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ON THE NUMBER AND SIZE OF HOLES IN THE GROWING
BALL OF FIRST-PASSAGE PERCOLATION

MICHAEL DAMRON, JULIAN GOLD, WAI-KIT LAM, AND XIAO SHEN

ABSTRACT. First-passage percolation is a random growth model defined on
74 using i.i.d. nonnegative weights (7¢) on the edges. Letting T'(z,y) be the
distance between vertices  and y induced by the weights, we study the random
ball of radius ¢ centered at the origin, B(t) = {z € Z¢ : T(0,z) < t}. It is
known that for all such 7, the number of vertices (volume) of B(t) is at
least order t%, and under mild conditions on T, this volume grows like a
deterministic constant times t¢. Defining a hole in B(t) to be a bounded
component of the complement B(¢)¢, we prove that if 7¢ is not deterministic,
then a.s., for all large ¢, B(¢) has at least ct?=1 many holes, and the maximal
volume of any hole is at least clogt. Conditionally on the (unproved) uniform
curvature assumption, we prove that a.s., for all large ¢, the number of holes
is at most (log#)“t?~1, and for d = 2, no hole in B(t) has volume larger than
(logt)©. Without curvature, we show that no hole has volume larger than
Ctlogt.

1. INTRODUCTION

1.1. Backgound and definitions. In the ’60s, Hammersley-Welsh introduced
first-passage percolation (FPP) on the cubic lattice Z¢ as model for fluid flow in
a porous medium. FPP is now often viewed in other ways: as a random growth
model, a particle system, or a random metric space; see [1,9] for recent surveys.
In addition to the usual questions, like passage time asymptotics, the geometry of
geodesics, and concentration bounds, attention has recently been paid to the bound-
ary of the growing set B(t) [3,5,11] and its topological properties [12]. The purpose
of the current paper is to continue some of these newer questions, addressing the
number and size of holes in B(t).

Consider Z¢, the d-dimensional integer lattice with nearest-neighbor edges E.
Let (7¢)ecge be an i.i.d. family of nonnegative random variables (the edge-weights)
assigned to the edges. A path from a vertex x to a vertex y is an alternating
sequence T = Tg, €g, L1, €1, - -, Ln—1, €n—1, Ln = Yy of vertices and edges such that
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1642 DAMRON, GOLD, LAM, AND SHEN

e; = {zi,xip1} € Edfor all i =0, ..., n — 1. The passage time of a path ~ is

n—1
T(FY) = Z Tem
1=0

and the first-passage time from x to y is

T(z,y) = inf T(v),

Y=Y

where the infimum is over all paths v from z to y.
We study the random “ball”

B(t)= {2z €Z%:T(0,2) <t} for t > 0.

The shape theorem of FPP gives a type of law of large numbers for B(t), and states
that the rescaled set B(t)/t converges to a deterministic limiting shape as t — oc.
The usual assumptions are that

(1'1) P(Te :O) <pc(d)7

where p.(d) is the critical value for d-dimensional Bernoulli bond percolation (a
constant known to be in the open interval (0,1) for d > 2 and to be equal to
1/2 for d = 2), and Emin{r{,...,7¢,} < oo, where the 7; are i.i.d. copies of 7..
Under these conditions [10, Thm. 1.7], there exists a nonrandom convex set B
which is invariant under permutations of the coordinates and under reflections in
the coordinate hyperplanes, has nonempty interior, and which is compact, such
that for all € > 0,

(1.2) P <(1 —e)BC %E(t) C (14 ¢€)B for all large t) =1

Here, B(t) is the sum set {z +y : 2 € B(t),y € [0,1)?}. This B is the unit ball of
a norm g on R%:

B={zecR%:g(z) <1}.

Hence, in the limit, the set B(¢) has no holes, but holes may be present for finite t.

Only assuming (1.1), Kesten’s lemma [10, Lem. 5.8] implies that B(t) is a.s. finite
for each ¢t > 0 and so the complement B(¢)¢ is a union of finitely many connected
components. All but one of these components is finite. We then define the number
of “holes” in B(t) as

N(t) = number of finite connected components of B(¢)¢
and the volume of the largest hole as
M (t) = max {#8S : S is a finite connected component of B(¢)} .
If 7, is deterministic, then N(¢) = 0 for all ¢, so we will assume
(1.3) the distribution of 7, is non-trivial.

In other words, the support of the distribution of 7. contains at least two points.
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HOLES IN FIRST-PASSAGE PERCOLATION 1643

1.2. Main results. Our results give upper and lower bounds on N(t) and M ()
under some conditions on the weights (7). First are the lower bounds.

Theorem 1.1. Suppose (1.1) and (1.3) hold.
(1) There exists ¢ > 0 such that

P(M(t) > clogt for all large t) = 1.
(2) There exists ¢ > 0 such that
P (N(t) > et for all large t) = 1.

The proof of Theorem 1.1 appears in Section 2. Close inspection of the proof
reveals that a.s., for all large ¢, the number of holes of B(t) of volume at least clogt
is at least 971~ for some « which satisfies a(c) — 0 as ¢ — 0.

The authors of [12] study the Betti numbers associated with the growing set in
the Eden model, a simple model for cell growth. Their results give asymptotics for
these numbers and, in particular, show that with high probability, the number of
holes at time ¢ is the same order as the perimeter, which is at least ¢!, The same
bound therefore holds for a site-FPP model with exponential weights, because it is
equivalent, through the memoryless property of exponentials, to the Eden model.
Our proof of item 2 of Theorem 1.1 has a similar structure to theirs. For large
t, we condition on B(t) and find order +~! many disjoint sets in B(#)¢ near the
boundary of B(¢). Each such set has a positive probability to contain a special
configuration that will develop into a hole in B(t + C) for a constant C' > 0.
Because we cannot use the memoryless property, finding and constructing these
holes is more complicated. First, if the weights are bounded, we cannot just create
a hole by increasing the weights of the 2d edges incident to a particular vertex in
B(t)c. Instead, in step 1 of the proof, we must define a more detailed high-weight
event that ensures the existence of holes. Second, if the weights are unbounded,
high-weight boundary edges may prevent B(¢+C') from enveloping our high-weight
configurations outside B(t) in constant time. We must therefore show in step 2 that
for large ¢, the boundary of B(¢) contains many sections of low-weight edges that
are near large areas in B(t)°.

Remark 1.2. Holes in B(t) were also previously studied in the proof of lower bounds
on the size of the edge boundary of B(¢) in [5, Thm. 1.3]. Their argument involves
constructing order t¢(1 — Fy(t)) many unit-size holes in B(t), where Fy is the
distribution function of min{ry,..., 724} and the 7; are i.i.d. copies of 7.. These
holes arise from isolated vertices all of whose incident edges have high weight. When
7. has a heavy tail, this number can be made arbitrarily close to t*. The strategy
from [5] does not obviously extend to lighter-tailed distributions, and the holes built
in the proof of Theorem 1.1 above arise instead from large regions of slightly large
edge-weights.

Remark 1.3. As mentioned, if we remove assumption (1.3), we obtain N(t) = 0
for all t. Regarding assumption (1.1), if F(0) > p. but (1.3) holds (that is, 7. is
not identically zero), then there is an infinite component of zero-weight edges a.s.,
and #B(t) = oo for all large t. In addition, we have N(t) = M(t) = oo for all
such ¢t a.s. On the other hand, the situation when F(0) = p. is more complicated
because the growth rate of B(¢) can depend on the distribution of 7, [8]. For some
Te, we still have #B(t) = oo for all large t (and so N(t) = M(t) = o0), but for
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others, #B(t) < oo for all ¢ a.s. Our proof of Theorem 1.1 can be used for d = 2
to give a (probably nonoptimal) lower bound for N(¢) in terms of the growth rate
of B(t). For d > 3, there is not currently a simple condition on 7. to determine if
#B(t) = oo for finite ¢. For these reasons, we leave this case for a future study.

Turning to upper bounds, each bounded component of B(t)¢ contributes at least
one edge to the edge boundary of B(¢)

0.B(t) = {{z,y} : v € B(t),y ¢ B(t)}-

Therefore N(t) < #9.B(t), and any upper bound for the size of the edge bound-
ary holds also for N(¢). In [5], Damron-Hanson-Lam gave some such inequalities,
proving in particular that if Y is the minimum of 2d many i.i.d. edge-weights, then
#0,B(t) is at most order t*" ' Emin{Y, ¢} for “most” times (see [5, Thm. 1.2]). This
gives a weak complement to the inequality in item 2 of Theorem 1.1 when EY < oc.
We focus instead on a different result of [5] which involves the “uniform curvature
condition” of Newman. This condition is unproved, but believed to be true for
distributions of 7. that are, say, continuous; see [1, Sec. 2.8] for more details.

