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Abstract. First-passage percolation is a random growth model defined on
Z
d using i.i.d. nonnegative weights (τe) on the edges. Letting T (x, y) be the

distance between vertices x and y induced by the weights, we study the random
ball of radius t centered at the origin, B(t) = {x ∈ Z

d : T (0, x) ≤ t}. It is
known that for all such τe, the number of vertices (volume) of B(t) is at
least order td, and under mild conditions on τe, this volume grows like a
deterministic constant times td. Defining a hole in B(t) to be a bounded
component of the complement B(t)c, we prove that if τe is not deterministic,
then a.s., for all large t, B(t) has at least ctd−1 many holes, and the maximal
volume of any hole is at least c log t. Conditionally on the (unproved) uniform

curvature assumption, we prove that a.s., for all large t, the number of holes
is at most (log t)Ctd−1, and for d = 2, no hole in B(t) has volume larger than
(log t)C . Without curvature, we show that no hole has volume larger than
Ct log t.

1. Introduction

1.1. Backgound and definitions. In the ’60s, Hammersley-Welsh introduced
first-passage percolation (FPP) on the cubic lattice Z

d as model for fluid flow in
a porous medium. FPP is now often viewed in other ways: as a random growth
model, a particle system, or a random metric space; see [1, 9] for recent surveys.
In addition to the usual questions, like passage time asymptotics, the geometry of
geodesics, and concentration bounds, attention has recently been paid to the bound-
ary of the growing set B(t) [3,5,11] and its topological properties [12]. The purpose
of the current paper is to continue some of these newer questions, addressing the
number and size of holes in B(t).

Consider Z
d, the d-dimensional integer lattice with nearest-neighbor edges E

d.
Let (τe)e∈Ed be an i.i.d. family of nonnegative random variables (the edge-weights)
assigned to the edges. A path from a vertex x to a vertex y is an alternating
sequence x = x0, e0, x1, e1, . . . , xn−1, en−1, xn = y of vertices and edges such that
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ei = {xi, xi+1} ∈ E
d for all i = 0, . . . , n− 1. The passage time of a path γ is

T (γ) =

n−1∑

i=0

τei ,

and the first-passage time from x to y is

T (x, y) = inf
γ:x→y

T (γ),

where the infimum is over all paths γ from x to y.
We study the random “ball”

B(t) = {x ∈ Z
d : T (0, x) ≤ t} for t ≥ 0.

The shape theorem of FPP gives a type of law of large numbers for B(t), and states
that the rescaled set B(t)/t converges to a deterministic limiting shape as t → ∞.
The usual assumptions are that

(1.1) P(τe = 0) < pc(d),

where pc(d) is the critical value for d-dimensional Bernoulli bond percolation (a
constant known to be in the open interval (0, 1) for d ≥ 2 and to be equal to
1/2 for d = 2), and Emin{τd1 , . . . , τd2d} < ∞, where the τi are i.i.d. copies of τe.
Under these conditions [10, Thm. 1.7], there exists a nonrandom convex set B
which is invariant under permutations of the coordinates and under reflections in
the coordinate hyperplanes, has nonempty interior, and which is compact, such
that for all ε > 0,

(1.2) P

(
(1− ε)B ⊂ 1

t
B̃(t) ⊂ (1 + ε)B for all large t

)
= 1.

Here, B̃(t) is the sum set {x+ y : x ∈ B(t), y ∈ [0, 1)d}. This B is the unit ball of
a norm g on R

d:

B = {z ∈ R
d : g(z) ≤ 1}.

Hence, in the limit, the set B(t) has no holes, but holes may be present for finite t.
Only assuming (1.1), Kesten’s lemma [10, Lem. 5.8] implies that B(t) is a.s. finite

for each t ≥ 0 and so the complement B(t)c is a union of finitely many connected
components. All but one of these components is finite. We then define the number
of “holes” in B(t) as

N(t) = number of finite connected components of B(t)c

and the volume of the largest hole as

M(t) = max {#S : S is a finite connected component of B(t)c} .

If τe is deterministic, then N(t) = 0 for all t, so we will assume

(1.3) the distribution of τe is non-trivial.

In other words, the support of the distribution of τe contains at least two points.
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1.2. Main results. Our results give upper and lower bounds on N(t) and M(t)
under some conditions on the weights (τe). First are the lower bounds.

Theorem 1.1. Suppose (1.1) and (1.3) hold.

(1) There exists c > 0 such that

P (M(t) ≥ c log t for all large t) = 1.

(2) There exists c > 0 such that

P
(
N(t) ≥ ctd−1 for all large t

)
= 1.

The proof of Theorem 1.1 appears in Section 2. Close inspection of the proof
reveals that a.s., for all large t, the number of holes of B(t) of volume at least c log t
is at least td−1−α for some α which satisfies α(c) → 0 as c → 0.

The authors of [12] study the Betti numbers associated with the growing set in
the Eden model, a simple model for cell growth. Their results give asymptotics for
these numbers and, in particular, show that with high probability, the number of
holes at time t is the same order as the perimeter, which is at least td−1. The same
bound therefore holds for a site-FPP model with exponential weights, because it is
equivalent, through the memoryless property of exponentials, to the Eden model.
Our proof of item 2 of Theorem 1.1 has a similar structure to theirs. For large
t, we condition on B(t) and find order td−1 many disjoint sets in B(t)c near the
boundary of B(t). Each such set has a positive probability to contain a special
configuration that will develop into a hole in B(t + C) for a constant C > 0.
Because we cannot use the memoryless property, finding and constructing these
holes is more complicated. First, if the weights are bounded, we cannot just create
a hole by increasing the weights of the 2d edges incident to a particular vertex in
B(t)c. Instead, in step 1 of the proof, we must define a more detailed high-weight
event that ensures the existence of holes. Second, if the weights are unbounded,
high-weight boundary edges may prevent B(t+C) from enveloping our high-weight
configurations outside B(t) in constant time. We must therefore show in step 2 that
for large t, the boundary of B(t) contains many sections of low-weight edges that
are near large areas in B(t)c.

Remark 1.2. Holes in B(t) were also previously studied in the proof of lower bounds
on the size of the edge boundary of B(t) in [5, Thm. 1.3]. Their argument involves
constructing order td(1 − FY (t)) many unit-size holes in B(t), where FY is the
distribution function of min{τ1, . . . , τ2d} and the τi are i.i.d. copies of τe. These
holes arise from isolated vertices all of whose incident edges have high weight. When
τe has a heavy tail, this number can be made arbitrarily close to td. The strategy
from [5] does not obviously extend to lighter-tailed distributions, and the holes built
in the proof of Theorem 1.1 above arise instead from large regions of slightly large
edge-weights.

Remark 1.3. As mentioned, if we remove assumption (1.3), we obtain N(t) = 0
for all t. Regarding assumption (1.1), if F (0) > pc but (1.3) holds (that is, τe is
not identically zero), then there is an infinite component of zero-weight edges a.s.,
and #B(t) = ∞ for all large t. In addition, we have N(t) = M(t) = ∞ for all
such t a.s. On the other hand, the situation when F (0) = pc is more complicated
because the growth rate of B(t) can depend on the distribution of τe [8]. For some
τe, we still have #B(t) = ∞ for all large t (and so N(t) = M(t) = ∞), but for



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1644 DAMRON, GOLD, LAM, AND SHEN

others, #B(t) < ∞ for all t a.s. Our proof of Theorem 1.1 can be used for d = 2
to give a (probably nonoptimal) lower bound for N(t) in terms of the growth rate
of B(t). For d ≥ 3, there is not currently a simple condition on τe to determine if
#B(t) = ∞ for finite t. For these reasons, we leave this case for a future study.

Turning to upper bounds, each bounded component of B(t)c contributes at least
one edge to the edge boundary of B(t)

∂eB(t) = {{x, y} : x ∈ B(t), y /∈ B(t)}.
Therefore N(t) ≤ #∂eB(t), and any upper bound for the size of the edge bound-
ary holds also for N(t). In [5], Damron-Hanson-Lam gave some such inequalities,
proving in particular that if Y is the minimum of 2d many i.i.d. edge-weights, then
#∂eB(t) is at most order td−1

Emin{Y, t} for “most” times (see [5, Thm. 1.2]). This
gives a weak complement to the inequality in item 2 of Theorem 1.1 when EY < ∞.
We focus instead on a different result of [5] which involves the “uniform curvature
condition” of Newman. This condition is unproved, but believed to be true for
distributions of τe that are, say, continuous; see [1, Sec. 2.8] for more details.

Definition 1.4. We say that the limit shape B satisfies the uniform curvature
condition if there exist constants c > 0, η > 0 such that for all z1, z2 ∈ ∂B and
z = (1− λ)z1 + λz2 with λ ∈ [0, 1],

1− g(z) ≥ cmin{g(z − z1), g(z − z2)}η,
where g is the norm associated to B.

This condition is typically used in concert with an exponential moment condition:

(1.4) Eeατe < ∞ for some α > 0,

but it is possible to define B and therefore uniform curvature without any moment
condition on τe.

As a consequence of the bound on #∂eB(t) from [5, Thm. 1.5], we immediately
obtain the following.

Proposition 1.5. Suppose (1.1) and (1.4) hold, and assume the uniform curvature

condition for B. There exists C > 0 such that

P
(
N(t) ≤ (log t)Ctd−1 for all large t

)
= 1.

This result does not directly imply a good upper bound on the maximal hole
size M(t). For that, we give the following result in two dimensions.

Theorem 1.6. Let d = 2. Suppose (1.1) and (1.4) hold, and assume the uniform

curvature condition for B. There exists C > 0 such that

P
(
M(t) ≤ (log t)C for all large t

)
= 1.

