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Abstract. In first-passage percolation, one assigns i.i.d. nonnegative weights (¢.) to the edges of
7% and studies the induced distance (passage time) T'(z,y) between vertices z and y. It is known
that for d = 2, the fluctuations of T'(x,y) are at least order y/log |z — y| under mild assumptions
on t.. We study the question of fluctuation lower bounds for 7},, the minimal passage time between
two opposite sides of an n by n square. The main result is that, under a curvature assumption,
this quantity has fluctuations at least of order n'/8=¢ for any e > 0 when the ¢, are exponentially
distributed. As previous arguments to bound the fluctuations of 7T'(x,y) only give a constant lower
bound for those of T,, (even assuming curvature), a different argument, representing 7,, as a min-
imum of cylinder passage times, and deriving more detailed information about the distribution of
cylinder times using the Markov property, is developed. As a corollary, we obtain the first polyno-
mial lower bounds on higher central moments of the discrete torus passage time, under the same
curvature assumption. A major tool in the proof is a new bound on the fluctuations of the minimum
of independent cylinder passage times. This result is proved without the curvature assumption.

1. Introduction

In this paper, we study first-passage percolation (FPP) on the discrete square, tube, and torus.
The square is defined as B(n) = Z?N[0,n])? with edge set E(n) = {{z,y} : z,y € B(n), |z —y| = 1}.
Let (t.) be a family of i.i.d. exponential random variables with mean 1, indexed by all nearest
neighbor edges of Z2. For x,y € B(n), we set

Tit(w,y) = Jinf T(I). (1.1)

Here, the minimum is taken over all vertex self-avoiding paths starting at z, ending at y, and taking
edges in E(n), and T(I') = > _pte. Then we define the passage time between the left and right
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sides of the square as
TN = inf  T(ay), (1.2)

z€B(n):xz-e1=0
yEB(n):y-ej=n
where e; stands for the i-th coordinate vector.
To define the tube and torus passage times, we represent them on Z? using periodic edge-weights.

Let E(n)° be the set of edges {z,y} € E(n) such that at least one of x or y is in B(n — 1). Let

(té”))ee E(n)e be a family of i.i.d. exponential random variables with mean 1 assigned to the edges
of E(n)° and extend the definition to all nearest neighbor edges of Z? by defining tgjr)nz =t for
z € Z2. Observe that the distribution of (tén)) is invariant under integer translations of Z2. The
tube will use the vertical strip S(n) = {z € Z? : 0 < 2 -e; < n}, and we accordingly define the

passage time as
Tiube — inf Ttube(g g, (1.3)

r:x-e1=0
y:y-e1=n

Here, TtP¢(z, y) is defined for =,y € S(n) as

T (2,y) = inf TC)(T),

Tz—y

with the infimum over all vertex self-avoiding paths connecting = and y and using vertices in S(n).
The term T((T') is the passage time of I’ computed with the weights (tén)): TM(I) =3 ccl .
Last, the torus passage time is defined as

Tt = inf T (z,2+ ney), (1.4)

z:z-e1=0

where T (z,y) for z,y € Z? is the minimum of 7 (I") over all paths connecting  and y (not
necessarily staying in S(n)). As defined, the tube passage time is the same as the first passage time
between the left and right sides of B(n) (using weights (t,(gn))) after we have identified the top and
bottom sides, turning B(n) into a tube. The torus passage time is the same as the first passage
time among all paths that wind once in the e; direction around a torus obtained from identifying
the left and right sides of B(n), as well as the top and bottom sides. See Figure 1.1.

Our main goal is to find lower bounds for the fluctuations of these variables. We use the following
definition of fluctuations, similar to that taken in Damron et al. (2020).

Definition 1.1. Let {X,}°°, be a sequence of real-valued random variables. {X,,}>°; is said to
have fluctuations of at least order f(n) if there exist reals ay,, b, and a number ¢ > 0 such that for
all large n, b, — a, > cf(n),
P(X, <a,)>c¢, and P(X, >b,) >c.
Observe that if (X)) has fluctuations of at least order f(n), then liminf, V;r(%(;) > 0. How-
ever, the converse may fail. For example, the sequence defined by

x — J0  with probability 1 — 1
" In with probability %

has diverging variance, but its fluctuations are not at least order constant.

A logarithmic lower bound for the variance of the point-to-point minimal passage time T'(z,y)
in the standard model (FPP on the infinite discrete lattice Z?) is well-known for a large class
of distributions of edge weights; see Auffinger et al. (2017, Sec. 3.3) and Bates and Chatterjee
(2020); Damron et al. (2020); Pemantle and Peres (1994) for fluctuation bounds. A lower bound
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FIGURE 1.1. Left: the square B(n) with an optimal path for T, connecting the left
and right sides. Middle: a tube constructed from the square by identifying the top
and bottom sides, in blue. An optimal path is shown connecting the left and right
sides, traveling through the top boundary and coming out the bottom. Right: a
torus constructed from the square by identifying the top and bottom sides (in blue),
as well as the left and right sides (in red). The optimal path connects the left and
right sides but its initial and final points, x and x + ne; are identified, so the path
forms a circuit that winds once around the torus in the e;-direction.

of polynomial order can even be shown under the curvature assumption we make below. Both of
these arguments use an inequality of the form

Var T'(z,y) > CZ P(e is in an optimal path from z to y)?,

e

and this sum has at least logarithmic growth in |z — y| (polynomial growth under the curvature
assumption). Unfortunately, when one uses a similar bound for T}, T"P¢, or T one obtains a sum
of constant order. For example, the probability in the sum corresponding to 7" has order n~! by
translation invariance. The main difference is that T'(x,y) is a passage time between fixed points,
whereas the others are passage times between large sets of vertices. There are currently no general
methods to analyze the variance which do not rely on bounding terms of this form, and therefore
there are currently no nonconstant lower bounds for the variance of these three variables, even
assuming curvature. For this reason, we will use a different method, based on finer information about
the distribution of cylinder passage times that comes from the memoryless property of exponential
weights.

We first define the limiting shape to state the curvature assumption. It uses the point-to-point
passage time T'(z,y) mentioned in the previous paragraph, so we begin with a rigorous definition
of T(x,y). Similar to (1.1), we define the passage time between x,y € Z? using all nearest neighbor
edges. It is

T(z,y) = min T(T), (1.5)
Iz—y
where the minimum is over all self-avoiding paths I' starting from vertex x and ending at y, and
T(T) = > ocrte (We recall that (t.) is the ii.d. family indexed by all nearest neighbor edges of
72.) By the subadditive ergodic theorem (see Auffinger et al. (2017, Theorem 2.1)), it can be shown
that there exists a norm g : R? — R such that a.s.,

g(x) = lim 7T(0,n1‘)

n— 00 n

for all z € Z2. (1.6)
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Next, we define
B(t)={xez®:T(0,z) <t}

and set B(t) equal to the sum set B(t) + [0,1)2. Considering the passage time in all directions
simultaneously, the shape theorem Cox and Durrett (1981) states that there exists a deterministic,
convex, compact set B C R? with nonempty interior and the symmetries of Z? that fix the origin
such that for all € > 0,

P((1—¢)BC B(t)/t € (1+€)B for all large t) = 1. (1.7)
We can express the limit shape as
B={zeR?: g(z)<1}.

