
ALEA, Lat. Am. J. Probab. Math. Stat. 21, 215–243 (2024)
DOI: 10.30757/ALEA.v21-09

Fluctuation bounds for first-passage percolation on the

square, tube, and torus

Michael Damron, Christian Houdré and Alperen Özdemir

School of Mathematics, Georgia Institute of Technology, 686 Cherry St., Atlanta, GA 30332, USA
E-mail address: mdamron6@protonmail.com

School of Mathematics, Georgia Institute of Technology, 686 Cherry St., Atlanta, GA 30332, USA
E-mail address: houdre@math.gatech.edu

School of Mathematics, Georgia Institute of Technology, 686 Cherry St., Atlanta, GA 30332, USA
E-mail address: aozdemir6@gatech.edu

Abstract. In first-passage percolation, one assigns i.i.d. nonnegative weights (te) to the edges of
Z
d and studies the induced distance (passage time) T (x, y) between vertices x and y. It is known

that for d = 2, the fluctuations of T (x, y) are at least order
√

log |x− y| under mild assumptions
on te. We study the question of fluctuation lower bounds for Tn, the minimal passage time between
two opposite sides of an n by n square. The main result is that, under a curvature assumption,
this quantity has fluctuations at least of order n1/8−ϵ for any ϵ > 0 when the te are exponentially
distributed. As previous arguments to bound the fluctuations of T (x, y) only give a constant lower
bound for those of Tn (even assuming curvature), a different argument, representing Tn as a min-
imum of cylinder passage times, and deriving more detailed information about the distribution of
cylinder times using the Markov property, is developed. As a corollary, we obtain the first polyno-
mial lower bounds on higher central moments of the discrete torus passage time, under the same
curvature assumption. A major tool in the proof is a new bound on the fluctuations of the minimum
of independent cylinder passage times. This result is proved without the curvature assumption.

1. Introduction

In this paper, we study first-passage percolation (FPP) on the discrete square, tube, and torus.
The square is defined as B(n) = Z

2∩ [0, n]2 with edge set E(n) = {{x, y} : x, y ∈ B(n), |x−y| = 1}.
Let (te) be a family of i.i.d. exponential random variables with mean 1, indexed by all nearest
neighbor edges of Z2. For x, y ∈ B(n), we set

T sq
n (x, y) = inf

Γ:x→y
T (Γ). (1.1)

Here, the minimum is taken over all vertex self-avoiding paths starting at x, ending at y, and taking
edges in E(n), and T (Γ) =

∑
e∈Γ te. Then we define the passage time between the left and right
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sides of the square as

T sq
n = inf

x∈B(n) : x·e1=0
y∈B(n) : y·e1=n

T sq
n (x, y), (1.2)

where ei stands for the i-th coordinate vector.
To define the tube and torus passage times, we represent them on Z

2 using periodic edge-weights.
Let E(n)o be the set of edges {x, y} ∈ E(n) such that at least one of x or y is in B(n − 1). Let

(t
(n)
e )e∈E(n)o be a family of i.i.d. exponential random variables with mean 1 assigned to the edges

of E(n)o and extend the definition to all nearest neighbor edges of Z2 by defining t
(n)
e+nz = t

(n)
e for

z ∈ Z
2. Observe that the distribution of (t

(n)
e ) is invariant under integer translations of Z2. The

tube will use the vertical strip S(n) = {x ∈ Z
2 : 0 ≤ x · e1 ≤ n}, and we accordingly define the

passage time as

T tube
n = inf

x:x·e1=0
y:y·e1=n

T tube
n (x, y). (1.3)

Here, T tube
n (x, y) is defined for x, y ∈ S(n) as

T tube
n (x, y) = inf

Γ:x→y
T (n)(Γ),

with the infimum over all vertex self-avoiding paths connecting x and y and using vertices in S(n).

The term T (n)(Γ) is the passage time of Γ computed with the weights (t
(n)
e ): T (n)(Γ) =

∑
e∈Γ t

(n)
e .

Last, the torus passage time is defined as

T tor
n = inf

x:x·e1=0
T (n)(x, x+ ne1), (1.4)

where T (n)(x, y) for x, y ∈ Z
2 is the minimum of T (n)(Γ) over all paths connecting x and y (not

necessarily staying in S(n)). As defined, the tube passage time is the same as the first passage time

between the left and right sides of B(n) (using weights (t
(n)
e )) after we have identified the top and

bottom sides, turning B(n) into a tube. The torus passage time is the same as the first passage
time among all paths that wind once in the e1 direction around a torus obtained from identifying
the left and right sides of B(n), as well as the top and bottom sides. See Figure 1.1.

Our main goal is to find lower bounds for the fluctuations of these variables. We use the following
definition of fluctuations, similar to that taken in Damron et al. (2020).

Definition 1.1. Let {Xn}∞n=1 be a sequence of real-valued random variables. {Xn}∞n=1 is said to
have fluctuations of at least order f(n) if there exist reals an, bn and a number c > 0 such that for
all large n, bn − an ≥ cf(n),

P(Xn ≤ an) > c, and P(Xn ≥ bn) > c.

Observe that if (Xn) has fluctuations of at least order f(n), then lim infn→∞
Var(Xn)
f(n)2

> 0. How-

ever, the converse may fail. For example, the sequence defined by

Xn =

{
0 with probability 1− 1

n

n with probability 1
n

has diverging variance, but its fluctuations are not at least order constant.
A logarithmic lower bound for the variance of the point-to-point minimal passage time T (x, y)

in the standard model (FPP on the infinite discrete lattice Z
2) is well-known for a large class

of distributions of edge weights; see Auffinger et al. (2017, Sec. 3.3) and Bates and Chatterjee
(2020); Damron et al. (2020); Pemantle and Peres (1994) for fluctuation bounds. A lower bound
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Figure 1.1. Left: the square B(n) with an optimal path for T sq
n connecting the left

and right sides. Middle: a tube constructed from the square by identifying the top
and bottom sides, in blue. An optimal path is shown connecting the left and right
sides, traveling through the top boundary and coming out the bottom. Right: a
torus constructed from the square by identifying the top and bottom sides (in blue),
as well as the left and right sides (in red). The optimal path connects the left and
right sides but its initial and final points, x and x + ne1 are identified, so the path
forms a circuit that winds once around the torus in the e1-direction.

of polynomial order can even be shown under the curvature assumption we make below. Both of
these arguments use an inequality of the form

Var T (x, y) ≥ c
∑

e

P(e is in an optimal path from x to y)2,

and this sum has at least logarithmic growth in |x − y| (polynomial growth under the curvature
assumption). Unfortunately, when one uses a similar bound for Tn, T

tube
n , or T tor

n , one obtains a sum
of constant order. For example, the probability in the sum corresponding to T tor

n has order n−1 by
translation invariance. The main difference is that T (x, y) is a passage time between fixed points,
whereas the others are passage times between large sets of vertices. There are currently no general
methods to analyze the variance which do not rely on bounding terms of this form, and therefore
there are currently no nonconstant lower bounds for the variance of these three variables, even
assuming curvature. For this reason, we will use a different method, based on finer information about
the distribution of cylinder passage times that comes from the memoryless property of exponential
weights.

We first define the limiting shape to state the curvature assumption. It uses the point-to-point
passage time T (x, y) mentioned in the previous paragraph, so we begin with a rigorous definition
of T (x, y). Similar to (1.1), we define the passage time between x, y ∈ Z

2 using all nearest neighbor
edges. It is

T (x, y) = min
Γ:x→y

T (Γ), (1.5)

where the minimum is over all self-avoiding paths Γ starting from vertex x and ending at y, and
T (Γ) =

∑
e∈Γ te. (We recall that (te) is the i.i.d. family indexed by all nearest neighbor edges of

Z
2.) By the subadditive ergodic theorem (see Auffinger et al. (2017, Theorem 2.1)), it can be shown

that there exists a norm g : R2 → R+ such that a.s.,

g(x) = lim
n→∞

T (0, nx)

n
for all x ∈ Z

2. (1.6)



218 Michael Damron, Christian Houdré and Alperen Özdemir

Next, we define

B(t) = {x ∈ Z
2 : T (0, x) ≤ t}

and set B̃(t) equal to the sum set B(t) + [0, 1)2. Considering the passage time in all directions
simultaneously, the shape theorem Cox and Durrett (1981) states that there exists a deterministic,
convex, compact set B ⊂ R2 with nonempty interior and the symmetries of Z2 that fix the origin
such that for all ϵ > 0,

P((1− ϵ)B ⊂ B̃(t)/t ⊂ (1 + ϵ)B for all large t) = 1. (1.7)

We can express the limit shape as

B =
{
x ∈ R2 : g(x) ≤ 1

}
.

Next, we state our curvature assumption, which is about the right extreme of the limit shape.
It has not been verified for any edge-weight distribution, but it is strongly believed to hold; see
Auffinger et al. (2017, Sec. 2.8).

Assumption 1.1. (Curvature assumption in the direction e1) There are constants ϵ0, c0 > 0 such
that for all β ∈ (−ϵ0, ϵ0),

g(e1 + βe2)− g(e1) ≥ c0β
2. (1.8)

Now we are ready to state our result.

Theorem 1.2. Let T sq
n and T tube

n be passage times defined by (1.2) and (1.3), and let ϵ > 0. Under
Assumption 1.1, T sq

n and T tube
n both have fluctuations of at least order n1/8−ϵ.

Remark 1.3. If we assume instead that (1.8) holds with the exponent 2 replaced by κ ≥ 1, then the

estimate of Theorem 1.2 changes from n1/8−ϵ to n1/(4κ)−ϵ.

Remark 1.4. A result analogous to Theorem 1.2 holds for squares that are oriented in a direction
u with |u| = 1. In this case, we must make a curvature assumption like (1.8) in direction u instead
of in direction e1.

The strategy for the proof of Theorem 1.2 is to split the tube (or square) into non-overlapping
cylinders of length n and height nα, where α > 3/4. We first show that, because of Assumption 1.1,
any optimal path must with high probability be contained in one of these cylinders (or a shifted
version of these cylinders). This reduces the problem to finding the order of fluctuations of n1−α

many independent cylinder passage times. Cylinder times have been studied in Ahlberg (2015);
Chatterjee and Dey (2013); Damron et al. (2020), but those works only provide lower bounds for

the fluctuations of order n(1−α)/2 for a single time. To extend this to a minimum of many cylinder
times, we need much more precise information about their distributions, in particular estimates for
their 1/n1−α quantile. This is the main contribution of the present article. Using the memoryless
property of exponentials, we represent the cylinder process as a Richardson-type growth model
and prove that, conditional on geometric information of the growth, the times satisfy an entropic
central limit theorem with bounds on the rate of convergence. Consequently, we can (conditionally)
couple the cylinder times to independent normal variables. In the appendix, we derive a result
that bounds the fluctuations of independent normal variables from below by the fluctuations of
i.i.d. normal variables. From this bound, we conclude that the fluctuations of the minimum of
cylinder times are at least order n(1−α)/2/

√
log n. See Section 1.1 for an outline of the argument.

