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Abstract

Ploidy is an evolutionarily labile trait, and its variation across the tree of life has profound
impacts on evolutionary trajectories and life histories. The immediate consequences and
molecular causes of ploidy variation on organismal fitness are frequently less clear, although
extreme mating type skews in some fungi hint at links between cell type and adaptive traits.
Here, we report an unusual recurrent ploidy reduction in replicate populations of the budding
yeast Saccharomyces eubayanus experimentally evolved for improvement of a key meta-
bolic trait, the ability to use maltose as a carbon source. We find that haploids have a sub-
stantial, but conditional, fitness advantage in the absence of other genetic variation. Using
engineered genotypes that decouple the effects of ploidy and cell type, we show that
increased fitness is primarily due to the distinct transcriptional program deployed by haploid-
like cell types, with a significant but smaller contribution from absolute ploidy. The link
between cell-type specification and the carbon metabolism adaptation can be traced to the
noncanonical regulation of a maltose transporter by a haploid-specific gene. This study pro-
vides novel mechanistic insight into the molecular basis of an environment—cell type fithess
interaction and illustrates how selection on traits unexpectedly linked to ploidy states or cell
types can drive karyotypic evolution in fungi.

Introduction

Ploidy is a fundamental aspect of the biology of all organisms, but it is subject to striking diver-
sity across the tree of life—between related species, between individuals of the same species,
and within individuals across cell types and life cycles [1]. The long-term impact of ploidy vari-
ation on eukaryotic evolution, particularly as a mechanism for generating raw material for nat-
ural selection, has long been recognized [2-6]. Recent work, primarily in the model eukaryote
Saccharomyces cerevisiae, has further defined short-term evolutionary consequences of differ-
ent ploidy states [7-13]. It remains less clear, however, what immediate effects on organismal
fitness a ploidy transition can engender. In S. cerevisiae, ploidy variation is present both within
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the natural life cycle [14] and among isolates from diverse environments [15,16]. Despite this
natural variation, diploidy seems to be generally favored [15]. Indeed, diploids frequently arise
and sweep to fixation in laboratory evolution experiments founded with non-diploid strains
[7,17-22].

In the limited cases where a direct fitness advantage of diploidy has been found in S. cerevi-
siae in the absence of confounding variation, the specific molecular bases have remained elu-
sive. A large-scale survey of S. cerevisiae and its sister species Saccharomyces paradoxus
suggested that specific ploidy-by-environment interactions were necessary to explain observed
differences in fitness proxies between haploids and diploids, which argues against generaliz-
able predictions of fitness effects of ploidies across environments [23]. Similar experiments in
Candida albicans found genetic background to influence fitness more than ploidy in several
conditions that might be predicted to favor different ploidy states [24]. By contrast, more
recent work capturing a wide swath of genetic diversity in Saccharomyces eubayanus, which
diverged from S. cerevisiae approximately 17 million years ago [25], failed to find meaningful
differences in phenotypic traits between ploidies [26].

Adding complexity to the interpretation and prediction of fitness differences between
ploidy states in yeasts is the nuanced relationship between ploidy and cell type across species.
In wild-type Saccharomyces, for example, ploidy indirectly controls cell type through the pres-
ence or absence of alleles at a single locus, the MATing type locus [14,27,28]. The haploid cell
types express a common set of haploid-specific genes, as well as mating type-specific genes
dependent on the allele present at the MAT locus, while diploids repress these gene sets but are
competent to induce the expression of a small number of genes under specific conditions (e.g.,
meiosis). Although investigations into ploidy-specific fitness effects have primarily focused on
the physiological differences between haploids and diploids that are independent of cell type, it
remains plausible that underappreciated aspects of cell-type specification could influence traits
that in turn impact organismal fitness.

Perhaps, the most compelling evidence for widespread effects of selection on cell type across
fungi can be found among pathogenic species. Highly skewed mating type ratios have been
described among isolates of Cryptococcus neoformans, Candida glabrata, Candida auris, Fusar-
ium poae, and Fusarium verticillioides [29-35]. Large mating type skews are also found in clini-
cal isolates of Aspergillus fumigatus but not in isolates from other sources, and mating type has
been shown to influence pathogenicity in vitro and virulence in vivo in this species [36,37].
Similar links between mating type and virulence traits have been suggested in Cr. neoformans,
C. auris, Mucor iregularis, and Fusarium graminearum [38-46], suggesting that unexpected
links between cell type and traits experiencing intense selection may be widespread among
fungi.

Microbial traits and their underlying genotypes are of particular interest when they directly
impact human health, are important for biotechnological processes, or serve as models of
eukaryotic evolution. The latter 2 cases are exemplified in the emerging model yeast S. eubaya-
nus, the wild parent of hybrid lager-brewing yeast. Since its isolation as a pure species [47], S.
eubayanus has become a model for microbial population genomics and ecology [48-53], as
well as a key target for applied biotechnological research [54-59]. A focal ecological and indus-
trial trait in this wild species is the ability to consume and metabolize the o-glucoside maltose,
which is the most abundant sugar in the wort used to brew beer [60,61]. This trait is nearly
ubiquitous among isolates of S. eubayanus and its sister species Saccharomyces uvarum [62],
but it has been lost [63] or severely curtailed [48,49,64,65] in the Holarctic subpopulation of S.
eubayanus, a low-genetic diversity lineage broadly distributed across the northern hemisphere
that contains the closest identified relatives to the S. eubayanus subgenome of hybrid lager-
brewing yeasts [51,53]. Paradoxically, the genomes of Holarctic S. eubayanus strains contain
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functional structural maltose metabolism genes, which appear to be inefficiently expressed in
the presence of maltose [63,64]. Because the cis-regulatory logic of at least some of these struc-
tural genes appears to have been retained, it has been proposed that the trans-regulating pro-
teins may have been rendered nonfunctional [63], at least with regards to their homology-
predicted activities.

In an effort to identify mechanisms by which maltose utilization might be refined or
regained after secondary loss, we previously subjected a wild diploid S. eubayanus strain from
the Holarctic subpopulation to adaptive laboratory evolution (ALE) under selection for
improved growth on maltose [64]. Here, we map the genetic basis of adaptation in the evolved
clones. We find that, surprisingly, haploids emerged and rose to high frequency in replicate
ALE populations founded with this diploid strain, which is a highly unusual ploidy transition
for Saccharomyces. We find that haploidy confers a substantial fitness advantage in the ALE
conditions, but that haploids experience a fitness tradeoff in rich conditions, consistent with
previous observations of diploid advantage in S. cerevisiaze. We identify cell type as the primary
driver of adaptive fitness, with a smaller but significant contribution from absolute ploidy.
Finally, we demonstrate that a major fitness-modifying gene has elevated expression in evolved
haploids, and that this effect is linked to unexpected regulation by a haploid-specific transcrip-
tion factor that regulates invasive growth in S. cerevisige. Our results suggest a mechanism
underlying a ploidy-by-environment fitness effect and demonstrate how strong selection on
traits linked to cell types can drive karyotypic evolution in fungi.

Results and discussion

Evolved S. eubayanus isolates harbor mutations incongruous with ancestral
ploidy

We previously experimentally evolved a wild strain of S. eubayanus from the Holarctic sub-
population under selection for improved growth on the industrially relevant o-glucoside malt-
ose [64]. We picked clones from 2 replicate populations of the ALE experiment that displayed
significantly increased growth (p = 0.002, Mann-Whitney U tests) on maltose compared to the
ancestral strain (Fig 1A). To map the genetic basis of improved growth on maltose, we
sequenced the genomes of each clone to a final average depth of 95-fold. We mapped these
reads to a re-sequenced and annotated assembly of the ancestral strain and identified a total of
4 single-nucleotide polymorphisms (SNPs) and 3 large-scale copy number variants (CNVs) in
the form of aneuploidies across the evolved isolates (Fig 1B and S3 Table). We did not identify
single-nucleotide variants in or near any genes with clear relationships to a-glucoside metabo-
lism, although 1 SNP introduced a premature stop codon in IRAI, a common target of adap-
tive mutations in batch-style experimental evolution [7,22,66-68]. One aneuploidy (ChrXV
gain) was shared between evolved isolates and encompassed a homolog of the S. cerevisiae gen-
eralist a-glucoside transporter AGT1/YGR289C, suggesting a potential mechanism for adapta-
tion (Fig 1B); we did not detect further copy number expansion of this gene in the evolved
isolates (S1 Fig).