The proof of Theorem 1.6 is in Section 3. The argument bounds the diameter of
a hole in both the radial direction and the lateral direction by (log t)C . The radial
estimate (see “The first case . . . ” above (3.9)) is valid in general dimensions. To
bound the diameter in the lateral direction (below (3.15)), we must use planarity
to trap a hole between two geodesics. This second part of the proof only works
for d = 2. It would be interesting to study the geometry of holes in more detail.
Do the largest holes have larger diameter in the radial direction than in the lateral
one? Is there an asymptotic shape for these holes?
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Remark 1.7. In fact, one can modify the proof of Theorem 1.6 slightly to obtain a
weaker statement for d ≥ 3. For any finite set of vertices A, we define the in-volume
of A to be

InVol(A) = max{#Ξ(n) : ∃x ∈ A, n ≥ 0 such that x+Ξ(n) ⊂ A},
where Ξ(n) = [−n, n]d ∩ Z

d. One can show that for d ≥ 3, under (1.1), (1.4) and
the uniform curvature assumption, there exists a constant C > 0 such that a.s. for
all large t, we have max{InVol(S) : S is a finite connected component of B(t)c} ≤
(log t)C . In a certain sense, this means that the size of the largest “d-dimensional”
hole (which is more or less symmetric) is no larger than (log t)C , but it does not
rule out the possibility that there is a larger asymmetric hole (possibly of a “lower
dimension”).

Without the curvature assumption, the method of proof of Theorem 1.6 still
works in some form, and produces the following weaker result. It gives a bound on
the diameter of a hole in both the radial and lateral direction of order

√
t log t. Its

proof is in Section 4.

Theorem 1.8. Let d = 2. Suppose (1.1) and (1.4) hold. There exists C > 0 such

that

P (M(t) ≤ Ct log t for all large t) = 1.

1.3. Outline of the paper. The rest of the paper consists of proofs of the main
results. First, in Section 2, we prove Theorem 1.1. The proof contains three steps.
In step 1, we construct a high-weight event contained in an 	1-ball Λ(n) that is
used to create holes in B(t). In step 2, we show how to find translates of Λ(n)
that are directly outside B(t). In step 3, we put these tools together to prove that
a.s., for all large t, many of the translates of Λ(n) outside of B(t) have high-weight
configurations that turn into holes in B(t) after a short time. In Section 3, we
move to the proof of Theorem 3. The argument shows that a.s., for all large t, the
largest hole in B(t) must be contained in a sector of an annulus with volume of
order (log t)C (see Fig. 6). Last, in Section 4, we show how to modify the proof
from Section 3 without the curvature assumption to prove Theorem 1.8.

2. Proof of Theorem 1.1

Throughout this section, we suppose that (1.1) and (1.3) hold. Therefore we can
pick a, b with 0 < a < b such that for every δ > 0,

(2.1) P(τe ∈ [a− δ, a]) > 0 and P(τe ∈ [b, 2b]) > 0.

Step 1 (Contruction of a high-weight event). We first construct a high-weight event
that ensures the existence of holes. For n ≥ 1, let

Λ(n) = {x ∈ Z
d : ‖x‖1 ≤ n}

and write ei for the i-th coordinate vector. For m1,m2,m3 ≥ 1, define the region

R = R(m1,m2,m3) =

{
x ∈ Z

d : −m1 ≤ x · e1 ≤ m2,
d∑

i=2

|x · ei| ≤ m3

}
,

with interior boundary

R̂ = R̂(m1,m2,m3) = {x ∈ R : ∃y ∈ Z
d \R with ‖x− y‖1 = 1}.
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Also define the discrete line segment

L = {ke1 : k = −n, . . . ,−m1}.
(See the left side of Fig. 1.)

B(t) L R

m1
m2

m3

R̂1 R̂2

R̂3

Figure 1. On the left: the rectangle R inscribed in the set Λ(n),
translated to touch the growing ball B(t) at a corner. On the right:

the interior vertex boundary of R, defined as R̂, is partitioned into
R̂1, R̂2, and R̂3, indicated by the left (light grey), right (black),
and top (dark grey) vertices. The origin is represented by the solid
ball inside R.

Given these geometric definitions, we now define our high-weight event. It is En,
the event that

(1) τe ∈ [a− δ, a] for all e = {x, y} with x, y ∈ R̂ ∪ L, and
(2) τe ∈ [b, 2b] for all other e = {x, y} with x, y ∈ Λ(n).

In step 3, we will use this event to create a hole in B(t). The edges in item 1 allow
one to enter Λ(n) at −ne1, travel along L, and quickly encircle the high-weight
region in R, where a hole can appear.

Lemma 2.1. Let a, b be as in (2.1) and ε < (b− a)/(2b+ 3a). If

1 ≤ m2 ≤ εm3 ≤ ε2m1 ≤ ε3n,

then, for any δ > 0, on En,

(2.2) TΛ(n)(−ne1, y) ≤ a(n+ 2m3) + am2 for all y ∈ R̂,

and

(2.3) TΛ(n)(x, 0) ≥ (a− δ)(n+ 2m3) + bm2 for all x ∈ Z
d with ‖x‖1 = n,

where TΛ(n) is the minimal passage time over paths whose vertices are in Λ(n).

Proof. Throughout the proof we will use the sides of R̂:

R̂1 = {w ∈ R̂ : w · e1 = −m1}, R̂2 = {w ∈ R̂ : w · e1 = m2},
and

R̂3 = {w ∈ R̂ : −m1 < w · e1 < m2}.
(See the right side of Fig. 1.)

To show (2.2), let y ∈ R̂; we will construct a path γ from −ne1 to y and estimate
its passage time. By symmetry, we may assume that y · ei ≥ 0 for i = 2, . . . , d.
If y ∈ R̂1 ∪ R̂3 then there is a γ from −ne1 to y with ‖ − ne1 − y‖1 many edges

all of which have both endpoints in R̂ ∪ L. To build γ, start at −ne1 and move to
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−m1e1 along L. If y ∈ R̂1, move to y by increasing each i-th coordinate for i = 2,

. . . , d in sequence. If y ∈ R̂3, move to −m1e1 +
∑d

i=2(y · ei)ei by increasing each
i-th coordinate for i = 2, . . . , d in sequence, and then move to y by increasing the
first coordinate. The path γ as constructed has the desired properties, and

T (γ) ≤ a‖ − ne1 − y‖1 ≤ a(n+m3 +m2) ≤ RHS of (2.2).

If, instead, y ∈ R̂2, then we again move from −ne1 to −m1e1 along L, and then
to the vertex

q = −m1e1 +

(
m3 −

d∑

i=2

(y · ei)
)
e2 +

d∑

i=2

(y · ei)ei

by increasing each i-th coordinate for i = 2, . . . , d in sequence. Then we move to
q+ (m1 +m2)e1 by increasing the first coordinate, and finally decrease the second
coordinate to reach y. This γ as constructed has

(n−m1) +m3 + (m1 +m2) + (m3 −
d∑

i=2

|y · ei|) ≤ n+ 2m3 +m2

many edges with weight ≤ a, so we obtain (2.2).
For (2.3), we first show that if x ∈ Z

d has ‖x‖1 = n, then

(2.4) TΛ(n)(x, 0) ≥ TΛ(n)(−ne1, 0).

To do this, let u be the first intersection of any TΛ(n)-optimal path from x to 0

with the set R̂∪L. Write γ1 for the segment from x to u and γ2 for the remaining
segment. Then

TΛ(n)(x, 0)− TΛ(n)(−ne1, 0) ≥ (T (γ1) + T (γ2))− (TΛ(n)(−ne1, u) + T (γ2))

= T (γ1)− TΛ(n)(−ne1, u).(2.5)

Because γ1 uses only edges with weight ≥ b, T (γ1) ≥ b‖x − u‖1 ≥ b(n − ‖u‖1). If
u ∈ L equals −ke1, then this is b(n− k), but TΛ(n)(−ne1, u) ≤ a(n− k), so (2.5) is

nonnegative. If, on the other hand, u ∈ R̂, then n − ‖u‖1 ≥ n − (m1 +m3) so by
(2.2),

T (γ1)− TΛ(n)(−ne1, u) ≥ b(n−m1 −m3)− a(n+ 2m3 +m2)

≥ b(n− 2m1)− a(n+ 3m1)

≥ (b− a− 2bε− 3aε)n,

which is > 0. This shows (2.4).
To prove (2.3), it now suffices by (2.4) to give the same lower bound for the

variable TΛ(n)(−ne1, 0). Consider any TΛ(n)-optimal path ρ from −ne1 to 0 and
let u1 be the last vertex of ρ with u1 · e1 = −m1. First, if ρ contains no point in
R̂3 after u1, then let u′

1 be its first point after u1 with u′
1 · e1 = 0. Then all edges

on ρ between u1 and u′
1 have weight ≥ b, so we obtain

(2.6)
TΛ(n)(−ne1, 0) = T (ρ) ≥ (a−δ)‖−ne1−u1‖1+b‖u1−u′

1‖1 ≥ (a−δ)(n−m1)+bm1.

Otherwise, ρ contains a point in R̂3 after u1. Let u3 be the last such point. If ρ
does not contain a point of R̂2 after u3, then all edges on ρ after u3 have weight
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Figure 2. Illustration of the last part of the proof of Lemma 2.1.
The path depicted in white, ρ, is a TΛ(n)-optimal path from −ne1
to 0.

≥ b, and we obtain

TΛ(n)(−ne1, 0) = T (ρ) ≥ (a− δ)‖ − ne1 − u3‖1 + b‖u3‖1

= (a− δ)(n+ u3 · e1) + (a− δ)
d∑

i=2

|u3 · ei|+ b
d∑

i=1

|u3 · ei|

≥ (a− δ)(n+m3) + bm3.(2.7)

Here we have used that
∑d

i=2 |u3 · ei| = m3.

The last possibility, shown in Fig. 2, is that ρ contains a point of R̂2 after u3;
let u2 be the last such one. Again, all edges on ρ after u2 must have weight ≥ b, so
TΛ(n)(−ne1, 0) is at least

(a− δ)‖ − ne1 − u3‖1 + (a− δ)‖u3 − u2‖1 + b‖u2‖1

= (a− δ)(n+ u3 · e1 +m3) + (a− δ)

(
(u2 − u3) · e1 +

d∑

i=2

|(u3 − u2) · ei|
)

+ b
d∑

i=1

|u2 · ei|

≥ (a− δ)(n+m3) + (a− δ)
d∑

i=2

(|(u3 − u2) · ei|+ |u2 · ei|) + (b+ a− δ)(u2 · e1)

≥ (a− δ)(n+ 2m3) + bm2.