The torus passage time has particular difficulties which do not allow an easy comparison with the
passage times for the square and the tube. But we can show a lower bound for the higher moments
of the torus passage time as a corollary to our main theorem. It is an open problem Auffinger et al.
(2017, Question 16) to show a diverging lower bound on the variance of T tor

n , even under a curvature
assumption. The corollary below shows that for any real k > 12, the k-th central moment diverges.
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Corollary 1.5. Let ϵ > 0 and T tor
n be the torus passage time as defined in (1.4). Under Assump-

tion 1.1, there exists c > 0 such that for all n and k,

E
∣∣T tor

n −ET tor

n

∣∣k ≥ cn(
1
8
−ϵ)k− 3

2 .

Last, following a suggestion from a reviewer of an earlier draft of this paper, we highlight one
of our central tools, the fluctuation bound for the minimum of independent cylinder passage times.
Its proof requires te to be exponentially distributed, but does not require the curvature assumption,

Assumption 1.1. For n ≥ 1, pick integers K
(1)
n , . . . ,K

(rn)
n ∈ [1, n] such that

∑rn
j=1K

(j)
n = n. Define

cylinders as C(1) = [0, n]× [0,K
(1)
n − 1] and for j = 2, . . . , rn,

C
(j) = [0, n]× [K(1)

n + · · ·+K(j−1)
n ,K(1)

n + · · ·+K(j)
n − 1].

For each j, we set T (j) to be the corresponding cylinder passage time. It is the minimal passage
time of any path in C(j) connecting the left and right sides. Because the cylinders are disjoint, the
T (j) are independent. Last, put

Tn = T
n,(K

(j)
n )

= min{T (1), . . . , T (rn)}.

Proposition 1.6. Suppose that n−1/2
∑rn

j=1(K
(j)
n )−1/2 → 0. Then

(Tn) has fluctuations of at least order min
j=1,...,rn

√
n

K
(j)
n (1 + log rn)

.

This proposition will be restated and proved as Proposition 3.6.

1.1. Outline of the paper. In the next section, we study optimal paths between points in our periodic

environment (t
(n)
e ). After showing that they exist in Lemma 2.1, we prove in Proposition 2.3 that

optimal paths for T tube
n are contained in horizontal cylinders of height nα, for any α > 3/4, with high

probability. Although such a statement is standard in the planar model with i.i.d. weights (under
Assumption 1.1), it will take work to establish it in the periodic environment. In Section 3, we study
the fluctuations of the passage time across cylinders. First, because of the Markov property, we can
represent this time using a Richardson-type growth model, and in Section 3.1, we estimate various
quantities (size of the boundary of the growth, and number of steps to reach the opposite side)
associated to it. We use these bounds in Section 3.2 to prove that the passage time across a cylinder
satisfies a conditional (entropic) CLT, with a total variation bound coming from the estimates from
Section 3.1. Using this, in Section 3.3, we prove our main fluctuation result for the minimum of
independent cylinder times, Proposition 3.6. This fluctuation result is the main tool in the proofs of
Theorem 1.2 and Corollary 1.5, in Section 4. Finally, the appendix serves to relate the fluctuations
of the minimum of i.i.d. normal random variables to the fluctuations of the minimum of independent
normal random variables with different means and variances. This result is in Theorem A.1 and is
an important ingredient in the proof of Proposition 3.6 back in Section 3.3.

2. Coupling and confinement of geodesics

In this section, we focus on the discrete tube and show that the geodesics are with high probability
contained in cylinders with height of order nα for α > 3/4. As mentioned, this statement is well-
known on Z

2 under the curvature assumption; see Newman and Piza (1995, Theorem 6). To show
it for our periodic environment, we will need to couple the periodic model with the full-plane model
and use concentration estimates.



220 Michael Damron, Christian Houdré and Alperen Özdemir

It will be useful to observe that although T tube
n is naturally defined using only paths that remain

in the strip S(n) by using T tube
n (x, y), this restriction is not necessary. That is,

T tube
n = min

x : x·e1=0
y : y·e1=n

T (n)(x, y). (2.1)

The inequality ≥ holds trivially. For the other inequality, any path Γ between some x and y as
above contains a segment Γ′ which uses only vertices in S(n). Indeed, we can simply follow Γ until
it touches the set {z : z · e1 = n} first at some point y0, set this to be the final point of Γ′, and let
the initial point of Γ′ be the last intersection of Γ with {z : z · e1 = 0} before it touches y0. Then

T (n)(Γ) ≥ T (n)(Γ′) ≥ T tube
n . Taking minimum over Γ gives the inequality ≤ in (2.1).

To state geodesic concentration on the tube, we first need to show that geodesics exist. For
x, y ∈ Z

2, we say a path Γ from x to y is a geodesic for T (n)(x, y) if T (n)(x, y) = T (n)(Γ). Similarly,

a path Γ from {x : x ·e1 = 0} to {x : x ·e1 = n} is a geodesic for T tube
n if T (n)(Γ) = T tube

n . In general,
geodesics need not be unique. For instance, with positive probability, there are two geodesics for
T (n)(0, n(e1+e2)): one following the e1-axis from 0 to ne1 and the proceeding vertically to n(e1+e2),
and one following the e2-axis from 0 to ne2 and then proceeding horizontally to n(e1 + e2).

Lemma 2.1. For any x, y ∈ Z
2,

P(there is a geodesic for T (n)(x, y) from x to y) = 1.

Also

P(there is a geodesic for T tube
n ) = 1.

Proof : The argument is similar to that for Auffinger et al. (2017, Proposition 4.4). Let

ρ(n) = inf{T (n)(γ) : γ is an infinite edge self-avoiding path from 0}.

By definition of (t
(n)
e ), we have infe t

(n)
e > 0 a.s., and so for any infinite self-avoiding γ from 0, we

have T (n)(γ) ≥ (infe t
(n)
e )#γ = ∞. This means that ρ(n) = ∞ a.s. The argument in Auffinger et al.

(2017, Proposition 4.4) shows that for any outcome such that ρ(n) = ∞, there is a geodesic for

T (n)(x, y) for all x, y ∈ Z
2. (The proof is deterministic, so it applies to T (n).) For this reason, we

treat only the second statement in more detail.
By periodicity, we may restrict x in the definition of T tube

n to be in B(n). Let σ be the path
that starts at the origin and moves n steps along the positive e1-axis until it ends at ne1. Fix
any outcome for which ρ(n) = ∞. Using the fact that ρ(n) = limK→∞ T (n)(0, ∂[−K,K]2) (from
Auffinger et al. (2017, Lemma 4.3)), we can choose K > n such that any path π from B(n) to a

vertex in ([−K,K]2)c satisfies T (n)(π) > T (n)(σ). Therefore any path that starts in B(n) and leaves
[−K,K]2 cannot be a geodesic for T tube

n . This means that the minimum in the definition of T tube
n

(when we restrict x to be in B(n)) is over a finite set, and there is a minimizer. □

Remark 2.2. A reader of this paper made the following observation: Lemma 2.1 is a deterministic
fact that applies whenever the realized edge-weights have only finitely many distinct values. Consider
the following reasoning: Let T (x, y; k) be the infimum over paths between x and y that contain at
most k positive-weight edges. By assumption, the set S = {te : te > 0} is a finite set. Hence inf S is
positive, and so there must exist some (random) k such that T (x, y; k) = T (x, y). Because #S <∞,
there are only finitely many possible values for T (γ) if γ contains at most k positive-weight edges.
So this collection of values admits a minimum, which is necessarily T (x, y), meaning the γ achieving
said minimum must be a geodesic.

Next is the main result of the section, that for α > 3/4, geodesics for T tube
n are with high

probability contained in horizontal strips of height nα.
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Proposition 2.3. Let α > 3/4. Under Assumption 1.1, there exists b > 0 such that, for all large
n, with probability at least 1− e−nb

, the following holds. For any geodesic Γn for T tube
n , all vertices

on Γn are contained in the strip x0 + (Z× [−nα, nα]) , where x0 is the initial point of Γn.

The proof will require the following concentration inequality for the passage time associated
with periodic edge weights. Recall that g was defined in (1.6) using the passage time T (x, y) over
i.i.d. exponential weights.

Lemma 2.4. Let ϵ > 0. There exist c1, b > 0 such that for all large n,

P
(
for all x, y ∈ Z

2 with ∥x− y∥∞ ≤ c1n, |T (n)(x, y)− g(x− y)| ≤ n
1
2
+ϵ
)
≥ 1− e−nb

.

Proof : The proof will use similar concentration inequalities for the full-plane model. We may take

ϵ ∈ (0, 1]. By periodicity of (t
(n)
e ), it will suffice to show that for large n,

P(for all x, y ∈ Z
2 with x ∈ B(n) and ∥x− y∥∞ ≤ c1n, |T (n)(x, y)− g(x− y)| ≤ n

1
2
+ϵ)

≥ 1− e−nb
. (2.2)

Furthermore, putting x0 =
(
⌊n2 ⌋, ⌊n2 ⌋

)
, it will even suffice to show that

P(for all y ∈ Z
2 with ∥x0 − y∥∞ ≤ c1n, |T (n)(x0, y)− g(x0 − y)| ≤ n

1
2
+ϵ) ≥ 1− en

b
. (2.3)

This claim follows from translation invariance of the weights and a union bound. Specifically,

assuming (2.3) holds, the left side of (2.2) is at least 1−n2e−nb
, and this implies (2.2) if we replace

b with b/2.

First we observe that (2.3) holds if we replace T (n)(x0, y) by T (x0, y); that is,

P(for all y ∈ Z
2 with ∥x0 − y∥∞ ≤ c1n, |T (x0, y)− g(x0 − y)| ≤ n

1
2
+ϵ) ≥ 1− en

b
. (2.4)

Inequality (2.4) is standard and follows from two facts. First, Alexander has shown (Alexander,

1997, Theorem 3.2) that for some C1 > 0, we have ET (x, y) ≤ g(x−y)+C1

√
|x− y| log(1+|x−y|) for

all x, y. Second, an inequality of Talagrand (1995, Proposition 8.3) states that for some C2, c2 > 0,
we have

P(|T (x, y)−ET (x, y)| ≥ u) ≤ C2 exp

(
−c2min

{
u2

|x− y| , u
})

(2.5)

for all x, y and all u ≥ 0. If ∥x0 − y∥∞ ≤ c1n, then |x0 − y| ≤
√
2c1n and so by Alexander’s bound,

P
(
|T (x0, y)− g(x0 − y)| ≥ n

1
2
+ϵ
)

≤ P
(
|T (x0, y)−ET (x0, y)| ≥ n

1
2
+ϵ − C1

√
|x0 − y| log(1 + |x0 − y|)

)

≤ P
(
|T (x0, y)−ET (x0, y)| ≥ n

1
2
+ ϵ

2

)
,

so long as n is large. Applying (2.5), this is bounded above for some c3 > 0 by

C2 exp

(
−c2min

{
n1+ϵ

|x0 − y| , n
1
2
+ ϵ

2

})
≤ C2 exp (−c3nϵ) .

Therefore by a union bound, the left side of (2.4) is bounded below by 1 − C2(2c1n + 1)2e−c3nϵ
.

This gives (2.4) with b = ϵ/2.