Next, we state our curvature assumption, which is about the right extreme of the limit shape.
It has not been verified for any edge-weight distribution, but it is strongly believed to hold; see
Auffinger et al. (2017, Sec. 2.8).

Assumption 1.1. (Curvature assumption in the direction e1) There are constants ey, cy > 0 such
that for all 8 € (—eo, o),

g(e1 + Bez) — gler) > cof*. (1.8)
Now we are ready to state our result.

Theorem 1.2. Let Tp® and T'"° be passage times defined by (1.2) and (1.3), and let e > 0. Under
Assumption 1.1, Tp and TTEUbe both have fluctuations of at least order n'/8—¢.

Remark 1.3. If we assume instead that (1.8) holds with the exponent 2 replaced by x > 1, then the
estimate of Theorem 1.2 changes from n'/87¢ to n!/(4x)—¢,

Remark 1.4. A result analogous to Theorem 1.2 holds for squares that are oriented in a direction
u with [u| = 1. In this case, we must make a curvature assumption like (1.8) in direction u instead
of in direction ej.

The strategy for the proof of Theorem 1.2 is to split the tube (or square) into non-overlapping
cylinders of length n and height n®, where o« > 3/4. We first show that, because of Assumption 1.1,
any optimal path must with high probability be contained in one of these cylinders (or a shifted
version of these cylinders). This reduces the problem to finding the order of fluctuations of n!=®
many independent cylinder passage times. Cylinder times have been studied in Ahlberg (2015);
Chatterjee and Dey (2013); Damron et al. (2020), but those works only provide lower bounds for
the fluctuations of order n(!=®/2 for a single time. To extend this to a minimum of many cylinder
times, we need much more precise information about their distributions, in particular estimates for
their 1/n'~ quantile. This is the main contribution of the present article. Using the memoryless
property of exponentials, we represent the cylinder process as a Richardson-type growth model
and prove that, conditional on geometric information of the growth, the times satisfy an entropic
central limit theorem with bounds on the rate of convergence. Consequently, we can (conditionally)
couple the cylinder times to independent normal variables. In the appendix, we derive a result
that bounds the fluctuations of independent normal variables from below by the fluctuations of
i.i.d. normal variables. From this bound, we conclude that the fluctuations of the minimum of
cylinder times are at least order n(1—)/2 /+/logn. See Section 1.1 for an outline of the argument.

The torus passage time has particular difficulties which do not allow an easy comparison with the
passage times for the square and the tube. But we can show a lower bound for the higher moments
of the torus passage time as a corollary to our main theorem. It is an open problem Auffinger et al.
(2017, Question 16) to show a diverging lower bound on the variance of T'°", even under a curvature
assumption. The corollary below shows that for any real k > 12, the k-th central moment diverges.
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Corollary 1.5. Let € > 0 and T be the torus passage time as defined in (1.4). Under Assump-
tion 1.1, there exists ¢ > 0 such that for all n and k,

Njw

E |TT€OT o ETéor‘k Z Cn(%—e)k—

Last, following a suggestion from a reviewer of an earlier draft of this paper, we highlight one
of our central tools, the fluctuation bound for the minimum of independent cylinder passage times.
Its proof requires t. to be exponentially distributed, but does not require the curvature assumption,

Assumption 1.1. For n > 1, pick integers K,gl), e ,K,(f") € [1,n] such that Z;T;I Kr(lj) = n. Define
cylinders as C1) = [0, n] x [0, K,(ll) — 1] and for j =2,...,7,,

cW) — [0,7n] x [K(l) _|_..._|_K(J'*1)’ 7(11) _|_..._|_Kq(1]') —1].

n n

For each j, we set 7\ to be the corresponding cylinder passage time. It is the minimal passage

time of any path in CUY) connecting the left and right sides. Because the cylinders are disjoint, the

7 are independent. Last, put
To=T,,

n, Kflj

)= min{7W, ..., 70"},

Proposition 1.6. Suppose that n~'/? Z;Tgl(KS))—lﬂ — 0. Then

(Tn) has fluctuations of at least order —min 7 n :
7=Lrn \[ K (14 log ry)

This proposition will be restated and proved as Proposition 3.6.

1.1. OQutline of the paper. In the next section, we study optimal paths between points in our periodic

environment (t&”)). After showing that they exist in Lemma 2.1, we prove in Proposition 2.3 that
optimal paths for T!"P® are contained in horizontal cylinders of height n®, for any o > 3/4, with high
probability. Although such a statement is standard in the planar model with i.i.d. weights (under
Assumption 1.1), it will take work to establish it in the periodic environment. In Section 3, we study
the fluctuations of the passage time across cylinders. First, because of the Markov property, we can
represent this time using a Richardson-type growth model, and in Section 3.1, we estimate various
quantities (size of the boundary of the growth, and number of steps to reach the opposite side)
associated to it. We use these bounds in Section 3.2 to prove that the passage time across a cylinder
satisfies a conditional (entropic) CLT, with a total variation bound coming from the estimates from
Section 3.1. Using this, in Section 3.3, we prove our main fluctuation result for the minimum of
independent cylinder times, Proposition 3.6. This fluctuation result is the main tool in the proofs of
Theorem 1.2 and Corollary 1.5, in Section 4. Finally, the appendix serves to relate the fluctuations
of the minimum of i.i.d. normal random variables to the fluctuations of the minimum of independent
normal random variables with different means and variances. This result is in Theorem A.1 and is
an important ingredient in the proof of Proposition 3.6 back in Section 3.3.

2. Coupling and confinement of geodesics

In this section, we focus on the discrete tube and show that the geodesics are with high probability
contained in cylinders with height of order n® for a > 3/4. As mentioned, this statement is well-
known on Z? under the curvature assumption; see Newman and Piza (1995, Theorem 6). To show
it for our periodic environment, we will need to couple the periodic model with the full-plane model
and use concentration estimates.



220 Michael Damron, Christian Houdré and Alperen Ozdemir

It will be useful to observe that although 7:'"¢ is naturally defined using only paths that remain

in the strip S(n) by using T"P¢(z,y), this restriction is not necessary. That is,
Tiube — min TM (2, ). (2.1)
Viyeron
The inequality > holds trivially. For the other inequality, any path I' between some z and y as
above contains a segment IV which uses only vertices in S(n). Indeed, we can simply follow I" until
it touches the set {z : 2z - e; = n} first at some point yg, set this to be the final point of I”, and let
the initial point of I” be the last intersection of I' with {z : z - €1 = 0} before it touches yy. Then
TUN(T) > TM(IY) > TtPe Taking minimum over I’ gives the inequality < in (2.1).

To state geodesic concentration on the tube, we first need to show that geodesics exist. For
x,y € Z2, we say a path T from z to y is a geodesic for T (z, ) if T (z,y) = T™(T). Similarly,
apath T from {2 : z-e; = 0} to {z : x-e; = n} is a geodesic for T"P¢ if T(")(I') = Tt e, In general,
geodesics need not be unique. For instance, with positive probability, there are two geodesics for
T (0,n(e1+ez)): one following the ej-axis from 0 to ne; and the proceeding vertically to n(ej+ez),
and one following the eg-axis from 0 to ney and then proceeding horizontally to n(e; + e2).