(2.8)

We claim that among (2.6)–(2.8),

(2.9) the term in (2.8) is minimal.

Combining this fact with (2.4) will complete the proof of (2.3). To see why (2.9)
holds, we write the difference between the terms in (2.6) and (2.8) as

(a− δ)(n−m1) + bm1 − (a− δ)(n+ 2m3)− bm2 ≥ b(m1 −m2)− a(m1 + 2m3)

≥ (b− a− bε2 − 2aε)m1,
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which is > 0. Also, the difference between the terms in (2.7) and (2.8) is

(a− δ)(n+m3) + bm3 − (a− δ)(n+ 2m3)− bm2 = −(a− δ)m3 + b(m3 −m2)

≥ (b− εb− a)m3,

which is also > 0. This completes the proof of (2.9). �

Step 2 (Placing the high-weight events outside B(t)). Now that we have our high-
weight event En which takes place in Λ(n), we describe a procedure to find trans-
lates of Λ(n) that are directly outside the growing ball B(t). These will house
images of the event En, and will force holes in the ball at a time soon after t.

B
x

x+Λ(n)

ex γx

x−ne1

Figure 3. On the left: a (b′, n)-good vertex x, the center of the
small diamond x+Λ(n). The larger diamond and its center (corre-
sponding to some 4ny for y ∈ ∂∞Bn, in notation introduced later)
are not labeled, but are part of the statement in display (2.13).
On the right: a close-up of the path γx for the good vertex x. The
initial vertex of γx is x− ne1, and its terminal edge is ex.

Let B be a finite connected set of vertices (like B(t)) and let n ≥ 1 and b′ ≥ 0.
We say that a vertex x ∈ Bc is (b′, n)-good for B if

(1) x+Λ(n) ⊂ Bc but x+Λ(n+ 1) intersects B, and
(2) there exists a path γx starting at a vertex of the form x± nej such that

(a) γx uses no vertices of either x+Λ(n− 1) or B,
(b) some edge ex connects the final point of γx to a vertex in B and has

τex ≤ b′, and
(c) γx has at most

√
n+ d many edges.

Roughly speaking, if x is (b′, n)-good for B, then we are able to find a path from
B to x with relatively small passage-time. Moreover, from 2(a), the passage time
of this path is independent of all the edge-weights in a neighborhood of x, B and
its boundary. Once we fix the shape of B(t) to be B, the existence of a (b′, n)-good
vertex for B will allow us to create a hole at a later time t′ > t in B(t′) with high
probability, by using the high-weight events defined in the previous step. In fact,
we will show that there are many (b′, n)-good vertices for B.

Fix a constant c1 > 0. We say that B is (b′, n)-good if there is a set S(B) of
vertices x that are (b′, n)-good for B such that

(2.10) any distinct x, x′ ∈ S(B) have ‖x− x′‖1 ≥ 4dn

and

(2.11) #S(B) ≥ c1
nd−1

#B
d−1

d .

Fig. 3 illustrates (b′, n)-good vertices and Fig. 4 illustrates a (b′, n)-good set B.
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Figure 4. Illustration of a (b′, n)-good connected setB of vertices.
The translates x+Λ(n), as x ranges over the set S(B) of vertices
that are (b′, n)-good for B, are shown in black.

Proposition 2.2. There exist b′, c1, C2, c3 > 0 such that

P (∃ connected B with 0 ∈ B,#B = N and B is not (b′, n)-good)

≤ C2

(
N

n

)d

exp
(
− c3
nd−1

N
d−1

d

)

for all large n and for all N ≥ 1.

Proof. Let B be a connected set with #B = N and 0 ∈ B. By taking C2 large, we
may assume that N ≥ (4n)d, so that

(2.12) 0 ∈ B and B is not contained in [−2n, 2n− 1]d.

To verify that B is (b′, n)-good with high probability, we first consider vertices of
the form 4ny which are directly outside of B. So, we cover B with boxes to get

Bn = {z ∈ Z
d : (4nz + [−2n, 2n− 1]d) ∩B 
= ∅},

which is also a finite connected set. Using the notation

∂∞V = {y ∈ Vc : y is in the infinite component of Vc, ∃z ∈ V with ‖y−z‖∞ = 1}
for the exterior ∗-boundary of a finite connected V ⊂ Z

d, we remark that ∂∞Bn is
connected [14, Thm. 3]. For v ∈ Z

d, define σv = maxe τe, where the maximum is
taken over all edges e within distance d of v. For y ∈ Z

d, let Fy be the event that
there exists a vertex self-avoiding path in 4ny + [−7dn, 7dn− 1]d with �√n� many
edges and whose vertices v satisfy σv > b′. In this first part of the proof, we show
that

(2.13)
if y ∈ ∂∞Bn and F c

y occurs, then some vertex in
4ny + [−6dn, 6dn]d is (b′, n)-good for B.

(See Fig. 5.)
To prove (2.13), suppose that y ∈ ∂∞Bn and F c

y occurs. Because y /∈ Bn,

we have 4ny + [−2n, 2n − 1]d ⊂ Bc. Choose y0 ∈ B such that ‖y0 − 4ny‖1 =
miny′∈B ‖y′ − 4ny‖1. Because there is a z ∈ Bn with ‖z − y‖∞ = 1, we know
4ny + [−6n, 6n− 1]d intersects B, and so

2n ≤ ‖y0 − 4ny‖∞ ≤ ‖y0 − 4ny‖1 ≤ 6dn.
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To select our point x which will be (b′, n)-good for B, we assume without loss in
generality that (y0 − 4ny) · ei ≥ 0 for all i = 1, . . . , d, and that the first coordinate
of y0− 4ny is maximal. Because ‖y0− 4ny‖∞ ≥ 2n, we find (y0− 4ny) ·e1 ≥ n+1,
and we define

x = y0 − (n+ 1)e1.

Then ‖x−y0‖1 = n+1 and so x+Λ(n+1) intersectsB at the point y0 = x+(n+1)e1.
However, if w ∈ x+Λ(n), then ‖w−4ny‖1 ≤ ‖w−x‖1+‖x−4ny‖1 ≤ n+‖x−4ny‖1
and

‖x− 4ny‖1 = ‖y0 − 4ny − (n+ 1)e1‖1 = ‖y0 − 4ny‖1 − (n+ 1),

so ‖w−4ny‖1 ≤ ‖y0−4ny‖1−1, giving by minimality of y0 that w /∈ B. Therefore
x+Λ(n) ⊂ Bc. Furthermore, because (y0 − 4ny) · e1 = ‖y0 − 4ny‖∞ ≥ n+ 1, we
have ‖x− 4ny‖∞ = ‖y0− 4ny− (n+1)e1‖∞ ≤ ‖y0− 4ny‖∞ ≤ 6dn, so we conclude
that x ∈ 4ny + [−6dn, 6dn]d. This shows that

x ∈ 4ny+[−6dn, 6dn]d, x+Λ(n) ⊂ Bc, and x+Λ(n+1) intersects B at a point y0,

where y0 = x + (n + 1)e1. Even without our assumptions on (y0 − 4ny) · ei, we
obtain the same statement, but y0 is then of the form x ± (n + 1)ej . This shows
item 1 of the definition of (b′, n)-good for the vertex x.

Figure 5. Extracting a collection of (b′, n)-good vertices (the cen-
ters of the black diamonds) surrounding a connected set B of ver-
tices, in light grey. The smaller diamonds are centered at vertices
4ny for y in the set ∂∞Bn (shown in grey) such that F c

y occurs.

If the edge connecting y0 to the unique vertex w0 in x +Λ(n) has weight ≤ b′,
then we can simply set γx to be the path with no edges and a single vertex w0.
In general, though, we must find a nearby edge satisfying this weight constraint.
We observe that w0 is in the exterior ∗-boundary ∂∞B of B. This is because
it is adjacent to y0, which is in B, but also can be connected to 4ny without
touching B, and y ∈ ∂∞Bn. Assumption (2.12) ensures that B is not contained in
w0 + [−√

n,
√
n]d. Neither is ∂∞B if n is large, and so we can select w′

0 ∈ ∂∞B

which is not in w0 + [−√
n,

√
n]d. Because ∂∞B is connected, there is a vertex

self-avoiding path p from w0 to w′
0 in ∂∞B and since x + Λ(n) ⊂ Bc, the path p

cannot use any vertices of x+Λ(n−1). Let px be the initial segment of p consisting
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of the first �√n� many edges and list the vertices of px as w0, w1, . . . , w�√n�. Each
wi is 1 unit away from B in 	∞-distance. If there exist an i and a path γi from wi

to B with 	1-length equal to min{‖wi− ū‖1 : ū ∈ B} (which is at most d) such that
the final edge fi of γi has τfi ≤ b′ for some i, we let i0 be the first such i and define
γx to be the initial segment of px from w0 to wi0 concatenated with γi0 (with the
point in B and the edge fi removed). This γx satisfies conditions (a)–(c) of the
definition of (b′, n)-good. If i0 does not exist, then the entire path px must have
vertices with σv > b′, meaning that Fy occurs. This shows (2.13).

Given (2.13), we can now return to the main proof. Let B be connected with
#B = N and such that (2.12) holds. The set Bn satisfies (4n)d#Bn ≥ #B = N ,
so the isoperimetric inequality implies

(2.14) #∂∞Bn ≥ c4
nd−1

N
d−1

d .

Suppose that B is not (b′, n)-good. We claim that for some constant C5 > 0, and
c1 from the definition of (b′, n)-good,

(2.15)
∑

y∈∂∞Bn

1F c
y
≤ C5c1

nd−1
N

d−1

d .