Unexpectedly, all SNPs in the evolved isolates were represented by a single, non-reference
allele (S2 Fig). Although mitotic recombination can generate losses of heterozygosity at new or
standing variation during adaptive evolution [69-75], our results differed significantly from 2
recent large-scale experimental evolution studies in S. cerevisiae, which found approximately
5% to 10% of mutations to be homozygous in diploid or autodiploid clones after 4,000 genera-
tions [7,9]. In comparison, our observed allele frequencies at mutated sites are highly improba-
ble under the null expectation of diploidy (binomial tests: p = 5.3 x 1078, p=1x 1074
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Fig 1. Phenotypic and karyotypic evolution of S. eubayanus isolates. (a) Growth of the wild S. eubayanus strain
(WT) and clonal isolates from 2 replicate experimental evolution populations (Evol. 1, Evol. 2) on maltose. A
representative growth curve is shown for each; bar plots show mean and standard error of total growth (AUC) across 6
biological replicates for each genotype. (b) Relative copy number of each chromosome in the WT and evolved strains,
inferred from sequencing depth. The parallel ChrXV gain includes a homolog of an S. cerevisiae gene encoding an o~
glucoside transporter (AGT1/YGR289C). (c) Smoothed histograms of cellular DNA content in the WT and evolved
strains as measured by flow cytometry. Fluorescence intensity is proportional to DNA content; primary peaks
correspond to cells in G1 and G2. The data underlying this figure can be found in S1 Data. AUC, area under the curve;
WT, wild-type.

https://doi.org/10.1371/journal.pbio.3001909.9001

respectively). Thus, we reasoned that the observed patterns in allele frequency might best be
explained by an unexpected and atypical ploidy reduction to haploidy during ALE.

Haploids emerged and rose to high frequency in diploid-founded
populations

We directly determined the ploidy states of the evolved clones and the ancestral strain using
flow cytometry (Fig 1C) and confirmed that the strain that was used to found the experimental
populations was diploid (S3A Fig). Consistent with the results of genome sequencing, we
found that clones from both ALE replicates had become haploid (Fig 1C). To test whether the
clonal isolates we analyzed were simply from a rare and nonrepresentative subpopulation, we
assayed the ploidy states present at the population level in both replicates of the ALE
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experiment (S3B Fig). Haploids were clearly detectable in each replicate by approximately 100
and 250 generations, respectively. As an orthogonal approach, we plated cells from the termi-
nal time point of each population of the ALE experiment and used a PCR assay to genotype
the MAT locus of single colonies. By this method, haploids constituted 74% to 100% of the
cells we genotyped in the 2 ALE populations (S3C Fig). All haploids genotyped by PCR were
found to be MATa, as were both sequenced isolates. Thus, although haploids may not have
swept to fixation in both experimental populations, they repeatedly emerged and rose to high
frequency over the duration of the ALE experiment.

Haploids exhibit a direct condition-dependent fitness advantage

The abundance of haploids in our experimental populations could be explained by 2 alterna-
tive models: haploids might have a direct fitness advantage, or they might benefit indirectly
from increased adaptability in our ALE environment. Two well-documented lines of evidence
from previous studies seemed to strongly favor the latter hypothesis. First, S. cerevisiae hap-
loids have repeatedly been shown to adapt more rapidly than diploids during experimental
evolution, in part due to dominance effects at adaptive targets and ploidy-specific mutation
rates and spectra; even large-scale mutations, such as aneuploidies, can have different fitness
effects in different ploidies [7-12,76,77]. Second, S. cerevisiae displays a strong trend of con-
verging on a diploid state during experimental evolution initiated with non-diploid strains
[18]. Although theory predicts that haploids may be better able to meet their metabolic needs
in nutrient-limiting conditions due to increased cell surface area-to-volume ratios, experimen-
tal evidence in yeast has failed to find widespread support for such generalizable trends
[23,78-81], and our experimental evolution conditions could not strictly be considered to be
limited in key nutrients. Given the relative simplicity of testing for differences in fitness
between ploidies, we first sought to support or refute the model of direct haploid advantage.
We used a sensitive competition assay to measure the fitness of isogenic diploids and hap-
loids in the wild-type strain background following HO deletion, sporulation, and tetrad dissec-
tion. Consistent with observations in S. cerevisiae of direct or cryptic diploid advantage
[7,15,17,18,20,22,82], haploids in our strain background exhibited median fitness defects of
1.5% (p=13x107°) t0 2.7% (p = 9.9 x 10>, Mann-Whitney U tests) relative to the isogenic
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Fig 2. Haploids have a conditional fitness advantage. Boxplots show fitness measurements of isogenic diploids
(n = 12) and haploids from fully viable tetrads (# = 47) in rich medium (a) and ALE conditions (b). *** p < 107*
(Mann-Whitney U tests) between diploids and each haploid group (black) or between haploid groups (teal). In ALE
conditions, the significance level between haploid groups was 0.013 (*). A diploid outlier in (a) at —6.6% is truncated
from the plot space. The data underlying this figure can be found in S1 Data. ALE, adaptive laboratory evolution.

https://doi.org/10.1371/journal.pbio.3001909.9002
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diploid in rich medium (Fig 2A). By contrast, in the ALE conditions, haploids displayed
median fitness advantages of 24.8% (p = 1.6 x 107°) to 28.8% (p = 2.4 x 10~°, Mann-Whitney
U tests) per generation over diploids (Fig 2B). Interestingly, we observed a significant fitness
difference between haploids of opposite mating types in both environments tested (Fig 2; rich
medium p = 7.1 x 107'%, evolution conditions p = 0.013, Mann-Whitney U tests), suggesting a
common underlying mechanism linked to mating type, rather than a specific mating type-by-
environment interaction. Expression of the mating-type genes is costly [83], making compo-
nents of this pathway common targets of adaptive loss-of-function mutations in haploids
[7,67]. The observed fitness defect of MATa haploids in our experiments may reflect an expres-
sion burden imposed by the greater number of MATa-specific genes; a metabolic burden
imposed by synthesizing the more complex, posttranslationally modified a-factor pheromone;
or both. While previous large-scale studies in S. cerevisiae, S. paradoxus, and S. eubayanus have
not reported general fitness differences between mating types of otherwise isogenic haploids
[23,26], the subtle, but significant, differences we observed here may have been below previous
limits of detection. Alternatively, the apparent defect of MATa cells may be specific to the 2
conditions we tested, so it remains to be determined whether our observations of mating-type
fitness effects are completely generalizable in this strain background or more broadly. Irrespec-
tive of mating type, we find that haploids have a large and unexpected advantage over diploids
under the ALE conditions.

Haploid fitness advantage is primarily due to cell-type specification

In Saccharomyces, ploidy is intrinsically linked with cell- and mating-type specification, which
are determined by the allelic composition of the MAT locus (Fig 3A) [28]. Some differences in
cell physiology and gene expression patterns between ploidies are attributable solely to total
cellular DNA content, while loss of heterozygosity at the MAT locus establishes one of 2 par-
tially overlapping, cell type-specific gene expression programs [27,84,85]. The relationship
between DNA content and cell-type specification can serve to confound inferences of the
underlying basis of fitness differences between ploidies, although in limited cases, contribu-
tions of either absolute ploidy or MAT locus composition have been documented [7,23]. Here,
we refer to “cell-type specification” as the distinction between genotypes with a full comple-
ment of cell-type master regulators at the expressed MAT locus (e.g., wild-type diploids con-
taining MATal, MATal, MAToa2) and those without. Cell types established by the absence of
one or more cell-type regulators (e.g., wild-type haploids) effect the de-repression of a handful
of genes, commonly referred to as “haploid-specific,” but whose expression is technically inde-
pendent of ploidy and mating type.