Definition 1.4. We say that the limit shape B satisfies the uniform curvature
condition if there exist constants ¢ > 0,17 > 0 such that for all z;,25 € 9B and
z=(1—MN)z1 + Az with X € [0, 1],

1 g(2) = cminfg( — 1), g(z — 22)}7,
where ¢ is the norm associated to B.

This condition is typically used in concert with an exponential moment condition:
(1.4) Ee®™ < oo for some o > 0,

but it is possible to define B and therefore uniform curvature without any moment
condition on 7.

As a consequence of the bound on #0.B(t) from [5, Thm. 1.5], we immediately
obtain the following.

Proposition 1.5. Suppose (1.1) and (1.4) hold, and assume the uniform curvature
condition for B. There exists C > 0 such that

P (N(t) < (log £t for all large t) = 1.

This result does not directly imply a good upper bound on the maximal hole
size M (t). For that, we give the following result in two dimensions.

Theorem 1.6. Let d = 2. Suppose (1.1) and (1.4) hold, and assume the uniform
curvature condition for B. There exists C' > 0 such that

P (M(t) < (log )€ for all large t) =1.

The proof of Theorem 1.6 is in Section 3. The argument bounds the diameter of
a hole in both the radial direction and the lateral direction by (log#)®. The radial
estimate (see “The first case ...” above (3.9)) is valid in general dimensions. To
bound the diameter in the lateral direction (below (3.15)), we must use planarity
to trap a hole between two geodesics. This second part of the proof only works
for d = 2. It would be interesting to study the geometry of holes in more detail.
Do the largest holes have larger diameter in the radial direction than in the lateral
one? Is there an asymptotic shape for these holes?
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Remark 1.7. In fact, one can modify the proof of Theorem 1.6 slightly to obtain a
weaker statement for d > 3. For any finite set of vertices A, we define the in-volume
of A to be

InVol(A) = max{#E(n) : 3z € A,n > 0 such that =z + E(n) C A},

where E(n) = [-n,n]¢ N Z%. One can show that for d > 3, under (1.1), (1.4) and
the uniform curvature assumption, there exists a constant C' > 0 such that a.s. for
all large ¢, we have max{InVol(S) : S is a finite connected component of B(¢)¢} <
(logt)®. In a certain sense, this means that the size of the largest “d-dimensional”
hole (which is more or less symmetric) is no larger than (logt)“, but it does not
rule out the possibility that there is a larger asymmetric hole (possibly of a “lower
dimension”).

Without the curvature assumption, the method of proof of Theorem 1.6 still
works in some form, and produces the following weaker result. It gives a bound on
the diameter of a hole in both the radial and lateral direction of order \/tlogt. Its
proof is in Section 4.

Theorem 1.8. Let d = 2. Suppose (1.1) and (1.4) hold. There exists C > 0 such
that

P(M(t) < Ctlogt for all large t) = 1.

1.3. Outline of the paper. The rest of the paper consists of proofs of the main
results. First, in Section 2, we prove Theorem 1.1. The proof contains three steps.
In step 1, we construct a high-weight event contained in an ¢*-ball A(n) that is
used to create holes in B(t). In step 2, we show how to find translates of A(n)
that are directly outside B(t). In step 3, we put these tools together to prove that
a.s., for all large ¢, many of the translates of A(n) outside of B(t) have high-weight
configurations that turn into holes in B(¢) after a short time. In Section 3, we
move to the proof of Theorem 3. The argument shows that a.s., for all large ¢, the
largest hole in B(t) must be contained in a sector of an annulus with volume of
order (logt)® (see Fig. 6). Last, in Section 4, we show how to modify the proof
from Section 3 without the curvature assumption to prove Theorem 1.8.

2. PROOF OF THEOREM 1.1

Throughout this section, we suppose that (1.1) and (1.3) hold. Therefore we can
pick a,b with 0 < a < b such that for every § > 0,

(2.1) P(r. € [a — d,a]) > 0 and P(7. € [b,2b]) > 0.

Step 1 (Contruction of a high-weight event). We first construct a high-weight event
that ensures the existence of holes. For n > 1, let

A(n)={z ez |zl <n}
and write e; for the i-th coordinate vector. For mq,mo, mg > 1, define the region
d
R = R(m1,ma,m3) = {x ez —my<z-e; < mg,z |z - e < mg} ,
i=2
with interior boundary

R = R(m1,ma,m3) = {x € R: 3y € Z4\ R with ||z —y|, = 1}.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1646 DAMRON, GOLD, LAM, AND SHEN

Also define the discrete line segment
L={ke;:k=-n,...,—mq}.
(See the left side of Fig. 1.)

Ry o ‘R»

FIGURE 1. On the left: the rectangle R inscribed in the set A(n),
translated to touch the growing ball B(t) at a corner. On the right:
the interior vertex boundary of R, defined as R, is partitioned into
Ri, Ry, and Rs, indicated by the left (light grey), right (black),
and top (dark grey) vertices. The origin is represented by the solid
ball inside R.

Given these geometric definitions, we now define our high-weight event. It is E,,,
the event that
(1) 7 € [a — 6, a] for all e = {x,y} with z,y € RUL, and
(2) T € [b,2b] for all other e = {z,y} with x,y € A(n).
In step 3, we will use this event to create a hole in B(¢). The edges in item 1 allow
one to enter A(n) at —nep, travel along L, and quickly encircle the high-weight
region in R, where a hole can appear.

Lemma 2.1. Let a,b be as in (2.1) and e < (b—a)/(2b+ 3a). If
1 <my <emg < 62m1 < e3n,
then, for any § > 0, on E,,
(2.2) TA(n)(—ne1,y) < a(n +2m3) + amy for all y € R,
and
(2.3) Tam)(2,0) > (a —6)(n + 2mg3) + bmy for all x € 7% with || x|, = n,

where Ty (y) is the minimal passage time over paths whose vertices are in A(n).

Proof. Throughout the proof we will use the sides of R:
Rlz{weﬂzw-elz—ml}, RQZ{U}ERZw'elzmz},
and A A
Ri={weR:—m <w-e; <ma}.
(See the right side of Fig. 1.)

To show (2.2), let y € R; we will construct a path v from —ne; to y and estimate
its passage time. By symmetry, we may assume that y-e; > 0 for ¢ =2, ..., d.
If y € R; URg then there is a v from —ne; to y with || — ne; — y||; many edges
all of which have both endpoints in R UL. To build +, start at —ne; and move to
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HOLES IN FIRST-PASSAGE PERCOLATION 1647

—mae; along L. If y € R, move to y by increasing each i-th coordinate for i = 2,
..., d in sequence. If y € Ry, move to —mje; + 2?22 (y - e;)e; by increasing each
i-th coordinate for ¢ = 2, ..., d in sequence, and then move to y by increasing the
first coordinate. The path 7 as constructed has the desired properties, and

T(v) < al|| — ne; —yll1 < a(n+ ms +mg) < RHS of (2.2).

If, instead, y € f{g, then we again move from —ne; to —me; along L, and then
to the vertex

d d
q=—mie + (ms. - Z(y : ei)) € + Z(y ‘e;)e;
=2 i=2
by increasing each i-th coordinate for ¢ = 2, ..., d in sequence. Then we move to

g+ (m1 +ms)e; by increasing the first coordinate, and finally decrease the second
coordinate to reach y. This v as constructed has

d
(n—m1)+m3+(m1+m2)+(m3—Z|y-ei|)§n+2m3+m2
i=2

many edges with weight < a, so we obtain (2.2).
For (2.3), we first show that if z € Z? has ||z|; = n, then

(2.4) TA(n) (J,‘, 0) > TA(n) (—nel, 0).

To do this, let u be the first intersection of any T (,)-optimal path from x to 0

with the set RUL. Write v, for the segment from z to u and 7 for the remaining
segment. Then

TA(n)(%,0) = Ta(ny(—ne1,0) > (T'(1) + T'(12)) = (Ta(n)(—ner,u) + T(72))
(2.5) =T(n) = Tam)(—ner, u).
Because 1 uses only edges with weight > b, T'(v1) > bllx — ul|1 > b(n — |lull1). If
u € L equals —key, then this is b(n — k), but Tx(,)(—nei,u) < a(n — k), so (2.5) is

nonnegative. If, on the other hand, u € R, then n — |jul|; > n — (m; 4+ ms) so by
(2.2,

T(v1) = Ta@m)(—nei,u) > b(n —my —m3) — a(n + 2m3 +my)
> b(n—2my) —a(n+3mq)
> (b—a — 2be — 3ae)n,

which is > 0. This shows (2.4).

To prove (2.3), it now suffices by (2.4) to give the same lower bound for the
variable TA(n)(—nel, 0). Consider any TA(n)-optimal path p from —ne; to 0 and
let u; be the last vertex of p with u; - e = —my. First, if p contains no point in
R after uq, then let u} be its first point after u; with u} - e; = 0. Then all edges
on p between u; and u} have weight > b, so we obtain
(2.6)

TA(n)(—ne1,0) = T(p) = (a—0)||—ner—uil[1 +bllur —uilly > (a—05)(n—m1)+bm.