To see why, partition ∂∞Bn into C5 = C5(d) many subsets S1, . . . , SC5
such that

if for a fixed i, we select distinct y, y′ ∈ Si, then ‖y−y′‖∞ ≥ 4d. If for some such i,
F c
y and F c

y′ both occur, then let x, x′ be the corresponding (b′, n)-good points from

(2.13). We have

‖x− x′‖1 ≥ ‖x− x′‖∞ ≥ ‖4ny − 4ny′‖∞ − ‖4ny − x‖∞ − ‖4ny′ − x′‖∞
≥ 16dn− 6dn− 6dn = 4dn.

The definition of (b′, n)-good then implies
∑

y∈Si
1F c

y
< (c1/n

d−1)N (d−1)/d for i =

1, . . . , C5, and this gives (2.15).
Since B ⊂ [−N,N ]d, we have Bn ⊂ [−(N/n) − 1, (N/n) + 1]d and so ∂∞Bn ⊂

[−(N/n) − 2, (N/n) + 2]d. Taking c4 from (2.14), if AN,n is the event that there
exists a finite connected set S ⊂ Z

d such that

#S ≥ c4
nd−1

N
d−1

d and S ⊂
[
−N

n
− 2,

N

n
+ 2

]d
,

but
∑

y∈S
1F c

y
≤ (c1C5/c4)#S, then

(2.16)
P(∃ connected B with 0 ∈ B,#B = N and B is not (b′, n)-good) ≤ P(AN,n).

Let Sk be the collection of connected S ⊂ Z
d such that #S = k and S contains the

origin. Using the bound #Sk ≤ (2de)k ≤ eC6k [2] for some C6 > 0, we obtain for
	 ≥ 0

# connected S ⊂ Z
d ∩ [−	, 	]d with #S = k

≤
∑

v∈[−�,�]d

# connected S ⊂ Z
d containing v with #S = k

≤ (2	+ 1)deC6k.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

HOLES IN FIRST-PASSAGE PERCOLATION 1653

Applying this with 	 = N/n+ 2, we see that

(2.17) P(AN,n) ≤
(
2
N

n
+ 5

)d ∑

k≥ c4

nd−1
N

d−1

d

eC6k max
S∈Sk

P

⎛
⎝
∑

y∈S

1F c
y
≤ c1C5

c4
k

⎞
⎠ .

For a given S ∈ Sk, the events 1F c
y
are not independent as y ranges over S, but

they are only finitely dependent. Therefore we can extract a subset of size at least
c7k such that as y ranges over the subset, the events 1F c

y
are independent. This

implies that

max
S∈Sk

P

⎛
⎝
∑

y∈S

1F c
y
≤ c1C5

c4
k

⎞
⎠ ≤ P

⎛
⎝

�c7k�∑

i=1

Zi ≤
c1C5

c4
k

⎞
⎠ ,

where Zi are i.i.d. and have the same distribution as 1F c
0
. The right side is bounded

by

P

⎛
⎝

�c7k�∑

i=1

(1− Zi) ≥ �c7k� −
c1C5

c4
k

⎞
⎠ ≤ 2c7kP(F0)

�c7k�− c1C5

c4
k,

so we can return to (2.17) to state, for some C8 > 0,

(2.18) P(AN,n) ≤
(
2
N

n
+ 5

)d ∑

k≥ c4

nd−1
N

d−1

d

eC8kP(F0)
�c7k�− c1C5

c4
k.

Last, we must estimate P(F0). For a given vertex self-avoiding path γ in the box
[−7dn, 7dn− 1]d with �√n� many edges, the events {σv > b} as v ranges over the
vertices of γ are not independent, but they are finitely dependent. Again, we can
find a subset of the vertices of size at least c9

√
n such that as v ranges over the

subset, the events are independent. This gives

P(for all v ∈ γ, σv > b′) ≤ P(σ0 > b′)c9
√
n−1 ≤ ((2d)dP(τe > b′))c9

√
n−1.

The number of such paths γ is at most (14dn)d(2d)
√
n, so

P(F0) ≤ (14dn)d(2d)
√
n((2d)dP(τe > b′))c9

√
n−1.

Putting this in (2.18), we find

P(AN,n) ≤
(
2
N

n
+ 5

)d

×
∑

k≥ c4

nd−1
N

d−1

d

eC8k((14dn)d(2d)
√
n((2d)dP(τe > b′))c9

√
n−1)�c7k�−

c1C5

c4
k.

First choose c1 so small that �c7k� − c1C5k/c4 is at least c7k/2. After this, we
may choose b′ so large that the entire summand is at most 2−k. This produces the
bound

P(AN,n) ≤ 2 ·
(
2
N

n
+ 5

)d

2−
c4

nd−1
N

d−1

d
.

Combined with (2.16), this implies the statement of Proposition 2.2. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1654 DAMRON, GOLD, LAM, AND SHEN

Step 3 (Construction of holes). In this step we use the tools from the previous
steps to construct holes in B(t). First, by [4, Eq. (3)], our assumption (1.1) gives
a c10 > 0 such that

(2.19) P(c10t
d ≤ #B(t) < ∞ for all large t) = 1.

To place the translates of Λ(n) from step 2 around the set B(t), we choose a size
of one of the two forms

(2.20) n = nt = C11 ∈ N or �c12(log t)
1

d �.
We fix the rest of our parameters as follows:

(1) a, b are as in (2.1) and b′ is from Proposition 2.2,
(2) let δ = ε4, where ε < (b − a)/(2b + 3a) (compare to Lemma 2.1) will be

taken small in the proof of (2.25),
(3) m1 = �εn�,m3 = �εm1�,m2 = �εm3� and set H = �εm2�.

If C11 and t are large with c12 fixed, the mi’s satisfy the constraints in Lemma 2.1.
The parameter H will be a lower bound on the radius of a hole. Now we apply
Proposition 2.2 for

P(∃ connected B with 0 ∈ B, c10t
d ≤ #B < ∞ and B is not (b′, n)-good)

≤
∑

N≥c10td

P(∃ connected B with 0 ∈ B,#B = N and B is not (b′, n)-good)

≤ C2

∑

N≥c10td

(
N

n

)d

exp
(
− c3
nd−1

N
d−1

d

)
.

(2.21)

The application of Proposition 2.2 requires that n is large, and this holds for large
C11 and t for fixed c12. For either choice of n from (2.20), the expression in (2.21)
is summable in t, so for any large C11 and any fixed c12,

(2.22)
∑

t∈N

P
(
c10t

d ≤ #B(t) < ∞ but B(t) is not (b′, nt)-good
)
< ∞.

From the definition of (b′, n)-good, we get boxes of the form x +Λ(n) situated
around our set B(t), so now we must populate them with versions of the event En

from step 1. To do this properly, we need to decouple the variables inside B(t)
from those outside. For a given finite, connected B containing the origin that is
(b′, n) good, we may choose at least (c1/n

d−1)#B(d−1)/d many vertices x that are
(b′, n)-good for B and distinct x, x′ satisfy inequality (2.10). These vertices come
with edges ex and paths γx as in the definition. The edges and paths are contained
in the boxes [−n − √

n − d − 1, n +
√
n + d + 1]d + x because of item 2(c) in the

definition, and by (2.10), these boxes are disjoint for distinct x, x′. Enumerate the
first

r =
⌈ c1
nd−1

#B
d−1

d

⌉

many of these points in some deterministic way as x1, . . . , xr. All of the xi, γxi
,

and exi
are random, so we must fix their values for a large t ∈ N as

P
(
c10t

d ≤ #B(t) < ∞ and B(t) is (b′, n)-good
)

=
∑

B:c10td≤#B<∞

∑

(zi,πi,ei)ri=1

P

(
B(t) = B is (b′, n)-good,

xi = zi, γxi
= πi, exi

= ei ∀i

)
.(2.23)
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We observe that the event in the probability depends only on edges with at least
one endpoint in B, so it is independent of the weights of edges with both endpoints
outside of B.

For a given choice of (zi, πi, ei)
r
i=1, and B, we define events (Ai)

r
i=1 by the

following conditions. Ai is the event that:

(1) all edges e of πi have τe ≤ a, and
(2) the event TiEn occurs.

In item 2, TiEn is a certain translation and rotation of the high-weight event En

from step 1. Precisely, the initial point of πi is one of the points of the form zi±nej ,
and we define Ti to be an isometry of Rd that maps Λ(n) to zi +Λ(n) and −ne1
to the initial point of πi. Then TiEn is the event that the image configuration
(τT−1

i
(e)) is in En. Not only does the definition of En depend on n from (2.20) and

a, b, it also depends on δ = ε4 from (2.1) and the numbers m1,m2,m3. Regardless
of the values of the mi, since they are ≤ n, there exists C13 > 0 depending only on

a, b, ε such that P(En) ≥ e−C13n
d

. Using this in the definition of Ai, there exists
C14 > 0 also depending only on a, b, ε such that

P(Ai) ≥ exp
(
−C14n

d
)
for all i = 1, . . . , r.

Because the Ai’s are independent, we may bound the family (1Ai
)ri=1 stochasti-

cally from below by a family (Wi)
r
i=1 of i.i.d. Bernoulli variables with parame-

ter p = e−C14n
d

. By Hoeffding’s bound for Bernoulli random variables, we have
P
(
W1 + · · ·+Wr ≤ r p

2

)
≤ exp

(
− r

2p
2
)
, and therefore

P

(
r∑

i=1

1Ai
≤ r

2
exp

(
−C14n

d
)
)

≤ exp
(
−r

2
exp

(
−2C14n

d
))

.

For any large C11 and small c12, we have r ≥ c15(t/n)
d−1 for all large t, so

r

2
exp

(
−2C14n

d
)
≥ td−1 exp

(
−C16n

d
)
≥ c17t

d− 3

2 for all large t.

This implies for any large C11 and small c12,

P

(
r∑

i=1

1Ai
≤ exp

(
−C16n

d
)
td−1

)
≤ exp

(
−c17t

d− 3

2

)
for all large t.