To show (2.3), we need to compare T and T (n). We will assume that the weights (te) and (t
(n)
e )

which are used in the definitions of T and T (n) are coupled so that te = t
(n)
e for all e ∈ E(n)o, and

will prove that for large n,

P(for all y ∈ Z
2 with ∥x0 − y∥∞ ≤ c1n, T

(n)(x0, y) = T (x0, y)) ≥ 1− e−nb
. (2.6)
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This, along with (2.4), will imply (2.2). To do this, let c1 < 1/2 and consider an outcome in the

complement: one for which there is a y ∈ Z
2 with ∥x0 − y∥∞ ≤ c1n and such that T (n)(x0, y) ̸=

T (x0, y). We claim that

there exists z ∈ Z
2 with ∥x0 − z∥∞ = ⌊n/2⌋ such that T (x0, z) ≤ T (x0, y). (2.7)

To argue this, choose geodesics γ and γ(n) for T (x0, y) and T (n)(x0, y) respectively. If both paths

use only edges in E(n)o, then their passage times using T or T (n) are the same, and so T (n)(x0, y) =
T (x0, y), a contradiction. So at least one must use an edge outside E(n)o, and therefore must
contain a vertex z with ∥x0 − z∥∞ = ⌊n/2⌋. First suppose that γ contains such a z and let γz be
the segment of γ from x0 to z. Then T (x0, z) ≤ T (γz) ≤ T (γ) = T (x0, y), so (2.7) holds. The

other possibility is that γ(n) contains such a z but γ does not. In this case, γ must use only edges

in E(n)o, as must γ
(n)
z , the segment of γ(n) from x0 to z, so long as we choose z as the first such z

we find as we proceed along γ(n) from x0 to y. Then

T (x0, z) ≤ T (γ(n)z ) = T (n)(γ(n)z ) ≤ T (n)(x0, y) ≤ T (n)(γ) = T (γ) = T (x0, y).

This shows (2.7).
Returning to (2.6), statement (2.7) along with a union bound gives

P(there exists y ∈ Z
2 with ∥x0 − y∥∞ ≤ c1n, T

(n)(x0, y) ̸= T (x0, y))

≤
∑

y:∥x0−y∥∞≤c1n

z:∥x0−z∥∞=⌊n
2 ⌋

P(T (x0, z) ≤ T (x0, y)). (2.8)

If |T (x0, y)− g(x0 − y)| and |T (x0, z)− g(x0 − z)| were both at most n3/4, then we would have

T (x0, z)− T (x0, y) ≥ g(x0 − z)− g(x0 − y)− 2n
3
4 ,

which is positive for large n since ∥x0 − z∥∞ = ⌊n/2⌋ and ∥x0 − y∥∞ ≤ c1n (assuming we take c1
fixed but small). Therefore

P(T (x0, z) ≤ T (x0, y)) ≤ P
(
|T (x0, y)− g(x0 − y)| ≥ n

3
4

)
+P

(
|T (x0, z)− g(x0 − z)| ≥ n

3
4

)
.

Applying both Alexander’s bound and (2.5), we obtain for some c4 > 0

P
(
|T (x0, y)− g(x0 − y)| ≥ n

3
4

)
≤ C2 exp

(
−c2min

{
n

3
2

|x0 − y| , n
3
4

})
≤ C2e

−c4n
1
2 ,

with the same bound for P(|T (x0, z)− g(x0 − z)| ≥ n3/4). Putting this back in (2.8), we find that
the left side of (2.6) is bounded below by

1− 2C2

∑

y:∥y−x0∥∞≤c1n

z:∥x0−z∥∞=⌊n
2 ⌋

exp
(
−c4n

1
2

)
≥ 1− C3n

3 exp
(
−c4n

1
2

)
.

This is bounded below by the right side of (2.6), if we choose b < 1/2. This shows (2.6) and, along
with (2.4), completes the proof. □

Proof of Proposition 2.3: The proof will analyze the local behavior of distance-minimizing paths,
where there is no difference between the periodic and full-plane weights. Let α > 3/4; we may
additionally assume that α < 1. Choose

ϵ ∈
(
0, 2α− 3

2

)
(2.9)

and fix an outcome in the event in the probability in Lemma 2.4 corresponding to this ϵ. Let
Γn be a geodesic for T tube

n . We will show that all vertices in Γn are contained in the strip x0 +
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(Z× [−C4n
α, C4n

α]) for C4 = 1 + 4/c1. (Here, c1 is from Lemma 2.4.) Because of the bound for
the probability in Lemma 2.4, this will prove Proposition 2.3, after slightly increasing α.

To begin, we define a sequence of points (xi) on Γn inductively as follows. Let x0 be the initial
point of Γn. For i ≥ 0, define the rectangle

Ci = xi + ([−⌊nα⌋, ⌊c1n⌋]× [−⌊nα⌋, ⌊nα⌋]) ,
where c1 is from Lemma 2.4, its boundary

Bi = {x ∈ Ci : ∃y ∈ Z
2 \ Ci with |x− y| ≤ 1},

and its right boundary

Ri = {x ∈ Bi : (x− xi) · e1 = ⌊c1n⌋}.
For i ≥ 1, let xi be the first vertex of Γn after xi−1 that lies in Bi−1, if one exists. If it does not
exist, we set xi equal to the terminal point of Γn. Let N be the first i such that xi equals this
terminal point. We claim that

for all i ∈ {1, . . . , N − 1}, xi ∈ Ri−1. (2.10)

To prove (2.10), we use the linear functional h : R2 → R defined by h(z) = (z ·e1)g(e1). Observe
that if we define z̄ = z− 2(z · e2)e2, then by symmetry, g(z) ≥ (1/2)g(z+ z̄) = (z · e1)g(e1) = h(z).
For certain z, though, we have a stronger bound. There exists c5 > 0 such that for large n,

g(z)− h(z) ≥ c5n
2α−1 if z ∈ B0 \ R0. (2.11)

We first prove this inequality, and then return to the proof of (2.10). Let z ∈ B0 \ R0. Notice that
if z · e1 ≤ 0, then h(z) ≤ 0, so for some c6 > 0, if n is large,

g(z)− h(z) ≥ g(z) ≥ c6∥z∥∞ ≥ c6
4
nα. (2.12)

If z · e1 > 0, then we must have |z · e2| ≥ nα/2 for large n, and so |(z · e2)/(z · e1)| ≥ nα−1/(2c1).
Write

g(z)− h(z) = g((z · e1)e1 + (z · e2)e2)− g((z · e1)e1)

= (z · e1)
(
g

(
e1 +

z · e2
z · e1

e2

)
− g(e1)

)
. (2.13)

If |(z · e2)/(z · e1)| < ϵ0, then we can use Assumption 1.1 for the lower bound

g(z)− h(z) ≥ c0(z · e1)
∣∣∣∣
z · e2
z · e1

∣∣∣∣
2

≥ c0
nα−1

2c1
|z · e2| ≥

c0
4c1

n2α−1. (2.14)

If |z ·e2|/|z ·e1| ≥ ϵ0, then we use a modified curvature inequality: for β such that |β| ≥ ϵ0, we have

g(e1 + βe2)− g(e1) ≥ c0ϵ0|β|. (2.15)

To see why this holds, assume by symmetry that β > 0 and set β′ = ϵ0. By convexity of g,
g(e1+β

′e2) ≤ (β′/β)g(e1+βe2)+(1−β′/β)g(e1), and this gives g(e1+βe2)−g(e1) ≥ (β/β′)(g(e1+
β′e2)− g(e1)). By Assumption 1.1, this implies

g(e1 + βe2)− g(e1) ≥ c0
β

β′
(β′)2 = c0ϵ0β,

which is (2.15). Now, in the case that |z · e2|/|z · e1| ≥ ϵ0, we apply (2.15) in (2.13) to obtain for
large n

g(z)− h(z) ≥ c0ϵ0|z · e2| ≥
c0ϵ0
2
nα. (2.16)

Combining the three cases (2.12), (2.14), and (2.16), and observing that α > 2α − 1, we conclude
(2.11).
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Having established (2.11), we can return to showing (2.10). Let IR = {i = 1, . . . , N − 1 : xi ∈
Ri−1} and JR = {1, . . . , N − 1} \ IR; we want to show that #JR = 0. Write

T tube
n − g(ne1) =

N∑

i=1

(T (n)(xi−1, xi)− h(xi−1 − xi))

=
N∑

i=1

(T (n)(xi−1, xi)− g(xi−1 − xi)) +
N∑

i=1

(g(xi−1 − xi)− h(xi−1 − xi)).

Because our outcome is in the event described in Lemma 2.4 and ∥xi − xi−1∥∞ ≤ c1n, we have

|T (n)(xi−1, xi)− g(xi−1 − xi)| ≤ n1/2+ϵ for all i. For i ∈ JR, we apply (2.11), and for i /∈ JR, we use
g ≥ h. All together, we obtain

T tube
n − g(ne1) ≥ −n 1

2
+ϵN + c5n

2α−1#JR.

To bound T tube
n from above, we construct a path by starting at 0, moving to ⌊c1n⌋e1 using a geodesic

for T (n)(0, ⌊c1n⌋), then moving to 2⌊c1n⌋ using a geodesic for T (n)(⌊c1n⌋, 2⌊c1n⌋), and so on, until
we reach the largest multiple of ⌊c1n⌋ that is at most n. After this, we move to ne1. Using the
fact that g is additive along the e1-axis, we may apply the condition in Lemma 2.4 at each step to
obtain T tube

n − g(ne1) ≤ (1/c1 + 1)n1/2+ϵ. Combining with the above produces

(
1

c1
+ 1

)
n

1
2
+ϵ ≥ −n 1

2
+ϵN + c5n

2α−1#JR

= −n 1
2
+ϵ(#IR + 1) +

(
c5n

2α−1 − n
1
2
+ϵ
)
#JR.

This implies

#IR +
1

c1
+ 2 ≥

(
c5n

2α− 3
2
−ϵ − 1

)
#JR. (2.17)

To relate #IR and #JR in a different way, we look at the progression of each segment of Γn in
the e1 direction. For each i ∈ JR ∪ {N}, we have (xi − xi−1) · e1 ≥ −nα and for each i ∈ IR, we
have (xi − xi−1) · e1 = ⌊c1n⌋. Therefore

n =

N∑

i=1

(xi − xi−1) · e1 ≥ ⌊c1n⌋#IR − nα(#JR + 1). (2.18)

For large n, this gives 1 + nα−1(#JR + 1) ≥ (c1/2)#IR. Combining this with (2.17), we find

2

c1

(
1 + nα−1(#JR + 1)

)
+

1

c1
+ 2 ≥

(
c5n

2α− 3
2
−ϵ − 1

)
#JR.

Recall that α < 1 but, because of (2.9), we have 2α− 3/2− ϵ > 0. This inequality therefore cannot
hold for large n unless #JR = 0. This proves (2.10).

Now that we have shown (2.10), we can quickly complete the proof of Proposition 2.3. Because
#JR = 0, (2.18) gives n ≥ ⌊c1n⌋#IR − nα, with #IR = N − 1, and so for large n, we have
n ≥ (c1/2)n(N − 1)− n, or N ≤ 1 + 4/c1. But then

Γn ⊂ ∪N−1
i=0 Ci ⊂ x0 + (Z× [−Nnα, Nnα]) ,

and this shows Proposition 2.3. □
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3. Asymptotics for cylinder times

Because of the fact, from Proposition 2.3, that geodesics for T tube
n are contained in cylinders,

we are led to study passage times across cylinders. Our analysis will crucially rely on the Markov
property that comes from our exponential weights. So we begin this section with a description of
an alternate representation of the model.