Lemma 2.1. For any .,y € 72,
P(there is a geodesic for T(”)(a:,y) from x toy) = 1.

Also
P(there is a geodesic for TH®) = 1.

Proof: The argument is similar to that for Auffinger et al. (2017, Proposition 4.4). Let

p™ = inf{T™(5) : 4 is an infinite edge self-avoiding path from 0}.

By definition of (t&”)), we have inf, tén) > 0 a.s., and so for any infinite self-avoiding ~ from 0, we

have T (y) > (inf. tén))#'y — 0o. This means that p(™ = 0o a.s. The argument in Auffinger et al.
(2017, Proposition 4.4) shows that for any outcome such that p(® = oo, there is a geodesic for
T (z,y) for all z,y € Z>. (The proof is deterministic, so it applies to 7".) For this reason, we
treat only the second statement in more detail.

By periodicity, we may restrict = in the definition of TP to be in B(n). Let o be the path
that starts at the origin and moves n steps along the positive e;-axis until it ends at ne;. Fix
any outcome for which p(™ = co. Using the fact that p(™ = limg o T (0,9[-K, K]?) (from
Auffinger et al. (2017, Lemma 4.3)), we can choose K > n such that any path 7 from B(n) to a
vertex in ([— K, K]?)¢ satisfies T (1) > T(") (). Therefore any path that starts in B(n) and leaves
[~ K, K]? cannot be a geodesic for TP, This means that the minimum in the definition of T:tuPe
(when we restrict = to be in B(n)) is over a finite set, and there is a minimizer. O

Remark 2.2. A reader of this paper made the following observation: Lemma 2.1 is a deterministic
fact that applies whenever the realized edge-weights have only finitely many distinct values. Consider
the following reasoning: Let T'(x,y; k) be the infimum over paths between = and y that contain at
most k positive-weight edges. By assumption, the set S = {t. : t. > 0} is a finite set. Hence inf S is
positive, and so there must exist some (random) k such that T'(z,y; k) = T'(z,y). Because #S < oo,
there are only finitely many possible values for T'(y) if v contains at most k positive-weight edges.
So this collection of values admits a minimum, which is necessarily T'(x, y), meaning the « achieving
said minimum must be a geodesic.

Next is the main result of the section, that for & > 3/4, geodesics for T,Eube are with high
probability contained in horizontal strips of height n®.
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Proposition 2.3. Let a > 3/4. Under Assumption 1.1, there exists b > 0 such that, for all large

n, with probability at least 1 — e‘”b, the following holds. For any geodesic T, for T all vertices

on Ty, are contained in the strip xo + (Z x [—n®,n%]), where xq is the initial point of T',.

The proof will require the following concentration inequality for the passage time associated
with periodic edge weights. Recall that g was defined in (1.6) using the passage time T'(z,y) over
i.i.d. exponential weights.

Lemma 2.4. Let € > 0. There exist c1,b > 0 such that for all large n,
P (for all 2,y € 72 with |z — ylles < c1n, | T (2,y) — g(z — y)| < n%+€) >1—e
Proof: The proof will use similar concentration inequalities for the full-plane model. We may take
€ (0,1]. By periodicity of (t&”)), it will suffice to show that for large n,
P(for all 2,y € Z? with 2 € B(n) and ||z — y|les < c1n, |[T™ (2,) — g(z — y)| < n%"'e)
>1—e ", (2.2)
Furthermore, putting zo = (| %], [%]), it will even suffice to show that
P (for all y € Z2 with ||zo — Yoo < c1n, |T™ (20,y) — g(z0 — )| < n%“) >1—¢". (2.3)
This claim follows from translation invariance of the weights and a union bound. Specifically,
assuming (2.3) holds, the left side of (2.2) is at least 1 — n%e="" and this implies (2.2) if we replace
b with b/2.
First we observe that (2.3) holds if we replace T (xg,y) by T(z¢,y); that is,
P (for all y € Z? with |20 — y||oo < 1, |T(w0,y) — g(x0 — )| < n%“) >1— e (2.4)

Inequality (2.4) is standard and follows from two facts. First, Alexander has shown (Alexander,
1997, Theorem 3.2) that for some Cy > 0, we have ET(z,y) < g(x—y)+C1+/|z — y|log(1+|x—y|) for
all x,y. Second, an inequality of Talagrand (1995, Proposition 8.3) states that for some Cs,co > 0,
we have

P(|T(z,y) — ET(z,y)| > u) < Caexp (—02 min {\xujy\’u}) (2.5)
for all z,y and all u > 0. If ||z — ¥|leo < c1m, then |zg — y| < v/2¢1n and so by Alexander’s bound,
P (IT(x0,y) — glao —y)| = n*)
< P (|T(20.y) = BT (20.y)| > n>** = C1y/Jeo — gl log(1 + [z — y]))
< P (|T(w0.y) = ET(z0,9)| > n3*5),

so long as n is large. Applying (2.5), this is bounded above for some c3 > 0 by
nlte e
Csexp <—02 min {, n2t2 }) < Cyexp (—c3n).
|0 — Y

Therefore by a union bound, the left side of (2.4) is bounded below by 1 — Cy(2cin + 1)%e=%"",
This gives (2.4) with b = €/2.
To show (2.3), we need to compare T' and 7™ . We will assume that the weights (t.) and (t((gn))

which are used in the definitions of T and 7™ are coupled so that t, = té”) for all e € E(n)?, and
will prove that for large n,

[N

P(for all y € Z2 with ||zo — ylco < c1n, T (w0, y) = T(z0,y)) > 1—e ™. (2.6)
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This, along with (2.4), will imply (2.2). To do this, let ¢; < 1/2 and consider an outcome in the
complement: one for which there is a y € Z? with ||zg — y[ls < ¢1n and such that T (zq,y) #
T(x0,y). We claim that

there exists z € Z? with ||zg — 2||eo = |1/2] such that T(zg,2) < T(z0,y). (2.7)

To argue this, choose geodesics v and (™ for T(xg,y) and T (xq,y) respectively. If both paths
use only edges in F(n)°, then their passage times using T or T are the same, and so T (z¢,y) =
T(x0,y), a contradiction. So at least one must use an edge outside E(n)°, and therefore must
contain a vertex z with ||zg — z|lcc = |n/2]. First suppose that v contains such a z and let v, be
the segment of v from zp to z. Then T(xo,2) < T(v,) < T(v) = T(xo,y), so (2.7) holds. The
other possibility is that v contains such a z but v does not. In this case, v must use only edges
in E(n)°, as must ’yzn), the segment of 4 from z( to z, so long as we choose z as the first such z
we find as we proceed along (™ from zy to y. Then

T(x0,2) < T(Y) = T (M) < T (x0,y) < T™(y) = T(7) = T(z0,y)-

This shows (2.7).
Returning to (2.6), statement (2.7) along with a union bound gives

P (there exists y € Z2 with ||zg — y|eo < c1n, T™ (20, y) # T(z0,y))

< Y P(T(.2) < T(aoy)): (28)
yilleg—ylloo<cyin
z:HszZHoo:L%J

If |T(x0,y) — g(xo — y)| and |T'(z0, 2) — g(z¢ — 2)| were both at most n3/*, then we would have

3
T(xo,2) —T(x0,y) = g(xo — 2) — g(x0 — y) — 204,

which is positive for large n since ||zg — z||oo = [1/2] and ||zo — Yljco < c1n (assuming we take ¢;
fixed but small). Therefore

P(T(x0,2) < T(x0,y)) < P <|T(x0,y) — glwo —y)| > n%) +P <|T(3c0, 2) — g(zo — 2)] > n%) .

