8. The experiment settings. Here, ĂĂ , ĂĀ, ĂĈ, and Ăă are folders to separately hold
programs of local, base, remote, and manually merged versions. ýăć , ýăĂ , ýăĆ , ýăý,
and ýăą are automatically merged versions separately produced by KDiff3, FSTMerge,
JDime, AutoMerge, and IntelliMerge.

(e.g., incoming and outgoing edges). Similar to FSTMerge, for each
pair of matched nodes, IntelliMerge integrates branch edits via textual
merge. However, different from all tools mentioned above, IntelliMerge
can detect refactoring edits (e.g., method renaming) applied by either
branch, and resolve the conflicts caused by those refactoring opera-
tions. We downloaded the latest version (commit ID: 1aa08901) of
IntelliMerge from its website (GitHub, 2021).

5.2. Experiment setting

To use tools appropriately and compare them fairly, we downloaded
the latest version (executable on our Ubuntu 22.04 desktop) of five
tools—KDiff3, FSTMerge, JDime, AutoMerge, and IntelliMerge—and
followed the usage instructions on the tool websites. Specifically, we
used the following tool versions without fine-tuning any parameter
or configuration: KDiff3-1.9.5, FSTMerge (commit ID: 81724157 as
there is no tool release information), AutoMerge-1.0, JDime-0.5.0, and
IntelliMerge-1.0.9. As shown in Fig. 8, for each merging scenario, we
provided all tools three folders— ĂĀ, ĂĂ, ĂĈ—which correspond to three
program versions (Ā, Ă, Ĉ), so that each tool has sufficient information to
detect conflicts and generate a merged version. If both branches revise
the same file, the folders separately hold different versions of that file.
If one branch removes a file, the corresponding folder is empty because
the file does not exist.

After applying all tools to ConflictBench, we manually checked the
tool results. If a tool reports nothing or throws runtime errors, we
interpret the phenomena as indicators of tools’ limitations. For each
reported conflict, we examined whether ConflictBench labels it as a
true or false conflict. For each resolved conflict, we checked whether
the tool’s resolution (i.e., merged version) is semantically equivalent
to the human-crafted one. Notice that each tool may report or resolve
multiple conflicts in one merging scenario. To ensure fair comparison
among tools, we only focused on (1) the branch edits, conflicts, as
well as resolutions labeled by ConflictBench, and (2) the tool-generated
conflicts or resolutions for those labeled regions.

5.3. Metrics

We defined three metrics to evaluate software merge tools:
Tool Applicability (A) measures among all merging scenarios,

for how many scenarios a tool can take inputs and produce outputs
normally without throwing errors.

ý =
# of scenarios processable

Total # of labeled scenarios
(1)

A is within [0, 1]. ‘‘Processable’’ means given the three folders re-
lated to a merging scenario, a tool either reports a conflict or generates
a merged version. The more scenarios a tool can process, the better
applicability it has. All the following two metrics focus on the scenarios
processable by individual tools.

Detection Precision (P) measures among all reported conflicts by
a merge tool, how many of them are true conflicts:

Č =
# of true conflicts

Total # of reported conflicts
(2)

P varies within [0, 1]. Suppose that a tool reports ý conflicts, while þ

of them are labeled as true conflicts in our dataset. Then the precision is
þ∕ý. Notice that given a merging scenario with true conflicts, if a tool
does not report any conflict, the tool may overlook those conflicts or
properly resolve all conflicts. Namely, missing true conflicts does not
necessarily mean that software merge tools have poor capabilities of
conflict detection. Thus, we decided not to assess tools by defining the
metric detection recall, which calculates the percentage of true conflicts
recalled by each tool.
Resolution Desirability (D) measures among all conflicts resolved

by a tool, for how many of them the tool’s resolutions match devel-
opers’ resolutions. ‘‘Match’’ means a tool-generated merged version is
semantically equivalent to the merged version developers hand-crafted.

Ā =
# of resolutions matching developers’ resolutions

Total # of resolutions generated by a tool
(3)

This metric also varies within [0, 1].
Different from prior work (Apel et al., 2011, 2012; Cavalcanti et al.,

2015, 2019; Seibt et al., 2022), we intentionally avoid comparing
tools solely based on the numbers of conflicts they report for two
reasons. First, if a tool reports a large number of conflicts and many
of which are false alarms (i.e., falsely reported conflicts), the tool is
not reliable. Second, some tools can perfectly resolve conflicts and
generate correctly merged software; even though these tools report
few conflicts, we cannot conclude that these tools are bad conflict-
detectors. We believe that conflict detection and resolution are two
closely related capabilities of a merge tool, so we defined a metric for
each of them. It is possible that some tools detect conflicts with high
precision, but cannot resolve many conflicts. Meanwhile, some tools
may detect conflicts with low precision, but is able to correctly merge
branch edits that should have been reported as conflicts by other tools.

5.4. Results

Table 4 presents an overview of our experiment results with differ-
ent tools. In the following subsections, we will describe and explain all
results in detail.