Otherwise, p contains a point in R after u;. Let ug be the last such point. If p
does not contain a point of Ry after ug, then all edges on p after usz have weight
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FiGURE 2. Ilustration of the last part of the proof of Lemma 2.1.
The path depicted in white, p, is a TA(n)-optimal path from —ne;
to 0.

> b, and we obtain

TA(ny(—ne1,0) = T(p) > (a —0)| — ney — us||1 + blJus|x
d d

:(a—5)(n—|—u3-e1)+(a—6)Z|u3-ei|+bZ|U3-ei|

i=2 i=1
(2.7) > (a—6)(n+ ms) + bms.

Here we have used that Z?:z lus - €;] = ms.

The last possibility, shown in Fig. 2, is that p contains a point of R, after us;
let ug be the last such one. Again, all edges on p after us must have weight > b, so
TA(n)(—neq,0) is at least

(a—=6)|| — ner — uslly + (a — d)[Jug — uzl[1 + bl|luz|1

d
= (a—68)(n+us-e, +ms3)+ (a—0d) ((uz—U3)-e1+2|(U3—u2)~ei|>

=2
d
—+ bz |U2 . ei\
i=1

d
> (a—6)(n+ma)+ (a—08) > (|(us —u2) - ;| + |uz - &) + (b+a — 8)(uz - 1)
=2
(2.8)
> (a—9)(n + 2mg) + bma.

We claim that among (2.6)—(2.8),
(2.9) the term in (2.8) is minimal.

Combining this fact with (2.4) will complete the proof of (2.3). To see why (2.9)
holds, we write the difference between the terms in (2.6) and (2.8) as

(a—38)(n—mq)+bmy — (a—9)(n+2m3) — bmg > b(my — ma) — a(my + 2m3)
> (b—a — be* — 2ae)my,
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HOLES IN FIRST-PASSAGE PERCOLATION 1649

which is > 0. Also, the difference between the terms in (2.7) and (2.8) is
(a—0)(n+m3)+bmzg— (a—9)(n+2m3z) —bmgy = —(a — §)mg + b(mz — my)
> (b—eb—a)ms,
which is also > 0. This completes the proof of (2.9). O

Step 2 (Placing the high-weight events outside B(t¢)). Now that we have our high-
weight event E,, which takes place in A(n), we describe a procedure to find trans-
lates of A(n) that are directly outside the growing ball B(¢). These will house
images of the event F,, and will force holes in the ball at a time soon after t.

.
*® r—ne;
O
.

FIGURE 3. On the left: a (§',n)-good vertex x, the center of the
small diamond z+ A(n). The larger diamond and its center (corre-
sponding to some 4ny for y € 9°B,,, in notation introduced later)
are not labeled, but are part of the statement in display (2.13).
On the right: a close-up of the path v, for the good vertex x. The
initial vertex of 7, is x — ne1, and its terminal edge is e,.

Let B be a finite connected set of vertices (like B(¢)) and let n > 1 and ¥ > 0.
We say that a vertex 2 € B¢ is (b, n)-good for B if
(1) x4+ A(n) C B® but z + A(n + 1) intersects B, and
(2) there exists a path v, starting at a vertex of the form x + ne; such that
(a) 7y, uses no vertices of either  + A(n — 1) or B,
(b) some edge e, connects the final point of v, to a vertex in B and has
Te, <V, and
(¢) v, has at most v/n + d many edges.
Roughly speaking, if x is (', n)-good for B, then we are able to find a path from
B to z with relatively small passage-time. Moreover, from 2(a), the passage time
of this path is independent of all the edge-weights in a neighborhood of z, B and
its boundary. Once we fix the shape of B(t) to be B, the existence of a (b, n)-good
vertex for B will allow us to create a hole at a later time ¢’ > ¢ in B(¢') with high
probability, by using the high-weight events defined in the previous step. In fact,
we will show that there are many (¥, n)-good vertices for B.
Fix a constant ¢; > 0. We say that B is (b',n)-good if there is a set S(B) of
vertices x that are (§',n)-good for B such that

(2.10) any distinct z,2’ € S(B) have ||z — 2'||; > 4dn
and
(2.11) #S(B) > nj{ #BT

Fig. 3 illustrates (b',n)-good vertices and Fig. 4 illustrates a (b',n)-good set B.
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FIGURE 4. Tllustration of a (b, n)-good connected set B of vertices.
The translates = + A(n), as z ranges over the set S(B) of vertices
that are (b',n)-good for B, are shown in black.

Proposition 2.2. There exist V', c1,Ca,c3 > 0 such that
P (3 connected B with 0 € B,#B = N and B is not (', n)-good)

N\ _
<) o (- ?)

for all large n and for all N > 1.

Proof. Let B be a connected set with #B = N and 0 € B. By taking Cs large, we
may assume that N > (4n)?, so that

(2.12) 0 € B and B is not contained in [~2n, 2n — 1]%.

To verify that B is (b',n)-good with high probability, we first consider vertices of
the form 4ny which are directly outside of B. So, we cover B with boxes to get

B, = {z€Z%: (4nz+[-2n,2n — 1]Y) N B # 0},

which is also a finite connected set. Using the notation

0°°V = {y € V°: y is in the infinite component of V¢, 3z € V with ||[y—z|. = 1}
for the exterior *-boundary of a finite connected V C Z¢, we remark that 9°B,, is
connected [14, Thm. 3]. For v € Z¢, define o, = max, 7., where the maximum is
taken over all edges e within distance d of v. For y € Z<, let F, be the event that
there exists a vertex self-avoiding path in 4ny + [~7dn, 7dn — 1]¢ with |\/n] many
edges and whose vertices v satisfy o, > 0'. In this first part of the proof, we show
that

if y € 9°B,, and F occurs, then some vertex in

(2.13) dny + [—6dn, 6dn]? is (b, n)-good for B.

(See Fig. 5.)
To prove (2.13), suppose that y € 9*°B,, and Fy occurs. Because y ¢ B,,

we have 4ny + [-2n,2n — 1]¢ € B¢. Choose yo € B such that |yo — 4ny|: =
mingep ||y — 4nyl|1. Because there is a z € B,, with ||z — y|loc = 1, we know
4ny + [~6n,6n — 1]¢ intersects B, and so

2n < |lyo — 4nylloe < |lyo — 4nyll1 < 6dn.
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To select our point z which will be (&', n)-good for B, we assume without loss in
generality that (yo —4ny)-e; > 0for alli =1, ..., d, and that the first coordinate
of yo — 4ny is maximal. Because ||yp — 4ny||eo > 2n, we find (yo —4ny)-e; > n+1,
and we define
x=yo— (n+1e.

Then ||x—yo|l1 = n+1 and so z+A(n+1) intersects B at the point yo = z+(n+1)e;.
However, if w € x+A(n), then ||lw—4ny||; < [lw—z|1+]|z—4ny|1 < n+||lz—4ny|
and

[z —4nylli = llyo — 4ny — (n+ L)e1|[1 = [[yo — dny[ly — (n + 1),
s0 |lw—4ny|l1 < |lyo —4nyl||1 — 1, giving by minimality of yy that w ¢ B. Therefore
z + A(n) C B®. Furthermore, because (yo — 4ny) - e1 = |lyo — 4nyoc = n+ 1, we
have || —4ny|lco = |lyo — 4ny — (n+1)e1|loo < ||yo — 41yl < 6dn, so we conclude
that = € 4ny + [~6dn, 6dn)?. This shows that

x € dny+[—6dn, 6dn]?, z+A(n) C B®, and 2+A(n+1) intersects B at a point o,

where yo = z + (n + 1)e;. Even without our assumptions on (yo — 4ny) - e;, we
obtain the same statement, but yo is then of the form z £ (n + 1)e;. This shows
item 1 of the definition of (b',n)-good for the vertex z.

FIGURE 5. Extracting a collection of (b, n)-good vertices (the cen-
ters of the black diamonds) surrounding a connected set B of ver-
tices, in light grey. The smaller diamonds are centered at vertices
4ny for y in the set 9°B,, (shown in grey) such that Fy occurs.