Applying both Alexander’s bound and (2.5), we obtain for some ¢4 > 0

N

3
p (IT(fvo,y) —9g(zo —y)| > n%) < Cyexp (—02 min {‘xmm,niD < Cge™ M7
-

with the same bound for P(|T(x,2) — g(xo — 2)| > n3/4). Putting this back in (2.8), we find that
the left side of (2.6) is bounded below by

1 1
1-—2C g exp <704n5> >1—C4n? exp (704715) .
yilly—zglloo<cin
ziflzg—zlloo=%5 |

This is bounded below by the right side of (2.6), if we choose b < 1/2. This shows (2.6) and, along
with (2.4), completes the proof. O

Proof of Proposition 2.3: The proof will analyze the local behavior of distance-minimizing paths,
where there is no difference between the periodic and full-plane weights. Let o > 3/4; we may
additionally assume that o < 1. Choose

ce (o, 20 — ;’) (2.9)

and fix an outcome in the event in the probability in Lemma 2.4 corresponding to this e. Let
I', be a geodesic for T;;ube. We will show that all vertices in I';, are contained in the strip xo +
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(Z x [-Cyn®,Cyn?]) for Cy = 1+ 4/c;. (Here, ¢ is from Lemma 2.4.) Because of the bound for
the probability in Lemma 2.4, this will prove Proposition 2.3, after slightly increasing «.

To begin, we define a sequence of points (z;) on I, inductively as follows. Let zy be the initial
point of I';,. For i > 0, define the rectangle

Ci =i+ ([=[n"], [an]] x [=[n], [n*]]),
where ¢ is from Lemma 2.4, its boundary
B, = {2z € C;:IyecZ*\C with |z —y| < 1},

and its right boundary

Ri={zeB;:(z—x;) e =|can]}.
For i > 1, let x; be the first vertex of I, after x;_q that lies in B;_1, if one exists. If it does not
exist, we set x; equal to the terminal point of I';,. Let IN be the first ¢ such that x; equals this
terminal point. We claim that

forallie {1,...,N—1}, z; € R_1. (2.10)

To prove (2.10), we use the linear functional h : R? — R defined by h(z) = (2-e;)g(e1). Observe
that if we define Z = z — 2(z - e2)eq, then by symmetry, g(z) > (1/2)g(z+ 2) = (z-e1)g(e1) = h(z).
For certain z, though, we have a stronger bound. There exists c5 > 0 such that for large n,

g(z) — h(z) > esn?7 L if z € By \ Ry. (2.11)

We first prove this inequality, and then return to the proof of (2.10). Let z € By \ Rg. Notice that
if z-e; <0, then h(z) <0, so for some cg > 0, if n is large,

9(2) = h(z) = g(2) > cs 2[00 > %ﬁn“. (2.12)

If 2 - e; > 0, then we must have |z - e3| > n®/2 for large n, and so |(z - e2)/(z - e1)| > n®"1/(2c1).
Write

g(z) — h(z) = g((2 - er1)er1 + (2 - e2)e2) — g((z - e1)er)
= (z . e1) <g <61 + jz? 82> — g(e1)> . (2_13)

If |(z-e2)/(z-e1)| < €o, then we can use Assumption 1.1 for the lower bound

2 a—1

> C()n2c1 |z - eq] > 4%)171%!71. (2.14)

FARN D)

9(2) = h(z) = co(z - €1)

z-e1
If |z-e2|/|z-e1] > €p, then we use a modified curvature inequality: for 5 such that |3| > €y, we have

g(er + Bez) — g(e1) > coeolBl. (2.15)
To see why this holds, assume by symmetry that 8 > 0 and set 3 = €;. By convexity of g,

gler+P'e2) < (8'/B)g(e1+Pez)+(1-5'/B)g(e1), and this gives g(e1+Bez) —g(e1) = (8/5')(g(e1+
B'es) — g(e1)). By Assumption 1.1, this implies

p
g(er + Pey) —g(er) = COE(B,)Q = co€ol3,
which is (2.15). Now, in the case that |z - es|/|z - e1| > €y, we apply (2.15) in (2.13) to obtain for
large n

9(z) — h(z) > coeplz - e2| > Co%na‘ (2.16)

Combining the three cases (2.12), (2.14), and (2.16), and observing that o > 2« — 1, we conclude
(2.11).



224 Michael Damron, Christian Houdré and Alperen Ozdemir

Having established (2.11), we can return to showing (2.10). Let [ ={i=1,...,. N —1:x; €
Ri—1} and Jg ={1,...,N — 1} \ Ig; we want to show that #.Jr = 0. Write

N
T, — g(ner) = Z(T(”) (i1, i) = h(xia — i)
2;1 N
= (T (i1, @i) = glwim — 23)) + Y _(9(wio1 — i) = hwiog — 7).
i=1 i=1

Because our outcome is in the event described in Lemma 2.4 and ||z; — z;—1]|lcc < c17, we have
| T (251, 27) — g(2i_1 — )] < n'/?t€ for all i. For i € Jg, we apply (2.11), and for i ¢ Jp, we use
g > h. All together, we obtain

TrtLUbe _ g(ne1) > _n%JreN + C5n20‘*1#JR.

To bound TP from above, we construct a path by starting at 0, moving to |c1n|e; using a geodesic
for T (0, [c1n]), then moving to 2|cin] using a geodesic for T (|c1n], 2| c1n]), and so on, until
we reach the largest multiple of |¢;n| that is at most n. After this, we move to ne;. Using the
fact that ¢ is additive along the ej-axis, we may apply the condition in Lemma 2.4 at each step to
obtain TP — g(ne;) < (1/¢; 4+ 1)n'/?*¢. Combining with the above produces

<c11 + 1) nate > —natEN 4 esn2 1 Tp
= —n%"'e(#IR +1)+ <C5n2°‘_1 — n%"'e) #Jg.
This implies
#Ip+— ! “t2> (C5n o 1) HJn. (2.17)

To relate #1r and #Jg in a different way, we look at the progression of each segment of 'y, in
the ey direction. For each i € Jgp U {N}, we have (x; — z;_1) - e; > —n® and for each i € I, we
have (x; — x;—1) - €1 = |cin]. Therefore

n= Z(% —zi—1)-e1 > |an|#Ir —n*(#Jr + 1). (2.18)

For large n, this gives 1 + n® 1(#Jg + 1) > (c1/2)#1r. Combining this with (2.17), we find

63 (1+n " (#Jr +1)) + L T2 <C5n —§e_ 1) .
1
Recall that o < 1 but, because of (2.9), we have 2a — 3/2 — e > 0. This inequality therefore cannot
hold for large n unless #.Jg = 0. This proves (2.10).