5.4.1. Applicability comparison between tools
As shown in Table 4, KDiff3 has the highest applicability score—

95%; FSTMerge has the second highest score—63%; the other tools
have similar applicability (51%–52%). Specifically, given the 3 folders
for each of the 180 samples, KDiff3 fails (i.e., either reports an error or
problematically produces nothing) for 9 samples, 3 of which are in non-
Java files and 6 samples are in Java files. All of these nine samples share
the same conflicting pattern: one branch updates certain file while the
other branch deletes that file (U vs. D). As our dataset includes in total
26 conflicts of the pattern U vs. D, KDiff3 can smoothly process the
remaining 17 (i.e., 26 − 9) scenarios.

FSTMerge does not work normally for 67 of the samples; 20 samples
are in Java files and 47 of the samples are located in non-Java files.
In our dataset, there are more conflicts in Java files than in non-Java
ones (106 vs. 74). Thus, FSTMerge is more likely to behave abnormally
when dealing with non-Java files than when it processes Java files. Our
observations mentioned above imply that both KDiff3 and FSTMerge
have implementation flaws that hinder their applicability. AutoMerge
reports errors for two kinds of conflicts:

1. The conflicts reside in non-Java files.
2. One branch edits a Java file, while the other branch manipulates
the file system by removing that file or moving the entire file
folder.
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Table 4
Overview of experiment results.

Metrics KDiff3 FSTMerge JDime AutoMerge IntelliMerge

Tool Applicability (A) 95% (171/180) 63%(113/180) 52%(93/180) 52%(94/180) 51%(92/180)
Detection Precision (P) 84% (114/136) 74%(28/38) 92%(22/24) 88%(15/17) 79%(30/38)
Resolution Desirability (D) 83% (29/35) 44%(33/75) 68%(47/69) 64%(49/77) 54%(29/54)

AutoMerge works normally only when both branches apply edits inside
Java files. It detects conflicts by parsing Java code and comparing
parsing trees, so it was not designed to handle conflicts outside Java
files. JDime and IntelliMerge share the same design limitation with
AutoMerge. Additionally, both tools suffer from unknown implemen-
tation issues, which prevent them from properly handling one or two
conflicts inside Java files. Specifically, JDime generates nothing for a
true conflict, whose branch edits insert distinct content to the same
location ( I vs. I). IntelliMerge generates nothing for two conflicts. One
of the conflicts is a true one, involving folder renaming by one branch
and file insertion into the renamed folder by the other branch (U vs. I);
the other conflict is a false one, where one branch inserts code and the
other branch deletes code at a different location (I + D).

This experiment indicates that there is still considerable improve-
ment space for four experimented tools (except KDiff3), so that they
can become more applicable and usable.

Finding 1: KDiff3 and FSTMerge have better applicability among the
five tools. Their applicability is limited by implementation issues, while
the applicability of the other three tools (i.e., JDime, AutoMerge, and
IntelliMerge) is mainly limited by approach design.

5.4.2. The comparison of detection precision between tools
As shown in Table 4, JDime has the highest detection precision—

92% (22/24); FSTMerge has the lowest detection precision—74%
(28/38). The precision comparison among all tools is JDime > Au-
toMerge > KDiff3 > IntelliMerge > FSTMerge. The numerical com-
parison of true-conflict reporting among tools is KDiff3 > IntelliMerge
> FSTMerge > JDime > AutoMerge. Namely, KDiff3 and AutoMerge
separately reported the largest and smallest numbers of true conflicts
(114 and 15). Similarly, the numerical comparison of false-conflict
reporting among tools is KDiff3 > FSTMerge > IntelliMerge > JDime
= AutoMerge. Once again, KDiff3 and AutoMerge separately reported
the largest and smallest numbers of false conflicts (22 and 2), while
JDime reported the same number of false conflicts as AutoMerge.

Three reasons can explain why KDiff3 reported the most true con-
flicts and most false conflicts. First, it is applicable to the most merging
scenarios, to handle conflicts in both Java and non-Java files. Second,
it treats source code as plain text and compares programs by ignoring
the syntactic structures. Thus, it sometimes mismatches adjacent lines
and falsely reports conflicts (see limitations of line-based merge tools
mentioned in Section 2.2). Third, it does not map code changes to oper-
ations on AST nodes, so it cannot resolve conflicts when branches apply
simultaneous edits to different AST nodes. Our comparison implies that
if developers want to reveal as many merge conflicts as possible and
have great tolerance of false-conflict reporting, they can consider using
KDiff3. Otherwise, if developers have little tolerance of false-conflict
reporting, they may consider JDime. FSTMerge does not seem to be a
good option, as it did not report the largest number of conflicts while
its precision rate is the lowest.