If the edge connecting yo to the unique vertex wg in x + A(n) has weight < ¥’
then we can simply set v, to be the path with no edges and a single vertex wy.
In general, though, we must find a nearby edge satisfying this weight constraint.
We observe that wg is in the exterior *-boundary 9°°B of B. This is because
it is adjacent to yp, which is in B, but also can be connected to 4ny without
touching B, and y € 9°°B,,. Assumption (2.12) ensures that B is not contained in
wo + [/, /n]¢. Neither is 9°B if n is large, and so we can select w), € 9B
which is not in wg + [—v/n, v/n|?. Because 9°B is connected, there is a vertex
self-avoiding path p from wg to wj in 9°°B and since = + A(n) C B¢, the path p
cannot use any vertices of x+A(n—1). Let p, be the initial segment of p consisting
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of the first |y/n] many edges and list the vertices of p, as wg, wy, ..., w| /7). Bach
w; is 1 unit away from B in ¢°°-distance. If there exist an ¢ and a path ; from w;
to B with ¢!-length equal to min{|lw; —@||; : @ € B} (which is at most d) such that
the final edge f; of ; has 7;, <V’ for some i, we let ig be the first such ¢ and define
vz to be the initial segment of p, from wgy to w;, concatenated with ~;, (with the
point in B and the edge f; removed). This ~, satisfies conditions (a)—(c) of the
definition of (b',n)-good. If iy does not exist, then the entire path p, must have
vertices with o, > ', meaning that F, occurs. This shows (2.13).

Given (2.13), we can now return to the main proof. Let B be connected with
#B = N and such that (2.12) holds. The set B,, satisfies (4n)?#B,, > #B = N,
so the isoperimetric inequality implies

Cy d—1
1

(2.14) #0™B,, > NT

nd-

Suppose that B is not (b',n)-good. We claim that for some constant Cs > 0, and
¢y from the definition of (¥',n)-good,

Csey a1
(2.15) D, lmp < N
y€0>By
To see why, partition 0°B,, into C5 = C5(d) many subsets Sy, ..., S, such that

if for a fixed i, we select distinct y,y’ € S;, then ||y — ¢/||c > 4d. If for some such 4,
Fy and Fy, both occur, then let 2,2’ be the corresponding (b',n)-good points from
(2.13). We have

|z —2'|[1 > ||z = 2'[|oo > [[4ny — 4ny/||0o — [[4ny — z[|co — 41y — 2'|| o0
> 16dn — 6dn — 6dn = 4dn.

The definition of (V',n)-good then implies }° g 1pe < (c1/nd=HYN@=D/d for j =
1, ..., Cs, and this gives (2.15). ‘

Since B C [-N, N]%, we have B,, C [-(N/n) — 1,(N/n) + 1]¢ and so 9°B,, C
[—(N/n) — 2,(N/n) + 2]¢. Taking ¢, from (2.14), if Ay, is the event that there
exists a finite connected set S C Z? such that

[
#8 > o

d
N and S C [—E_27E+2:| 7
n n
but Zyes 1pe < (c1C5/ca)#S, then
(2.16)
P(3 connected B with 0 € B, #B = N and B is not (b',1)-good) < P(Ax.).

Let S be the collection of connected S C Z% such that #S = k and S contains the
origin. Using the bound #8j < (2de)* < e“sF [2] for some Cg > 0, we obtain for
(>0

# connected S C Z4 N [, (] with #S =k

Z # connected S C Z¢ containing v with #S = k
ve[—L,0)4

< (204 1)%eC6k,

IN
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Applying this with £ = N/n + 2, we see that

0105 k

Cq

N d
(2.17)  P(Ann) < (2— +5> § e“F max P § 1 <
n Y
yES

SeSk
d—1
4 N4

For a given S € Sy, the events 1 Fe are not independent as y ranges over S, but
they are only finitely dependent. Therefore we can extract a subset of size at least
crk such that as y ranges over the subset, the events 1 Fg are independent. This
implies that

0105 Lerh] 01C5
max P 1p. < k]l <P 7. < k
Ses);i yez; Fy = Cy4 - ; T 7

where Z; are i.i.d. and have the same distribution as 1 Fg- The right side is bounded
by
lerk]

P (1-2)> [erk] -

i=1

c1Cs

Cyq

c1Cs k

k| < 2okp(Ry)lert e

so we can return to (2.17) to state, for some Cg > 0,

N d e
(2.18) P(An.n) < (2— + 5> > (Cskp(Fy)Llork) — 452k
n
d—1

. d—1
kzndilN d

Last, we must estimate P(Fp). For a given vertex self-avoiding path v in the box
[~7dn, Tdn — 1]¢ with |\/n| many edges, the events {o, > b} as v ranges over the
vertices of v are not independent, but they are finitely dependent. Again, we can
find a subset of the vertices of size at least cgy/n such that as v ranges over the
subset, the events are independent. This gives

P(for all v € v,0, > b) < P(cg > b)Y~ < ((2d)"P(r, > b))V~
The number of such paths v is at most (l4dn)d(2d)\/ﬁ7 0
P(Fo) < (14dn)*(2d)¥" ((2d) (7. > )V,
Putting this in (2.18), we find

N d
Ftn < (2 +9)
x % O R((1ddn)h(2d) V7 (2d) B(r, > b))Vt ekl AT

k> —ca N T
i

First choose ¢; so small that |c7k] — ¢1Csk/cy is at least c7k/2. After this, we
may choose b’ so large that the entire summand is at most 2. This produces the
bound

—1

N e gt
P(An,) <2- <2—+5> 2 etV T
n

Combined with (2.16), this implies the statement of Proposition 2.2. O
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Step 3 (Construction of holes). In this step we use the tools from the previous
steps to construct holes in B(t). First, by [4, Eq. (3)], our assumption (1.1) gives
a c1g > 0 such that

(2.19) P(c1ot? < #B(t) < oo for all large t) = 1.

To place the translates of A(n) from step 2 around the set B(t), we choose a size
of one of the two forms

(2.20) n=mn;=Cy €Nor |e2(logt)d .

We fix the rest of our parameters as follows:

(1) a,b are as in (2.1) and b’ is from Proposition 2.2,
(2) let 6 = €*, where € < (b — a)/(2b + 3a) (compare to Lemma 2.1) will be
taken small in the proof of (2.25),
(3) my = |en|,m3 = |em1|,m2 = |ems]| and set H = |ema].
If C1; and ¢ are large with cq5 fixed, the m;’s satisfy the constraints in Lemma 2.1.
The parameter H will be a lower bound on the radius of a hole. Now we apply
Proposition 2.2 for

PP(3 connected B with 0 € B, ¢1pt? < #B < 0o and B is not (b',n)-good)
< Z P(3 connected B with 0 € B,#B = N and B is not (', n)-good)

N>ciotd

(2.21)

<o £ (5) i)

N>cqotd

The application of Proposition 2.2 requires that n is large, and this holds for large
Cy; and t for fixed c12. For either choice of n from (2.20), the expression in (2.21)
is summable in ¢, so for any large C; and any fixed ¢12,

(2.22) Z]P’ (cr0t < #B(t) < oo but B(t) is not (b, ny)-good) < oo.
teN

From the definition of (b, n)-good, we get boxes of the form x + A(n) situated
around our set B(t), so now we must populate them with versions of the event E,
from step 1. To do this properly, we need to decouple the variables inside B(t)
from those outside. For a given finite, connected B containing the origin that is
(¥, n) good, we may choose at least (c;/n?1)#B(?=1/4 many vertices x that are
(b',n)-good for B and distinct z, 2’ satisfy inequality (2.10). These vertices come
with edges e, and paths 7y, as in the definition. The edges and paths are contained
in the boxes [-n — /n —d — 1,n + v/n + d + 1]? + x because of item 2(c) in the
definition, and by (2.10), these boxes are disjoint for distinct x,2’. Enumerate the
first . W

"= [ndfl #BT—‘

many of these points in some deterministic way as z1, ..., x,.. All of the x;, v.,,
and e, are random, so we must fix their values for a large ¢t € N as

P (ciot? < #B(t) < oo and B(2) is (v, n)-good)
_ B(t) = B is (', n)-good,

Biciot? <#B<oo (2i,mi,ei)_q
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We observe that the event in the probability depends only on edges with at least
one endpoint in B, so it is independent of the weights of edges with both endpoints
outside of B.
For a given choice of (z;,m;,e;)i_;, and B, we define events (A;)7_; by the

following conditions. A; is the event that:

(1) all edges e of m; have 7, < a, and

(2) the event T;E,, occurs.
In item 2, T;E,, is a certain translation and rotation of the high-weight event F,
from step 1. Precisely, the initial point of 7; is one of the points of the form z; £ne;,
and we define T} to be an isometry of R? that maps A(n) to z; + A(n) and —ne;
to the initial point of m;. Then T;F, is the event that the image configuration
(TTi—l(e)) is in E,. Not only does the definition of E,, depend on n from (2.20) and
a,b, it also depends on § = ¢* from (2.1) and the numbers my, mao, m3. Regardless
of the values of the m;, since they are < n, there exists C13 > 0 depending only on
a,b, € such that P(E,) > e~ Csn®, Using this in the definition of A;, there exists
C14 > 0 also depending only on a, b, € such that

P(A4;) > exp (—Cl4nd) foralli=1,...,r.