Returning to the right side of (2.23), independence gives for any large C11 and
small c12,

(
1− exp

(
−c17t

d− 3

2

))
P
(
c10t

d ≤ #B(t) < ∞ and B(t) is (b′, n)-good
)

≤
∑

B:c10td≤#B<∞

∑

(zi,πi,ei)ri=1

P

(
B(t) = B is (b′, n)-good, xi = zi, γxi

= πi

exi
= ei ∀i,

∑r
i=1 1Ai

≥ exp
(
−C16n

d
)
td−1

)(2.24)

for all large t.
We will now argue that there exists ε > 0 such that on the event on the right of

(2.24), if C11 is any large number and c12 is any fixed number, then for all large t,
and all i such that Ai occurs,

(2.25) xi+Λ(H) is in a bounded component of B(s)c for all s ∈ [t+κ, t+κ+ε4n],
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where

(2.26) κ = κt = ε4n+ a(n+ 2ε2n) + aε3n,

and these components are distinct for distinct values of i. In this statement, as
before, n = nt, so that H (defined below (2.20)) and κ are also functions of t
(not s). To prove this, pick an outcome in this event with i such that Ai occurs,
and let ui be the endpoint of ei inB. Let vi be the endpoint of πi that is in xi+Λ(n).

Let y ∈ TiR̂ (this is the corresponding image of the set R̂ from Lemma 2.1 inside
x+Λ(n)). Because ui ∈ B(t) and πi has at most

√
n many edges, we have

T (0, y) ≤ T (0, ui) + τei + T (πi) + T (vi, y) ≤ t+ b′ + a
√
n+ a(n+ 2m3) + am2

≤ t+ κ.(2.27)

We have used (2.2) to estimate T (vi, y) and used b′ + a
√
n ≤ ε4n, which is valid

for any ε and c12 so long as C11 and t are large. On the other hand, if z ∈ Z
d has

‖z − xi‖1 ≤ H ≤ min{mi}, condition 2 of the definition of En implies

T (0, z) ≥ T (0, xi)− T (xi, z) ≥ T (0, xi)− 2Hb.

Let σ be any path from 0 to xi, let σ1 be the initial segment until its first vertex
outside B, and let σ2 be its terminal segment starting at the point at which it
enters xi +Λ(n) for the last time. Then because σ1 connects 0 to B(t)c,

T (σ) ≥ T (σ1) + T (σ2) ≥ t+ min
x:‖x−xi‖1=n

TTiΛ(n)(x, xi)

≥ t+ (a− δ)(n+ 2m3) + bm2.

The last inequality follows from (2.3). Take the infimum over σ to obtain

T (0, z) ≥ T (0, xi)− 2Hb ≥ t+ (a− δ)(n+ 2m3) + bm2 − 2Hb

≥ t+ (a− ε4)(n+ 2ε2n) + bε3n− (2b+ 1)ε4n

= t+ κ+ (b− a)ε3n− ε4(n+ 2ε2n)− (2b+ 2)ε4n.

Again we have assumed that ε is fixed, c12 is fixed, and C11 and t are large to
remove the floor function in the definition of the mi’s. From the above, we can
choose ε so small such that for any c12, and for any large C11,

T (0, z) ≥ t+ κ+ ε4n for all large t.

This inequality and (2.27) show that for any s in the interval described in (2.25), the

set xi + Λ(H) is in B(s)c, but TiR̂ is in B(s). This implies (2.25). Furthermore,
the sets xi + Λ(n) are disjoint, so since the components described in (2.25) are
contained in these sets, they are distinct for distinct values of i.

Given (2.25), we can finish the proof. Any component listed in (2.25) contains
xi + [0, H/d]d, so it has at least (H/d)d many vertices. If we define

Yt = min
s∈[t+κt,t+κt+ε4nt]

# bounded components of B(s)c with at

least
(
Ht

d

)d
many vertices,
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then we can continue from (2.24) with our ε from (2.25), any large C11 and any
small c12 to obtain

(
1− exp

(
−c17t

d− 3

2

))
P
(
c10t

d ≤ #B(t) < ∞ and B(t) is (b′, n)-good
)

≤
∑

B:c10td≤#B<∞

∑

(zi,πi,ei)ri=1

P

(
B(t) = B is (b′, n)-good, xi = zi, γxi

= πi,
exi

= ei ∀i, Yt ≥ exp
(
−C16n

d
)
td−1

)

= P
(
B(t) is (b′, n)-good, c10t

d ≤ #B(t) < ∞, Yt ≥ exp
(
−C16n

d
)
td−1

)(2.28)

for all large t. This implies for any large C11 and any small c12
∑

t∈N

P
(
c10t

d ≤ #B(t) < ∞ and Yt < exp
(
−C16n

d
t

)
td−1

)

≤
∑

t∈N

P
(
c10t

d ≤ #B(t) < ∞ but B(t) is not (b′, nt)-good
)

+
∑

t∈N

P
(
Yt < exp

(
−C16n

d
t

)
td−1

∣∣ B(t) is (b′, nt)-good, c10t
d ≤ #B(t) < ∞

)
.

The sum in the second line is finite by (2.22). By (2.28), the summands of the

third are bounded for large t by the summands of
∑

t∈N
exp

(
−c17t

d− 3

2

)
< ∞. The

Borel-Cantelli lemma combined with (2.19) therefore implies that for any large C11

and any small c12, a.s.,

(2.29) Yt ≥ exp
(
−C16n

d
t

)
td−1 for all large t ∈ N.

Last, we use (2.29) to prove Theorem 1.1. First take nt = C11. Then κt =
(ε4 + a + 2ε2 + aε3)C11, and so the interval It = [t + κt, t + κt + ε4nt] satisfies
It ∩ It+1 
= ∅ for all t ≥ 1 so long as C11 is large. Therefore (2.29) gives that
a.s. B(t)c has at least exp

(
−C16C

d
11

)
td−1 many bounded components for all large

t. This proves item 2 of Theorem 1.1. If we take nt = �c12(log t)1/d�, then the
intervals It and It+1 also intersect for large t, if c12 is fixed. For small c12, we have
Yt ≥ td−3/2 for all large t so, in particular, Yt > 0. This gives that a.s., for all large
s, the maximum hole size M(s) is at least equal to (Ht/d)

d, where t is any number
such that s ∈ It. If t is large and c12 is fixed, then this t satisfies t ≥ s/2, so we
obtain

a.s., M(s) ≥
(
H s

2

d

)d

for all large s.

This implies item 1 of Theorem 1.1 and completes the proof.

3. Proof of Theorem 1.6

In this section, we assume (1.1), (1.4), and the uniform curvature condition. We
first describe the idea of the proof. Let t be large and let x0, if it exists, be any
vertex in the largest bounded component C of B(t)c with maximal Euclidean norm
‖x0‖2. Let ∠(v, w) be the angle (in (−π, π]) between two vectors v, w ∈ R

2 and
define the sector portion

(3.1) Sx0
=

{
v ∈ R

2 : |∠(v, x0)| ≤ Jx0
, 1−Kx0

≤ ‖v‖2
‖x0‖2

≤ 1

}
,
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where

(3.2) Jx0
=

(log ‖x0‖2)C18−3

‖x0‖2
, Kx0

=
(log ‖x0‖2)C18

‖x0‖2
,

and C18 > 3 is a large constant to be chosen later; see Fig. 6. The component C

containing x0 is connected, and by extremality of x0, it cannot cross the far side of
Sx0

. Once we show that it cannot cross the left, right, and near sides, then we can
deduce that C ⊂ Sx0

. Because

(3.3) Sx0
contains at most C19(log ‖x0‖2)2C18 many vertices,

and ‖x0‖2 must be of order t to be in a bounded component of B(t)c, we conclude
the result.

Sx0

x0

C

Sn
x0

x 2=(1−Kx0
) x0 2

x 2= x0 2

Figure 6. The set C, depicted above as the darker shaded region,
is the largest hole in the ball B(t0). The set Sx0

is a sector (lighter
shaded region) centered on the vertex x0 with maximal Euclidean
norm among all those in C. The boundary segment of Sx0

nearest
to the origin, Sn

x0
, is also shaded.

Step 1 (Setup of the proof). To start the proof, we let s > 0 and recall the notation

B̃(t) = B(t) + [0, 1)d from the introduction. Define the events

E1(s) =

{
1

2
B ⊂ 1

t
B̃(t) ⊂ 2B for all t ≥ s

}

and

E2(s) = {τe ≤ C20 log t for all e with an endpoint in 3tB and all t ≥ s} .
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We have

P(M(t) ≥ (log t)3C18 for some t ≥ s)

≤ P(E1(s)
c) + P(E2(s)

c)

+ P
(
E1(s) ∩ E2(s) ∩ {M(t) ≥ (log t)3C18 for some t ≥ s}

)
.

By the shape theorem in (1.2), P(E1(s)
c) → 0 as s → ∞. To estimate P(E2(s)

c),
we write P(τe > C20 log n) ≤ Eeατe/eαC20 log n for the α in (1.4), so

P(τe > C20 log n for some e with an endpoint in 3nB) ≤ C21n
2n−C20α.

By a union bound,

P(τe > C20 log n for some e with an endpoint in 3nB and some n ≥ N) → 0

as N → ∞ if we choose C20 > 4α. By increasing C20 further, this implies that
P(E2(s)

c) → 0 as s → ∞.
From the above arguments, we obtain

lim
s→∞

P(M(t) ≥ (log t)3C18 for some t ≥ s)

= lim
s→∞

P
(
E1(s) ∩ E2(s) ∩ {M(t) ≥ (log t)3C18 for some t ≥ s}

)
.(3.4)

To show the limit in (3.4) is zero, we use the sector construction from the proof
idea above. Fix an outcome in the event in the probability in (3.4) and let t0 ≥ s be
any value of t for which M(t) ≥ (log t)3C18 . Choose x0 as any vertex with maximal
Euclidean norm in a bounded component C of B(t0)

c with the largest number of
vertices, and let Sx0

, Jx0
,Kx0

be as in (3.1) and (3.2). We first argue that for large
s,

(3.5) C contains a vertex in Sc
x0
.

To do this, we note that there exists c22 > 0 such that

(3.6) [0, c22] ⊂ {‖w‖2 : w ∈ B} ⊂
[
0, c−1

22

]
.