Now that we have shown (2.10), we can quickly complete the proof of Proposition 2.3. Because
#Jr = 0, (2.18) gives n > |cin|#Ip — n®, with #Ir = N — 1, and so for large n, we have
n > (c1/2)n(N —1) —n, or N <1+ 4/c;. But then

T, C UGG C 2o + (Z x [-Nn®, Nn®),

and this shows Proposition 2.3. O
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3. Asymptotics for cylinder times

Because of the fact, from Proposition 2.3, that geodesics for TP are contained in cylinders,
we are led to study passage times across cylinders. Our analysis will crucially rely on the Markov
property that comes from our exponential weights. So we begin this section with a description of
an alternate representation of the model.

Let n, K > 1 be integers and consider the cylinder C, x = [0,n] x [0, K] with K < n — 1. For
vertices z,y € C,, i, we define T), g (x,y) as infr.,—,, T(I') where the infimum is over all paths with
vertices in C,, g from x to y. (Here we can use the weights (¢.) or (té”’) since they have the same
distribution in C,, g, but for definiteness we now use (t.).) Then for y € C,, i, we put

Tok(y)= _ mf _ Tor(ey)

zeCy gix-e1=

and

ThKx = inf ok (y). (3.1)
y€Cp Kiy-e1=n

The main observation behind the alternate representation is that, by the memoryless property of the
exponential distribution, the sets {y € Cy, i : T,k (y) < t} evolve as a Markov process as t grows.
Following the setup of Pemantle and Peres (1994, p. 2), we may build this process in two steps.
First we grow a sequence of subgraphs of the cylinder as follows. Let Cp = {x € C,, x : © - €1 = 0}
with set of boundary edges By = {{z,y} : € Co,y € Cp,x \ Co, |z —y| = 1}. For i > 0, choose an
edge e;4+1 uniformly from B; and, writing ;41 = {41, Yi+1}, where z;41 € C;, set Cit1 = C;U{yiy1}
and Bi1 = {{z,y} : 2 € Cit1,y € C,k \ Ciy1, |z — y| = 1}. These sequences are defined until the
value of i = n(K +1) at which C,(g41) = Cn i NZ2. In words, this is a random growth algorithm (a
Richardson-type model Auffinger et al. (2017, Ch. 6)) in which we begin with a seed on the entire
left side of the cylinder. At each timestep, the growth absorbs a uniformly chosen edge from its
boundary in the cylinder. At some point we have touched the right side: define

N =min{i: y; - e; = n}.

In the second stage of the process, we fix an outcome as above with sets C;, B;, and vertices z;, ;.
Set b; = #B;_1 and let X1, X5,..., X be independent exponential random variables such that
EX; = b;'. Then

T,k has the same distribution as X; +--- + Xy (3.2)

As in Pemantle and Peres (1994), “This is an immediate consequence of the lack of memory of the
exponential distribution and of the fact that the minimum of n independent exponentials of mean
1 is an exponential of mean 1/n.” Another fact that follows directly from the representation is that

N has the same distribution as #{y € Cp x : 0 < T,k (y) < Tk }- (3.3)

In the following two subsections, we first prove bounds on the reals b;, and then use them, along
with an entropic central limit theorem, to bound the rate of convergence of X1+ -+ X (given the
sequence (b;) and N) to a standard normal distribution. This will allow us in the third subsection
to estimate the fluctuations of the minimum of i.i.d. copies of T}, k.

3.1. Boundary of the growth. To estimate A and the b;’s, we will use Kesten’s lemma, which can
be found in Auffinger et al. (2017, Lemma 4.5).
Lemma 3.1. There exist c¢7,a > 0 such that for all k > 1,

P (3 vertex self-avoiding v from 0 with #v > k but T(v) < ak) < e~ 7%,

First we give estimates for A/. The upper bound N' < n(K + 1) is immediate. For a lower bound,
we have the following.
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Lemma 3.2. There exists cg > 0 such that for all large n and all K € [1,n — 1],
P (N > gnK) >1—e @™,
Proof: By (3.3), it suffices to show that for large n,
P (#{y € Coxc 1 0< Th(y) < Thx} < gnK> < emon, (3.4)

If T, k < an, then there exists a vertex self-avoiding 7 starting from the left side of the cylinder
with #v > n but T'(y) < an. By Lemma 3.1 and a union bound,

P(T, x <an) < (K +1)e “".
Therefore

a
P (#{y € Cuc : 0 < Toc(y) < T} < 5nK)
< (K +1)e™ 1P <#{y € Coxc 1 0 < Thly) < an} < gnK> . (3.5)

We will prove that with high probability, the set of y in (3.5) contains ([1, (a/2)n] x [0, K]) N Z2.
Suppose that y is in this latter set, and construct a deterministic path ~, by starting at y and
proceeding to y — e, then to y — 2e;, and so on, in a straight line until we reach (y - e3)es. Then
#y, the number of edges in v, satisfies #7v, < (a/2)n and we have T}, x(y) < T'(7y), so for n > 0,
we can use Markov’s inequality to obtain

P(T, k(y) >an) <P (e”T(W) > e”‘m> < e Mom (Ee”te)#’yy

< (e (Be) %)m (3.6)

6_277 %’VL

We fix 1 to be small so that ¥’ := e=27/(1 — ) < 1 and conclude that by a union bound and the
fact that K < n,

P (me(y) > an for some y € [1, %n] X [O,K]) < (K+1) (gn> (b’)%” < gcom

for some ¢g > 0, so long as n is large. The event in the probability above is implied by the event in
the probability in (3.5), so we obtain

P (#{y S Cn,K 0 < Tn,K(y) < Tn,K} < %nK) < (K + 1)6_07” + e~ < e —clom
for some c19 > 0 if n is large. This shows (3.4). O
Next we estimate the boundary sizes b;.

Lemma 3.3. Foralli=1,...,N, we have b; > K +1. Furthermore, there exists c11 > 0 such that
for all large n and all K € [1,n — 1],

P<#{i:1,...,N:bi>jK}> (1—3)/\/) < emeun,

Proof: For a fixed i and any m = 0,..., K, choose u,, € C;_1 to have u,, - e = m but with u,, - e1
maximal. Then {wn,, u,, + €1} is an edge of B;_1, so b; > K + 1.

For the other bound, write A for the event in the probability in the statement. We split A
according to the passage time T!"P°. Let = be the set of pairs ((d;), M), where d; € N for i > 1
and M € N, such that all of the following hold:

oMﬁn(K—l—l),
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e d; > K +1 for all i, and
o #{i=1,...,M :d; >4K/a} > (1 —a/2) M.
Then

< Z P(Xi+ -+ Xy >an,(b;) = (d;),N = M) +P(T, xk < an).