To dissect the contributions of DNA content and cell type to organismal fitness in our sys-
tem, we generated a panel of 8 otherwise isogenic genotypes with unique combinations of
ploidy, mating type, and cell type-specific gene expression (Fig 3B). We measured the fitness
of these strains in the ALE condition (Fig 3C) and estimated the separable effects of ploidy,
mating-type specification, and cell type-specific gene expression patterns on fitness (Fig 3D).
These 3 factors explained the majority of the variance in measured fitness across genotypes
(multiple R* = 0.96, df = 86, p < 2.2 x 10™'®), with each having a significant effect
(p < 2.56 x 1077). Remarkably, cell-type specification had an impact on organismal fitness that
was almost an order of magnitude greater than either ploidy or mating type (Fig 3D, fitness
advantage estimate 18.8%, 95% CI: 17.7, 19.9), and explained far more of the variance (propor-
tion sum squares: cell type, 0.93; ploidy, 0.016; mating type, 0.014). Absolute ploidy nonethe-
less impacted fitness across cell types, with haploids experiencing a 2.3% advantage relative to
diploids in the ALE condition (Fig 3D, 95% CI: 1.5, 3.1). Paradoxically, expression of mating
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Fig 3. Cell-type specification is the primary contributor to adaptive fitness. (a) Simplified schematic of the cell-type
specification circuit in Saccharomyces as determined by the MAT locus on ChrlII Proteins encoded by each MAT
idiomorph and their regulatory targets elsewhere in the genome are depicted. Haploids (top and middle) express
mating type-specific genes and a common set of haploid-specific genes. Diploids (bottom) repress all 3 sets
(transparent gene symbols). (b) Schematic of strains compared to determine ploidy and cell-type effects on fitness. The
3 classes of cell type-specific genes are depicted as colored bars, with opacity indicating expression in a given genotype.
Asterisks in the upper right corner of fields indicate the 3 wild-type genotypes. The engineered genotypes (no asterisks)
were created by deleting or adding complete MAT cassettes, with the exception of the “MAT-null” strains (marked @),
which express haploid-specific, but not mating type-specific, genes because they retain only MATa2. Dotted red lines
are comparisons that show the effect of absolute DNA content, and solid lines are comparisons that show the effect of
cell type, with colors corresponding to (c). (c) Points show differences in fitness in ALE conditions between genotypes
that differ in only cell type (left cluster, e.g., & vs. a/a) or ploidy (right cluster). Gray shading shows the density
distribution of each group. In each case, the wild-type state is taken as the baseline for comparison (diploid; a/a cell
type). (d) Estimates and 95% confidence intervals for the effect of each variable on the difference in fitness. The data
underlying this figure can be found in S1 Data. ALE, adaptive laboratory evolution.

https://doi.org/10.1371/journal.pbio.3001909.9003

type-specific genes in these experiments appeared to modestly increase fitness between hap-
loid-like cell types in the ALE condition (Fig 3D), in contrast to the documented cost of their
expression in other conditions [83]. While one possible interpretation is that both sets of mat-
ing type-specific genes confer bona fide fitness advantages to cells growing in maltose medium,
an alternative explanation for this apparent discrepancy is that haploid-like, MAT-null cells
experience modest fitness defects as a result of their aberrant and artificial cell type. As such,
our analyses may slightly underestimate the fitness benefit attributable to haploid-like cell type
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in the ALE condition. We conclude that the cell type specified by the MAT locus, rather than
absolute ploidy per se, has the largest effect on fitness in the ALE condition.

Dynamics of other ploidy variants in adapting populations

We next investigated the evolutionary dynamics and adaptive benefit of the other shared
ploidy variant in the evolved clones: aneuploidy of ChrXV (Fig 1B). We performed bulk
whole-genome sequencing on the cryopreserved replicate ALE populations from the same
time points at which we assayed ploidy states by flow cytometry (S2B Fig) and quantified the
apparent frequency of each chromosome in both populations as estimated by relative coverage
(S4 Fig). The only aneuploidies that rose to an appreciable frequency were those sampled in
our clonal isolates: ChrXV (both populations) and ChrI (1 population). The dynamics of
ploidy variants—including both aneuploidy and haploidy—and the relative timing of their
emergence differed between populations. In the first population, the ChrXV aneuploidy rose
to near fixation prior to the apparent emergence of haploids, while the rise in frequency of the
Chrl aneuploidy was approximately coincident with that of haploids (S4B Fig). In the second
population, the ChrXV aneuploidy and the haploid state had remarkably similar trajectories,
with ChrXV aneuploidy appearing to precede haploidy slightly: both rose precipitously in fre-
quency after approximately 50 generations, declined dramatically, and subsequently
rebounded by the terminal time point (S4B Fig). These results suggest that a haploid lineage
with ChrXV aneuploidy was subject to clonal interference from 1 or more highly fit genotypes
in this replicate.

The change in frequency of the ChrXV aneuploidy over time in both populations suggested
a strong fitness benefit, which we reasoned was likely attributable to the presence of AGTI on
this chromosome (Fig 1B). S. eubayanus Agtlp is a homolog of the well-characterized S. cerevi-
siae o.-glucoside transporter, but in contrast to canonical MAL gene clusters that contain struc-
tural and regulatory maltose metabolism genes, S. eubayanus AGT1 is isolated in the
subtelomeric region of ChrXV. In our genome assembly, no predicted genes intersperse the
AGT]1 start codon and the beginning of telomeric repeats some 6,770 bp upstream. We did not
identify any homologs of genes encoding MAL regulators, transporters, o-glucosidases, or iso-
maltases on ChrXV, nor other strong candidates to explain the adaptive potential of the aneu-
ploidy. We thus tested whether copy number variation at AGT1 alone provided an adaptive
benefit in the ALE environment to explain the sweep of ChrXV aneuploidy in both popula-
tions. We inserted an additional copy of AGT1 under its native promoter and terminator into
the genomes of diploids and haploids at a separate site, and we measured the fitness of the
resulting strains in the ALE conditions. As predicted, increased AGT1 copy number conferred
a substantial and significant fitness benefit in both diploids and haploids (S5 Fig). Haploids
received a more modest increase in fitness than diploids upon the addition of AGTI (S5A Fig),
which we attribute to the effects of diminishing returns epistasis; nonetheless, they were signif-
icantly more fit overall (S5B Fig). There was no interaction between the haploid mating type
and the fitness effect of increased AGTI copy number. Thus, the ChrXV aneuploidy we
observed in both clonal isolates and the ALE populations likely contributed to adaptation by
increasing copy number of AGT1, and its emergence may have preceded that of haploids.

AGT1 expression is elevated in aneuploid haploids

The conditional fitness advantage of haploids and increased fitness of haploid-like cell types
suggested an unexpected regulatory link between maltose metabolism and haploid-specific
genes (i.e., those genes de-repressed in the absence of a heterozygous MAT locus). To identify
potential targets of this interaction, we analyzed mRNA-seq data collected from the wild-type
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diploid and evolved haploids grown in conditions mimicking the evolution experiment (SC-
maltose), as well as a baseline for comparisons (SC-glucose). Although the haploid strains had
discrete polymorphisms, they shared a common cell type and aneuploidy of chromosome XV
(Fig 1B); thus, we reasoned that common differences in expression between these isolates rela-
tive to the wild-type strain should be attributable to one (or both) of these shared genotypes.
Transcriptomes of the evolved haploids were highly similar, as expected (S6 Fig). Differentially
expressed genes (DEGs) between the wild-type strain and evolved haploids were enriched for
cell and mating type-specific transcripts and genes on aneuploid chromosomes; however,
there was no clear functional enrichment among DEGs to explain the maltose-specific haploid
fitness advantage. The AGT1 transporter on ChrXV was the single maltose metabolism gene
up-regulated in maltose in both evolved haploids when compared to the wild-type strain,
which was expected given its 2-fold relative copy number in these isolates (Fig 1B). Upon
closer examination, however, AGT1 expression was higher than the 2-fold increase expected
commensurate with its relative copy number [86,87]. Indeed, AGT1I expression in haploids
exceeded null expectations based on 2 distinct models (Fig 4A): (1) we calculated the fold
change for AGT1I in the ancestral strain in maltose compared to glucose and applied this multi-
plier to the glucose expression level in the evolved haploids; and (2) we applied a 2-fold multi-
plier to the gene expression levels in the wild-type strain in both glucose and maltose, which
accounted for copy number variation in the evolved haploids. While AGTI expression in glu-
cose in the evolved haploids was in line with the naive aneuploid expectation (p = 0.81, one-
sided Mann-Whitney U test), its expression in maltose in the evolved haploids was an average
of 69% higher than could be modeled by accounting for copy number and native regulation
(Fig 4A, p = 0.0005, one-sided Mann-Whitney U test).