Because the A;’s are independent, we may bound the family (14,)7_; stochasti-

cally from below by a family (W;)_; of i.i.d. Bernoulli variables with parame-

ter p = e~ Cran”, By Hoeffding’s bound for Bernoulli random variables, we have

P (Wi + -+ W, <r2) <exp(—%p?), and therefore

- r r
P (2 1,4, < 3 exp (—C14nd)> < exp <—§ exp (—2C14nd)) .
For any large C1; and small ¢2, we have r > ¢15(t/n)?~! for all large ¢, so
gexp (—2014nd) >t lexp (—C’lgnd) > cl7td7% for all large t.

This implies for any large C1; and small 1o,

P <Z 14, <exp (—C’wnd) td1> < exp (—cntd*%) for all large t.
i=1

Returning to the right side of (2.23), independence gives for any large C7; and
small ¢,

(1 — exp (—cutd_%)) P (c10t* < #B(t) < oo and B(¢) is (b, n)-good)
(2.24)

E § B(t) = B iS (b/7 n)-gOO(L T = Zj, ’Y‘T =
< (2
v ( ex; = € Vi, 22:1 14, 2 exp (—Cmnd) -1

Biciotd <#B<oo (2i,mi,€i)]_y

for all large t.

We will now argue that there exists € > 0 such that on the event on the right of
(2.24), if Cy; is any large number and c¢;5 is any fixed number, then for all large ¢,
and all 7 such that A; occurs,

(2.25) 2;+A(H) is in a bounded component of B(s)¢ for all s € [t+k, t+r+en],
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where
(2.26) K=k = €'n + a(n + 26*n) + aen,

and these components are distinct for distinct values of ¢. In this statement, as
before, n = ng, so that H (defined below (2.20)) and k are also functions of ¢
(not s). To prove this, pick an outcome in this event with ¢ such that A; occurs,
and let u; be the endpoint of e; in B. Let v; be the endpoint of 7; that is in z;+A(n).
Let y € T;R (this is the corresponding image of the set R from Lemma 2.1 inside
x + A(n)). Because u; € B(¢t) and m; has at most v/n many edges, we have

T(0,y) <T(0,u;) + Te, + T(m;) + T(vi,y) <t +b + avn+ aln +2m3) + ams
(2.27) <tk

We have used (2.2) to estimate T'(v;,y) and used b’ + ay/n < e*n, which is valid
for any € and c12 so long as C1; and t are large. On the other hand, if z € Z¢ has
Iz — 2|1 < H < min{m;}, condition 2 of the definition of E,, implies

T(0,2z) > T(0,2;) — T(x4,2) > T(0,2;) — 2Hb.

Let o be any path from 0 to x;, let o1 be the initial segment until its first vertex
outside B, and let o5 be its terminal segment starting at the point at which it
enters x; + A(n) for the last time. Then because o; connects 0 to B(%)€,

T(o) >T(01) +T(o2) >t + min T A (2, 24)

zi||lz—z;|[1=n

>t + (a—0)(n+2mg3) + bma.
The last inequality follows from (2.3). Take the infimum over ¢ to obtain

T(0,2z) > T(0,2;) —2Hb >t + (a — 0)(n + 2mg3) + bmg — 2HD
>t+ (a—e)(n+2%n) +bedn — (20 + 1)e'n
=t+r+(b—a)n—e'(n+2en) — (2b + 2)e'n.
Again we have assumed that € is fixed, c¢io is fixed, and C7; and t are large to

remove the floor function in the definition of the m;’s. From the above, we can
choose € so small such that for any cy2, and for any large C11,

T(0,2) >t + K+ €*n for all large t.

This inequality and (2.27) show that for any s in the interval described in (2.25), the
set z; + A(H) is in B(s)¢, but T;R is in B(s). This implies (2.25). Furthermore,
the sets z; + A(n) are disjoint, so since the components described in (2.25) are
contained in these sets, they are distinct for distinct values of 3.

Given (2.25), we can finish the proof. Any component listed in (2.25) contains
x; + [0, H/d]%, so it has at least (H/d)? many vertices. If we define

. # bounded components of B(s)¢ with at
Y, = min

Hi\4 .
SE€[tHre,ttret+eing least (£+)" many vertices,
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then we can continue from (2.24) with our e from (2.25), any large C; and any
small ¢i5 to obtain

(1 — exp (—cl7td_%)) P (c10t? < #B(t) < oo and B(2) is (¥, n)-good)

_ . / _ . — .
< Z Z P(B(t)BIS (t/,n)-good, z; = zi, Va, 71'2,)

- €y, =€ Vi, Y; > exp (—C’mnd) -t
B:ciotd <#B<oo (zi,mi,ei)_y

(2.28)
=P (B(¢) is (V', n)-good, crot? < #B(t) < 00, Y; > exp (_Clﬁnd) td_l)

for all large t. This implies for any large C7; and any small ¢

ZIP’ (clotd < #B(t) < 0o and Y; < exp (—Clgnf) td_l)

teN

< ) P (ci0t” < #B(t) < oo but B(t) is not (b, ny)-good)
teN

+ ZP (Yt < exp (—Clﬁnf) -1 ‘ B(t) is (b',nt)—good,clotd < #B(t) < oo) )
teN

The sum in the second line is finite by (2.22). By (2.28), the summands of the

3

third are bounded for large ¢ by the summands of ), exp (—017td_ 2) < o0. The

Borel-Cantelli lemma combined with (2.19) therefore implies that for any large C11
and any small c;2, a.s.,

(2.29) Y; > exp (—Clﬁnf) t4=1 for all large t € N.

Last, we use (2.29) to prove Theorem 1.1. First take ny = C1;. Then k; =
(€* + a + 262 + ae®)C11, and so the interval I, = [t + Ky, t + Ky + €'ny] satisfies
;NI # 0 for all t > 1 so long as Cq; is large. Therefore (2.29) gives that
a.s. B(t) has at least exp (—0160{11) t4=1 many bounded components for all large
t. This proves item 2 of Theorem 1.1. If we take n; = |ci2(logt)?/?¢|, then the
intervals I; and Iy also intersect for large t, if ¢ is fixed. For small ¢q2, we have
Y; > t%73/2 for all large ¢ so, in particular, ¥; > 0. This gives that a.s., for all large
s, the maximum hole size M (s) is at least equal to (H;/d)?, where t is any number
such that s € I. If ¢ is large and c1o is fixed, then this ¢ satisfies ¢ > s/2, so we
obtain

H:\*
a.s., M(s) > (f) for all large s.

This implies item 1 of Theorem 1.1 and completes the proof.

3. PROOF OF THEOREM 1.6

In this section, we assume (1.1), (1.4), and the uniform curvature condition. We
first describe the idea of the proof. Let ¢ be large and let g, if it exists, be any
vertex in the largest bounded component C of B(¢)¢ with maximal Euclidean norm
llzoll2. Let Z(v,w) be the angle (in (—m,7]) between two vectors v,w € R? and
define the sector portion

(3.1) Sao = {v ER?:|L(v,20)| < Juyy 1 — Ky < |I|:||||2 < 1},
0112
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where

(log [|zo|2) “*

lzoll2

Cis—3
(3.2) Jzo = M’ Kzo =
l[zoll2
and Cig > 3 is a large constant to be chosen later; see Fig. 6. The component C
containing g is connected, and by extremality of g, it cannot cross the far side of
Sz,. Once we show that it cannot cross the left, right, and near sides, then we can
deduce that C C S,,. Because

(3.3) S, contains at most Cig(log ||zol/2)>¢*® many vertices,

and ||zg||2 must be of order ¢ to be in a bounded component of B(t)¢, we conclude
the result.

llzll2=llzo |2

lella=(1—Kag)llzollz Sn

FI1GURE 6. The set C, depicted above as the darker shaded region,
is the largest hole in the ball B(tg). The set S, is a sector (lighter
shaded region) centered on the vertex zy with maximal Euclidean
norm among all those in C. The boundary segment of S;, nearest
to the origin, S , is also shaded.

Step 1 (Setup of the proof). To start the proof, we let s > 0 and recall the notation
B(t) = B(t) + [0,1)? from the introduction. Define the events
1 1~
Eq(s) = {58 C ;B(t) C 2B for all t > s}

and

E5(s) = {7e < Cylogt for all e with an endpoint in 3¢t and all ¢t > s} .
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We have
P(M(t) > (logt)21® for some t > s)
< P(Ei(s)°) + P(Es(s)°)
+ P (E1(s) N Ba(s) N{M(t) > (logt)>“** for some ¢ > s}).