Let n,K ≥ 1 be integers and consider the cylinder Cn,K = [0, n] × [0,K] with K ≤ n − 1. For
vertices x, y ∈ Cn,K , we define Tn,K(x, y) as infΓ:x→y T (Γ) where the infimum is over all paths with

vertices in Cn,K from x to y. (Here we can use the weights (te) or (t
(n)
e ) since they have the same

distribution in Cn,K , but for definiteness we now use (te).) Then for y ∈ Cn,K , we put

Tn,K(y) = inf
x∈Cn,K :x·e1=0

Tn,K(x, y)

and

Tn,K = inf
y∈Cn,K :y·e1=n

Tn,K(y). (3.1)

The main observation behind the alternate representation is that, by the memoryless property of the
exponential distribution, the sets {y ∈ Cn,K : Tn,K(y) ≤ t} evolve as a Markov process as t grows.
Following the setup of Pemantle and Peres (1994, p. 2), we may build this process in two steps.
First we grow a sequence of subgraphs of the cylinder as follows. Let C0 = {x ∈ Cn,K : x · e1 = 0}
with set of boundary edges B0 = {{x, y} : x ∈ C0, y ∈ Cn,K \ C0, |x− y| = 1}. For i ≥ 0, choose an
edge ei+1 uniformly from Bi and, writing ei+1 = {xi+1, yi+1}, where xi+1 ∈ Ci, set Ci+1 = Ci∪{yi+1}
and Bi+1 = {{x, y} : x ∈ Ci+1, y ∈ Cn,K \ Ci+1, |x − y| = 1}. These sequences are defined until the
value of i = n(K+1) at which Cn(K+1) = Cn,K ∩Z

2. In words, this is a random growth algorithm (a
Richardson-type model Auffinger et al. (2017, Ch. 6)) in which we begin with a seed on the entire
left side of the cylinder. At each timestep, the growth absorbs a uniformly chosen edge from its
boundary in the cylinder. At some point we have touched the right side: define

N = min{i : yi · e1 = n}.
In the second stage of the process, we fix an outcome as above with sets Ci,Bi, and vertices xi, yi.
Set bi = #Bi−1 and let X1, X2, . . . , XN be independent exponential random variables such that
EXi = b−1

i . Then

Tn,K has the same distribution as X1 + · · ·+XN . (3.2)

As in Pemantle and Peres (1994), “This is an immediate consequence of the lack of memory of the
exponential distribution and of the fact that the minimum of n independent exponentials of mean
1 is an exponential of mean 1/n.” Another fact that follows directly from the representation is that

N has the same distribution as #{y ∈ Cn,K : 0 < Tn,K(y) ≤ Tn,K}. (3.3)

In the following two subsections, we first prove bounds on the reals bi, and then use them, along
with an entropic central limit theorem, to bound the rate of convergence of X1+ · · ·+XN (given the
sequence (bi) and N ) to a standard normal distribution. This will allow us in the third subsection
to estimate the fluctuations of the minimum of i.i.d. copies of Tn,K .

3.1. Boundary of the growth. To estimate N and the bi’s, we will use Kesten’s lemma, which can
be found in Auffinger et al. (2017, Lemma 4.5).

Lemma 3.1. There exist c7, a > 0 such that for all k ≥ 1,

P(∃ vertex self-avoiding γ from 0 with #γ ≥ k but T (γ) ≤ ak) ≤ e−c7k.

First we give estimates for N . The upper bound N ≤ n(K+1) is immediate. For a lower bound,
we have the following.
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Lemma 3.2. There exists c8 > 0 such that for all large n and all K ∈ [1, n− 1],

P
(
N ≥ a

2
nK
)
≥ 1− e−c8n.

Proof : By (3.3), it suffices to show that for large n,

P
(
#{y ∈ Cn,K : 0 < Tn,K(y) ≤ Tn,K} < a

2
nK
)
≤ e−c8n. (3.4)

If Tn,K ≤ an, then there exists a vertex self-avoiding γ starting from the left side of the cylinder
with #γ ≥ n but T (γ) ≤ an. By Lemma 3.1 and a union bound,

P(Tn,K ≤ an) ≤ (K + 1)e−c7n.

Therefore

P
(
#{y ∈ Cn,K : 0 < Tn,K(y) ≤ Tn,K} < a

2
nK
)

≤ (K + 1)e−c7n +P
(
#{y ∈ Cn,K : 0 < Tn,K(y) ≤ an} < a

2
nK
)
. (3.5)

We will prove that with high probability, the set of y in (3.5) contains ([1, (a/2)n]× [0,K])∩Z
2.

Suppose that y is in this latter set, and construct a deterministic path γy by starting at y and
proceeding to y − e1, then to y − 2e1, and so on, in a straight line until we reach (y · e2)e2. Then
#γy, the number of edges in γy, satisfies #γy ≤ (a/2)n and we have Tn,K(y) ≤ T (γy), so for η > 0,
we can use Markov’s inequality to obtain

P(Tn,K(y) ≥ an) ≤ P
(
eηT (γy) ≥ eηan

)
≤ e−ηan

(
Eeηte

)#γy

≤
(
e−η

(
Eeηte

) 1
2

)an

=

(
e−2η

1− η

)a
2
n

.

(3.6)

We fix η to be small so that b′ := e−2η/(1 − η) < 1 and conclude that by a union bound and the
fact that K ≤ n,

P
(
Tn,K(y) ≥ an for some y ∈

[
1,
a

2
n
]
× [0,K]

)
≤ (K + 1)

(a
2
n
)
(b′)

a
2
n ≤ e−c9n

for some c9 > 0, so long as n is large. The event in the probability above is implied by the event in
the probability in (3.5), so we obtain

P
(
#{y ∈ Cn,K : 0 < Tn,K(y) ≤ Tn,K} < a

2
nK
)
≤ (K + 1)e−c7n + e−c9n ≤ e−c10n

for some c10 > 0 if n is large. This shows (3.4). □

Next we estimate the boundary sizes bi.

Lemma 3.3. For all i = 1, . . . ,N , we have bi ≥ K+1. Furthermore, there exists c11 > 0 such that
for all large n and all K ∈ [1, n− 1],

P

(
#

{
i = 1, . . . ,N : bi ≥

4

a
K

}
≥
(
1− a

2

)
N
)

≤ e−c11n.

Proof : For a fixed i and any m = 0, . . . ,K, choose um ∈ Ci−1 to have um · e2 = m but with um · e1
maximal. Then {um, um + e1} is an edge of Bi−1, so bi ≥ K + 1.

For the other bound, write A for the event in the probability in the statement. We split A
according to the passage time T tube

n . Let Ξ be the set of pairs ((di),M), where di ∈ N for i ≥ 1
and M ∈ N, such that all of the following hold:

• M ≤ n(K + 1),
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• di ≥ K + 1 for all i, and
• # {i = 1, . . . ,M : di ≥ 4K/a} ≥ (1− a/2)M .

Then

P(A) ≤ P(A,X1 + · · ·+XN ≥ an) +P(X1 + · · ·+XN ≤ an)

≤
∑

((di),M)∈Ξ

P(X1 + · · ·+XN ≥ an, (bi) = (di),N =M) +P(Tn,K ≤ an).

As in the proof of Lemma 3.2, we have P(Tn,K ≤ an) ≤ e−c7n for large n. Therefore we obtain

P(A) ≤ e−c7n

+
∑

((di),M)∈Ξ

P(X1 + · · ·+XN ≥ an | (bi) = (di),N =M)P((bi) = (di),N =M). (3.7)

Conditional on (bi) = (di) and N = M , the variables Xi are independent exponentials with
parameters di. So, for (Yi) that are i.i.d. exponential with mean 1, we have

P(X1 + · · ·+XN ≥ an | (bi) = (di),N =M) = P

(
Y1
d1

+ · · ·+ YM
dM

≥ an

)
.

We now split the sum depending on whether indices are in the set S = {i = 1, . . . ,M : di ≥ (4/a)K}.
We obtain

P(X1 + · · ·+XN ≥ an | (bi) = (di),N =M)

= P

(
∑

i∈S

Yi
di

+
∑

i/∈S

Yi
di

≥ an

)

≤ P

(
a

4K

∑

i∈S

Yi ≥
a

3
n

)
+P

(
1

K + 1

∑

i/∈S

Yi ≥
2a

3
n

)

≤ P




n(K+1)∑

i=1

Yi ≥
4

3
nK


+P




⌈n(K+1)a
2
⌉∑

i=1

Yi ≥
2

3
an(K + 1)


 . (3.8)

By standard large deviation estimates for i.i.d. exponentials, there exists c12 > 0 such that for all
k ≥ 1, we have P(Y1 + · · ·+ Yk ≥ 7k/6) ≤ e−c12k. So for large n, we can bound (3.8) by

e−c12n(K+1) + e−c12⌈n(K+1)a
2
⌉ ≤ e−c13n,

for some c13 > 0. Plug this result back into (3.7) to obtain

P(A) ≤ e−c7n +
∑

((di),M)∈Ξ

e−c13nP((bi) = (di),N =M) ≤ e−c7n + e−c13n.

For large n, this is bounded by e−c11n, if c11 < min{c7, c13}. This completes the proof. □

3.2. Conditional CLT. In this section, we prove a central limit theorem for Tn,K conditional on
the sequence (bi) and the number N . The main tool is a theorem from Artstein et al. (2004)
which bounds the total variation distance between linear combinations of independent variables
and a standard normal variable. To state it, we give some terminology. Recall that an exponential
variable X with parameter 1 satisfies a Poincaré inequality with constant 1/4. Namely, for any
smooth f : R → R,

Var(f(X)) ≤ 4E(f ′(X)2).
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Recall that the entropy of a random variable X with density function f is defined as

Ent(X) := −
∫

R

f(x) log f(x) dx,

and that

Ent(Exp(λ)) = 1− log λ and Ent(Z) =
log 2π + 1

2
, (3.9)

where Z is the standard normal random variable. Last, the total variation distance between two
probability measures µ and ν is

dTV (µ, ν) = sup
B

|µ(B)− ν(B)| ,

where the supremum is over all Borel sets B ⊂ R. The total variation distance between two random
variables is defined as the total variation distance between their distributions. With these notations,
we have the following estimate.

Lemma 3.4. Let {Wi}Ni=1 be independent copies of a random variable W which satisfies a Poincaré
inequality with some constant c > 0. Let {ai}Ni=1 be such that

∑N
i=1 a

2
i = 1 and let SN =

∑N
i=1 aiWi.

Letting Z be a standard normal random variable, we have

dTV (SN −E(SN ), Z)2 ≤ 2

∑N
i=1 a

4
i

c
2 +

(
1− c

2

)∑N
i=1 a

4
i

(Ent(Z)− Ent(W )).

Proof : This is Artstein et al. (2004, Theorem 1) combined with the inequality dTV(SN−ESN , Z)
2 ≤

2[Ent(SN −ESN )− Ent(Z)] in Artstein et al. (2004, Eq. (1)). □

We will apply the lemma to the variables X1, . . . , XN , but to make them independent, we must
condition on (bi) and (N ). For this purpose, we define the admissible set Υ of pairs ((di),M), where
di ∈ N for i ≥ 1 and M ∈ N, by the following conditions:

(1) anK/2 ≤M ≤ n(K + 1),
(2) di ≥ K + 1 for all i, and
(3) # {i = 1, . . . ,M : di ≤ 4K/a} ≥ aM/2.