Table 5 presents the distribution of conflicts reported by each tool,
among different subcategories based on edit types. According to this
table, all tools except KDiff3 reported the most true conflicts of sub-
category U vs. U for two reasons. First, this subcategory contains more
conflicts than many other subcategories. Second, such conflicts are easy
to detect but hard to resolve automatically. KDiff3 reported a lot more
true conflicts of I vs. I than the other tools for two reasons. First, it is
more applicable than other tools to merging scenarios. Second, when

Table 5
The conflicts reported by tools.

Edit types KDiff3 FSTMerge JDime AutoMerge IntelliMerge

I vs. I 34 3 3 2 4

U vs. U 28 8 8 6 11

U vs. D 17 6 2 1 1

DI vs. DI 9 3 2 2 3

True U vs. DI 7 2 1 0 4

Conflicts D vs. DI 3 0 1 1 0

DI vs. DU 4 2 0 0 3

IU vs. U 3 2 2 0 2

IU vs. DI 4 0 1 1 2

D vs. I 2 1 1 1 0

DI vs. I 1 1 1 1 0

D vs. D 0 0 0 0 0

U vs. I 0 0 0 0 0

U vs. DU 1 0 0 0 0

D vs. DU 1 0 0 0 0

Subtotal 114 28 22 15 30

I + U 5 3 1 1 3

I + DI 4 0 0 0 0

False I + D 2 1 0 0 1

Conflicts I + N 4 1 1 1 1

U + IU 3 1 0 0 2

DI + IU 2 1 0 0 0

DI + U 0 2 0 0 1

U + U 0 1 0 0 0

N + DI 1 0 0 0 0

U + D 0 0 0 0 0

D + DI 0 0 0 0 0

D + D 0 0 0 0 0

D + DU 0 0 0 0 0

I + IU 1 0 0 0 0

Subtotal 22 10 2 2 8
Total 136 38 24 17 38
Detection precision 84% 74% 92% 88% 79%

D means deletion. I means insertion. N means no edit from a branch contributing to
the conflicting chunk. U means update.

applicable, the other tools try to resolve conflicts while KDiff3 did not

attempt to resolve any of the conflicts. In particular, the most popular

resolution strategies applied by those tools for I vs. I conflicts include

KL+KR and KL+KR+ME, meaning that those tools resolve conflicts

by co-applying insertions from both branches. KDiff3, FSTMerge, and

IntelliMerge reported the most false conflicts for subcategory I + U.

Both JDime and AutoMerge reported a false conflict of I + U, and a

false conflict of I + N.

All tools reported 9 conflicts in common, 8 of which are true

conflicts and 1 is a false conflict. This implies that even if we try

to combine all tools to report conflicts with a higher precision rate,

there is still improvement space for future tools to detect conflicts more

precisely.

Finding 2: JDime got the highest detection precision (92%), while
FSTMerge acquired the lowest (74%). JDime and AutoMerge reported
the smallest number of false conflicts (i.e., 2), while KDiff3 reported
the largest number of false conflicts (i.e., 22). AutoMerge and KDiff3
separately reported the smallest and largest number of true conflicts
(i.e., 15 and 114).
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Table 6
The comparison between tool-generated versions and developers’ merged versions.

Resolution strategy KDiff3 FSTMerge JDime AutoMerge IntelliMerge

M(atched) U(nmatched) M U M U M U M U

KL 4 4 19 15 19 7 19 9 11 12

KR 7 0 5 11 8 9 8 11 7 4

KL+KR 12 0 7 8 14 0 15 0 8 4

ME 1 0 0 3 0 1 0 1 0 1

KL+ME 0 0 1 0 1 1 1 1 1 1

KR+ME 2 0 0 0 1 0 2 0 1 0

KL+KR+ME 3 2 1 5 4 4 4 6 1 3

Total 29 6 33 42 47 22 49 28 29 25

KL means ‘‘keep local version’’. KR means ‘‘keep remote version’’. KL+KR means ‘‘keep edits from both versions’’. ME means ‘‘apply manual edits’’. KL+ME means ‘‘apply local
edits and new manual edits’’. KR+ME means ‘‘apply remote edits and new manual edits’’. KL+KR+ME means ‘‘apply edits from both branches, and new manual edits’’.

5.4.3. The comparison of resolution desirability between tools
According to Table 4, KDiff3 acquired the highest resolution

desirability—83%, while FSTMerge obtained the lowest resolution
desirability—44%. Our measurement for AutoMerge (64%) is higher
than that for IntelliMerge (54%) but lower than that for JDime (68%).
AutoMerge generated the most resolutions—77, while KDiff3 produced
the fewest resolutions—35.

Table 6 shows the breakdown of conflicts resolved by each tool,
based on developers’ resolution strategies.Mmeans for a given conflict,
the tool-generated version matches or is semantically equivalent to de-
velopers’ version, while U means that the two versions are unmatched.
According to this table, the versions produced by FSTMerge successfully
match developers’ merged versions for 33 cases, but fail to match for
42 cases. JDime worked much better than FSTMerge, as it generated
many more matched versions than FSTMerge (47 vs. 33), but a lot fewer
unmatched versions (22 vs. 42). Compared with JDime, AutoMerge
created slightly more matched versions (49 vs. 47), and even more
unmatched versions (28 vs. 22). Among all tools, IntelliMerge and
KDiff3 produced the fewest versions matching developers’ versions—
29. However, as KDiff3 also produced the fewest versions not matching
developers’ versions—6, its desirability is the highest. AutoMerge has
the largest number of resolved versions to semantically match devel-
opers’ resolved versions (i.e., 49); FSTMerge has the largest number of
unmatched resolutions (i.e., 42).