((ds),M)€eE
As in the proof of Lemma 3.2, we have P(T), x < an) < e~ for large n. Therefore we obtain
P(A) <e ™
+ > PXi++ Xy >an| (b) = (di), N = M)P((b;) = (di), N = M).  (3.7)
((ds),M)eE

Conditional on (b;) = (d;) and N' = M, the variables X; are independent exponentials with
parameters d;. So, for (Y;) that are i.i.d. exponential with mean 1, we have

P(X1_|_..._|_XN2an](bi):(di),N:M):P(Yl+...+YMZan>.

dy dy

We now split the sum depending on whether indices are in theset S = {i =1,...,M : d; > (4/a)K}.
We obtain

PXi+- + Xy =an| (b) = (d),N = M)

ies " ¢S
<P<a Y; > n)—i—P(lZY, 2an>
= | 4K < 3 K+1¢4 =3
€S i¢S
n(K+1) [n(K+1)4] )
<P z; Y; > onk | +P z; Y; > San(K +1) | (3.8)

By standard large deviation estimates for i.i.d. exponentials, there exists c12 > 0 such that for all
k> 1, we have P(Y] +--- 4+ Y}, > 7k/6) < e~“12%. So for large n, we can bound (3.8) by

e—clzn(K—‘rl) +6—012’—H(K+1)%1 S 6—61377,7

for some ¢13 > 0. Plug this result back into (3.7) to obtain

P(A) <e "+ Z e P ((b;) = (di),./\[ = M) <e " 40,
((di),M)€E

For large n, this is bounded by e~“1" if ¢1; < min{cz, c13}. This completes the proof. O

3.2. Conditional CLT. In this section, we prove a central limit theorem for 7T, x conditional on
the sequence (b;) and the number A. The main tool is a theorem from Artstein et al. (2004)
which bounds the total variation distance between linear combinations of independent variables
and a standard normal variable. To state it, we give some terminology. Recall that an exponential
variable X with parameter 1 satisfies a Poincaré inequality with constant 1/4. Namely, for any
smooth f: R — R,

Var(f(X)) < 4E(f'(X)?).
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Recall that the entropy of a random variable X with density function f is defined as

Ent(X) := —/Rf(x) log f(x) dz,

and that

log 2 + 1
Ent(Exp(\)) =1 —log A and Ent(Z)z%, (3.9)

where Z is the standard normal random variable. Last, the total variation distance between two
probability measures p and v is

dry (p,v) = sup lu(B) —v(B)],

where the supremum is over all Borel sets B C R. The total variation distance between two random
variables is defined as the total variation distance between their distributions. With these notations,
we have the following estimate.

Lemma 3.4. Let {Wl}f\il be independent copies of a random variable W which satisfies a Poincaré
inequality with some constant ¢ > 0. Let {a;}N, be such that 3.~ | a? =1 and let Sy = SN | a;W;.
Letting Z be a standard normal random variable, we have

N
drv (Sy = B(SN). 2)° € 2— (Eij; “;: o (Ent(Z) — Ent(W)).
2 2 i=14

Proof: This is Artstein et al. (2004, Theorem 1) combined with the inequality drv(Sy —ESy, 2)? <
2[Ent(Sy — ESn) — Ent(Z)] in Artstein et al. (2004, Eq. (1)). O

We will apply the lemma to the variables X1, ..., X, but to make them independent, we must
condition on (b;) and (N). For this purpose, we define the admissible set T of pairs ((d;), M), where
d; € N for i > 1 and M € N, by the following conditions:

(1) anK/2 < M <n(K +1),
(2) d; > K + 1 for all ¢, and
(3) #{i=1,...,M :d; <4K/a} > aM/2.
Summarizing the previous section, if we combine Lemmas 3.2 and 3.3, we find that for all large n
and all K € [1,n — 1],
P(((b;),N)eT)>1—e 1" (3.10)

for ¢14 = (1/2) min{cs, c11}. Next we define the conditional distribution

N -1

. V(X - b;

uM(B) =P 2z Jep ’ (bi) = (d;),N = M | for Borel B C R.
AR

Of course, given (b;) = (d;) and N' = M, the X,’s are just independent exponentials with mean
bl =d; "

Proposition 3.5. For ((d;), M) € Y, we have

‘ 215
d (dl)’M, 2 < (log2m —1)—,
TV(,U'm /LG) = ( 0g 247 )agn(K ¥ 1)
where pg is the standard Gaussian distribution. Consequently there exists a probability measure Q

and random wvariables U, Z on some space such that under Q, U has distribution ,ugld}g’M, Z is a

standard Gaussian, and

215

QU #2) < \/(logQﬂ' - 1)m.
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Proof: The second statement is standard and follows from the coupling representation of total

variation distance. To show the first statement, we apply Lemma 3.4. Given (b;) = (d;) and
N = M,
N -1 M v; M Y;
>~ (X; = b i—1 4, i=1 d,
Zz—l(Nl D) _Zimd g 2amld g gigpibution,
—2 M ;-2 M ;-2

where the Y; are i.i.d. exponential random variables with mean 1. So we set W; = Y; and a; =

d; /4 Zf\il d;? in the lemma. By items (1) and (2) in the definition of Y,

M
_ 1 _
Zdi4§m-n(K+l):n(K+l) 3,
=1

By items (1) and (3),

M 2 9 2 4\ 2
M a*n
Y a2 > ey S . 11
(i:l dz ) - <16K2 2 — \ 64K (3 )

M M -4 -3 2
Za? _ 2i=1d; < n(K+1) < 64
i=1

S () o

Using Poincaré constant 1/4 in Lemma 3.4, we obtain the following bound for the right side in the
lemma:

Combining these produces

10 log2m —1 4 &
: szl U (Ent(Z) — Ent(W)) < 0g+ A
2t (1 - i) > im19 ¢ &
915
< (log2m — 1) —————.
_(Og ™ )agn(K+1)
This completes the proof. -

3.3. Fluctuation bounds for independent cylinder times. Here we use the results of the last two
subsections to prove a fluctuation lower bound for the minimum of passage times across disjoint

cylinders. For n > 1, pick integers K,(Ll),...,K,(f") € [1,n] such that Z;gl K}Sj) = n. Define
cylinders as C) = [0,n] x [0, KU - 1] and for j =2,... 7y,

cW) — [0,7n] x [K(l) _|_..._|_K(J'*1)7 7(z1) _|_..._|_K7(Lj) —1].

n n

For each j, we set T(j)‘ to be the corresponding cylinder passage time. It is the minimal passage
time of any path in CU) connecting the left and right sides, defined analogously to (3.1). Because
the cylinders are disjoint, the 7U) are independent. Last, put

7;1 = 7;%(Kr(zj)) = min{T(l), e 77'(7“71)}

Proposition 3.6. Suppose that n~'/2 Z;T;l(Kfzj))*lﬂ — 0. Then

n
Kﬁbj)(l + log rn).