Summarizing the previous section, if we combine Lemmas 3.2 and 3.3, we find that for all large n
and all K ∈ [1, n− 1],

P(((bi),N ) ∈ Υ) ≥ 1− e−c14n (3.10)

for c14 = (1/2)min{c8, c11}. Next we define the conditional distribution

µ
(di),M
n,K (B) = P



∑N

i=1(Xi − b−1
i )√∑N

i=1 b
−2
i

∈ B

∣∣∣∣ (bi) = (di),N =M


 for Borel B ⊂ R.

Of course, given (bi) = (di) and N = M , the Xi’s are just independent exponentials with mean
b−1
i = d−1

i .

Proposition 3.5. For ((di),M) ∈ Υ, we have

dTV(µ
(di),M
n,K , µG)

2 ≤ (log 2π − 1)
215

a8n(K + 1)
,

where µG is the standard Gaussian distribution. Consequently there exists a probability measure Q

and random variables U,Z on some space such that under Q, U has distribution µ
(di),M
n,K , Z is a

standard Gaussian, and

Q(U ̸= Z) ≤
√
(log 2π − 1)

215

a8n(K + 1)
.
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Proof : The second statement is standard and follows from the coupling representation of total
variation distance. To show the first statement, we apply Lemma 3.4. Given (bi) = (di) and
N =M ,

∑N
i=1(Xi − b−1

i )√∑N
i=1 b

−2
i

=

∑M
i=1

Yi
di√∑M

i=1 d
−2
i

−E

∑M
i=1

Yi
di√∑M

i=1 d
−2
i

in distribution,

where the Yi are i.i.d. exponential random variables with mean 1. So we set Wi = Yi and ai =

d−1
i /
√∑M

i=1 d
−2
i in the lemma. By items (1) and (2) in the definition of Υ,

M∑

i=1

d−4
i ≤ 1

(K + 1)4
· n(K + 1) = n(K + 1)−3.

By items (1) and (3),
(

M∑

i=1

d−2
i

)2

≥
(

a2

16K2
· aM

2

)2

≥
(
a4n

64K

)2

. (3.11)

Combining these produces

M∑

i=1

a4i =

∑M
i=1 d

−4
i(∑M

i=1 d
−2
i

)2 ≤ n(K + 1)−3

(
a4n
64K

)2 ≤ 642

a8n(K + 1)
.

Using Poincaré constant 1/4 in Lemma 3.4, we obtain the following bound for the right side in the
lemma:

2

∑M
i=1 a

4
i

c
2 +

(
1− c

2

)∑M
i=1 a

4
i

(Ent(Z)− Ent(W )) ≤ log 2π − 1

2
· 4
c

M∑

i=1

a4i

≤ (log 2π − 1)
215

a8n(K + 1)
.

This completes the proof. □

3.3. Fluctuation bounds for independent cylinder times. Here we use the results of the last two
subsections to prove a fluctuation lower bound for the minimum of passage times across disjoint

cylinders. For n ≥ 1, pick integers K
(1)
n , . . . ,K

(rn)
n ∈ [1, n] such that

∑rn
j=1K

(j)
n = n. Define

cylinders as C(1) = [0, n]× [0,K
(1)
n − 1] and for j = 2, . . . , rn,

C
(j) = [0, n]× [K(1)

n + · · ·+K(j−1)
n ,K(1)

n + · · ·+K(j)
n − 1].

For each j, we set T (j) to be the corresponding cylinder passage time. It is the minimal passage
time of any path in C(j) connecting the left and right sides, defined analogously to (3.1). Because

the cylinders are disjoint, the T (j) are independent. Last, put

Tn = T
n,(K

(j)
n )

= min{T (1), . . . , T (rn)}.

Proposition 3.6. Suppose that n−1/2
∑rn

j=1(K
(j)
n )−1/2 → 0. Then

(Tn) has fluctuations of at least order min
j=1,...,rn

√
n

K
(j)
n (1 + log rn)

.
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The form of the lower bound can be understood as follows. The j-th cylinder passage time, T (j),
has been shown in Damron et al. (2020) (see also Bates and Chatterjee (2020) for arguments that

imply this fact) to have fluctuations at least of order

√
n/K

(j)
n . Pretending for the moment that this

time is Gaussian distributed, then Tn would be the minimum of rn many Gaussian random variables,

the j-th of which has variance of order n/K
(j)
n . In the appendix, we will show that the fluctuations of

the minimum of rn many Gaussian random variables is at least order (minj=1,...,rn σj)/
√
1 + log rn,

where σ2j is the variance of the j-th variable. (The logarithmic factor appears also in the well-

known value of the fluctuations of the minimum of i.i.d. Gaussian random variables.) In total,

our fluctuation lower bound becomes (minj=1,...,rn

√
n/(K

(j)
n (1 + log rn)). Of course, the times T (j)

are not Gaussian distributed, so we need to apply the coupling results we have developed over the
previous sections.

Proof : We represent the T (j) as in (3.2), obtaining boundary sequences (b
(j)
i ) and reals (N (j)) such

that the pairs ((b
(j)
i ),N (j)) are independent as j varies. We also find variables X

(j)
i for j = 1, . . . , rn

and i = 1, . . . ,N (j) such that conditional on the pairs, the X
(j)
i are independent exponentials with

means EX
(j)
i = 1/b

(j)
i . Last,

N (j)∑

i=1

X
(j)
i = T (j) in distribution for all j = 1, . . . , rn,

and so

min
j=1,...,rn

N (j)∑

i=1

X
(j)
i = Tn in distribution.

We define corresponding admissible pairs Υ(j): they are those ((d
(j)
i ),M (j)) such that

(1) anK
(j)
n /2 ≤M (j) ≤ n(K

(j)
n + 1),

(2) d
(j)
i ≥ K

(j)
n + 1 for all i, and

(3) #{i = 1, . . . ,M (j) : d
(j)
i ≤ 4K

(j)
n /a} ≥ aM (j)/2.

Then by (3.10), for all large n, and all choices of the K
(j)
n as above,

P((b
(j)
i ),N (j)) ∈ Υ(j) for all j = 1, . . . , rn) ≥ 1− rne

−c14n. (3.12)

With these definitions, we compute for any Borel set B ⊂ R

P(Tn ∈ B)

≥
∑

Υ(1)×···×Υ(rn)

[
P


 min

j=1,...,rn

N (j)∑

i=1

X
(j)
i ∈ B

∣∣∣∣ ((b
(j)
i ),N (j)) = ((d

(j)
i ),M (j)) for all j




× P(((b
(j)
i ),N (j)) = ((d

(j)
i ),M (j)) for all j)

]
.

(3.13)

Write µ(j) =
∑N (j)

i=1 (b
(j)
i )−1 and σ(j) =

√∑N (j)

i=1 (b
(j)
i )−2, and then set

L(j) =

∑N (j)

i=1 X
(j)
i − µ(j)

σ(j)
.

We observe that under the conditional distribution appearing in (3.13), the vector
(
L(j)

)rn
j=1

has

product distribution
∏rn

i=1 µ
(d

(j)
i ),M(j)

n,K
(j)
n

. By combining Proposition 3.5 with the elementary fact that
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dTV(µ1 × · · · × µm, ν1 × · · · × νm) ≤∑m
i=1 dTV(µi, νi) for probability measures µi, νi, we can find a

probability measure Q = Q
(
((d

(j)
i ),M (j))

)
and random variables U1, . . . , Urn , Z1, . . . , Zrn defined

on some space such that under Q,

• Uj has distribution µ
(d

(j)
i ),M(j)

n,K
(j)
n

,

• Zj is a standard Gaussian, and
• the pairs (U1, Z1), . . . , (Urn , Zrn) are independent.

Furthermore, we have the estimate

Q(Uj ̸= Zj for some j = 1, . . . , rn) ≤
rn∑

j=1

√
(log 2π − 1)

215

a8n(K
(j)
n + 1)

.

By the above remarks and this inequality, we can represent the probability in (3.13) as

P


 min

j=1,...,rn

N (j)∑

i=1

X
(j)
i ∈ B

∣∣∣∣ ((b
(j)
i ),N (j)) = ((d

(j)
i ),M (j)) for all j




= Q

(
min

j=1,...,rn

(
µ(j) + σ(j)Uj

)
∈ B

)

≥ Q

(
min

j=1,...,rn

(
µ(j) + σ(j)Zj

)
∈ B

)
−Q(Uj ̸= Zj for some j)

≥ Q

(
min

j=1,...,rn

(
µ(j) + σ(j)Zj

)
∈ B

)
− C5√

n

rn∑

j=1

1√
K

(j)
n

,

where C5 > 0 is a constant. We plug this back into (3.13) to find

lim inf
n→∞

P(Tn ∈ B)

≥ lim inf
n→∞

∑

Υ(1)×···×Υ(rn)

Q

(
min

j=1,...,rn

(
µ(j) + σ(j)Zj

)
∈ B

)
P(((b

(j)
i ),N (j)) = ((d

(j)
i ),M (j))∀j)

− lim inf
n→∞

C5√
n

rn∑

j=1

1√
K

(j)
n

∑

Υ(1)×···×Υ(rn)

P(((b
(j)
i ),N (j)) = ((d

(j)
i ),M (j)) ∀j).

By our assumption in the statement of the proposition, the second term is zero, so we get

lim inf
n→∞

P(Tn ∈ B)

≥ lim inf
n→∞

∑

Υ(1)×···×Υ(rn)

Q

(
min

j=1,...,rn

(
µ(j) + σ(j)Zj

)
∈ B

)
P(((b

(j)
i ),N (j)) = ((d

(j)
i ),M (j))∀j)

(3.14)

By Theorem A.1 of the appendix, if we write σ = σ
(
((d

(j)
i ),M (j))rnj=1

)
= minj=1,...,rn σ

(j), then we

can find reals an = an

(
((d

(j)
i ),M (j))rnj=1

)
and bn = bn

(
((d

(j)
i ),M (j))rnj=1

)
and a universal constant

c15 > 0 such that

Q

(
min

j=1,...,rn

(
µ(j) + σ(j)Zj

)
≤ an

)
≥ c15,

Q

(
min

j=1,...,rn

(
µ(j) + σ(j)Zj

)
≥ bn

)
≥ c15,

(3.15)
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and

bn − an =
σ√

1 + log rn
. (3.16)

These an and bn can be chosen as measurable functions of ((d
(j)
i ),M (j)) by using quantiles of

minj=1,...,rn

∑N (j)

i=1 X
(j)
i given that ((b

(j)
i ),N (j)) = ((d

(j)
i ),M (j)) for all j. We would like to set B =

(−∞, an] and then B = [bn,∞) in (3.14), but since these reals depend on the pairs ((d
(j)
i ),M (j)),

we must replace them with reals that do not depend on the pairs.
To do this, we recall (3.12), which implies that if n is large enough, then

∑

Υ(1)×···×Υ(rn)

P
(
((b

(j)
i ),N (j)) = ((d

(j)
i ),M (j))∀j

)
= P

(
((b

(j)
i ),N (j)) ∈ Υ(j) ∀j

)
≥ 1

2
.