By the shape theorem in (1.2), P(F1(s)¢) — 0 as s = oo. To estimate P(Ey(s)°),
we write P(7, > Coglogn) < Ee®Te /e®C20108n for the o in (1.4), so
P(7. > Cyplogn for some e with an endpoint in 3nB) < Coyn’n =202,
By a union bound,
P(7. > Cy9logn for some e with an endpoint in 3nB and some n > N) — 0

as N — oo if we choose Cyy > 4a. By increasing Cyg further, this implies that
P(E5(s)¢) = 0 as s — oo.
From the above arguments, we obtain

lim P(M(t) > (logt)3“'® for some t > s)
§—00
(3.4) = ILm P (E1(s) N Ea(s) N {M(t) > (logt)*“"® for some ¢ > s}).

To show the limit in (3.4) is zero, we use the sector construction from the proof
idea above. Fix an outcome in the event in the probability in (3.4) and let tg > s be
any value of ¢ for which M () > (logt)3“s. Choose z¢ as any vertex with maximal
Euclidean norm in a bounded component C of B(ty)¢ with the largest number of
vertices, and let Sy, Ju,, Ky, be as in (3.1) and (3.2). We first argue that for large
S,

(3.5) C contains a vertex in S, .

To do this, we note that there exists co > 0 such that
(3.6) [0, ¢22] C {JJlwll2 : w € B} C [0,¢55'] -
Because zg is in C and E(s) occurs, we have

llzoll2 < max [|zll2 < 2to max [[z]l2 < 2c5; to.

As zg € B(to)¢, we have ||zo|l2 > (to/2) maxgep ||z||2 > ca2to/2. In summary,

c 2
(3.7) %to <||zoll2 < —to.
C22

Now for a contradiction, assume that C C S,,. Then from (3.3), we get
(3.8) M (to) < Cho(log [|zol|2)*“".
Combining this with (3.7), we obtain

M (to) < Cig(log(2c3y't0))* .

This contradicts M (to) > (logtg)3“ for large s because to > s, and shows (3.5).

We have now shown that for our outcome in the probability in (3.4), (3.5) holds.
Let v be a path contained in C starting at xy that ends at a vertex outside of
S:,; we may assume only its final vertex, say po, is outside of S,,. Let 4" be the
continuous plane curve produced by following « from zg to its last point pj on the
boundary of S, (directly before v touches pg). We examine the possibility that py
is on the left or right sides of S, or on the near side.
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Step 2 (The hole cannot touch the near side). The first case is that pj is in the
near side

Sz, = {v € Say  [lvlla = (1 = Kao)[[zoll2}-
If this holds, let z(, = (1 — K, )xo, which is in S” ; we will show that T'(0, ) is

xg?

abnormally large. (Here we use the definition T'(y, z) = T([y], [2]), where [y] is the
point of Z¢ with y € [y] + [0,1)?, and similarly for z.)

FIGURE 7. The first case of the argument supposes that C exits
the sector S;, through its near side S7 . The path v in C starts
at xo, intersects the boundary of S7  first at pj € S, and it ends
immediately after p{, at a vertex py ¢ Sz, (not pictured). Above,

xh = (1 — Ky )xo, and [z(] is the closest lattice point to xj.

Because pg € C C B(ty)¢,
(3.9)  T(0,zf) = T(0,po) + (T(0,25) — T(0,p0)) > to + (T(0,24) — T(0,po)).-

For large s, the points x{, and pg are in 3toB, and by occurrence of Es(s), there
exists a path from [z{] to po with ||[x{] — poll1 many edges whose weights are at
most Coplogty < Oy log(2¢yy ||7oll2) (see (3.7)). This gives T(0, ) — T/(0, po)
—(Caolog(2¢3;' [[woll2)) ] — pollr-  However [|[zg] — polli < llzt — pplls + 3
V2|2 —ppll2+3, and f, pj are in ST, , so if s is large, then [[zf—p|l2 < Ja|lzoll2 =
(log [|zo]2)€*#~3. Together, for large s,

[ IN IV

T(0,2) = T(0,p0) > —(Caolog(2¢55 [|7ol|2)) (8 + v2(log [[zo]l2)* %)
> —(log [[zofl2) .
Putting this in (3.9) gives
(3.10) T(0,z4) > to — (log||xo|l2)C** .

To use (3.10), we relate the left side to T'(0,x). Although xq is not in B(ty),
it is the endpoint of an edge that has an endpoint in 3ty5, so since Fs(s) occurs,
T(0,20) < to+ Caglogty < tg + Czglog(2cyy ||Toll2). With (3.10), we obtain for
large s
(3.11)

T(0,20) — T(0, ) < Caolog(2¢5; [|zoll2) + (log [|zoll2) “** ™" < 2(log [|zol2) =~
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We now use a bound on passage time differences established in [5, Prop. 3.7] under
the uniform curvature assumption. The result is that for some co3, Coy,co5 > 0,
any z € R? with |z|l2 = 1, and any k,¢ > 0 with k > ¢,

(3.12) P(T(0,kz) — T(0,£2) > caz(k — £)) > 1 — Coge k=0,

We put z = xo/||zoll2, k = ||xol|2, and £ = ||zp]l2 = (1 — K4,)||2ol|2 to produce the
bound
(3.13)

P (T(0,0) — T(0,z) < caz(log||zol|2)“®) < Caqexp (—(log [|zo|2) 5 .

If we define the event G(s) to be
o) — { T(O.20) ~ T(0,h) > 2o o)
for all zg € Z* with |zo|l2 > 22 ’
then, by (3.7) and (3.11), if p, is in the near side S}, , then G(s)¢ must occur, and
by (3.13), we get

PGs)) < Y P(T(0,29) = T(0,2)) < 2(l0g | ][2) )

lzoll2> 22 s

< Cy Z exp (—(log [lzoll2) “1*7) .

llzoll2> 3% s

Here we have used that for large s, 2(log ||zo[|2)“*# ™! < ca3(log [|zo]|2)€**. Assuming

C1g is chosen larger than cyy, we get P(G(s)¢) — 0 as s — co. In summary, we can
return to (3.4) and write

lim P(M(t) > (logt)3“'s for some t > s)
5— 00
(3.14) = ILm P (E1(s) N Ba(s) NG(s) N {M(t) > (logt)>*“"® for some ¢ > s}),

observing now that any outcome in the event in the probability in (3.14) must have
the property that pj, is on the union of the left and right sides of S,,:

(3.15) | Z£(z0,10)] = Jay -

Step 3 (The hole cannot touch the left and right sides). This brings us to deal with
the second case, that (3.15) holds in our outcome. Here, the idea is that geodesics
(optimal paths in the definition of T'(z,y)—these exist a.s. from [1, Thm. 4.2])
between some point nearby xo and the origin must avoid (“go around”) the com-
ponent C, and therefore deviate significantly from the straight line connecting the
point to the origin. This is unlikely due to geodesic wandering estimates from [13].

Our two possible “nearby” points are yo,z9 € R?, defined to have |yoll2 =
Izoll2 = (1 + Kuo)|lzoll2, £(40, 20) = Jug /2, and £ (z0,20) = —Juy/2. Let AL, i =
1,2 be defined as follows.

(1) A;lo) is the event that some geodesic from [yo] to 0 has a point z € R? with
lz]l2 > (1 = Kzo)llzoll2 and Z(x,z9) = 0 or Jy,.

(2) Ago) is the event that some geodesic from [2g] to 0 has a point x € R? with
lz]l2 > (1 — Kgo)llzoll2 and Z(x, z9) = —Jy, or 0.

We claim that because (3.15) holds,

(3.16) at least one of Ag/,lo) or Ag?o) occurs.
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FIGURE 8. In the figure, the region W is the left half of the sector
Sz,- In the second case considered for the argument, C exits S,
through one of its sides, the side of W above. The path v plays an
analogous role to the first case of the argument, excepting that pj,
is no longer on the near boundary of S;,, and contains a subpath
~" spanning opposite sides of W. Under the event Aélo), planarity
forces a geodesic o joining [yo] (not pictured) to the origin to cross
~" at a vertex w. The path o is further decomposed at the last
point 2’ on o with ||2/||2 = ||xo||2 and the first point z on o with
Izl = (1 = K4, )||xol]2, denoted 3’ and y respectively.