J=1,...,rn

(Tn) has fluctuations of at least order —min \/
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The form of the lower bound can be understood as follows. The j-th cylinder passage time, 7,
has been shown in Damron et al. (2020) (see also Bates and Chatterjee (2020) for arguments that

imply this fact) to have fluctuations at least of order \/n/ K. Pretending for the moment that this
time is Gaussian distributed, then 7,, would be the minimum of r,, many Gaussian random variables,
the j-th of which has variance of order n/ Ky(Lj ). In the appendix, we will show that the fluctuations of
the minimum of r, many Gaussian random variables is at least order (minj—1,.,, 0;)/+/1+logry,
where a] is the variance of the j-th variable. (The logarithmic factor appears also in the well-
known value of the fluctuations of the minimum of i.i.d. Gaussian random variables.) In total,

our fluctuation lower bound becomes (minj—q, ., \/n/( ])(1 +logry,)). Of course, the times 7U)
are not Gaussian distributed, so we need to apply the coupling results we have developed over the
previous sections.

Proof: We represent the 7U) as in (3.2), obtaining boundary sequences (bgj )) and reals (N)) such
that the pairs ((bl(] )),./\f (7)) are independent as j varies. We also find variables X Z.(J ) for j=1...,r

and i =1,..., N such that conditional on the pairs, the X Z-(j ) are independent exponentials with
means EXi(J) = 1/b£]). Last,

A

Z XZ-(J) = 7 in distribution for all ji=1,...,"n,

=1
and so

NG
‘ mm Z X » in distribution.

We define corresponding admissible pairs TU): they are those ((dl(J )) M) such that

(1) anK@ /2 < MO < (KD 4 1),
(2) d ()—i-lforallz and
()#{2—1 MO dD < akP) ja) > aM D)2,

Then by (3.10), for all large n, and all choices of the K as above,

P((bgj)),/\/'(j)) eYW forall j=1,...,r,) > 1 — rpe 14", (3.12)
With these definitions, we compute for any Borel set B C R
P (7, € B)
NG
: () () () Gy A7) ;
> )
> Z [ ;nin Z:XZ €B ‘ ((6,7), Ny = ((d;"), M) for all j (3.13)

Y1) x...xY(rn)

x P((09), N0y = ((d7), MD)) for all j)}

Write p0) = Zﬁ(lj)(bgj))*l and o) = ZAﬁj)(b(j))”, and then set

(€] ;
o) = iy X7 =
SR

We observe that under the conditional distribution appearing in (3.13), the vector (E(j));il has
(d?), M@

product distribution [[;*, e
N,y

. By combining Proposition 3.5 with the elementary fact that
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dpy(pr X o X fmy V1 X oo X V) < ZZ 1 drv (s, v;) for probability measures y;, v, we can find a
probability measure Q = Q (((dgj ), M )) and random variables Uy,..., U, ,Z1,...,Z,, defined
on some space such that under Q,

(d(”) M)
(J) )
e Z; is a standard Gau551an and
. the pairs (U1, Z1), ..., (U, , Zy,) are independent.

Furthermore, we have the estimate

e U; has distribution "

215
agn(Ky(Lj) + 1).

By the above remarks and this inequality, we can represent the probability in (3.13) as

Q(U; # Z; for some j =1, .. ) < Z (log 21 —

NG
min ZXim cB ‘ (( bJ)) NG = ((d(J)) M) for all j
J=Lrn £

i () Dy,
(s, (0 +o003) € 5)

(. Ilnin (u( N yolilz ) € B> Q(U; # Z; for some j)

=9 <j=r1n,.i.?rn (“(j) + U(j)Zj> > i F

where C5 > 0 is a constant. We plug this back into (3.13) to find
liminf P(7,, € B)

n—o0

> liminf Y Q(.mm (u<j>+a<j>zj)eB> P (b)), N0 = ((d), MD)vj)
T @y Y

— lim mf — Z Z
e \F 14/ K9 1) s rm)

By our assumption in the statement of the proposition, the second term is zero, so we get

liminf P(7,, € B)
n—o0

=L..Tn

P((07), Ny = (@), M) vj).

> liminf Y Q<. min (49 +09);) GB) P((67), N D) = (), MO)v;j)
e Y1) %ok Y (rn) Jj=1,...,rn

(3.14)

By Theorem A.1 of the appendix, if we write 0 = o (((d(j))7 M(j))§11> = minj—;__,, 0, then we

can find reals a, = a, <((d(3)) MG ) and by, = by, | (

s ), MU ));’;1> and a universal constant
c15 > 0 such that

(3.15)
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and
o

V1+logr,
These a, and b, can be chosen as measurable functions of ((dgj)),M (@) by using quantiles of
minj—i . ZN(J) Xi(j) given that ((bgj)),/\/(j)) = ((dgj)), M) for all 5. We would like to set B =
(=00, a,| and then B = [b,,o0) in (3.14), but since these reals depend on the pairs ((dgj)),M(j)),

we must replace them with reals that do not depend on the pairs.
To do this, we recall (3.12), which implies that if n is large enough, then

> P ND) = (@), MD)j) =P (((07), ND) € TO) vj) >

Y1) x...xY(rn)

(3.16)

by — an =

l\’)\»i

The quantities a,, and b, are random variables when considered as functions of ((b; b )) N (j))r" .

Because K(z) =P (an <, ((b; Y )) NGO e 10) Vj) is a nondecreasing, right continuous function

of x with lim,_,_~ K(z) = 0 and lim,_,~, K(x) > 1/2, we can find a deterministic number m¢ such
that both of the following hold:

(), ND) e 1) vj) >

el R

Observe that if we define

which, by (3.11), satisfies

~ a . n
> = :
W E R ek (3.17)
and _
b a o
_ 3.18
then by (3.16),
D) A0 € YO v a (D) N0 € TO) 1
P(b, >mb ((0"), N9y € YU Vj) > P(a, > m&, (b)), NY)) € TU) vj) > T (3.19)
First we set B = (—oo,m] in (3.14) and apply (3.15) to obtain
> Q (<_r1nin (49 +097;) <m ) P(((b), ND) = ((d), MD)v;j)
YO ) T
> % Qi (W0 +092) <a0,) POV = (@), 1))
{an<mg}
> c15P(an <mi, (07)), ND) € T vj)
c15
> =2, :
> (3.20)

A similar argument using (3.19) shows that

2 Q<~ min (1) +00'7) 2m2>P<<<b§”>,W>=<<d£”> MO)ej) = F (3.21)

J=1,...,rn Z
T(l) ><...><T(Tn>



Fluctuations in FPP on the square, tube, and torus 233

Finally, we put (3.20) into (3.14) to find

- C15
<m?) > —
hnrr_1)1£fP(7;l <mp) > 4
and similarly using (3.21) gives
.. C15
>mb) > =2,
llnrr_l)IOIéfP(% >m,) > 4
Because of (3.17) and (3.18), this completes the proof of Proposition 3.6. O

4. Proofs of main results

4.1. Proof of Theorem 1.2. We will first bound fluctuations of Tﬁ“be by comparing it to a minimum
of cylinder times. Define integers KS), . ,Kff") € [1,n] such that Z;’;l K,(lj) = n, along with
cylinders CU) | passage times 7U), and minimum 7,,, all as in Sec. 3.3. Although in that section

we used the i.i.d. weights (t.), here we define them using the periodic weights ( E")) This does not
change the distribution of 7, because the cylinders are contained in [0,n] x [0,n — 1]. For ai,as
such that 3/4 < ay < ag < 1, we assume that