Our observations imply that if developers want to take full advan-
tage of tools’ conflict-resolution automation and have great tolerance
for wrongly resolved conflicts (e.g., they rely on compilation or auto-
matic testing to always capture wrong resolutions), they can consider
using AutoMerge. Otherwise, if developers want to cautiously lever-
age tools’ resolution capability and have little tolerance for wrongly
resolved conflicts, they may use KDiff3. FSTMerge does not seem to be
a good option either way, as it did not produce the most resolutions
but generated the largest number of wrong resolutions.

Most of the conflicts resolved by each tool fall into the subcategories
KL, KR, and KL+KR. This is because the majority of conflicts included
in our dataset were manually resolved via KL, KR, and KL+KR. Most of
the matched versions produced by each tool also fall into these three
subcategories. To further investigate tools’ resolution capabilities, we
also created Table 7 to present the actual resolution strategies applied
by each tool. By comparing Table 7 with Table 3, we observed that
all tools’ distributions of resolution strategies are different from the
distribution of developers’ resolutions. This implies that when resolving
conflicts, existing tools give little consideration to developers’ prefer-
ences for resolution strategies and future tools may observe developers’
preferences to better merge software.

Specifically, among the studied tools, KDiff3 resolved the fewest
cases (i.e., 35) but reported the most conflicts (i.e., 136). KDiff3 re-
solved 23 of the 35 conflicts via KL+KR, while developers resolved
most conflicts via KL or KR. Within the merged versions KDiff3 created,
six versions do not match developers’ versions for two reasons. First,
KDiff3 managed to integrate branch edits via KL+KR for five cases;
however, developers resolved four of the conflicts via KL and resolved

Table 7
The comparison between resolution strategies applied by tools.

Resolution strategy KDiff3 FSTMerge JDime AutoMerge IntelliMerge

KL 4 9 9 9 10

KR 5 4 1 1 13

KL+KR 23 0 9 9 12

ME 0 14 2 2 0

KL+ME 0 21 14 16 3

KR+ME 1 6 6 7 4

KL+KR+ME 2 21 28 33 12

Total 35 75 69 77 54

KL means ‘‘keep local version’’. KR means ‘‘keep remote version’’. KL+KR means ‘‘keep
edits from both versions’’. ME means ‘‘apply manual edits’’. KL+ME means ‘‘apply local
edits and new manual edits’’. KR+ME means ‘‘apply remote edits and new manual
edits’’. KL+KR+ME means ‘‘apply edits from both branches, and new manual edits’’.

a fifth conflict via KL+KR+ME. Second, in a sixth conflicting scenario,
although both KDiff3 and developers resolved conflicts via KL+KR+ME,
the produced versions are different. In particular, one branch inserts
a Java file to an existing folder/package, while the other branch
renames that folder/package. Developers’ resolution integrates both
edits and further updates the package name inside that inserted Java
file for change consistency; however, KDiff3’s resolution only partially
integrates branch edits by keeping two versions of the renamed folder.

FSTMerge resolved conflicts by mainly applying three strategies:
ME, KL+ME, and KL+KR+ME; meanwhile, the three most popular res-
olution strategies manually applied by developers include KL, KR, and
KL+KR. FSTMerge applies new edits in 62 of the 75 cases, although the
majority of these extra edits are about unnecessary formatting changes
(e.g., inserting or deleting empty lines, changing method declaration
orders, or modifying code indentation). We also inspected the 42 cases
incorrectly resolved by FSTMerge and summarized 3 major root causes.
First, FSTMerge shows preferences to KL or KL+ME in nine cases where
developers’ resolutions are KR, KL+KR, or KL+KR+ME. Second, in 10
cases, FSTMerge wrongly created duplicates for edited lines. Third,
in 11 cases, FSTMerge kept some lines that should be removed from
merged versions.

JDime resolved 42 of the 69 conflicts via KL+ME or KL+KR+ME. We
observed JDime to often resolve conflicts by applying extra edits on top
of branch edits; most of the extra edits were about formatting changes.
We inspected the 22 cases incorrectly resolved by JDime, and observed
that JDime managed to integrate all branch edits into merged versions
for 17 cases. However, developers resolved these 17 conflicts mainly
via KL or KR. Namely, JDime created merged versions by integrating
branch edits with its best effort, while developers do not always merge
in as many branch edits as possible.