To see why, let us assume first that Z(p{, z9) = Ju,. Then v/, which we defined in
the paragraph following (3.8), contains a segment +" which crosses the region

[[v]l2
lzoll2

W = {v eR%: €[(1—-Kg), 1], Z(v,z0) € [O,Jzo]}

between its two side boundaries; see Fig. 8. This is because 7' cannot exit S,

through the far or near boundaries. Assume for a contradiction that A:(E? does
not occur, and let o be any geodesic from [yg] to 0. Observe that for large s, we
have Z([yo], z0) € (0,Js,). The segment of o from [yg] to its first point y with
lyllz2 = (1 — Ku,)||zoll2 cannot contain any = with Z(x,xq) = 0 or J,,, so it must
contain a segment ¢’ of o (starting at its last point ¥’ with ||y'[|2 = ||zo]|2 before y
and ending at y) that crosses W from its far boundary to its near boundary. By
planarity, ¢/ must intersect 7/, and they must intersect at a vertex w. We know
w € C, so T(0,w) > tg. Furthermore, T'(0,y0) > T(0,w), so [yo] ¢ B(to). But
[yo] ¢ C by maximality of xg, so [yo] is in a different component of B(ty)°. Starting
from [yo], the geodesic o must therefore touch some @ € B(tg) before it reaches w.
This gives a contradiction because then ¢ty > T'(0,w) > T(0,w) > tg. We conclude

that ASO) occurs. If we suppose that Z(p(,z9) = —J;, instead, a similar argument
shows that A:(E%) occurs.
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Returning to (3.14), the last paragraph plus a union bound gives

. 3C . 1 2
Sll)rgo P(M(t) > (logt)>“*® for some t > s) < Slggo Z [P(Agco) U Agco))'

:EoGZZZHf()HQZ 632 s

To complete the proof of Theorem 1.6, we will show that this limit is zero, and to
do this, we will prove that

(3.17) > P(AL)) < oo

To€EZ2

A symmetric argument will establish the same bound for the sum of P(Agc%)), and
this will finish the proof.

Assertion (3.17) will follow from a lemma that summarizes some estimates from
[13]. If 2,y € Z%, we write

out(y,z) = {z € Z*: T(y,2) = T(y,z) + T(z,2)}

for the set of vertices z such that a geodesic from y to z goes through z. The lemma
states that with high probability, vertices in out(0,z) have small angle from z. In
[13], this is used to show that the origin has a “r—'/%-straight geodesic tree.” The
argument from [13] assumes that the distribution of 7, is continuous, but this is not
needed. Only the uniform curvature assumption is required. Recall Definition 1.4,
which introduces the number 7.

Lemma 3.1. Letp € (0,1/(2n)). There exist Caog, car > 0 such that for anyr > 1,

P(|£(x,2)| < Cosllz||57 for all z € out(0,x) and x with ||z||2 > r)
>1— Casexp (—r?7).

Proof. The proof is nearly the same as that of [13, Prop. 3.2], so we omit some
details. For a vertex x # 0, let C,, be the sector portion

Co ={z €2 g(2) € [9(x) — g(x)' ™", 2g(2)], |£(2,2)| < g(x) P}

The vertices in the boundary set {y € C¢ : 3z € C, such that ||z — y|; = 1}
split into three sets: 9;C, is those y with g(y) < g(z) — g(z)*~", 9,C, is those
y with g(y) > 2¢(z), and 9;C, is those y with Z(z,y) > g(z)"P. Let G, be
the event {out(0,z) N (9;C, U 8;C,) # 0}. (The function g was defined below
(1.2).) Then the argument leading to [13, Eq. (3.3)] gives that for some Cag, cag,

we have P(G,) < Casllz||d exp <—029H:c||§/2_"p). (The only difference is that [13]
takes 7 = 2 but we have general 1.) By a union bound, if ¢3g < 1/2 — np,

(3.18) P(G, occurs for some x € Z¢ with ||z][2 > 7) < Csy exp (—r).

Fix an outcome in the event N, |,>,GS and let € Z¢ with [|z]|; > 7. If z €
out(0, z), consider a geodesic from 0 to z that contains z, and define a sequence of
points inductively by xg = x, and for ¢ > 1, x; is the first point of the geodesic after
x;—1 that lies in 0,C,,_,. (It must touch this set and not the set 9;C,, , U0sCy,_,
if it leaves C,, , because Gg. | occurs.) If such a point does not exist for a
particular ¢ = I, because the geodesic does not leave C,, , before touching z, we
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set 7 = xyy; = --- = z. Because z; is adjacent to C,,_,, we have |Z(z;,x;-1)| <
Csa/||zi—1]|5 , and so

00 I
[£(z2)| <Y |4 i) < Coa Y i llz”
i=1 i=1
However, for i =1, ..., I —1, we have ||z;_1[|2 > Ciz!||z||2 for some Cs3 > 1, since
21 € 8,C,,_,. Therefore |Z(z,z)| < Csallzll37 35, C5P ). In other words,
for Co6 = C32 Y 0 C?;)p(zfl), any outcome in Njg,>,G has |£(z,z)| < Cogllx]|5”
so long as ||z]|2 > r and z € out(0, z). The estimate (3.18) finishes the proof. O

Using Lemma 3.1, we can show (3.17), and therefore finish the proof of The-
orem 1.6. Suppose that A:(E? occurs. Choose a point z € R? such that ||z|s >
(1 — Ky,)llzoll2 and Z(z,x0) = 0 or J,,, but that z is on a geodesic from [y] to 0.
Let =’ be a vertex on this geodesic such that ||z — z’||; < 1. The law of sines from
trigonometry implies that if Z[,,;(0,2’) is the angle between 0 and z’ as measured
from [yo], then

(3.19) |2 [J2 sin [ Z([yo], 2") = [[[yo] — 2" [|2 sin | Z£}y,1(0, 2")].

To estimate these quantities, we observe first that for large ||gl||2, we have

(3.20) 2ll2 > [lzoll2/2-
Next, because |Z(x,yo)| = Jz,/2, we have

Jeo o
(3:21) 2l € (225

so long as ||zg||2 is large enough. In particular, if ||zq||2 is large, then |Z([yo], z)]
is small, and so

(3.22) sin | ([yo], 2)| > £ TN a%

2

The term sin |Z£[,1(0,2)| can be bounded using Lemma 3.1. For u € Z% and
p € (0,1/(2n)) fixed, write F,(r) for the event described in Lemma 3.1, translated in
the natural way so that the origin is mapped to u. Precisely, if T;, is the translation
of R? such that T, (0) = u, then F,(r) is the event that the image configuration
(Tr-1()) is in the event described in Lemma 3.1. We observe that [[[yo] — 2'[|2 >
1y — «ll2 = llyo] = woll2 — llz = 2'll2 = Jugllzoll2/2 = 3, so if [[zo]l2 is large and
Fiy)(r) occurs for r = J,||lzo||2/3, then we must have

(3.23) |£1y01(0,2")] < Caglllyo] — 2"[12".
Putting this, (3.20), and (3.22) into (3.19) produces
(3.24)
-3 _ llzoll2 : -
15 (ogllzoll2) 7% = == < l[yo] — 2”2 sin 15 (0, 2”)| < Cos|l[yo] —a'|ly 7"
For large ||zgl|2, we conclude
Ci5-3
(3.25) llyo — z|l2 > csa(log||zol]2) =7 .
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To proceed from (3.25), we assume for a contradiction that Fj,(r) occurs (so
that (3.25) holds) and consider two cases. If ||z|l2 < |lyoll2, then |z|2/|lzoll2 €
1— Ky, 1+ Ky ). If Z(x,20) =0, then

Iy
lvo—allz < llyo—olla-+lle —olls < ( = +Kxo) l2olla + Kao l20llz < 3K 0]l

By symmetry, the inequality |lyo — z||2 < 3Ky, ||zoll2 also holds if Z(x,xq) = Jyu,-
Putting it in (3.25), we find

C18—3

3(log ||zoll2) " > es4(log [|zoll2) 7,

which is false if Cyg > 3/p and ||xo||2 is large. Otherwise, if ||z[|2 > ||yol2, then

(3.26) 12" l2 = ll[yolll2 — 1 = V2 > |I[yo]llz — 3.

Because | Z£jy,1(0,2")| 4+ [£(2', [yo])| + [ £ (0, [y0])| = 7, we see for large ||zol|2 from
(3.21) and (3.23) that |£,/ (0, [yo])| > 37/4, and so cos | £, (0, [yo])| < —1/+/2. The
law of cosines along with (3.24) and (3.26) then gives for large ||zo]|2

]

w0l = ll"l13 + lllyo] — «'l13 — 2ll2"[l2l[o] — 2"ll2 cos Za+ (0, [yo])
> |l'I3 + V2]l ll2ll[yo] — 2’2
> [|l2"13 + 7ll2’]l2
> (Illyolll2 = 3)* + 7ll[yo] [l — 21.

This is a contradiction if ||zgl|2 is large.

We conclude that if ||zo]|2 is sufficiently large, then ASO) C Fly(r)¢ with r =
JuollZoll2/3. Lemma 3.1 gives the bound

P(AS)) < P(Fiyo)(r)°) < Cag exp (= (o l|zoll2/3)%7) -

This is summable over zy € Z? so long as C1g > 3 + 02_71. This completes the proof
of (3.17).

4. PROOF OF THEOREM 1.8

The proof of Theorem 1.8 is like that of Theorem 1.6, and will use similar con-
structions, so we give fewer details and focus on the modifications needed to apply
the argument. There are two main differences. First, instead of using the bound
(3.12) on passage time differences (which requires the uniform curvature assump-
tion), we will use a general concentration inequality. Second, instead of using
Lemma 3.1 on the straightness of geodesics (also requiring curvature), we will use
Kesten’s lemma.