We next asked whether increased AGT1 expression could be explained by subtle changes in
global gene expression levels between the wild-type diploid and evolved haploids. We com-
pared expression levels of 2 relevant classes of genes under which AGT1 falls and which we rea-
soned might be subject to modest differential expression: maltose-induced genes and
subtelomeric genes (Fig 4B and 4D). We also examined expression of genes on the aneuploid
ChrXV to test whether these broadly exceeded the expectation of a 2-fold expression increase
commensurate with copy number (Fig 4C). In each case, expression in the evolved haploids
was not significantly greater than the null expectation (one-sided ¢ tests, p > 0.4), and AGT1
expression in maltose was in the upper tail of gene expression values for each class. Most nota-
bly, AGT1 expression in maltose relative to the euploid diploid ranked higher than 95.9% and
98.6% of other ChrXV genes in each evolved haploid, respectively.

Consistent with numerous studies in yeasts, we observed average expression from the aneu-
ploid ChrXV to be elevated, if not exactly 2-fold higher than in the euploid diploid [86,88-93].
Importantly, we observed this expression attenuation across conditions, meaning that the ele-
vated expression observed at AGT1 is not likely to be an artifact of condition-specific aneu-
ploid gene expression differences. Compared to the wild-type strain, we observed median fold
changes for ChrXV genes of 1.58 in maltose for both evolved haploids (Fig 4C) and 1.72 and
1.70 in glucose, respectively (S7A Fig). Indeed, the potential effect of cell type on AGT1 expres-
sion becomes even more evident in light of the median expression levels of aneuploid genes in
haploids: AGT1 is up-regulated an average of 4-fold in maltose across the haploid strains (54
Table and S7B Fig), while median fold changes for all ChrXV genes between maltose and glu-
cose are 0.969 and 0.970 for each haploid, respectively (S7B Fig). Compared to approximately
2.3-fold induction of AGTI in maltose in the euploid diploid (54 Table), this increased induc-
tion in the evolved isolates may reflect the combinatorial effects of cell type and sugar response.
As increased AGT1 copy number (which should result in a concomitant increase in expres-
sion) significantly increases fitness in maltose (S5 Fig), the increased expression observed in
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Fig 4. Increased expression of an a-glucoside transporter gene in haploids. (a) Points and bars show mean and
standard error of AGT1 expression in evolved haploids, plotted against the null expectation of expression based on
copy number variation and induction in the WT strain. Expression in maltose is greater than the null expectations in
the evolved haploids (p = 0.0005, one-sided Mann-Whitney U test). (b-d) Boxplots show LFC of gene expression in
maltose in evolved haploids compared to the WT strain. Whiskers extend to 1.5x the interquartile range. Lines connect
the y-axis coordinates of the same gene in each evolved isolate; axes are scaled such that an occasional outlier is
truncated from the plot space for a single strain. AGTI expression is plotted as red dots and lines, and black dashed
lines indicate the null expectation for expression values. (b) Genes induced in maltose in the WT strain (n = 544). (c)
Genes on aneuploid ChrXV (n = 370). (d) Subtelomeric genes (n = 200). For all classes, expression in either evolved
haploid is not significantly greater than the null expectation (one-sided t tests, min. p = 0.42). The data underlying this
figure can be found in S1 Data. LFC, log2-transformed fold change; WT, wild-type.

https://doi.org/10.1371/journal.phio.3001909.g004

haploids is also likely to contribute to adaptation—and could explain the condition-specific fit-
ness advantage of isogenic haploids.

Naturally, it remains a possibility that the elevated expression of AGT1 that we observed in
aneuploid haploids is the result of an interaction (whether direct or indirect) between this
locus and one or more genes elsewhere on the chromosome. In addition, aneuploidy itself can
trigger a transcriptional response [89,92,94], although to our knowledge, this response does
not extend to maltose metabolism genes. As a complete dissection of aneuploidy response and
its targets in S. eubayanus—as well as how this response may differ between ploidies and cell
types—is beyond the scope of the current work, we instead investigated potential regulators of
AGT!1 that could explain its cell type-linked increase in expression (detailed below). Thus, our
data cannot unequivocally reject the hypothesis that whole-chromosome duplication itself
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may affect AGT1 expression in addition to the role we have established for gene copy number
and cell type.

The AGT1 promoter integrates cell-type and sugar-responsive regulatory
networks

We first investigated potential regulators of AGTI by scanning its promoter for putative transcrip-
tion factor-binding sites using high-confidence S. cerevisiae motifs (S5 Table). This analysis identi-
fied clustered binding motifs for the canonical positive and negative regulators of maltose
metabolism genes, Mal63p and Miglp (Fig 5A), in an organization consistent with the character-
ized regulatory module that controls the expression of maltose metabolism genes in S. cerevisiae
[95-97]. Although a causal relationship has not been directly established, the presence of Mal63p
consensus sequences upstream of maltose metabolism genes is well correlated with their induc-
tion by maltose in the type strain of S. eubayanus [58]. In addition to these expected regulators,
we identified putative binding sites for several transcription factors that are involved in regulating
filamentous growth (e.g., those encoded by ASH1, SIP4, STE12, FKH1, MIG1/MIG2, and NRGI).
This category was particularly noteworthy because filamentous growth can be induced in
response to glucose depletion as a starvation response, and it requires a haploid-specific gene,
TECI [27,98-103]. In addition to dimerizing with Ste12p, Teclp can activate target genes as a
monomer in a dosage-dependent fashion [104-106], and it has been experimentally mapped to its
consensus motif (TEA/ATTS consensus sequence or TCS) in vivo across the genus Saccharomyces
[107]. We identified a TCS in the promoter of AGTI and hypothesized that Teclp could mediate
the cell type-specific increase in AGT1 expression we observed in haploids. Supporting this
notion, and consistent with its characterization as a haploid-specific gene in S. cerevisiae [27],
TECI was significantly up-regulated in both evolved isolates in our dataset (Fig 5B and S4 Table).

To test this hypothesis, we cloned yEGFP under the control of the wild-type AGT1I pro-
moter (P4gr;), as well as a promoter variant with point mutations in the predicted Teclp-
binding site (Pag;-«s), and introduced a single copy of these reporters to the genome of euploid
MATa haploids. We then measured single-cell fluorescence of the resulting strains grown in
maltose by flow cytometry. Mutation of the Teclp-binding site significantly decreased fluores-
cence from the reporter construct compared to the wild-type promoter (p < 2.2 x 10~*, two-
sided ¢ test), but it did not abolish expression completely (Fig 5C). These results are consistent
with the expression data and collectively suggest that AGT1I receives regulatory input from
both cell-type and sugar-responsive networks, with separable activation by Teclp and induc-
tion in the presence of maltose. We also measured expression of the P, gr;-GFP reporter in
several media conditions using a less sensitive plate-based assay (S8 Fig). During growth on
glucose and galactose—both expected to be non-inducing—no fluorescence above baseline
was detected. Growth on maltose induced expression significantly, as did growth on methyl-a-
glucoside, another substrate transported by AGT1 in S. cerevisiae [108,109]. Interestingly, we
also observed modest reporter expression when cells were pre-grown in glucose and switched
to medium containing no sugar (S8 Fig), further supporting the notion that AGTI may be
expressed in response to suboptimal carbon conditions in this background.