AutoMerge resolved 49 of the 77 conflicts via KL+ME or KL+KR+
ME. It also applied unnecessary formatting changes when resolving
conflicts. We observed that for all the 69 conflicts resolved by JDime,
AutoMerge produced exactly the same merged versions as JDime. This
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is because AutoMerge extended JDime, and shares most of its imple-
mentation with JDime. AutoMerge outperformed JDime by automati-
cally resolving eight more conflicts, although six of those resolutions
do not match developers’ resolutions.

IntelliMerge resolved 37 of the 54 conflicts via KR, KL+KR, and
KL+KR+ME. Within the merged versions it produced, 25 versions do
not match developers’ versions for 3 reasons. First, IntelliMerge shows
preferences to KR in seven cases, where developers’ resolutions are
KL, KL+KR, KL+KR+ME, or ME. Second, in six cases, IntelliMerge
applied KL+KR while developers resolved five of the cases via KL or
KR. Third, in five cases, IntelliMerge kept some lines removed by one of
the branches, while developers excluded those lines from their merged
versions.

Our experiments also imply that if developers are flexible with the
unexpected formatting changes introduced by software merge tools,
they can use AutoMerge for its better resolution automation. However,
if developers are picky about the coding style of generated merged
versions and do not want programs reformatted by tools, they can think
about using KDiff3 or IntelliMerge.

Finding 3: AutoMerge resolved the most conflicts (i.e., 77) in our
dataset, while KDiff3 resolved the fewest (i.e., 35). KDiff3 acquired
the highest resolution desirability—83%, while FSTMerge got the
lowest—44%.

6. Threats to validity

Threats to external validity. We limited the size of manually inspected
conflicting chunks. Namely, each conflicting chunk should have no
more than 20 lines of unique lines from either branch. We used this 20-
line limit, because conflicts always become harder for comprehension
and characterization when they involve more edits. Based on our
experience so far, we are confident to properly analyze the conflicting
chunks that have no more than 20 lines of unique text by either branch.
To examine the generalizability of our observations to larger conflict
chunks, we also manually inspected another 10 randomly sampled
chunks with more than 20 lines of unique text by either branch. We
found that our major findings based on the smaller conflicting chunks
generalize well to larger chunks. For instance, on this extra 10-sample
dataset, we also observed that KDiff3 has the best applicability and
reports the most conflicts; tree-based software merge tools generally
resolved more conflicts than KDiff3, although the resolutions do not
necessarily better match developers’ manual resolutions.

Our study is based on the 180 conflicts extracted from 180 Java
project repositories on GitHub. The characterization of conflicts, the
observed resolutions, and our experiment results may not generalize
well to other conflicts, other projects, other programming languages,
or other hosting platforms (e.g., BitBucket). However, as this study
involves a lot of manual analysis, we have spent a lot of time (i.e., over
one year) creating the dataset, running experiments, analyzing data,
and validating our manual inspection results. In the future, we plan to
mitigate the issue by including more conflicts into ConflictBench.

Threats to construct validity. For benchmark creation and tool evalua-
tion, we manually inspected (1) the sampled conflicts, (2) the merged
versions hand-crafted by developers, and (3) the merged versions out-
put by tools. It is possible that our manual analysis is subject to human
bias and restricted by our domain knowledge, but our unscalable man-
ual analysis is very important and irreplaceable to characterize conflicts
and their resolutions. To alleviate the problem of manual analysis,
both authors independently examined all data. They cross-checked
each other’s analysis results, and actively discussed the instances they
disagreed upon until clarifying the labeling criteria and reaching a
consensus. The authors inspected all data iteratively, to ensure that
their analysis results are always consistent with the adjusted labeling
criteria.

Threats to internal validity. Our heuristics to identify line updates may
underestimate the number of update operations actually applied by
developers. Specifically, we interpret edits as updates if (1) a number
of deleted lines are followed by the same number of added lines, and
(2) each added line is at least 50% similar to the corresponding deleted
line. Based on (1), if one line is split into two lines, our manual analysis
may interpret the change as one deleted line followed by two added
lines, instead of a single update. Based on (2), if line A is updated to
line B and B is not very similar to A (i.e., with less than 50% similarity),
our manual analysis interprets the change as one deleted line followed
by an added line, instead of an update.

Such misinterpretation can impact our conflict classification based
on edit types, and may influence the number of conflicts falling into
the categories related to ‘‘U’’ and ‘‘DI’’. For instance, some ‘‘DI vs. DI’’
cases can be relabeled as ‘‘U vs. U’’. However, based on our experience,
only a few cases have such arguable labels. More importantly, such
heuristics do not impact our labeling for true/false conflicts in different
projects. No matter whether a line is treated to be deleted or updated, as
long as two branches manipulate the same line(s) divergently, we con-
sider them to conflict. Correspondingly, if two branches simultaneously
manipulate different lines, we treat them to have no conflict.

7. Related work

The related work includes empirical studies on merge conflicts and
on merge techniques.