Because x0 is in C and E1(s) occurs, we have

‖x0‖2 ≤ max
x∈B(t0)

‖x‖2 ≤ 2t0 max
x∈B

‖x‖2 ≤ 2c−1
22 t0.

As x0 ∈ B(t0)
c, we have ‖x0‖2 ≥ (t0/2)maxx∈B ‖x‖2 ≥ c22t0/2. In summary,

(3.7)
c22
2

t0 ≤ ‖x0‖2 ≤ 2

c22
t0.

Now for a contradiction, assume that C ⊂ Sx0
. Then from (3.3), we get

(3.8) M(t0) ≤ C19(log ‖x0‖2)2C18 .

Combining this with (3.7), we obtain

M(t0) ≤ C19(log(2c
−1
22 t0))

2C18 .

This contradicts M(t0) ≥ (log t0)
3C18 for large s because t0 ≥ s, and shows (3.5).

We have now shown that for our outcome in the probability in (3.4), (3.5) holds.
Let γ be a path contained in C starting at x0 that ends at a vertex outside of
Sx0

; we may assume only its final vertex, say p0, is outside of Sx0
. Let γ′ be the

continuous plane curve produced by following γ from x0 to its last point p′0 on the
boundary of Sx0

(directly before γ touches p0). We examine the possibility that p′0
is on the left or right sides of Sx0

, or on the near side.
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Step 2 (The hole cannot touch the near side). The first case is that p′0 is in the
near side

Sn
x0

= {v ∈ Sx0
: ‖v‖2 = (1−Kx0

)‖x0‖2}.
If this holds, let x′

0 = (1 − Kx0
)x0, which is in Sn

x0
; we will show that T (0, x′

0) is
abnormally large. (Here we use the definition T (y, z) = T ([y], [z]), where [y] is the
point of Zd with y ∈ [y] + [0, 1)d, and similarly for z.)

x0

p′

0 [x′

0
]

γ

Figure 7. The first case of the argument supposes that C exits
the sector Sx0

through its near side Sn
x0
. The path γ in C starts

at x0, intersects the boundary of Sn
x0

first at p′0 ∈ Sn
x0
, and it ends

immediately after p′0 at a vertex p0 /∈ Sx0
(not pictured). Above,

x′
0 = (1−Kx0

)x0, and [x′
0] is the closest lattice point to x′

0.

Because p0 ∈ C ⊂ B(t0)
c,

(3.9) T (0, x′
0) = T (0, p0) + (T (0, x′

0)− T (0, p0)) > t0 + (T (0, x′
0)− T (0, p0)).

For large s, the points x′
0 and p0 are in 3t0B, and by occurrence of E2(s), there

exists a path from [x′
0] to p0 with ‖[x′

0] − p0‖1 many edges whose weights are at
most C20 log t0 ≤ C20 log(2c

−1
22 ‖x0‖2) (see (3.7)). This gives T (0, x′

0) − T (0, p0) ≥
−(C20 log(2c

−1
22 ‖x0‖2))‖[x′

0] − p0‖1. However ‖[x′
0] − p0‖1 ≤ ‖x′

0 − p′0‖1 + 3 ≤√
2‖x′

0−p′0‖2+3, and x′
0, p

′
0 are in Sn

x0
, so if s is large, then ‖x′

0−p′0‖2 ≤ Jx0
‖x0‖2 =

(log ‖x0‖2)C18−3. Together, for large s,

T (0, x′
0)− T (0, p0) ≥ −(C20 log(2c

−1
22 ‖x0‖2))(3 +

√
2(log ‖x0‖2)C18−3)

≥ −(log ‖x0‖2)C18−1.

Putting this in (3.9) gives

(3.10) T (0, x′
0) > t0 − (log ‖x0‖2)C18−1.

To use (3.10), we relate the left side to T (0, x0). Although x0 is not in B(t0),
it is the endpoint of an edge that has an endpoint in 3t0B, so since E2(s) occurs,
T (0, x0) ≤ t0 + C20 log t0 ≤ t0 + C20 log(2c

−1
22 ‖x0‖2). With (3.10), we obtain for

large s
(3.11)
T (0, x0)− T (0, x′

0) ≤ C20 log(2c
−1
22 ‖x0‖2) + (log ‖x0‖2)C18−1 < 2(log ‖x0‖2)C18−1.
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We now use a bound on passage time differences established in [5, Prop. 3.7] under
the uniform curvature assumption. The result is that for some c23, C24, c25 > 0,
any z ∈ R

d with ‖z‖2 = 1, and any k, 	 ≥ 0 with k ≥ 	,

(3.12) P(T (0, kz)− T (0, 	z) ≥ c23(k − 	)) ≥ 1− C24e
−(k−�)c25 .

We put z = x0/‖x0‖2, k = ‖x0‖2, and 	 = ‖x′
0‖2 = (1−Kx0

)‖x0‖2 to produce the
bound
(3.13)

P
(
T (0, x0)− T (0, x′

0) < c23(log ‖x0‖2)C18

)
≤ C24 exp

(
−(log ‖x0‖2)C18c25

)
.

If we define the event G(s) to be

G(s) =

{
T (0, x0)− T (0, x′

0) ≥ 2(log ‖x0‖2)C18−1

for all x0 ∈ Z
d with ‖x0‖2 ≥ c22

2 s

}
,

then, by (3.7) and (3.11), if p′0 is in the near side Sn
x0
, then G(s)c must occur, and

by (3.13), we get

P(G(s)c) ≤
∑

‖x0‖2≥ c22
2

s

P
(
T (0, x0)− T (0, x′

0) < 2(log ‖x0‖2)C18−1
)

≤ C24

∑

‖x0‖2≥ c22
2

s

exp
(
−(log ‖x0‖2)C18c25

)
.

Here we have used that for large s, 2(log ‖x0‖2)C18−1 < c23(log ‖x0‖2)C18 . Assuming
C18 is chosen larger than c−1

25 , we get P(G(s)c) → 0 as s → ∞. In summary, we can
return to (3.4) and write

lim
s→∞

P(M(t) ≥ (log t)3C18 for some t ≥ s)

= lim
s→∞

P
(
E1(s) ∩E2(s) ∩G(s) ∩ {M(t) ≥ (log t)3C18 for some t ≥ s}

)
,(3.14)

observing now that any outcome in the event in the probability in (3.14) must have
the property that p′0 is on the union of the left and right sides of Sx0

:

(3.15) |∠(x0, p
′
0)| = Jx0

.

Step 3 (The hole cannot touch the left and right sides). This brings us to deal with
the second case, that (3.15) holds in our outcome. Here, the idea is that geodesics
(optimal paths in the definition of T (x, y)—these exist a.s. from [1, Thm. 4.2])
between some point nearby x0 and the origin must avoid (“go around”) the com-
ponent C, and therefore deviate significantly from the straight line connecting the
point to the origin. This is unlikely due to geodesic wandering estimates from [13].

Our two possible “nearby” points are y0, z0 ∈ R
2, defined to have ‖y0‖2 =

‖z0‖2 = (1 +Kx0
)‖x0‖2, ∠(y0, x0) = Jx0

/2, and ∠(z0, x0) = −Jx0
/2. Let A

(i)
x0
, i =

1, 2 be defined as follows.

(1) A
(1)
x0

is the event that some geodesic from [y0] to 0 has a point x ∈ R
2 with

‖x‖2 ≥ (1−Kx0
)‖x0‖2 and ∠(x, x0) = 0 or Jx0

.

(2) A
(2)
x0

is the event that some geodesic from [z0] to 0 has a point x ∈ R
2 with

‖x‖2 ≥ (1−Kx0
)‖x0‖2 and ∠(x, x0) = −Jx0

or 0.

We claim that because (3.15) holds,

(3.16) at least one of A(1)
x0

or A(2)
x0

occurs.
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Figure 8. In the figure, the region W is the left half of the sector
Sx0

. In the second case considered for the argument, C exits Sx0

through one of its sides, the side of W above. The path γ plays an
analogous role to the first case of the argument, excepting that p′0
is no longer on the near boundary of Sx0

, and contains a subpath

γ′′ spanning opposite sides of W. Under the event A
(1)
x0

, planarity
forces a geodesic σ joining [y0] (not pictured) to the origin to cross
γ′′ at a vertex w. The path σ is further decomposed at the last
point z′ on σ with ‖z′‖2 = ‖x0‖2 and the first point z on σ with
‖z‖2 = (1−Kx0

)‖x0‖2, denoted y′ and y respectively.

To see why, let us assume first that ∠(p′0, x0) = Jx0
. Then γ′, which we defined in

the paragraph following (3.8), contains a segment γ′′ which crosses the region

W =

{
v ∈ R

2 :
‖v‖2
‖x0‖2

∈ [(1−Kx0
), 1], ∠(v, x0) ∈ [0, Jx0

]

}

between its two side boundaries; see Fig. 8. This is because γ′ cannot exit Sx0

through the far or near boundaries. Assume for a contradiction that A
(1)
x0

does
not occur, and let σ be any geodesic from [y0] to 0. Observe that for large s, we
have ∠([y0], x0) ∈ (0, Jx0

). The segment of σ from [y0] to its first point y with
‖y‖2 = (1 −Kx0

)‖x0‖2 cannot contain any x with ∠(x, x0) = 0 or Jx0
, so it must

contain a segment σ′ of σ (starting at its last point y′ with ‖y′‖2 = ‖x0‖2 before y
and ending at y) that crosses W from its far boundary to its near boundary. By
planarity, σ′ must intersect γ′, and they must intersect at a vertex w. We know
w ∈ C, so T (0, w) > t0. Furthermore, T (0, y0) ≥ T (0, w), so [y0] /∈ B(t0). But
[y0] /∈ C by maximality of x0, so [y0] is in a different component of B(t0)

c. Starting
from [y0], the geodesic σ must therefore touch some ŵ ∈ B(t0) before it reaches w.
This gives a contradiction because then t0 ≥ T (0, ŵ) ≥ T (0, w) > t0. We conclude

that A
(1)
x0

occurs. If we suppose that ∠(p′0, x0) = −Jx0
instead, a similar argument

shows that A
(2)
x0

occurs.
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Returning to (3.14), the last paragraph plus a union bound gives

lim
s→∞

P(M(t) ≥ (log t)3C18 for some t ≥ s) ≤ lim
s→∞

∑

x0∈Z2:‖x0‖2≥ c22
2

s

P(A(1)
x0

∪ A(2)
x0

).