In synthesis, the evidence for a direct fitness advantage by haploid-like cell types (Figs 2 and
3), increased expression of fitness-modifying AGT1! in haploids (Fig 4), and the partial depen-
dence of AGT1I expression on the motif for a haploid-specific transcription factor (Fig 5) sug-
gests a relationship between ploidy evolution and adaptation in our system. Future
experimentation could more clearly define the role of AGTI and its regulation in definitively
driving the ploidy evolution we observed, such as by replaying the experimental evolution
using genotypes lacking TECI or with different promoters driving AGT1. Although absolute
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Fig 5. AGT1 is regulated by cell type. (a) Schematic of the AGT1 promoter and reporter constructs. A clustered
regulatory module containing Mal63p and Miglp motifs (white boxes) lies upstream of AGT1 in its native context
(top), which is reminiscent of other maltose metabolism genes in Saccharomyces. One further predicted binding site
for each regulator that lies closer to the coding sequence is omitted for space. The promoter contains a motif for Teclp
(TCS, red box). We generated reporter constructs expressing GFP from the wild-type promoter (middle, P5gr;) and a
version with point mutations to the Teclp motif (bottom, P4gry.1s). (b) TECI expression is cell type dependent in S.
eubayanus. Points and bars show mean and standard error of TECI expression (normalized counts) in the wild-type
diploid and evolved haploids, averaged across conditions. (c) Point mutations to the predicted Teclp-binding site in
the AGT1 promoter reduce reporter expression. Each point shows the mean population fluorescence for a replicate
experiment with a control untagged strain (gray), as well as strains expressing GFP from the wild-type AGT1 promoter
(red) or a promoter with a mutated Teclp motif (teal). All engineered strains are significantly different from the
untagged control (p < 4.3 x 107°, two-sided ¢ tests), and groups of promoter genotypes differ significantly (two-sided ¢
test). The data underlying this figure can be found in S1 Data. TCS, TEA/ATTS consensus sequence.

https://doi.org/10.1371/journal.pbio.3001909.9005

ploidy does seem to impart a small fitness difference in our experiments, the full impact on fit-
ness requires cell type (Fig 3C and 3D).

Conclusions

Resolving the genotype-to-phenotype map remains a central goal in genetics and evolutionary
biology, but it has frequently proven challenging, even in microbes. While gene content is
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generally correlated with metabolic traits across budding yeasts [25], regulatory nuances in
organisms that are not traditional models can confound inferences of phenotypes from genome
sequences [63,110,111]. In the taxonomic type strain of S. eubayanus, structural maltose metab-
olism genes in canonical MAL clusters are exquisitely repressed or induced hundreds-fold in
response to carbon source [58], which is similar to their S. cerevisiae homologs [112]. By con-
trast, in the strain from the Holarctic subpopulation studied here, what appears to be the focal
maltose transporter is partially decoupled from such stringent catabolite regulation: AGT1 is
only induced approximately 2.3-fold in the wild-type strain in maltose (54 Table). We can envi-
sion 2 potential explanations for the apparently unusual regulation of this gene.

First, AGT1 is likely to encode a transporter with broad substrate affinity like its S. cerevisiae
homolog [64,113-116], whereas other phylogenetically distinct maltose transporters tend to
have higher specificity [108,117]. It is possible that selection favored placing control of this
generalist transporter under a broader transcriptional response to starvation or glucose deple-
tion as part of a scavenging strategy, which the transition to filamentous growth is thought to
represent [102]. Indeed, recent work has suggested that maltose may be an unexpected inducer
of filamentous growth in S. cerevisiae [118]. Decoupling alternative carbon metabolism genes
from their stringent canonical regulation has also been shown to be adaptive among isolates of
S. cerevisiae subject to specific ecologies [119] and ALE in fluctuating environments [120].

Second, the organization—and potentially regulation—of AGT1 in S. eubayanus may be
reflective of the ancestral state for Saccharomyces. In strains of Saccharomyces paradoxus, Sac-
charomyces mikatae, and S. eubayanus, AGTI homologs are scattered in subtelomeric regions
and not in canonical MAL loci, while homologs encoding high-affinity maltose transporters
tend to occur in gene clusters with the typical organization [63,96]. Thus, the specific organiza-
tion of AGT1 in the MALI locus of model S. cerevisiae strains—and its resulting exquisite regu-
lation by glucose and maltose—could itself represent a derived state that is not reflective of
wild yeasts. Indeed, there is clade-specific variation within S. cerevisiae as to whether the
MALI locus is occupied by the generalist AGTI or a gene encoding a high-specificity maltose
transporter [121], suggesting that domestication may have shaped the genetic architecture of
o-glucoside metabolism in this model eukaryote [122]. Supporting this notion, AGT1 homo-
logs can be readily detected in publicly available Saccharomyces genomes, while growth on
maltotriose—a sugar transported by AGT1 but not most other maltose transporters—is
extremely rare [62]. A notable exception is Saccharomyces jurei, the first wild Saccharomyces
reported to grow on maltotriose, which contains a clear homolog of AGT1 that requires exten-
sive starvation or depletion of fermentable carbon sources for its induction [123]. Whether the
organization and regulation of AGTI in Holarctic S. eubayanus represent a derived or ances-
tral state, it created a paradigm wherein a transition between ploidy states—and thereby cell
types—was the adaptive step conferring the greatest increase in fitness among evolved geno-
types we tested. The precise mutational event or events underlying this adaptive step remain
unclear; however, with estimates of the rate of single-chromosome loss in S. cerevisiae ranging
from roughly 10~ to 10~® per generation [8,124-127], sequential loss of 14 to 15 chromosomes
is highly improbable in our system. A programmed transition from diploid to haploid during
meiosis is an integral part of the budding yeast life cycle; thus, we suspect that rare sporulation
events—perhaps triggered by the cycling nutrient availability in our batch-style ALE—enabled
haploids to arise.

Remarkably, there is a strong parallel to the rewiring of carbon metabolism to cell type con-
trol in certain domesticated strains of Saccharomyces cerevisiae. Diastatic strains (sometimes
called Saccharomyces cerevisiae var. diastaticus) are characterized by their hyperattenuation,
which is attributable to the presence of a novel extracellular glucoamylase, encoded by STA1
[128]. STA1 is a chimeric gene, created by the fusion of the sporulation-specific intracellular
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glucoamylase gene SGAI with the promoter and portions of the coding sequence of FLO11,
which encodes a flocculin involved in filamentous growth that is subject to cell type-specific
regulation [129-134]. Due to this gene fusion, STA1 is expressed in a cell type-specific manner,
and its regulation integrates catabolite repression by glucose and direct activation by Teclp
[135-137]. The cell type dependence mediated by Teclp in this case may have caused selection
for haploidy among diastatic strains of the Beer 2 clade of S. cerevisiae [15,138], which lack the
clade-specific AGT1I allele at the MALI locus [121] and therefore must hydrolyze higher-order
maltodextrins extracellularly.

STAI in diastatic brewing strains, AGT1 in our ALE strains, and genes related to pathogen-
esis across fungi have undoubtedly experienced intense bouts of selection, and it seems that
ploidy and cell type changes may be a common means of adapting, at least in microbial
eukaryotes that have this flexibility. Here, we have shown that striking, rapid, and unusual
ploidy evolution in a wild yeast is associated with the integration of regulatory inputs from
metabolism and cell-type networks at the AGTI promoter. Our results thus provide compel-
ling insight into the basis of a ploidy fitness effect in fungi.

How generalizable might these principles be? Given the evolutionary lability of ploidy, its
link to cell type, and evidence for interactions between cell type and conditionally adaptive
traits in other fungal systems, we propose that environment- and genotype-specific regulatory
nuances might play a broad role in shaping both the extant diversity of fungal ploidy states and
the conflicting, and often cryptic, ploidy and cell-type evolution seen in systems experiencing
intense selection. This view argues that interactions between cell types, ploidy states, and con-
ditionally adaptive traits may be common during fungal evolution and may influence fungal
life cycles more than is currently appreciated.