7.1. Empirical studies on merge conflicts

Several studies characterize the relationship between merge
conflicts and software maintenance (Estler et al., 2014; Ahmed et al.,
2017; Leßenich et al., 2018; Mahmoudi et al., 2019; Owhadi-Kareshk
et al., 2019). For instance, Estler et al. (2014) surveyed 105 student
developers, and found that the lack of awareness (i.e., knowing ‘‘who’s
changing what’’) occurs more frequently than merge conflicts. Leßenich
et al. (2018) surveyed 41 developers and identified 7 potential in-
dicators (e.g., number of changed files in both branches) for merge
conflicts. With further investigation of those indicators, the researchers
found that none can predict the conflict frequency. Similarly, Owhadi-
Kareshk et al. defined nine features (e.g., number of added and deleted
lines in a branch) to characterize merging scenarios; they trained a
machine-learning model that predicts conflicts with 57%–68% accu-
racy (Owhadi-Kareshk et al., 2019). Ahmed et al. (2017) studied how
bad design (code smells) influences merge conflicts; they found that
entities that are smelly are three times more likely to be involved in
merge conflicts. Mahmoudi et al. (2019) studied the relationship be-
tween refactorings and merge conflicts; they observed that refactoring
operations are involved in 22% of merge conflicts.

Similar to these studies, our research also constructs a dataset of
merge conflicts and characterizes various aspects of those conflicts.
However, it is different in two aspects. First, we characterized the
conflicts reported by git-merge in terms of (1) the truth/falsity of
reports, (2) types of branch edits, (3) types of edited files, and (4) types
of resolution strategies. Second, we conducted an empirical study of
five state-of-the-art merge tools by applying them to our dataset. No
prior work does that.
Some studies analyze the conflicts reported by textual merge

tools (e.g., git-merge) (Yuzuki et al., 2015; Nguyen and Ignat, 2018;
Ghiotto et al., 2020; Brindescu et al., 2020; Pan et al., 2021; Shen
et al., 2023). Specifically, Yuzuki et al. inspected hundreds of con-
flicts (Yuzuki et al., 2015). They observed that conflicting updates
caused 44% of conflicts to the same line of code, and developers
resolved 99% of conflicts by taking either the left- or right- version
of code. Brindescu et al. (2020) manually characterized hundreds of
conflicts in terms of the AST diff size, LOC diff size, and the number
of authors. They identified three resolution strategies: SELECT ONE
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(i.e., keep edits from one branch), INTERLEAVE (i.e., keep edits from
both sides), and ADAPTED (i.e., change existing edits and/or add new
edits). Pan et al. (2021) explored the merge conflicts in Microsoft Edge;
they classified those conflicts based on file types, conflict locations,
conflict sizes, and conflict-resolution patterns. Driven by their empirical
study, the researchers further investigated to use program synthesis for
conflict resolution.

Nguyen and Ignat (2018) analyzed all merging scenarios in four
project repositories. They found that git-merge falsely reports many
textual conflicts, when concurrent edits are applied to adjacent code
instead of same lines. Ghiotto et al. (2020) studied the textual con-
flicts found in 2731 open-source Java projects. They (1) characterized
conflicts in terms of the number of chunks, size, and programming lan-
guage constructs involved, (2) classified developers’ resolution strate-
gies, and (3) analyzed the relationship between conflict characteristics
and resolution strategies. Shen et al. (2023) applied git-merge, auto-
matic build, and automatic testing in sequence to reveal and study three
kinds of conflicts: textual conflicts, build conflicts, and test conflicts.
Build conflicts refer to the merging scenarios where branch edits get
merged smoothly, but the merged versions have build errors. Test
conflicts refer to the scenarios where branch edits can be merged, but
the merged versions fail at least one test case.

None of the studies mentioned above define (1) a systematic way of
classifying or characterizing textual conflicts, or (2) metrics to measure
tool effectiveness. Also, they did not apply as many merge tools as
we did to the same dataset for empirical comparison. As our dataset
is similar to the datasets mentioned in prior work, it is natural to
think about reusing existing datasets instead of creating a new one
for tool evaluation. When we initially did our research, we actually
tried to reuse the dataset by Shen et al. (2023), as that dataset char-
acterizes conflicts in terms of the truth/falsity of conflicts, edit types,
edit locations, and resolution strategies. Unfortunately, because some
characteristic labels (e.g., types of branch edits) are not precise and the
imprecision can jeopardize the rigor of tool evaluation, we spent lots
of time defining and refining our criteria for conflict characterization,
reanalyzing and refining the data based on our criteria, and validating
analysis results via cross-checking between authors. Our detailed expla-
nation in Section 3.2 justifies and clarifies our manual labeling criteria,
all of which are our new contributions compared with prior work (Shen
et al., 2023).