The concentration inequality states the there exists Cs5 > 0 such that for all
large = € Z4,

(4.1) P (7(0,2) - g(2)| = Cs5v/g(@) log g(x)) < 2.

This inequality follows from standard results. First, it suffices to prove it with

g(z)log g(x) replaced by +/||z||1 log ||z||1. In this form, it follows from the result
[7, Prop. 1.1], which says that for some Csg > 0, we have 0 < ET(0,z) — g(z) <
Cse+/||z||1 log||z]|1, and [6, Thm. 1.1], which says that P(|T(0,z) — ET(0, )| >
M |z][1/log [|x||1) < e~ for some constant cz; > 0 and all A > 0 and nonzero
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x € Z%. From these two, we just have to choose A = 2C35 log ||z||; for large enough
Css.

The second tool, Kesten’s lemma [10, Prop. 5.8], states that there exist a, c3g > 0
such that
(4.2)
P(3 edge-self-avoiding path v containing 0 with #v > n but T'(v) < an) <e

—C38M

Here, # is the number of edges in 7. This result will allow us to show in (4.10)
that if a geodesic deviates too far from a straight line, it must have a long segment
with high passage time.

Before giving the proof, we first outline what changes are necessary. In this
section, since we are not assuming uniform curvature, (3.12) and Lemma 3.1 are no
longer available. However, we are still able to show that if a hole is too large, then
it will take a large passage-time to cross one of the sides of a large sector, which
will violate (4.1) and (4.2).

Step 1 (Setup of the proof). As in the proof of Theorem 1.6, we define events E;(s)
for s > 0 and a constant C3g > 0 as

1 1~
Ey(s) = {58 C ZB(t) C 2B for all t > s}

E5(s) = {7e < Cs9logt for all e with an endpoint in 3¢t8 and all ¢ > s}

Ea(s) = { IT(0,2) — g(z)| < C35+/g(z) log g() for all } .

integer x € 3tB\ ((¢/3)B) and all t > s
As in (3.4), for some Csg large enough, and any Cyg > 0,
ILm P (M (t) > Cyptlogt for some ¢ > s)

(4.3) = ILm P (E1(s) N Ea(s) N{M(t) > Cyotlogt for some t > s}).
Using (4.1) with a union bound, we obtain
44 P(E3(s)¢) < x| — 0 as s — oo.
(4.4) (Bs(s)) < > lally
z€((s/3)B)e

Last, we let E4(s) be the event that, for all ¢ > s, and all vertices x € 3tB\ ((t/3)B),
any edge-self-avoiding path I' containing = with at least (12C55/a)+/g(x) log g(x)

many edges satisfies T(T') > 12C35+/g(z) log g(z). To prove that
(4.5) P(E4(s)¢) = 0 as s — oo,
we use (4.2) with a union bound. We obtain

P(E4(s)°) < Z ¢~ cs812Csa” " \/g(2) log () _, 0 as s — oc.

we(38)°
This shows (4.5). Putting (4.4) and (4.5) into (4.3), we find
Sli_g)loP (M(t) > Cyptlogt for some t > s)

(4.6) = SILIEOIP ((NE_1Ei(s)) N {M(t) > Cyotlogt for some t > s}).

The rest of the proof serves to show that if Cyg is large, then (4.6) is zero. To
do this, we choose an outcome in the event in (4.6), and let tg > s. Pick z( as any
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vertex with maximal value of g(z¢) in a bounded component C of B(t)¢ with the
largest number of vertices. Analogously to (3.1), let

Sz = {v eR?: |Z(v,20)| < Jp, and 1 — K, < 9(v) < 1},

g(zo) ~
where
K - 3C35+/9(x0) log g(zo)
o —
g(wo)
and
64
Jpg = — K, .
0 acas 0

By a similar argument to that which gave (3.5), if s is large, because M (tg) >
Caoto log to,

C contains a vertex in S ,
so long as Cjyq is fixed to be large enough. Because of this, we can find a path
contained in C starting at g that ends at a vertex outside of S;,; we may assume
only its final vertex, say po, is outside of S;,. We also let 7/ be the continuous
plane curve produced by following « from zg to its last point p{ on the boundary
of S,, (directly before v touches pg). As we have done in the last section, we must
exclude the possibility that py is on the left or right sides of S,,, or on the near
side. The point p{, cannot be on the far side only because g(x) is maximal among
vertices in C.

Step 2 (The hole cannot touch the near side). The first case is that pj is in the
near side

Sgo = {U € Swo :g(v) = (1 - Kio)g(xo)}'

If s is large, then py € 3toB \ ((to/3)B), so since E3(s) occurs, we have for some
041 >0

T(0,p0) < g(po) + C351/9(po) log g(po)
< Cu1 +9(pp) + C351/ 9(pp) log g(pp)
= Cn1 + g(w0) — 3C351/g(20) log g(z0) + 035\/m
< g(z0) — 2C351/g(w0) log g ().
Because T'(0,20) > g(z0) — Cs5+/9(0) log g(z0), we obtain
(4.7) T(0,2) — T(0, po) > C35+/g(wo) log g(x0)

as long as s is large. On the other hand, py ¢ B(to), so T'(0,pg) > to. Furthermore,
Zo is an endpoint of an edge with an endpoint in B(tp), and this edge must have
weight at most Csg logty because Fs(s) occurs. Therefore

T(0,2z9) —T(0,po) < Csglogty +to —tg = Csg log to.
Because tg < (2/c22)||xo||2 from (3.7), this contradicts (4.7).

Step 3 (The hole cannot touch the left and right sides). The second case is that
pp satisfies |Z(zo,p0)| = Ju,- We will suppose that Z(xo,pj) = Ju,, as the other
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possibility is dealt with using a similar argument. Let yo € R? satisfy Z(yo,z0) =
Juo/2 and g(yo) = g(xo), and choose a vertex go with g(5o) > g(yo) but [lyo—7o|l1 =
1. Let o be any geodesic from gy to 0. As in the proof of (3.16), as o proceeds
from gp to 0, planarity implies it must touch one of the rays

M= {veR?: L(v,29) =0} or M' = {w € R* : L(v,20) = Jo, }
before touching the set B’ = {v : g(v) = (1 — K,,)g(z0)}. Indeed, if this were false,

then because the curve 4/ connecting zo to pj must contain a segment crossing the
region

W = {v eR?: 1Y) ¢ ((1- K,), 1], Z(v, o) € [0, Jzo]}
9(@o)

between its two side boundaries, ¢ would have to intersect 7’ at a vertex w. As
in the last section, this gives a contradiction because w € C, so T'(0,w) > to, but
because o originates outside of C, it must touch some @ € B(ty) before reaching
w, and so to > T(0,w) > T(0,w) > to.

Without loss of generality, we suppose that o touches some p; € M’ before some
p2 € B’. Let p; be the vertex we encounter on o directly before p; as we proceed
from gy to 0, and let ps be the vertex we encounter on o directly after ps. Because

p2 € B, we have g(p2) = g(z9) — 3C554/g(x0) log g(xp). The event Ea(s) N Es(s)

occurs, so for large s,
T(0,p2) = g(P2) — C35v/g(p2) log g(p2)
> g(p2) — Cs5/9(p2) 10g 9(p2) — Caz
= g(x0) — 3C35/g(0) log g(0) — C351/9(p2) log g(p2) — Caz

> g(xo) — 4C35+/g(x0) log g(xo).

Here, Cyo > 0 is a constant. Because p; appears first on o, we have T(0,p1) >
T(07f)2)7 SO

(48) T(O,pl) Z g(IQ) — 4035\/ g(.Io) logg(xo)

To obtain an upper bound on 7(0, 1), we use the occurrence of Fy(s) N E3(s)
to estimate

T(0,p1) =T(0,%0) — T (Yo, P1)
< T(0,90) + Csglogto — T(o, P1)
(4.9) < g(@o) + C351/g(20) log g(x0) + Cz9logto — T'(§o, P1)-
Any path from gy to p; must have at least ||go — p1||1 many edges, and by (3.6), if
s is large,

o . [
I = 21l > o~ pall = 2. sin (52 ) ol — 2

Zo

> —2

<7 ||yo||2
3 64

=1 ?035 g(ﬂﬁo)logg(a?o)M -
3 64

> g2 @Cswg(xo) log g(zo)-
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If s is large, this is bigger than (12C35/a)+/g(9o) log g(%o), so since E4(s) occurs,

(4.10) T(90,p1) > 12C35+/9(¥0) log g(Jo) > 6C35+/g(x0) log g(wo).

Returning to (4.9), for large s, we get

T(0,p1) < g(xo) + (C35 — 6C35) \/g(w0) log g(xo) + Csglog to.

This contradicts (4.8) for large s, since to < (2/ca2)|ol|2 from (3.7).
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