To complete the proof of Theorem 1.6, we will show that this limit is zero, and to
do this, we will prove that

(3.17)
∑

x0∈Z2

P(A(1)
x0

) < ∞.

A symmetric argument will establish the same bound for the sum of P(A
(2)
x0

), and
this will finish the proof.

Assertion (3.17) will follow from a lemma that summarizes some estimates from
[13]. If x, y ∈ Z

d, we write

out(y, x) = {z ∈ Z
d : T (y, z) = T (y, x) + T (x, z)}

for the set of vertices z such that a geodesic from y to z goes through x. The lemma
states that with high probability, vertices in out(0, x) have small angle from x. In
[13], this is used to show that the origin has a “r−1/4-straight geodesic tree.” The
argument from [13] assumes that the distribution of τe is continuous, but this is not
needed. Only the uniform curvature assumption is required. Recall Definition 1.4,
which introduces the number η.

Lemma 3.1. Let p ∈ (0, 1/(2η)). There exist C26, c27 > 0 such that for any r ≥ 1,

P(|∠(x, z)| ≤ C26‖x‖−p
2 for all z ∈ out(0, x) and x with ‖x‖2 ≥ r)

≥ 1− C26 exp (−rc27) .

Proof. The proof is nearly the same as that of [13, Prop. 3.2], so we omit some
details. For a vertex x 
= 0, let Cx be the sector portion

Cx = {z ∈ Z
d : g(z) ∈ [g(x)− g(x)1−ηp, 2g(x)], |∠(z, x)| ≤ g(x)−p}.

The vertices in the boundary set {y ∈ Cc
x : ∃z ∈ Cx such that ‖z − y‖1 = 1}

split into three sets: ∂iCx is those y with g(y) < g(x) − g(x)1−ηp, ∂oCx is those
y with g(y) > 2g(x), and ∂sCx is those y with ∠(x, y) > g(x)−p. Let Gx be
the event {out(0, x) ∩ (∂iCx ∪ ∂sCx) 
= ∅}. (The function g was defined below
(1.2).) Then the argument leading to [13, Eq. (3.3)] gives that for some C28, c29,

we have P(Gx) ≤ C28‖x‖d2 exp
(
−c29‖x‖1/2−ηp

2

)
. (The only difference is that [13]

takes η = 2 but we have general η.) By a union bound, if c30 < 1/2− ηp,

(3.18) P(Gx occurs for some x ∈ Z
d with ‖x‖2 ≥ r) ≤ C31 exp (−rc30) .

Fix an outcome in the event ∩‖x‖2≥rG
c
x and let x ∈ Z

d with ‖x‖2 ≥ r. If z ∈
out(0, x), consider a geodesic from 0 to z that contains x, and define a sequence of
points inductively by x0 = x, and for i ≥ 1, xi is the first point of the geodesic after
xi−1 that lies in ∂oCxi−1

. (It must touch this set and not the set ∂iCxi−1
∪∂sCxi−1

if it leaves Cxi−1
because Gc

xi−1
occurs.) If such a point does not exist for a

particular i = I, because the geodesic does not leave Cxi−1
before touching z, we
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set xI = xI+1 = · · · = z. Because xi is adjacent to Cxi−1
, we have |∠(xi, xi−1)| ≤

C32/‖xi−1‖p2 , and so

|∠(z, x)| ≤
∞∑

i=1

|∠(xi, xi−1)| ≤ C32

I∑

i=1

‖xi−1‖−p
2 .

However, for i = 1, . . . , I−1, we have ‖xi−1‖2 ≥ Ci−1
33 ‖x‖2 for some C33 > 1, since

xi−1 ∈ ∂oCxi−2
. Therefore |∠(z, x)| ≤ C32‖x‖−p

2

∑∞
i=1 C

−p(i−1)
33 . In other words,

for C26 = C32

∑∞
i=1 C

−p(i−1)
33 , any outcome in ∩‖x‖2≥rG

c
x has |∠(z, x)| ≤ C26‖x‖−p

2

so long as ‖x‖2 ≥ r and z ∈ out(0, x). The estimate (3.18) finishes the proof. �

Using Lemma 3.1, we can show (3.17), and therefore finish the proof of The-

orem 1.6. Suppose that A
(1)
x0

occurs. Choose a point x ∈ R
2 such that ‖x‖2 ≥

(1−Kx0
)‖x0‖2 and ∠(x, x0) = 0 or Jx0

, but that x is on a geodesic from [y0] to 0.
Let x′ be a vertex on this geodesic such that ‖x− x′‖1 ≤ 1. The law of sines from
trigonometry implies that if ∠[y0](0, x

′) is the angle between 0 and x′ as measured
from [y0], then

(3.19) ‖x′‖2 sin |∠([y0], x′)| = ‖[y0]− x′‖2 sin |∠[y0](0, x
′)|.

To estimate these quantities, we observe first that for large ‖x0‖2, we have

(3.20) ‖x′‖2 ≥ ‖x0‖2/2.

Next, because |∠(x, y0)| = Jx0
/2, we have

(3.21) |∠([y0], x′)| ∈
(
Jx0

3
, 2

Jx0

3

)

so long as ‖x0‖2 is large enough. In particular, if ‖x0‖2 is large, then |∠([y0], x′)|
is small, and so

(3.22) sin |∠([y0], x)| ≥
|∠([y0], x′)|

2
≥ Jx0

6
.

The term sin |∠[y0](0, x
′)| can be bounded using Lemma 3.1. For u ∈ Z

d and
p ∈ (0, 1/(2η)) fixed, write Fu(r) for the event described in Lemma 3.1, translated in
the natural way so that the origin is mapped to u. Precisely, if Tu is the translation
of Rd such that Tu(0) = u, then Fu(r) is the event that the image configuration
(τT−1

u (e)) is in the event described in Lemma 3.1. We observe that ‖[y0] − x′‖2 ≥
‖y0 − x‖2 − ‖[y0] − y0‖2 − ‖x − x′‖2 ≥ Jx0

‖x0‖2/2 − 3, so if ‖x0‖2 is large and
F[y0](r) occurs for r = Jx0

‖x0‖2/3, then we must have

(3.23) |∠[y0](0, x
′)| ≤ C26‖[y0]− x′‖−p

2 .

Putting this, (3.20), and (3.22) into (3.19) produces
(3.24)
1

12
(log ‖x0‖2)C18−3 =

‖x0‖2Jx0

12
≤ ‖[y0]− x′‖2 sin |∠[y0](0, x

′)| ≤ C26‖[y0]− x′‖1−p
2 .

For large ‖x0‖2, we conclude

(3.25) ‖y0 − x‖2 ≥ c34(log ‖x0‖2)
C18−3

1−p .
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To proceed from (3.25), we assume for a contradiction that F[y0](r) occurs (so
that (3.25) holds) and consider two cases. If ‖x‖2 ≤ ‖y0‖2, then ‖x‖2/‖x0‖2 ∈
[1−Kx0

, 1 +Kx0
]. If ∠(x, x0) = 0, then

‖y0−x‖2 ≤ ‖y0−x0‖2+‖x−x0‖2 ≤
(
Jx0

2
+Kx0

)
‖x0‖2+Kx0

‖x0‖2 ≤ 3Kx0
‖x0‖2.

By symmetry, the inequality ‖y0 − x‖2 ≤ 3Kx0
‖x0‖2 also holds if ∠(x, x0) = Jx0

.
Putting it in (3.25), we find

3(log ‖x0‖2)C18 ≥ c34(log ‖x0‖2)
C18−3

1−p ,

which is false if C18 > 3/p and ‖x0‖2 is large. Otherwise, if ‖x‖2 ≥ ‖y0‖2, then
(3.26) ‖x′‖2 ≥ ‖[y0]‖2 − 1−

√
2 ≥ ‖[y0]‖2 − 3.

Because |∠[y0](0, x
′)|+ |∠(x′, [y0])|+ |∠x′(0, [y0])| = π, we see for large ‖x0‖2 from

(3.21) and (3.23) that |∠x′(0, [y0])| ≥ 3π/4, and so cos |∠x′(0, [y0])| ≤ −1/
√
2. The

law of cosines along with (3.24) and (3.26) then gives for large ‖x0‖2
‖[y0]‖22 = ‖x′‖22 + ‖[y0]− x′‖22 − 2‖x′‖2‖[y0]− x′‖2 cos∠x′(0, [y0])

≥ ‖x′‖22 +
√
2‖x′‖2‖[y0]− x′‖2

≥ ‖x′‖22 + 7‖x′‖2
≥ (‖[y0]‖2 − 3)2 + 7‖[y0]‖2 − 21.

This is a contradiction if ‖x0‖2 is large.

We conclude that if ‖x0‖2 is sufficiently large, then A
(1)
x0

⊂ F[y0](r)
c with r =

Jx0
‖x0‖2/3. Lemma 3.1 gives the bound

P(A(1)
x0

) ≤ P(F[y0](r)
c) ≤ C26 exp (−(Jx0

‖x0‖2/3)c27) .
This is summable over x0 ∈ Z

2 so long as C18 > 3 + c−1
27 . This completes the proof

of (3.17).

4. Proof of Theorem 1.8

The proof of Theorem 1.8 is like that of Theorem 1.6, and will use similar con-
structions, so we give fewer details and focus on the modifications needed to apply
the argument. There are two main differences. First, instead of using the bound
(3.12) on passage time differences (which requires the uniform curvature assump-
tion), we will use a general concentration inequality. Second, instead of using
Lemma 3.1 on the straightness of geodesics (also requiring curvature), we will use
Kesten’s lemma.

The concentration inequality states the there exists C35 > 0 such that for all
large x ∈ Z

d,

(4.1) P

(
|T (0, x)− g(x)| ≥ C35

√
g(x) log g(x)

)
≤ ‖x‖−100

1 .