7.2. Empirical studies on software merge tools

A few studies were recently conducted to empirically compare
different merge tools (Cavalcanti et al., 2015, 2017, 2019; Seibt et al.,
2022). Specifically, Cavalcanti et al. (2015) created a dataset of 3266
merging scenarios, to compare FSTMerge with git-merge. They ob-
served that among all scenarios, FSTMerge reported fewer conflicts
in 1804 scenarios, git-merge reported fewer conflicts in 283 scenar-
ios, and both tools reported the same number of conflicts in 1179
scenarios. However, this study does not analyze the false positives
(wrongly reported conflicts) of either tool. Our empirical comparison
between FSTMerge and KDiff3 (a line-based merge tool similar to git-
merge) confirmed the finding that FSTMerge reported fewer conflicts
than line-based merge tools. We identified two reasons to explain this
observation. First, FSTMerge is less applicable; it could not handle
some merging scenarios, let alone to detect conflicts in those scenarios.
Second, FSTMerge resolved more conflicts.

To overcome the limitation of prior work (Cavalcanti et al., 2015),
in a later study (Cavalcanti et al., 2017), the same research group
summarized patterns to characterize the (a) scenarios where FSTMerge
produces more false positives or false negatives than KDiff3 (a tool
similar to git-merge), and (b) scenarios where KDiff3 produces more
false positives or false negatives than FSTMerge. Afterwards, they wrote
scripts to locate scenarios matching those patterns and compute over-
estimated numbers for (a), as well as underestimated numbers of (b).

By comparing the estimates between tools, Cavacanti et al. concluded
that the number of false positives is significantly reduced when using
FSTMerge; FSTMerge’s false positives are easier to analyze and resolve
than those of KDiff3. However, such a tool comparison is not reli-
able for two reasons. First, the comparison between overestimates and
underestimates does not precisely quantify the effectiveness difference
between tools. Second, the summarized pattern set does not cover all
scenarios where more false positives/negatives can occur. For instance,
as mentioned in the paper, the researchers estimated the additional
false positives of FSTMerge, by assuming those false positives to occur
only when one branch renames an entity involved in the tool-reported
conflict. Nevertheless, based on our experiment, FSTMerge sometimes
reported more false positives when edits are simultaneously applied to
adjacent instead of same lines, even though neither edit renames any
entity.

Cavalcanti et al. (2019) compared FSTMerge with JDime. They
found that (i) JDime reported more conflicts than FSTMerge (4793
vs. 4732); (ii) FSTMerge detected conflicts with more false positives
and JDime got more false negatives. These two observations seem
contradictory to each other because if (ii) is correct, (i) is probably in-
correct and FSTMerge could have reported more conflicts than JDime.
However, this study does not explore why JDime obtained more false
negatives, neither does it explain whether the conflict resolution by
either tool matches developers’ manual resolution. Our study partially
confirmed (ii) but refuted (i): We observed FSTMerge to report more
instead of fewer conflicts than JDime; FSTMerge’s detection precision
is lower, meaning that the tool has more false positives.

Seibt et al. (2022) empirically compared three alternative merge
algorithms implemented in JDime: unstructured merge (i.e., line-based
merge), semistructured merge (i.e., the algorithm in FSTMerge), and
structured merge (i.e., the default algorithm in JDime). Among the
algorithms, the complexity comparison is ‘‘structured merge (S) >

semistructured merge (SS) > unstructured merge (US)’’. Seibt et al. ob-
served that using more complex merge strategies leads to a statisti-
cally significant decrease in the number of conflicting merges. The
researchers also manually inspected 92 reported conflicts; they ob-
served that (1) many of the false positives reported by US are due to
the branch edits co-applied to adjacent lines of source code, and (2) S
reported false positives mainly due to mismatches of AST nodes.

Our study confirms the numerical comparison of conflict reporting
between unstructured merge, semistructured merge, and structured
merge (Seibt et al., 2022): We also found JDime to report fewer
conflicts than FSTMerge, and FSTMerge to report fewer conflicts than
KDiff3. However, we believe that the reduction of conflict reports
does not necessarily imply technical advancement. According to our
study, FSTMerge reported fewer conflicts than KDiff3 due to its worse
applicability and stronger resolution-generation capability, although
more of FSTMerge’s resolutions are undesirable than KDiff3’s. JDime
reported fewer conflicts than FSTMerge due to its worse applicability,
more precise conflict detection, and better conflict-resolution capabil-
ity. When choosing among candidate merge tools, users should not base
their selection solely on the number of reported conflicts. Instead, they
should assess tools’ capabilities in different dimensions (i.e., applica-
bility, detection precision, and resolution desirability) and find the one
with the best trade-off fitting into their circumstances.