The quantities an and bn are random variables when considered as functions of ((b
(j)
i ),N (j))rnj=1.

Because K(x) = P
(
an ≤ x, ((b

(j)
i ),N (j)) ∈ Υ(j) ∀j

)
is a nondecreasing, right continuous function

of x with limx→−∞K(x) = 0 and limx→∞K(x) ≥ 1/2, we can find a deterministic number ma
n such

that both of the following hold:

P
(
an ≤ ma

n, ((b
(j)
i ),N (j)) ∈ Υ(j) ∀j

)
≥ 1

4

P
(
an ≥ ma

n, ((b
(j)
i ),N (j)) ∈ Υ(j) ∀j

)
≥ 1

4
.

Observe that if we define

σ̃ = min{σ : ((d
(j)
i ),M (j)) ∈ Υ(j) for all j},

which, by (3.11), satisfies

σ̃ ≥ a2

8
min

j=1,...,rn

√
n

K
(j)
n

, (3.17)

and

mb
n = ma

n +
σ̃√

1 + log rn
, (3.18)

then by (3.16),

P(bn ≥ mb
n, ((b

(j)
i ),N (j)) ∈ Υ(j) ∀j) ≥ P(an ≥ ma

n, ((b
(j)
i ),N (j)) ∈ Υ(j) ∀j) ≥ 1

4
. (3.19)

First we set B = (−∞,ma
n] in (3.14) and apply (3.15) to obtain

∑

Υ(1)×···×Υ(rn)

Q

(
min

j=1,...,rn

(
µ(j) + σ(j)Zj

)
≤ ma

n

)
P(((b

(j)
i ),N (j)) = ((d

(j)
i ),M (j))∀j)

≥
∑

{an≤ma
n}

Q

(
min

j=1,...,rn

(
µ(j) + σ(j)Zj

)
≤ an

)
P(((b

(j)
i ),N (j)) = ((d

(j)
i ),M (j))∀j)

≥ c15P(an ≤ ma
n, ((b

(j)
i ),N (j)) ∈ Υ(j) ∀j)

≥ c15
4
. (3.20)

A similar argument using (3.19) shows that

∑

Υ(1)×···×Υ(rn)

Q

(
min

j=1,...,rn

(
µ(j) + σ(j)Zj

)
≥ mb

n

)
P(((b

(j)
i ),N (j)) = ((d

(j)
i ),M (j))∀j) ≥ c15

4
. (3.21)
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Finally, we put (3.20) into (3.14) to find

lim inf
n→∞

P(Tn ≤ ma
n) ≥

c15
4

and similarly using (3.21) gives

lim inf
n→∞

P(Tn ≥ mb
n) ≥

c15
4
.

Because of (3.17) and (3.18), this completes the proof of Proposition 3.6. □

4. Proofs of main results

4.1. Proof of Theorem 1.2. We will first bound fluctuations of T tube
n by comparing it to a minimum

of cylinder times. Define integers K
(1)
n , . . . ,K

(rn)
n ∈ [1, n] such that

∑rn
j=1K

(j)
n = n, along with

cylinders C(j), passage times T (j), and minimum Tn, all as in Sec. 3.3. Although in that section

we used the i.i.d. weights (te), here we define them using the periodic weights (t
(n)
e ). This does not

change the distribution of Tn because the cylinders are contained in [0, n] × [0, n − 1]. For α1, α2

such that 3/4 < α1 < α2 < 1, we assume that

K(j)
n ∈ [nα2 , 2nα2 ] for all j, so rn ≤ n1−α2 . (4.1)

In addition, we shift the cylinders up by ⌊nα2/2⌋, setting

(K(j)
n )′ = K(j)

n +

⌊
nα2

2

⌋
for j = 1, . . . , rn,

with corresponding cylinders (C(j))′ = C(j) + ⌊nα2/2⌋e2, passage times (T (j))′, and minimum T ′
n.

Again we use the periodic weights (t
(n)
e ) instead of the i.i.d. weights (te). Observe that Tn and T ′

n

have the same distribution, but they are not independent. Last, define Tn = min{Tn, T ′
n}, and let

An be the event described in Proposition 2.3:

An =
{
for any geodesic Γn for T tube

n , Γn ⊂ x0 + (Z× [−nα1 , nα1 ])
}
, (4.2)

where x0 is the initial point of Γn. That proposition gives

P(An) ≥ 1− e−nb
for large n. (4.3)

Any optimal path for Tn connects the sets {x : x · e1 = 0} and {x : x · e1 = n}, so by (2.1), we
have T tube

n ≤ Tn. We claim that if n is large, then in fact

on An, we have T tube
n = Tn. (4.4)

To see why this holds, consider an outcome in An with n large and let Γn be a geodesic for T tube
n .

By periodicity of the weights, we may select Γn so that its initial point x0 = (0,m0) satisfies
m0 ∈

[
nα2

10 , n+ nα2

10

]
. If the set [0, n]× [m0 −nα1 ,m0 +nα1 ] is not contained in any of the cylinders

C(j), then either m0 ≥ n or the interval [m0 − nα1 ,m0 + nα1 ] must contain a number of the form

K
(1)
n + · · ·+K

(j0)
n . In the first case, [0, n]× [m0 −nα1 ,m0 +nα1 ] is contained in (C(rn))′, and in the

second, it is contained in (C(j0))′. In any case, since An occurs, Γn must be contained in one of the

cylinders C(j) or (C(j))′, so it is an admissible path for the definition of the corresponding cylinder

passage time T (j) or (T (j))′. Therefore T tube
n = T (n)(Γn) ≥ Tn.

We estimate from (4.1)

1√
n

rn∑

j=1

1√
K

(j)
n

≤ n
1−3α2

2 → 0
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since α2 > 1/3, and

min
j=1,...,rn

√
n

K
(j)
n (1 + log rn)

≥
√

n1−α2

2(1 + log n1−α2)
.

Proposition 3.6 implies the existence of an, bn and a constant c16 > 0 such that for large n,

bn − an ≥ c16

√
n1−α2

log n
(4.5)

and

P(Tn ≥ bn) ≥ c16 and P(Tn ≤ an) ≥ c16, (4.6)

with the same statements holding for T ′
n. Both Tn and T ′

n are decreasing functions of the i.i.d. weights

(t
(n)
e )e∈E(n)o , so by Harris’s inequality,

P(Tn ≥ bn) ≥ P(Tn ≥ bn)
2 ≥ c216.

We also have P(Tn ≤ an) ≥ P(Tn ≤ an) ≥ c16. Last, we use (4.3) and (4.4) to get for large n

P(T tube
n ≥ bn) ≥ P(Tn ≥ bn)− e−nb ≥ c216

2

and similarly P(T tube
n ≤ an) ≥ c16/2. Therefore (T tube

n ) has fluctuations at least of order√
n1−α2/ log n. Since α2 is an arbitrary number bigger than 3/4, this completes the proof of the

first statement of Theorem 1.2.
We move to the other half of Theorem 1.2. To bound fluctuations for T sq

n , we compare this
quantity to T tube

n . Because of the result we just proved, if ϵ > 0, we can choose α2 above (4.1) with

(1− α2)/2 > 1/8− ϵ such that the reals an, bn defined in (4.5) satisfy bn − an ≥ n1/8−ϵ for all large
n and such that

P(T tube
n ≤ an) ≥ c17 and P(T tube

n ≥ bn) ≥ c17 (4.7)

for some c17 > 0 (and similarly for Tn). We first show that

lim inf
n→∞

P(T sq
n ≤ an) > 0. (4.8)

We will assume that the weights (te) and (t
(n)
e ) used in the definitions of T sq

n and T tube
n are coupled

so that te = t
(n)
e for all e ∈ E(n)o. First, taking the definition of An from (4.2), and using (4.7), we

obtain

lim inf
n→∞

P(T tube
n ≤ an, An) > 0. (4.9)

Let En be the event that some geodesic for T tube
n has initial point in the interval {0} × [⌊n/10⌋,

⌊n/10⌋ + ⌊8n/10⌋], and let E′
n be the event that some geodesic for T tube

n has initial point in the
interval {0} × [⌊n/2⌋, ⌊n/2⌋+ ⌊8n/10⌋]. Then by vertical translation invariance,

P(T tube
n ≤ an, An) ≤ P(T tube

n ≤ an, An,En) +P(T tube
n ≤ an, An,E

′
n)

= 2P(T tube
n ≤ an, An,En),

so by (4.9),

lim inf
n→∞

P(T tube
n ≤ an, An,En) > 0.

However, if n is large and An ∩ En occurs, then there is a geodesic Γn for T tube
n that uses only

edges in E(n)o, so it is an admissible path for the definition of T sq
n . Therefore T tube

n = T (n)(Γn) =
T (Γn) ≥ T sq

n , and so

lim inf
n→∞

P(T sq
n ≤ an) ≥ lim inf

n→∞
P(T tube

n ≤ an, An,En) > 0.
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To complete the proof, we must show

lim inf
n→∞

P(T sq
n ≥ bn) > 0. (4.10)

To do this, we use three related passage times, all defined with the weights (te). Let Tn(1) be the
minimum of T (Γ) over all Γ with vertices in B(n), connecting {0} × [0, n] to {n} × [0, n], but not
using edges with both endpoints in [0, n]×{n} (that is, using only edges in E(n)o). Let Tn(2) be the
minimum of T (Γ) over all Γ with vertices in B(n), connecting the same two sets, but now not using
edges with both endpoints in [0, n]× {0}. Last, let Tn(3) be the minimum of T (Γ) over all Γ with
vertices in B(n), connecting [0, n]×{0} to [0, n]×{n}, but not using edges with both endpoints in
{n}× [0, n]. All the Tn(i) are decreasing functions of the weights (te) and are identically distributed.

Furthermore, using our coupling of (te) and (t
(n)
e ), we have Tn(1) ≥ T tube

n . So by Harris’s inequality
and (4.7),

lim inf
n→∞

P

(
min

i=1,2,3
Tn(i) ≥ bn

)
≥ lim inf

n→∞
P(Tn(1) ≥ bn)

3 ≥ lim inf
n→∞

P(T tube
n ≥ bn)

3 > 0. (4.11)

However,

min
i=1,2,3

Tn(i) ≤ T sq
n (4.12)

because of the following argument. Let σn be a geodesic for T sq
n (one exists because there are finitely

many self-avoiding paths in B(n)). If σn does not touch [0, n]× {n}, then it is an admissible path
for Tn(1), so T sq

n ≥ Tn(1). If σn does not touch [0, n]× {0}, then similarly T sq
n ≥ Tn(2). Last, if σn

touches both of these sets, let σ′n be a segment of σn that connects them. Because σn is a geodesic
for T sq

n it a.s. cannot use an edge with both endpoints in {n} × [0, n]. Therefore σ′n cannot either,
and so it is an admissible path for Tn(3), implying that T sq

n = T (σn) ≥ T (σ′n) ≥ Tn(3). In any of
these three cases, (4.12) holds.

Finally, due to (4.12), we have P(T sq
n ≥ bn) ≥ P(mini=1,2,3 Tn(i) ≥ bn). This along with (4.11)

implies (4.10) and completes the proof of Theorem 1.2.