This inequality follows from standard results. First, it suffices to prove it with√
g(x) log g(x) replaced by

√
‖x‖1 log ‖x‖1. In this form, it follows from the result

[7, Prop. 1.1], which says that for some C36 > 0, we have 0 ≤ ET (0, x) − g(x) ≤
C36

√
‖x‖1 log ‖x‖1, and [6, Thm. 1.1], which says that P(|T (0, x) − ET (0, x)| ≥

λ
√
‖x‖1/ log ‖x‖1) ≤ e−c37λ for some constant c37 > 0 and all λ ≥ 0 and nonzero
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x ∈ Z
d. From these two, we just have to choose λ = 2C35 log ‖x‖1 for large enough

C35.
The second tool, Kesten’s lemma [10, Prop. 5.8], states that there exist a, c38 > 0

such that
(4.2)
P(∃ edge-self-avoiding path γ containing 0 with #γ ≥ n but T (γ) < an) ≤ e−c38n.

Here, #γ is the number of edges in γ. This result will allow us to show in (4.10)
that if a geodesic deviates too far from a straight line, it must have a long segment
with high passage time.

Before giving the proof, we first outline what changes are necessary. In this
section, since we are not assuming uniform curvature, (3.12) and Lemma 3.1 are no
longer available. However, we are still able to show that if a hole is too large, then
it will take a large passage-time to cross one of the sides of a large sector, which
will violate (4.1) and (4.2).

Step 1 (Setup of the proof). As in the proof of Theorem 1.6, we define events Ei(s)
for s ≥ 0 and a constant C39 > 0 as

E1(s) =

{
1

2
B ⊂ 1

t
B̃(t) ⊂ 2B for all t ≥ s

}

E2(s) = {τe ≤ C39 log t for all e with an endpoint in 3tB and all t ≥ s}

E3(s) =

{
|T (0, x)− g(x)| ≤ C35

√
g(x) log g(x) for all

integer x ∈ 3tB \ ((t/3)B) and all t ≥ s

}
.

As in (3.4), for some C39 large enough, and any C40 > 0,

lim
s→∞

P (M(t) ≥ C40t log t for some t ≥ s)

= lim
s→∞

P (E1(s) ∩ E2(s) ∩ {M(t) ≥ C40t log t for some t ≥ s}) .(4.3)

Using (4.1) with a union bound, we obtain

(4.4) P(E3(s)
c) ≤

∑

x∈((s/3)B)c

‖x‖−100
1 → 0 as s → ∞.

Last, we let E4(s) be the event that, for all t ≥ s, and all vertices x ∈ 3tB\((t/3)B),
any edge-self-avoiding path Γ containing x with at least (12C35/a)

√
g(x) log g(x)

many edges satisfies T (Γ) ≥ 12C35

√
g(x) log g(x). To prove that

(4.5) P(E4(s)
c) → 0 as s → ∞,

we use (4.2) with a union bound. We obtain

P(E4(s)
c) ≤

∑

x∈( s
3
B)c

e−c3812C35a
−1
√

g(x) log g(x) → 0 as s → ∞.

This shows (4.5). Putting (4.4) and (4.5) into (4.3), we find

lim
s→∞

P (M(t) ≥ C40t log t for some t ≥ s)

= lim
s→∞

P
((
∩4
i=1Ei(s)

)
∩ {M(t) ≥ C40t log t for some t ≥ s}

)
.(4.6)

The rest of the proof serves to show that if C40 is large, then (4.6) is zero. To
do this, we choose an outcome in the event in (4.6), and let t0 ≥ s. Pick x0 as any
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vertex with maximal value of g(x0) in a bounded component C of B(t0)
c with the

largest number of vertices. Analogously to (3.1), let

Sx0
=

{
v ∈ R

2 : |∠(v, x0)| ≤ Jx0
and 1−Kx0

≤ g(v)

g(x0)
≤ 1

}
,

where

Kx0
=

3C35

√
g(x0) log g(x0)

g(x0)

and

Jx0
=

64

ac22
Kx0

.

By a similar argument to that which gave (3.5), if s is large, because M(t0) ≥
C40t0 log t0,

C contains a vertex in Sc
x0
,

so long as C40 is fixed to be large enough. Because of this, we can find a path γ
contained in C starting at x0 that ends at a vertex outside of Sx0

; we may assume
only its final vertex, say p0, is outside of Sx0

. We also let γ′ be the continuous
plane curve produced by following γ from x0 to its last point p′0 on the boundary
of Sx0

(directly before γ touches p0). As we have done in the last section, we must
exclude the possibility that p′0 is on the left or right sides of Sx0

, or on the near
side. The point p′0 cannot be on the far side only because g(x0) is maximal among
vertices in C.

Step 2 (The hole cannot touch the near side). The first case is that p′0 is in the
near side

Sn
x0

= {v ∈ Sx0
: g(v) = (1−Kx0

)g(x0)}.
If s is large, then p0 ∈ 3t0B \ ((t0/3)B), so since E3(s) occurs, we have for some
C41 > 0

T (0, p0) ≤ g(p0) + C35

√
g(p0) log g(p0)

≤ C41 + g(p′0) + C35

√
g(p′0) log g(p

′
0)

= C41 + g(x0)− 3C35

√
g(x0) log g(x0) + C35

√
g(p′0) log g(p

′
0)

≤ g(x0)− 2C35

√
g(x0) log g(x0).

Because T (0, x0) ≥ g(x0)− C35

√
g(x0) log g(x0), we obtain

(4.7) T (0, x0)− T (0, p0) ≥ C35

√
g(x0) log g(x0)

as long as s is large. On the other hand, p0 /∈ B(t0), so T (0, p0) > t0. Furthermore,
x0 is an endpoint of an edge with an endpoint in B(t0), and this edge must have
weight at most C39 log t0 because E2(s) occurs. Therefore

T (0, x0)− T (0, p0) ≤ C39 log t0 + t0 − t0 = C39 log t0.

Because t0 ≤ (2/c22)‖x0‖2 from (3.7), this contradicts (4.7).

Step 3 (The hole cannot touch the left and right sides). The second case is that
p′0 satisfies |∠(x0, p

′
0)| = Jx0

. We will suppose that ∠(x0, p
′
0) = Jx0

, as the other
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possibility is dealt with using a similar argument. Let y0 ∈ R
2 satisfy ∠(y0, x0) =

Jx0
/2 and g(y0) = g(x0), and choose a vertex ȳ0 with g(ȳ0) > g(y0) but ‖y0−ȳ0‖1 =

1. Let σ be any geodesic from ȳ0 to 0. As in the proof of (3.16), as σ proceeds
from ȳ0 to 0, planarity implies it must touch one of the rays

M = {v ∈ R
2 : ∠(v, x0) = 0} or M′ = {v ∈ R

2 : ∠(v, x0) = Jx0
}

before touching the set B′ = {v : g(v) = (1−Kx0
)g(x0)}. Indeed, if this were false,

then because the curve γ′ connecting x0 to p′0 must contain a segment crossing the
region

W =

{
v ∈ R

2 :
g(v)

g(x0)
∈ [(1−Kx0

), 1],∠(v, x0) ∈ [0, Jx0
]

}

between its two side boundaries, σ would have to intersect γ′ at a vertex w. As
in the last section, this gives a contradiction because w ∈ C, so T (0, w) > t0, but
because σ originates outside of C, it must touch some ŵ ∈ B(t0) before reaching
w, and so t0 ≥ T (0, ŵ) ≥ T (0, w) > t0.

Without loss of generality, we suppose that σ touches some p1 ∈ M′ before some
p2 ∈ B′. Let p̄1 be the vertex we encounter on σ directly before p1 as we proceed
from ȳ0 to 0, and let p̄2 be the vertex we encounter on σ directly after p2. Because
p2 ∈ B′, we have g(p2) = g(x0) − 3C35

√
g(x0) log g(x0). The event E2(s) ∩ E3(s)

occurs, so for large s,

T (0, p̄2) ≥ g(p̄2)− C35

√
g(p̄2) log g(p̄2)

≥ g(p2)− C35

√
g(p2) log g(p2)− C42

= g(x0)− 3C35

√
g(x0) log g(x0)− C35

√
g(p2) log g(p2)− C42

≥ g(x0)− 4C35

√
g(x0) log g(x0).

Here, C42 > 0 is a constant. Because p̄1 appears first on σ, we have T (0, p̄1) ≥
T (0, p̄2), so

(4.8) T (0, p̄1) ≥ g(x0)− 4C35

√
g(x0) log g(x0).

To obtain an upper bound on T (0, p̄1), we use the occurrence of E2(s) ∩ E3(s)
to estimate

T (0, p̄1) = T (0, ȳ0)− T (ȳ0, p̄1)

≤ T (0, y0) + C39 log t0 − T (ȳ0, p̄1)

≤ g(x0) + C35

√
g(x0) log g(x0) + C39 log t0 − T (ȳ0, p̄1).(4.9)

Any path from ȳ0 to p̄1 must have at least ‖ȳ0 − p̄1‖1 many edges, and by (3.6), if
s is large,

‖ȳ0 − p̄1‖1 ≥ ‖y0 − p1‖2 − 2 ≥ sin

(
Jx0

2

)
‖y0‖2 − 2

≥ Jx0

4
‖y0‖2 − 2

=
3

4
· 64

ac22
C35

√
g(x0) log g(x0)

‖y0‖2
g(y0)

− 2

≥ 3

8
c22 ·

64

ac22
C35

√
g(x0) log g(x0).
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If s is large, this is bigger than (12C35/a)
√
g(ȳ0) log g(ȳ0), so since E4(s) occurs,

(4.10) T (ȳ0, p̄1) ≥ 12C35

√
g(ȳ0) log g(ȳ0) ≥ 6C35

√
g(x0) log g(x0).

Returning to (4.9), for large s, we get

T (0, p̄1) ≤ g(x0) + (C35 − 6C35)
√
g(x0) log g(x0) + C39 log t0.

This contradicts (4.8) for large s, since t0 ≤ (2/c22)‖x0‖2 from (3.7).
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