Materials and methods

Strains, plasmids, and cultivation conditions

Strains, oligonucleotides, and plasmids used in this work are listed in S1 and S2 Tables. Yeast
strains were propagated on rich YPD medium (10 g/L yeast extract, 20 g/L peptone, 20 g/L glu-
cose, with 18 g/L agar added for plates), Synthetic Complete medium with maltose or glucose
(5 g/L ammonium sulfate, 1.7 g/L Yeast Nitrogen base, 2 g/L drop out mix, 20 g/L maltose or
glucose, pH = 5.8, with 18 g/L agar added for plates), or Minimal Medium (5 g/L ammonium
sulfate, 1.7 g/L Yeast Nitrogen base, 10 g/L maltose or glucose, pH = 5.8) at room temperature.
Yeast strains and ALE populations were stored in 15% glycerol at —80° for long-term storage.
For supplementation with drugs, 1 g/L glutamic acid was substituted for ammonium sulfate in
SC media. G418, Hygromycin B, and Nourseothricin (CloNAT) were added to media at final
concentrations of 400 mg/L, 300 mg/L, and 50 mg/L, respectively. Transformation of S.
eubayanus was performed via a modified PEG-LiAc method [139] as previously described
[64]. Repair templates for homologous recombination were generated by PCR using Phusion
polymerase (NEB) and purified genomic DNA as template or Taq polymerase (NEB) and puri-
fied plasmid as template per the manufacturer’s instructions, followed by purification with
QiaQuick or MinElute spin columns (Qiagen). For CRISPR-mediated transformations, pXI-
PHOS vectors [111] expressing Cas9 and a target-specific sgRNA were co-transformed into
strains with double-stranded repair templates. Multi-fragment repair templates were assem-
bled by overlap extension PCR with Phusion polymerase or co-transformed as multiple linear
fragments with 80 bp overlapping homology for in vivo recombination. Following transforma-
tion, yeast cells were plated to YPD for recovery and replica-plated to medium containing the
appropriate antibiotic for selection after 24 to 36 h. Gene deletions and knock-ins were verified
by colony PCR and Sanger sequencing.
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Plasmids were propagated in E. cloni 10G cells (Lucigen) and purified using the ZR mini-
prep kit (Zymo Research). sgRNAs for CRISPR/Cas9-mediated engineering were designed
using CRISpy-pop [140], obtained as single-stranded 60-mers from Integrated DNA Technol-
ogies, inserted into NotI-digested pXIPHOS vectors using HiFi assembly (NEB), and verified
by Sanger sequencing.

Growth assays

Strains were streaked to single colonies on solid YPD agar, and individual colonies were inocu-
lated to 250 pL YPD in flat-bottom 96-well plates for preculturing in a randomized layout. Pre-
cultures were incubated for 3 days at room temperature, serially diluted in Minimal Medium,
and inoculated to Minimal Medium containing maltose or glucose at a final dilution factor of
107", Plates were incubated on a SPECTROstar Omega plate reader (BMG Labtech) equipped
with a microplate stacker, and ODggo was measured every hour. Raw plate reader data were
processed using GCAT [141] and further analyzed in R v4.0.4 (https://www.R-project.org)
[142].

MAT locus genotyping

We used a multiplex colony PCR with Taq polymerase (NEB) and oligos oHJC120, oHJC121,
and oHJC122 to genotype the MAT locus of strains following tetrad dissection, mating type
engineering, and for estimating the frequency of haploids in ALE populations after plating.
The multiplex reaction gives rise to MATa- and MATa-specific amplicons of differing size,
which were resolved on 2% agarose gels. All reaction conditions were per the manufacturer’s
instructions and were carried out alongside controls (diploid MATa/MATa; haploid MATa;
haploid MATa; no input DNA). We discarded any experiment where the controls did not pro-
duce the expected amplicons (or lack thereof). To estimate the frequency of haploids in popu-
lations, we screened a total of 55 to 56 single colonies across 4 independent platings of each
population. We note that this approach cannot formally distinguish between cells of different
ploidies with rare aberrant MAT locus composition (e.g., diploid MATa/MATa will generate
the same amplicon pattern as haploid MATa; loss of MAT locus heterozygosity in diploid S.
cerevisiae has been estimated to occur at a rate of 2 x 10~ per cell per generation [20]). In addi-
tion, this S. eubayanus background is homothallic, meaning that any diploid colony recovered
following plating might represent a haploid cell in the experimental population maintained in
liquid medium. The rate of mating type switching and clone-mate selfing on solid medium is
likely orders of magnitude higher than loss of MAT locus heterozygosity [14,143]; thus, our
PCR-based estimates of haploid frequency may be conservative.

Mating type testing

In addition to molecular validation of engineered strains, we tested the expressed mating type
of strains with altered MAT locus composition using microbiological assays. To assess MATa.
expression, a saturated liquid culture of S. cerevisiae bar1-A was diluted 100-fold and spread-
plated to YPD, and 10 pL of overnight query strain culture was spotted on top. For MATa
expression validation, saturated cultures of query strains were diluted 100-fold and spread-
plated to YPD, and a disc of sterile filter paper saturated with 10 pL of 200 pm a-factor (Zymo
Research) was gently embedded in the center. Every experiment included wild-type controls of
known mating type (diploid MATa/MATa; haploid MATa; haploid MATa), and in each case,
growth inhibition by a-factor or of S. cerevisiae barl-A was scored relative to controls and
compared to the parental strain, where applicable.
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DNA sequencing

To obtain high molecular weight genomic DNA from wild-type strain yHRVM108, 2 single
colonies were each inoculated in 90 mL YPD and grown to mid-log phase (ODgqo = 0.5), har-
vested by centrifugation, washed with water, and resuspended in 5 mL DTT buffer (1 M sorbi-
tol, 25 mM EDTA, 50 mM DTT). Cells were DTT-treated for 15 min at 30° with gentle
agitation, pelleted, washed with 1 M sorbitol, and resuspended in 1 mL 1 M sorbitol with 0.2
mg 100T Zymolyase. Cells were spheroplasted for 30 min at 30° with gentle agitation, then pel-
leted. The pellet was gently resuspended in 450 uL EB (Qiagen) without pipetting and treated
with 50 uL RNAse A (10 pg/mL) for 2 h at 37°, and 55 pL 10% SDS was added, and the mixture
was incubated for a further hour at 37° with gentle agitation to lyse spheroplasts. DNA was
extracted by the phenol/chloroform method and precipitated by addition of 1 mL 100% etha-
nol and overnight incubation at —80°. Precipitated DNA was pelleted, washed twice with 70%
ethanol, dried briefly, and gently resuspended in 100 puL TE buffer at room temperature with-
out pipetting for 2 h. DNA was quantified using the Qubit dsDNA BR kit (Thermo Fisher Sci-
entific), and purity was assessed by Nanodrop (Thermo Fisher Scientific).

DNA concentration was adjusted to 50 ng/pL, and 7.5 pg genomic DNA was subjected to
SPRI size selection with Agencort AMPure XP beads in custom buffer following the recom-
mended protocol from Oxford Nanopore Technologies; 1 ug size-selected DNA was prepared
for sequencing using the SQK-LSK109 ligation kit (Oxford Nanopore Technologies), and
approximately 40 fmol library was loaded on a single FLO-FLG001 flowcell. Basecalling was
performed with Guppy v3.2.1. ONT sequencing yielded 885.1 Mb of base-called reads passing
quality filtering, for approximately 74-fold genomic coverage.

We prepared genomic DNA for Illumina sequencing from the wild-type strain and evolved
isolates as described previously [25]. Strains were streaked to single colonies, and colonies
were inoculated to 3 mL YPD medium and grown to saturation before collection for DNA
extraction. Purified DNA was quantified by Qubit dsDNA BR assay (Thermo Fisher Scien-
tific), and purity and quality were assessed by Nanodrop (Thermo Fisher Scientific) and aga-
rose gel electrophoresis. Library preparation and Illumina sequencing of the wild-type strain
and clonal evolved isolates were performed by the DOE Joint Genome Institute. Paired-end
libraries were sequenced on a NovaSeq S4 with 150 bp reads, yielding an average of 8.47 mil-
lion reads per sample. For the wild-type strain yHRVM108, we also integrated publicly avail-
able reads (SRA: SRX1317977) from a previous study [49].