4.2. Proof of Corollary 1.5. The proof of Corollary 1.5 will use the objects defined in the last proof.
Specifically, we take α1, α2 as above (4.1), the cylinder time Tn, and reals an, bn defined in (4.5). For
these reals, we have shown above that we have, in addition to (4.6), similar inequalities for T tube

n

and T sq
n . We will also use the event An defined in (4.2).

We first prove that for some c18 > 0, we have for large n

P(T tube
n ≥ b′n) ≥ c18, (4.13)

where

b′n =

{
2bn

2
if n is even

bn−1
2

+ bn+1
2

if n is odd.

Because T tor
n ≥ T tube

n , this will also establish P(T tor
n ≥ b′n) ≥ c18.

To prove (4.13), first suppose that n is even and consider the three squares

Si =
[
0,
n

2

]2
+ (i− 1)

⌊n
3

⌋
e2 for i = 1, 2, 3

with corresponding square passage times T sq
n (i) (all using the weights (t

(n)
e )). We also define the

shifted squares

S̄i =
(
Si +

n

2
e1

)
+ i
⌊n
3

⌋
e2 for i = 1, 2, 3
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along with their corresponding square passage times T̄ sq
n (i) (again using (t

(n)
e )). From the version

of (4.6) for T sq
n and Harris’s inequality, we have

P

(
min

i=1,2,3
min

{
T sq
n (i), T̄ sq

n (i)
}
≥ bn

2

)
≥ c616.

As a consequence of (4.3), P(An) → 1, and so

lim inf
n→∞

P

(
An, min

i=1,2,3

(
T sq
n (i) + T̄ sq

n (i)
)
≥ b′n

)
> 0. (4.14)

However, on the event in this probability, we have T tube
n ≥ b′n. Indeed, choose a geodesic Γn for

T tube
n . We may assume by periodicity that the initial point x0 of Γn is contained in the interval

{0} × [n/12, n+ n/12]. Then if n is large, there exists some i such that

x0 + ([0, n]× [−nα1 , nα1 ]) ⊂
(
Si ∪ S̄i

)
.

This means that Γn contains an initial segment that is an admissible path for T sq
n (i) and a final

(disjoint) segment that is an admissible path for T̄ sq
n (i), so T tube

n = T (n)(Γn) ≥ T sq
n (i) + T̄ sq

n (i) ≥
2bn/2 = b′n. Because of (4.14), we then conclude that (4.13) holds if n is even. In the case that n is
odd, the squares are instead defined as

Si =

[
0,
n− 1

2

]2
+ (i− 1)

⌊n
3

⌋
e2 for i = 1, 2, 3

and

S̄i =

[
n− 1

2
, n

]
×
[
0,
n+ 1

2

]
+ (i− 1)

⌊n
3

⌋
e2 for i = 1, 2, 3,

but the rest of the proof is the same.
The second half of the proof serves to show that if β ∈ (0, 1), there is c19 > 0 such that for large

n,

P(T tor
n ≤ a′n) ≥

c19
n1+α2−2β

, (4.15)

where

a′n =

{
2an

2
+ 8nβ if n is even

an−1
2

+ an+1
2

+ 8nβ if n if odd.

We do this by approximately concatenating two low-weight paths in cylinders of height nα1 , one
in the left half of the torus and one in the right. Again we will assume that n is even; a similar
argument works if n is odd.

First, in addition to the variable Tn/2, we define T̄n/2 as the corresponding minimum over the

left-right times associated with shifted cylinders C(j)+(n/2)e1 and the same integer cylinder-heights

K
(1)
n/2, . . . ,K

(rn/2)

n/2 that satisfy equation (4.1) with n replaced by n/2. In these definitions, we use

the periodic weights (t
(n)
e ). By independence and (4.6), we have

P
(
max

{
Tn

2
, T̄n

2

}
≤ an

2

)
≥ c216.

Let Gn be the event that there exists a path γ with initial point x0 in {0} × [0, n], all of whose

edges intersect (0, n/2) × [0, n], with final point in {n/2} × [0, n], such that T (n)(γ) ≤ an/2 and

γ ⊂ x0 + (Z× [−2(n/2)α2 , 2(n/2)α2 ]). Similarly, define Ḡn as the event that there is a path γ̄ with
initial point y0 in {n/2} × [0, n], all of whose edges intersect (n/2, n) × [0, n], with final point in

{n} × [0, n], such that T (n)(γ̄) ≤ an/2 and γ̄ ⊂ y0 + (Z× [−2(n/2)α2 , 2(n/2)α2 ]). By (4.1), any

optimal path in the definition of Tn/2 (or T̄n/2) satisfies the properties in the definition of Gn (or

Ḡn), so for large n

P(Gn ∩ Ḡn) ≥ c216. (4.16)



Fluctuations in FPP on the square, tube, and torus 237

On the event Gn ∩ Ḡn, we will build an admissible path for T tor
n consisting of γ, γ̄, and vertical

line segments. To do this effectively, we need the endpoints of γ and γ̄ to be close to each other.
For this purpose, we must introduce a few definitions. First, let β ∈ (0, 1) and define a family of
intervals

I11 = {0} × [0, nβ ], I12 = {0} × [nβ , 2nβ ], . . . , I1p = {0} ×
[
(⌊n1−β⌋ − 1)nβ , ⌊n1−β⌋nβ

]
,

and I1p+1 = {0} × [⌊n1−β⌋nβ , n]. We need shifted intervals as well, so we set

I2i = I1i +
n

2
e1 and I3i = I1i + ne1.

Also define i1 as the minimal value of i for which there is a path γ satisfying the conditions of the
definition of Gn such that its initial point x0 is in I1i . Set i2 to be the minimal value of i for which
there is a path γ satisfying the conditions of the definition of Gn such that its initial point x0 is in
I1i1 but its final point is in I2i . Next, define i3 as the minimal value of i for which there is a path γ̄

satisfying the conditions in the definition of Ḡn such that its initial point y0 is in I2i . Finally, set i4
to be the minimal value of i for which there is a path γ̄ satisfying the conditions of the definition
of Ḡn such that its initial point y0 is in I2i3 and its final point is in I3i . If Gn occurs, then i1 and i2
are defined, and if Ḡn occurs, then i3 and i4 are defined. Whenever any ij is not defined, we set it
to be +∞.

From (4.16), we have

P(ij <∞ for j = 1, . . . , 4) ≥ c216. (4.17)

Furthermore, by independence,

P(i1 = i4 <∞, i2 = i3 <∞)

=

p+1∑

i=1



p+1∑

j=1

P(i2 = i3 = j | i1 = i4 = i)


P(i1 = i4 = i)

=

p+1∑

i=1



p+1∑

j=1

P(i2 = j | i1 = i)P(i3 = j | i4 = i)


P(i1 = i)P(i4 = i). (4.18)

Observe that if i1 = i, then γ begins at x0 in the interval I1i but must end at an interval in
x0 + (Z× [−2(n/2)α2 , 2(n/2)α2 ]). Therefore i2 can take only take values in a set Si which has
cardinality at most 8nα2−β if n is large. Using Jensen’s inequality and symmetry, the inner sum is

∑

j∈Si

P(i2 = j | i1 = i)P(i3 = j | i4 = i) = #Si ·
1

#Si

∑

j∈Si

P(i2 = j | i1 = i)2

≥ 1

#Si



∑

j∈Si

P(i2 = j | i1 = i)




2

≥
(
8nα2−β

)−1
.

By a similar argument, and now using (4.17), we obtain

p+1∑

i=1

P(i1 = i)P(i4 = i) ≥ 1

p+ 1
P(i1 <∞)2 ≥ c416

p+ 1
.

Putting these back in (4.18) and using p+ 1 ≤ 2n1−β gives

P(i1 = i4 <∞, i2 = i3 <∞) ≥ c416
16n1+α2−2β

. (4.19)
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On the event in the probability of (4.19), the endpoints of γ and γ̄ are within nβ of each other;
now we will connect them with vertical segments. So let Hn be the event that any vertex self-
avoiding path π with at most 2nβ many edges and which is contained in ∪3

i=1 ({in/2} × [0, n])

satisfies T (n)(π) ≤ 4nβ . By the argument of (3.6), any such π satisfies

P(T (n)(π) ≥ 4nβ) ≤ e−4ηnβ (
Eeηte

)#π ≤ e−c20nβ

for some c20 > 0, and so a union bound produces for large n

P(Hn) ≥ 1− 3(n+ 1) · 2nβ · e−c20nβ ≥ 1− e−
c20
2

nβ
.

So, if n is large, we can combine this with (4.19) for

P(Hn, i1 = i4 <∞, i2 = i3 <∞) ≥ c416
32n1+α2−2β

. (4.20)

Now consider an outcome for which Hn occurs, and also i1 = i4 < ∞, and i2 = i3 < ∞. Then we
may produce a path Γ by starting with γ, following the line {n/2} × [0, n] from the final point of γ
to the initial point y0 of γ̄, traversing γ̄, and then following the line {n}× [0, n] from the final point
of γ̄ to x0 + ne1, where x0 is the initial point of γ. In this way we produce an admissible path for
T tor
n , and T (n)(π) ≤ 2(an/2 + 4nβ). Together with (4.20), this implies (4.15).
Having shown both inequalities (4.13) and (4.15), we complete the proof of Corollary 1.5. For

concreteness, we again assume that n is even. For our α2 > 3/4, let δ > 0 and set β = 1/2−α2/2−δ.
Then by (4.5), for large n,

b′n − a′n = 2
(
bn

2
− an

2

)
− 8nβ ≥ 2c16

√(
n
2

)1−α2

log n
2

− 8n
1−α2

2
−δ ≥ c16

√
n1−α2

log n
.

Furthermore, by (4.13) and (4.15), for large n,

P(T tor
n ≤ a′n) ≥

c19

n2(α2+δ)

and

P(T tor
n ≥ b′n) ≥

c19

n2(α2+δ)
.

For any random variable Y with finite mean satisfying P(Y ≤ a) ≥ c and P(Y ≥ b) ≥ c for reals
a ≤ b, one has E|Y −EY |k ≥ ((b− a)/2)kc. Applying this to T tor

n gives

E|T tor
n −ET tor

n |k ≥
(
c16
2

√
n1−α2

log n

)k

· c19

n2(α2+δ)
.

Last, taking α2 = 3/4 + δ gives for large n

E|T tor
n −ET tor

n |k ≥
(
c16
2

· n
1
8
− δ

2√
log n

)k

· c19

n
3
2
+4δ

≥ c19n
( 1
8
−δ)k− 3

2
−4δ.

This implies Corollary 1.5 and completes the proof.

Appendix A. Gaussian fluctuation lemmas

This section provides the fluctuation result for normal random variables used to justify (3.15)
and (3.16) in the proof of Proposition 3.6. It relates the fluctuations of the minimum of indepen-
dent normal variables with different means and variances to the fluctuations of the minimum of
i.i.d. normal variables. For notational convenience, the result is stated for the maximum, though
by symmetry it holds for the minimum.
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Theorem A.1. There exists a universal constant c21 > 0 such that the following holds. Let
Z1, . . . , Zn be independent normal variables with variances σ21, . . . , σ

2
n and set σ = mini=1,...,n σi.

There exist reals an, bn with

bn − an =
σ

2
√
1 + log n

(A.1)

such that

P

(
max

i=1,...,n
Zi ≤ an

)
≥ c21 and P

(
max

i=1,...,n
Zi ≥ bn

)
≥ c21.