Different from all studies mentioned above, our work has more
technical depth as it compares more tools in a more comprehensive
way. Although existing studies mainly compare merge tools based on
the number of conflicts they report, we chose not to do that. Our
insight is that multiple factors can simultaneously influence the number
of conflicts a tool can report: the tool’s applicability, its precision of
conflict detection, and the power of conflict resolution. Namely, the
fact that a tool reports fewer conflicts does not necessarily mean that it
is better. To tease apart the influence of different factors, we carefully
formulated ConflictBench—a benchmark that includes the oracle for
true/false conflicts residing in different kinds of files, and developers’
resolutions. After applying five merge tools to ConflictBench, we an-
alyzed the tools’ outputs with high rigor and characterized scenarios
where tools work differently.
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8. Lessons learned

Our research provides insights on the evaluation of software merge
tools, empirical comparison between merge tools, and future research
directions.
Evaluation of Software Merge Tools: Although researchers cre-

ated large-scale datasets to evaluate software merge tools, their eval-
uation mainly focuses on counting the number of conflicts reported
by individual tools. The basic assumption is that the fewer conflicts
reported by a tool, the better that tool is. However, we noticed that mul-
tiple factors contribute to the overall quality of a tool, including (1) the
applicability of the tool, (2) the precision of conflict detection, (3) the
correctness of tool-generated merged versions, and (4) the alignment of
that tool’s resolution preference with developers’ resolution preference.
None of these factors can be easily assessed via conflict counting, which
requires an evaluation dataset to include more hand-crafted ground
truth.
Empirical Comparison between Tools: Our experiments corrobo-

rate the finding by prior work that when handling conflicts in Java files,
JDime and IntelliMerge outperform FSTMerge (Apel et al., 2012; Cav-
alcanti et al., 2019; Shen et al., 2019; Seibt et al., 2022). However, we
noticed that the better effectiveness of JDime and IntelliMerge should
not be only attributed to tool design. The implementation quality of
tools matters a lot. Namely, FSTMerge contains implementation issues
that jeopardize the tool’s applicability, and its capability of conflict
detection as well as resolution. In comparison, JDime and IntelliMerge
have higher-quality implementations. Although AutoMerge was pro-
posed to extend and improve over JDime, our evaluation does not
witness the outperformance of AutoMerge. Our research empirically
compared JDime, IntelliMerge, and AutoMerge for the first time; no
prior work does that. These three tools complement each other in terms
of design choices. JDime has better capabilities of conflict detection as
well as resolution than both AutoMerge and IntelliMerge.
Future Research Directions on Software Merge: We recommend

future researchers to empirically compare their new tools against sev-
eral existing merge tools, using a variety of metrics instead of purely
comparing the conflict counts. This is because existing tools make dif-
ferent design choices, to achieve different trade-offs between the tools’
applicability and effectiveness of conflict handling. We recommend
researchers to adopt ConflictBench, as its ground truth characterizes
conflicts from different angles, and thus can facilitate deeper tool
comparison. We also recommend future tools to resolve conflicts with
consideration on developers’ preferences, as we observed a gap between
current tool-generated resolutions and human-crafted ones. One poten-
tial direction can be (1) training a machine-learning model to predict
developers’ preference given a conflict, (2) combining existing tools to
generate alternative resolutions for that conflict, and (3) leveraging the
model to select the best resolution.
Evaluation Extension to Projects in Other Programming Lan-

guages: Our research focuses on Java because the state-of-the-art tools
predominantly address textual conflicts in Java programs. Some of
our observations can generalize well to projects in other languages.
For instance, KDiff3 is a line-based merge tool. It merges software
without considering any program syntax; thus, our observations of
KDiff3 generally hold regardless of the programming language in use.
FSTMerge can handle Java, C#, and Python programs; therefore, our
observations derived from Java programs can generalize to programs
written in either of the other two languages. JDime, IntelliMerge,
and AutoMerge are Java-specific, so they are inapplicable to other
languages. Unless tool builders reimplement the same tools for other
languages, it is hard to tell how well our observations for these tools
generalize. Furthermore, some language-specific features can jeopar-
dize the generalizability of our findings. For instance, Python has strict
rules on indentation, while Java has none. Thus, even if some tools can
correctly merge Java programs, their reimplementation may incorrectly
merge Python programs due to formatting changes. To evaluate the tool
effectiveness in projects of other languages, more effort is required to
create new datasets and apply all usable tools to those datasets.

9. Conclusion

Software merge has been very important and challenging in soft-
ware engineering practice, and many researchers proposed a variety
of tools to help with the software merge process. We believe that
many factors can contribute to the overall quality of a tool, so we
argue that merge tools should be assessed in different perspectives with
ground-truth datasets that characterize conflicts in a variety of ways.

To assess these factors and better compare the quality of different
merge tools, we created a new benchmark named ConflictBench to
label true/false conflicts, the types of branch edits contributing to
those conflicts, the files where conflicts reside, and developers’ con-
flict resolutions. We also defined three metrics for tool evaluation:
tool applicability, detection precision, and resolution desirability. Fur-
thermore, we experimented with five merge tools: KDiff3, FSTMerge,
JDime, AutoMerge, and IntelliMerge, to demonstrate (1) the usage of
our benchmark in tool evaluation and (2) ConflictBench’s effectiveness
of showing divergence in tools’ effectiveness. Although our dataset is
not as large as the datasets used by prior work, its construction requires
for a lot more manual effort. Our dataset contains more valuable
label information for deeper analysis; thus the evaluation based on
ConflictBench can provide deeper insights in the pros as well as cons
of existing tools. Our research will shed light on future research of
software merge.
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