To track the frequency of aneuploidies in the ALE populations, entire populations cryopre-
served at —80°C in 15% glycerol were gently thawed, and 20 pL was inoculated directly to 2 mL
SC-2% Maltose and grown to saturation. DNA was extracted as described above, and libraries
were prepared using the NEBNext Ultra II ES kit (New England Biolabs) per the manufactur-
er’s instructions. Libraries were sequenced on an Illumina NovaSeq at the University of Wis-
consin-Madison Biotechnology Center with paired-end 150 bp reads, yielding an average of
2.23 million reads per sample. All raw reads were processed using Trimmomatic v0.3 [144] to
remove adapter sequences and low-quality bases.

Genome assembly, annotation, and analysis

Canu v1.9 [145] was used to generate a genome assembly with Nanopore sequencing reads
from the wild-type strain, which was subsequently polished with Illumina reads using 3 rounds
of Pilon v1.23 [146]. The genome assembly was annotated using the Yeast Genome Annotation
Pipeline [147]. We mapped each predicted gene to its S. cerevisiae homolog using BLASTp
v2.9 [148]. QUAST v5.0.2 [149] and BUSCO v3.1.0 [150] were used to assess genome com-
pleteness, and chromosomes in the assembly were assigned numbers corresponding to the S.
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eubayanus type strain reference genome [58,151] using MUMmer v3.2.3 [152] and BLASTn
v2.9. BWA v0.7.12 [153] and samtools v1.9 [154] were used to map short reads from all
sequenced strains and population samples to the assembly, and BEDtools v2.27 [155] was used
to call sequencing depth. Coverage across the genome of each strain or population was ana-
lyzed in R and assessed by manually inspecting coverage plots of each chromosome. Final
genome-wide Illumina-sequencing depths for each strain were 200.7-fold (wild-type),
106.1-fold (evolved clone 1), and 84.2-fold (evolved clone 2); sequencing depths for population
samples ranged from 14.3- to 109.3-fold (median: 34.3). We used FreeBayes v1.3.1 [156] to call
variants in each strain, requiring a minimum coverage depth of 10 to report a position, and
manually inspected putative variants in IGV [157]. To annotate predicted transcription factor
binding sites in the promoter of AGT1, we used the 700 bp upstream of the start codon as a
query for YEASTRACT+ [158].

RNA extraction

Strains were streaked to singles on solid YPD agar, colonies were precultured to saturation in
synthetic complete medium with 2% glucose or maltose as the sole carbon source, and precul-
tures were back-diluted into the same medium at a low initial ODy before being harvested in
early log phase, a growth regimen designed to fully alleviate catabolite repression of alternative
carbon metabolism genes. Cells were harvested by centrifugation at 4°C after the addition of
0.1 volumes of 5% acid phenol/95% ethanol, and pellets were flash-frozen. RNA was extracted
using the hot acid phenol/ethanol precipitation method, with the addition of glass beads dur-
ing vortexing to aid lysis efficiency. Samples were treated with RQ1 DNAse (Promega) fol-
lowed by a final purification by RNeasy column (Qiagen). RNA yield and quality were assessed
by Qubit BR RNA assay (Thermo Fisher Scientific), agarose gel electrophoresis, Qubit RNA
IQ assay (Thermo Fisher Scientific), and Nanodrop.

RNA sequencing and analysis

mRNA enrichment, library preparation, and Illumina sequencing were performed by the DOE
Joint Genome Institute for biological triplicate samples for each strain and condition. Paired-
end libraries were sequenced on a NovaSeq S4 with 150 bp reads, yielding an average of 23.23
million reads per sample. Raw mRNA-seq reads were processed with BBduk (https://
sourceforge.net/projects/bbmap/) to remove adapters and low-quality sequences, resulting in
an average of 22.89 million surviving reads per library. Filtered reads were mapped to the
wild-type strain assembly with HISAT2 v2.1 [159] with average mapping rates of 98.5% per
sample.

HTSeq-count v0.11.1 [160] was used to generate counts at annotated genes, which were
passed to DESeq2 v1.30.1 [161,162] for further analysis. We removed from analysis a single
library from an evolved isolate grown in maltose, as manual inspection of normalized gene
expression values revealed that this sample had stochastically lost the ChrXV aneuploidy. This
reduced our power to detect statistically significant differences in expression for that specific
evolved isolate. All other samples from evolved isolates remained aneuploid in both condi-
tions. We considered DEGs between conditions and genotypes with expression changes of
greater than or equal to 2-fold in either direction and Benjamini-Hochberg adjusted p-values
of less than or equal to 0.01 (false discovery rate of 1%). Full differential expression analysis
results can be found in 54 Table. To compare expression levels of single genes, we used size-
normalized counts from DESeq2, which are more robust for this purpose than other normali-
zation methods [163-165]. We defined subtelomeric genes as those falling within 20 kb of the
end of a contig, which represented entire chromosomes in our assembly (with the exception of
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the two-contig ChrXII, for which we considered genes within 20 kb of the telomeric contig
ends, not the ends containing rDNA repeats). This classification is comparable to or more con-
servative than those used previously [108,166]. GOrilla [167] was used to identify enriched
gene ontology (GO) terms in gene sets of interest; we used S. cerevisiae GO annotations and
specified all predicted genes in our annotation as the background set against which to test for
enrichment. Statistics and data visualization were performed in R.

RT-qPCR

For the experiment shown in S9 Fig, 100 ng total RNA was used as input for the Luna Univer-
sal One-Step RT-qPCR kit (New England Biolabs), with cycling and data acquisition per-
formed on an Applied Biosystems 7500 Real-Time System (Thermo Fisher Scientific). Relative
expression of AGT1 was analyzed using the AAC} method with normalization to ACT1 and
ARP2[168].

Ploidy determination

Flow cytometry-based ploidy determination was performed as described previously [7], except
that we sampled asynchronous cultures. Briefly, we fixed mid-log cultures of each query,
treated fixed cells with RNAse A and Proteinase K, and stained DNA with Sytox Green
(Thermo Fisher Scientific). Haploid and diploid S. cerevisiae strains were included in all exper-
iments as controls. For clonal strains (S. cerevisiae controls, ancestral S. eubayanus, and
evolved isolates), queries were streaked to single colonies, and independent colonies were
picked for ploidy analysis. For population samples, entire populations cryopreserved at —80°C
in 15% glycerol were gently thawed, and approximately 50 uL was inoculated directly to 1 mL
SC-2% maltose. Cells were harvested and fixed in early log phase after a minimum of 2 dou-
blings, and 10,000 cells were sampled for each query on an Attune NxT flow cytometer
(Thermo Fisher Scientific). Analysis was performed in FlowJo v10.

Fitness assays

Except for experiments in rich medium shown in Fig 2A, the conditions for fitness assays were
designed to mimic the original ALE conditions [64]. Briefly, this regime consisted of culturing
in 1 mL SC medium with 2% maltose and 0.1% glucose (hereafter, “competition medium”)
with semiweekly 1:10 dilutions into new competition medium. Query genotypes were directly
competed against a common competitor in co-culture. The competitor was a haploid in the
ancestral S. eubayanus strain background with the exception of a constitutively expressed GFP
using a TEFI promoter and ADHI terminator from S. cerevisiae and stel2 deletion (MATa
hoA::Pscrgp;-yEGFP-Ts app-kanMX stel2A:natMX). We chose a stel2 deletion to prevent
any interaction with competitors expressing MATa. Strains were streaked to single colonies
on YPD containing antibiotic as appropriate, precultured in competition medium for 3 days,
mixed in approximately equal query-to-competitor ratios (except where we reduced the com-
petitor ratio against less-fit query genotypes), sampled into cold 1x PBST for flow cytometry of
time point 0, and inoculated into 1 mL competition medium at an initial ODg of approxi-
mately 0.1. At each transfer, competitions were sampled into cold 1x PBST for flow cytometry,
and the optical density of each replicate was measured to calculate the number of generations.
Competitions in rich medium were carried out in the same manner, albeit that preculturing
and propagation were in sterile-filtered YPD in 2 mL volume with daily dilutions of 1:100. For
both competition regimes, we sampled 13,000 cells per replicate and time point on an Attune
NxT flow cytometer (Thermo Fisher Scientific) to quantify the abundance of competitor (fluo-
rescent) and query (non-fluorescent) cells, which always clearly formed distinct populations.
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Analysis was performed in FlowJo v10. Fitness was calculated as the selection coefficient,
obtained by regressing the natural log ratio of query to competitor against the number of gen-
erations. To analyze the effects of ploidy, mating type, and cell type (diploid-like and haploid-
like) on the panel of strains shown in Fig 3, we used multiple linear regression with measured
fitness as the response and ploidy, mating type, and cell type as categorical predictors with 2
levels each (for mating type, we grouped by whether genotypes expressed any mating type-spe-
cific genes, or none). All statistical analyses and visualization were performed in R.