By Durrett (2019, Ex. 3.2.3), the right side of (A.1) is the order of the fluctuations of the
maximum of i.i.d. normal random variables with variance σ2. Before the proof of Theorem A.1, we
state three lemmas. The first establishes a certain logconcavity property of the normal distribution.

Lemma A.2. Let Φ be the distribution function of the standard normal distribution and f be its
density function. Then f/Φ is logconcave.

Proof : We must show that (log(f/Φ))′′ ≤ 0, but since (log f)′′ ≡ −1, this reduces to (log Φ(x))′′ ≥
−1, or

f ′(x)Φ(x)− f2(x) + Φ2(x) ≥ 0. (A.2)

So let F = f ′Φ− f2 +Φ2. Because limx→−∞ F (x) = 0, it will suffice to show that F ′(x) ≥ 0 for all
x. Using f ′(x) = −xf(x), a computation gives

F ′(x) = f(x)[(1 + x2)Φ(x) + xf(x)],

so we can just prove that H(x) ≥ 0 for all x, where H(x) = (1+ x2)Φ(x) + xf(x). We observe that

H ′(x) = 2xΦ(x) + (1 + x2)f(x) + f(x) + xf ′(x) = 2(xΦ(x) + f(x)).

and

H ′′(x) = 2[Φ(x) + xf(x)− xf(x)] = 2Φ(x) ≥ 0.

From the first display, we obtain limx→−∞H ′(x) = 0, and combining this with the second display,
we obtain H ′(x) ≥ 0, for all x. Last, since limx→−∞H(x) = 0, this implies H(x) ≥ 0 for all x, and
so (A.2) follows. □

The next lemma tells us how the quantiles of maxi Zi change as we shift the Zi. Although it is
stated for normal variables, it holds for more general distributions.

Lemma A.3. Let Z1, . . . , Zn be independent normal random variables with distribution functions
F1, . . . , Fn and densities f1, . . . , fn. For a ∈ R, set

Fmax(z, a) = P(max{Z1 + a, Z2, . . . , Zn} ≤ z),

and for t ∈ (0, 1) define F−1
max(t, a) as the unique real such that

Fmax(F
−1
max(t, a), a) = t. (A.3)

Then

∂

∂a
F−1
max(t, a) =

f1(z−a)
F1(z−a)

f1(z−a)
F1(z−a) +

∑n
i=2

fi(z)
Fi(z)

∣∣∣∣
z=F−1

max(t,a)

.

Proof : Fix t ∈ (0, 1) and define H : R → R2 by H(a) = (F−1
max(t, a), a), so that (A.3) becomes

Fmax(H(a)) = t. By the chain rule,

∂

∂z
Fmax(z, a)

∣∣∣∣
(z,a)=H(a)

∂

∂a
F−1
max(t, a) +

∂

∂a
Fmax(z, a)

∣∣∣∣
(z,a)=H(a)

= 0,
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which implies

∂

∂a
F−1
max(t, a) = −

∂
∂aFmax(z, a)
∂
∂zFmax(z, a)

∣∣∣∣
(z,a)=H(a)

. (A.4)

Using Fmax(z, a) = F1(z − a)
∏n

i=2 Fi(z), these derivatives are

∂

∂a
Fmax(z, a) = −f1(z − a)

n∏

i=2

Fi(z),

and

∂

∂z
Fmax(z, a) = Fmax(z, a)

(
f1(z − a)

F1(z − a)
+

n∑

i=2

fi(z)

Fi(z)

)
.

Place these back into (A.4) to complete the proof. □

Our last lemma uses the previous two in its proof, and implies Theorem. A.1 in the case that the
Zi have the same variances but different means. The result is stronger, and is stated in terms of
the dispersive order.

Definition A.4. The random variable X, with distribution function F, is said to be less dispersed
that the random variable Y, with distribution function G, if

F−1(b)− F−1(a) ≤ G−1(b)−G−1(a) for all 0 < a ≤ b < 1.

If X is less dispersed than Y, then VarX ≤ VarY provided that X and Y have finite variances.
See, for instance, Shaked and Shanthikumar (2007, Sec. 3.B) for this and more facts on the dispersive
order. Moreover, we observe that if Xn is less dispersed than Yn for all n, then {Xn}∞n=1 has
fluctuations of lower order than {Yn}∞n=1.

The following result on fluctuations of the maximum of shifted normal variables holds for more
general distributions. The proof only uses Lemma A.3 and the logconcavity property of normal
random variables from Lemma A.2.

Lemma A.5. Let X1, . . . , Xn be i.i.d. normal random variables, let a1, . . . , an ∈ R and let Zi =
Xi + ai, for all i = 1, . . . , n. Then max1≤i≤nXi is less dispersed than max1≤i≤n Zi.

Proof : We may assume that a1 ≤ a2 ≤ · · · ≤ an. Write F and f for the common distribution
function and density of the Xi, so that the distribution function and density of Zi is F (z − ai) and
f(z − ai). Define F−1

max(t, a1, . . . , an) analogously to (A.3): it is the unique real such that

P

(
max

i=1,...,n
(ai +Xi) ≤ F−1

max(t, a1, . . . , an)

)
= t.

We aim to prove that for t1 < t2, one has

F−1
max(t2, a1, . . . , an)− F−1

max(t1, a1, . . . , an) ≥ F−1
max(t2, an, . . . , an)− F−1

max(t1, an, . . . , an). (A.5)

Putting

ψ(a1, . . . , an) = F−1
max(t2, a1, . . . , an)− F−1

max(t1, a1, . . . , an),

Lemma A.3 implies that

∂

∂ak
ψ(a1, . . . , an) =

f(z−ak)
F (z−ak)∑n
i=1

f(z−ai)
F (z−ai)

∣∣∣∣
z=F−1

max(t2,a1,...,an)

−
f(z−ak)
F (z−ak)∑n
i=1

f(z−ai)
F (z−ai)

∣∣∣∣
z=F−1

max(t1,a1,...,an)

.

We claim that if a1 = · · · = ak ≤ ak+1 ≤ · · · ≤ an, then

∂

∂ak
ψ(a1, . . . , an) ≤ 0. (A.6)
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This will imply (A.5) after integrating the derivative of ψ along the concatenation of straight
line segments connecting the points (a1, a2 . . . , an), (a2, a2, a3, . . . , an), (a3, a3, a3, a4, . . . , an), . . . ,
(an, . . . , an) in order. To simplify notation, put zi = F−1

max(ti, a1, . . . , an), so that z2 ≥ z1, let
g = f/F , and write

f(z2−ak)
F (z2−ak)∑n
i=1

f(z2−ai)
F (z2−ai)

=
g(z2 − ak)∑n
i=1 g(z2 − ai)

=
g(z1 − ak)

g(z2−ak)
g(z1−ak)∑n

i=1 g(z1 − ai)
g(z2−ai)
g(z1−ai)

. (A.7)

By Lemma A.2, g is logconcave, so because ai ≥ ak for i = 1, . . . , n, we have

g(z2 − ai)

g(z1 − ai)
= exp (log g(z2 − ai)− log g(z1 − ai)) ≥ exp (log g(z2 − ak)− log g(z1 − ak))

=
g(z2 − ak)

g(z1 − ak)
,

and (A.7) above becomes

f(z2−ak)
F (z2−ak)∑n
i=1

f(z2−ai)
F (z2−ai)

≤
g(z1 − ak)

g(z2−ak)
g(z1−ak)

∑n
i=1

[
g(z1 − ai)

g(z2−ak)
g(z1−ak)

] =

f(z1−ak)
F (z1−ak)∑n
i=1

f(z1−ai)
F (z1−ai)

.

This proves (A.6). □

Given the preparatory lemmas above, we can now prove Theorem A.1.

Proof of Theorem A.1: By Durrett (2019, Ex. 3.2.3), there is an absolute constant c22 > 0 such that
if W1,W2, . . . are i.i.d. normal variables with mean zero and variance σ2, then there are reals a′n, b

′
n

such that
b′n − a′n =

σ√
1 + log n

and both

P

(
max

i=1,...,n
Wi ≤ a′n

)
≥ c22 and P

(
max

i=1,...,n
Wi ≥ b′n

)
≥ c22.

We consider W ′
i +Vi, where W ′

i =Wi+EZi, and the Vi are independent normal random variables
(and independent of (Wi)) with Var Vi = σ2i − σ2. Then (Zi) and (W ′

i + Vi) have the same

distribution. Conditional on V⃗ = (V1, . . . , Vn), the variables W ′
i + Vi are independent normals

with variance σ2 and possibly different means Vi + EZi. Lemma A.5 therefore gives that they
(conditionally) are more dispersed than the sequence W1, . . . ,Wn. Therefore we can find reals

an(V⃗ ) and bn(V⃗ ) such that

bn(V⃗ )− an(V⃗ ) =
σ√

1 + log n
and

P

(
max

i=1,...,n
(W ′

i + Vi) ≥ bn(V⃗ ) | V⃗
)

≥ c22,

P

(
max

i=1,...,n
(W ′

i + Vi) ≤ an(V⃗ ) | V⃗
)

≥ c22.

We can choose an(V⃗ ) and bn(V⃗ ) as Borel measurable functions of the vector V⃗ , for instance by

selecting them to be quantiles of the conditional distribution of maxi(W
′
i + Vi) given V⃗ . We now

choose reals an and bn depending on the distributions of these an(V⃗ ) and bn(V⃗ ) as

an = sup
{
x ∈ R : P(an(V⃗ ) ≤ x) ≤ 1/2

}
,

bn = an +
σ

2
√
1 + log n

.
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We observe with this definition that, since the distribution function of an(V⃗ ) is right-continuous,
we have

P(an(V⃗ ) ≤ an) ≥ 1/2.

Furthermore,

P(bn(V⃗ ) ≥ bn) ≥ P(an(V⃗ ) ≥ an) = 1−P(an(V⃗ ) < an) ≥ 1/2.

Then

P

(
max

i=1,...,n
(W ′

i + Vi) ≤ an

)
= E

[
P

(
max

i=1,...,n
(W ′

i + Vi) ≤ an | V⃗
)]

≥ E

[
P

(
max

i=1,...,n
(W ′

i + Vi) ≤ an(V⃗ ), an(V⃗ ) ≤ an | V⃗
)]

= E

[
P

(
max

i=1,...,n
(W ′

i + Vi) ≤ an(V⃗ ) | V⃗
)
1{an(V⃗ )≤an}

]

≥ c22P(an(V⃗ ) ≤ an)

≥ c22
2
,

and

P

(
max

i=1,...,n
(W ′

i + Vi) ≥ bn

)
= E

[
P

(
max

i=1,...,n
(W ′

i + Vi) ≥ bn | V⃗
)]

≥ E

[
P

(
max

i=1,...,n
(W ′

i + Vi) ≥ bn(V⃗ ), bn(V⃗ ) ≥ bn | V⃗
)]

= E

[
P

(
max

i=1,...,n
(W ′

i + Vi) ≥ bn(V⃗ ) | V⃗
)
1{bn(V⃗ )≥bn}

]

≥ c22P(bn(V⃗ ) ≥ bn)

≥ c22
2
.

Therefore the original claim has been proved with c21 = c22/2. □
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