P, 11 reporter analysis

We generated single-copy genome integrations in haploids of yeast-enhanced GFP (yEGFP)
expressed from both the native AGT1 promoter and a variant in which we abolished the Teclp
consensus site (TCS) by making point mutations to each of its 6 nucleotides (Pag;.¢c5). To com-
pare expression between Pagr; and P,y strains were streaked to single colonies on YPD
plates, picked to SC-2% maltose and grown to saturation, back-diluted in 2 mL SC-2% maltose
to an initial ODgg, of 0.01, and grown to mid-log phase. Cells were collected by centrifugation,
washed twice with cold PBST, and resuspended in PBST for flow cytometry. We sampled
40,000 cells per replicate on an Attune NxT (Thermo Fisher Scientific). Analysis was per-
formed in FlowJo v10, and fluorescence values were exported for statistical analysis and visual-
ization in R. A similar approach was taken to test the carbon source-dependence of P r;-
GEP, albeit that precultures and cultures were inoculated into SC-2% glucose, SC-2% maltose,
and SC-2% methyl-a-glucoside and grown to mid log phase. To test reporter expression in the
no-carbon condition, cultures pre-grown in glucose were inoculated into SC medium at an
initial ODgg of approximately 0.3 and incubated for the same duration as the maltose cultures.
Bulk fluorescence was measured on a BMC FLUOstar Omega plate reader at a cell density of
ODyggo = 1 and background-normalized.

Supporting information

S1 Fig. Details of aneuploidy in evolved clones. Dot plot of copy number variation in the
evolved isolates. Relative copy number, inferred from sequencing depth, is plotted for each
chromosome with a small amount of x-axis jitter. Relative coverage of AGT1 on ChrXV is indi-
cated by filled dots, indicating the absence of CNVs beyond aneuploidy. The data underlying
this figure can be found in S1 Data.

(TIF)

S2 Fig. Evolved clones possess only a single allele at each variable site. Genome browser
tracks showing aligned Illumina reads from the population 1 clone at SIR4 (a), IRAI (b), and
YD]1 (c), and from the population 2 clone at LAM5 (d). Mapped reads are depicted as gray
bars with mismatches colored according to base identity. The data underlying this figure can
be found in S1 Data.

(TIF)

S3 Fig. Ploidy variation across the adaptive evolution experiment. (a) Smoothed histograms
of cellular DNA content for asynchronous haploid (top panel) and diploid (middle panel) S.
cerevisiae (Sc) controls and the wild-type S. eubayanus (Se Anc.) strain (bottom panel, repro-
duced from the same data as in Fig 1). (b) Histograms for population-level samples from both
ALE replicates (gray) and clonal isolates from each population (red shades). For clones, the 2
histograms represent results from independent experiments; the bottom panel for each (dark
red) is the same data displayed in Fig 1. For population samples, panels are arranged from top
to bottom with increasing time and number of ALE generations, representing approximately
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50 generation intervals from 50-350. The bottom panel for each population represents the ter-
minal time point from which the adapted clones were isolated and from which we quantita-
tively assessed haploid frequency. (c) Fraction of haploids in the terminal time point of each
ALE population assayed by MAT locus PCR genotyping. Points and bars show the mean and
standard error of 4 experiments. The data underlying this figure can be found in S1 Data.
(TIF)

$4 Fig. Temporal dynamics of ploidy variants in evolving populations. (a) Aneuploidy fre-
quency across the adaptive evolution experiment. The relative copy number of each chromo-
some, inferred from sequencing depth, is plotted for whole-population samples from the ALE
experiment from approximately 50 generation intervals. The trajectories of aneuploidies that
reached high frequencies are colored; all other chromosomes are black. The time points are
the same as those sampled to assay ploidy states (S3B Fig). (b) Aneuploidies in whole-popula-
tion samples are plotted against generations as in (a), but they are rescaled to frequency per
haploid genome. The apparent frequency of haploids in each population from the same time
points is plotted as green lines and was calculated from the flow cytometry data shown in
S3B Fig. The data underlying this figure can be found in S1 Data.

(TTF)

S5 Fig. Increased copy number of AGT1 is adaptive. (a) Boxplots show the differences in fit-
ness of diploids and haploids with an extra copy of AGT1, compared to the respective parent
strain. While haploids experience a smaller change in fitness than diploids, the overall fitness
of haploids with increased AGT1 expression is significantly and substantially higher than that
of diploids with increased AGT1 expression (b). The data underlying this figure can be found
in S1 Data.

(TIF)

S6 Fig. Transcriptomes of the independently evolved haploids are similar. (a) Principal
component (PC) plot of normalized gene expression for the mRNA-seq libraries used here.
Points represent individual libraries, colored by strain and growth condition (evoll, evol2:
evolved haploids; ancestor: wild-type diploid). (b) Scatterplot of the relative expression of all
genes in both conditions for each evolved haploid with hexbin color indicating the density of
points. Pearson’s p is given inset (p < 2.2 x 107'°). The data underlying this figure can be
found in S1 Data.

(TIF)

S7 Fig. Additional gene expression comparisons. (a) Boxplots show log,-transformed fold
changes (LFC) of gene expression on glucose (instead of maltose, as in Fig 4) in evolved hap-
loids compared to the wild-type strain for genes on aneuploid ChrXV (# = 370) and subtelo-
meric genes (n = 200). (b) Boxplots show LFCs of gene expression in maltose compared to
glucose for ChrXV genes in each evolved haploid. Whiskers extend to 1.5x the interquartile
range. Lines connect the y-axis coordinates of the same gene in each evolved isolate; axes are
scaled such that an occasional outlier is truncated from the plot space for a single strain. AGT]I
expression is plotted as red dots and lines, and black dashed lines indicate the null expectation
for expression values between strains (a) or equivalent expression between conditions (b). The
data underlying this figure can be found in S1 Data.

(TIF)

S8 Fig. P4Gr;-GFP reporter expression in 5 carbon conditions. Boxplots show normalized
fluorescence measurements of P,r;-GFP-expressing strains in 5 SC media conditions: glu-
cose (GLUC), galactose (GAL), methyl-a-glucoside (MAG), maltose (MAL), and no carbon
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(NC) with n = 9 biological replicates each. Conditions that differ significantly from glucose are
indicated (****p = 4.1 x 10", Mann-Whitney U tests). The data underlying this figure can be
found in S1 Data.

(TIF)

S9 Fig. RT-qPCR of AGT1 in euploids. Bars show mean and standard deviation of AGT1
expression in euploid diploids and haploids grown in SC-2% maltose as measured by RT-
qPCR. The growth conditions in this preliminary experiment seem not to have matched those
in the RNA-seq experiments. The difference in haploid-specific AGT1 expression between
these experiments likely reflects this large batch effect or it could suggest an additional interac-
tion with aneuploidy as discussed in the main text. The data underlying this figure can be
found in S1 Data.

(TTF)

S1 Table. Strains and plasmids used in this study.
(XLSX)

$2 Table. Oligonucleotides used in this study.
(XLSX)

S$3 Table. Mutations in evolved isolates.
(XLSX)

$4 Table. Full differential expression analysis results.
(XLSX)

S5 Table. All putative transcription factor motifs identified in the AGTI promoter.
(TXT)

S1 Data. Data underlying all figures.
(XLSX)
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