KUY ¢ [n??,2n?] for all j, so r, < nl=ez, (4.1)

n
In addition, we shift the cylinders up by [n®2/2], setting

n“?
5 J forj=1,...,7rp,

(KDY =K+ |

with corresponding cylinders (C))" = CU) 4 |n®2 /2]ey, passage times (7)), and minimum 7.
Again we use the periodic weights (t,(gn)) instead of the i.i.d. weights (t¢). Observe that 7, and T,
have the same distribution, but they are not independent. Last, define T,, = min{7,, 7, }, and let
A, be the event described in Proposition 2.3:

A, = {for any geodesic T, for T2"°, T\, C zo + (Z x [-n*',n*])}, (4.2)
where x( is the initial point of I';,. That proposition gives
P(A,) >1—- e " for large n. (4.3)

Any optimal path for T,, connects the sets {z : x-e; =0} and {z : - e; = n}, so by (2.1), we
have T"P¢ < T,,. We claim that if n is large, then in fact

on A,, we have Tf;‘be =T,. (4.4)

To see why this holds, consider an outcome in A, with n large and let I';, be a geodesic for Tﬁ“be.
By periodicity of the weights, we may select T';, so that its initial point xg = (0,mg) satisfies
mo € [%, n+ %] If the set [0,n] x [mo —n®', mo + n*] is not contained in any of the cylinders
CWY), then either mo > n or the interval [mo — n®, mo + n®] must contain a number of the form
KV 4+ K92 In the first case, [0,n] x [mg —n®',mgy +n] is contained in (C")) and in the
second, it is contained in (C(jo))’ . In any case, since A,, occurs, I';, must be contained in one of the
cylinders CY9) or (C(j))’ , 80 it is an admissible path for the definition of the corresponding cylinder
passage time 7 or (7). Therefore T"P¢ = T(")(I',) > T,,.
We estimate from (4.1)

1 &

x/ﬁz_; K9

J
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since ag > 1/3, and

n nlfag

min - > .
F=1,ern \/K}(f)(l—i—logrn) \/2(1+10gn1°‘2)

Proposition 3.6 implies the existence of ay, b, and a constant cig > 0 such that for large n,

nl—ag
bn — Qnp Z C16 (45)
logn
and
P(7, > b,) > ci6 and P(T,, < ayn) > cis, (4.6)
with the same statements holding for 7. Both 7, and 7! are decreasing functions of the i.i.d. weights
( é”))ee E(n)o, 80 by Harris’s inequality,

P(T;, 2 by) 2 P(Tn 2 ba)® 2 .

We also have P(T,, < a,) > P(T, < ay,) > c16. Last, we use (4.3) and (4.4) to get for large n

2
(L™ > by) > P(T, 2 by) —e " > L
and similarly P(T""° < a,) > ci6/2. Therefore (T"P®) has fluctuations at least of order
/nl=e2/logn. Since ag is an arbitrary number bigger than 3/4, this completes the proof of the
first statement of Theorem 1.2.

We move to the other half of Theorem 1.2. To bound fluctuations for Ty, we compare this
quantity to T,tLUbe. Because of the result we just proved, if € > 0, we can choose o above (4.1) with
(1 —a2)/2 > 1/8 — € such that the reals ay,, b, defined in (4.5) satisfy b, — a,, > n'/8=¢ for all large
n and such that

P(T" < a,) > ¢17 and P(T' > b,) > ¢17 (4.7)
for some c;7 > 0 (and similarly for 7,). We first show that
liniian(T,iq <ap) > 0. (4.8)

We will assume that the weights (t.) and ( én)) used in the definitions of 75" and T"P® are coupled
so that t, =t for all e € E(n)°. First, taking the definition of A,, from (4.2), and using (4.7), we
obtain

lim inf P(T1""° < a,,, A,) > 0. (4.9)

n—o0

Let E, be the event that some geodesic for T!'"P¢ has initial point in the interval {0} x [[n/10],
|n/10] + |8n/10]], and let E/, be the event that some geodesic for Tt"P® has initial point in the
interval {0} x [|n/2], |n/2] 4+ [8n/10]]. Then by vertical translation invariance,

P(T" < a,, A,) < P(TH < a,, A, Ep) + P(TV < a,, A, E,)
= 2P(T7tlube < ap, Ana En)7

so by (1.9),
lim inf P(T""¢ < a,,, A,,E,) > 0.

n—oo
However, if n is large and A, N E, occurs, then there is a geodesic I',, for T,g””De that uses only
edges in F(n)?, so it is an admissible path for the definition of T3, Therefore T"P® = T()(T,,) =
T(T,) > Tp?, and so
liminf P(T59 < ay,) > liminf P(T2%° < a,,, A,,E,) > 0.

n—oo n—o0
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To complete the proof, we must show

liminf P(T54 > by,) > 0. (4.10)

n—oo
To do this, we use three related passage times, all defined with the weights (¢.). Let T, (1) be the
minimum of 7'(T") over all I' with vertices in B(n), connecting {0} x [0,n] to {n} x [0,n], but not
using edges with both endpoints in [0, n] x {n} (that is, using only edges in E(n)°). Let T,,(2) be the
minimum of T'(T") over all I" with vertices in B(n), connecting the same two sets, but now not using
edges with both endpoints in [0,7] x {0}. Last, let T;,(3) be the minimum of T'(T") over all I' with
vertices in B(n), connecting [0,n] x {0} to [0,n] x {n}, but not using edges with both endpoints in
{n} x[0,n]. All the T, (i) are decreasing functions of the weights (¢.) and are identically distributed.
Furthermore, using our coupling of (t.) and (t£">), we have T),(1) > T"Pe, So by Harris’s inequality
and (4.7),

n—00 1=1,2,3 n—r00 n—00

liminf P (lnin T,(i) > bn> > lim inf P(T},(1) > b,)? > lim inf P(TP > 5,,)? > 0. (4.11)

However,
min T,(7) < T34 (4.12)

1=1,2,3

because of the following argument. Let o, be a geodesic for T,* (one exists because there are finitely
many self-avoiding paths in B(n)). If o, does not touch [0,n] x {n}, then it is an admissible path
for T,,(1), so Ty > T,,(1). If o, does not touch [0,n] x {0}, then similarly Tp* > T,,(2). Last, if oy,
touches both of these sets, let o/, be a segment of o, that connects them. Because o,, is a geodesic
for T, it a.s. cannot use an edge with both endpoints in {n} x [0,n]. Therefore o/, cannot either,
and so it is an admissible path for T},(3), implying that T, = T'(0,,) > T'(0},) > T,,(3). In any of
these three cases, (4.12) holds.

Finally, due to (4.12), we have P(T,* > b,) > P(min;—1 237}, (i) > b,). This along with (4.11)
implies (4.10) and completes the proof of Theorem 1.2.

4.2. Proof of Corollary 1.5. The proof of Corollary 1.5 will use the objects defined in the last proof.
Specifically, we take aq, g as above (4.1), the cylinder time 7,, and reals a,, b, defined in (4.5). For
these reals, we have shown above that we have, in addition to (4.6), similar inequalities for T} 7ube
and T,". We will also use the event A, defined in (4.2).

We first prove that for some c1g > 0, we have for large n

P(T™ > 1) > cis, (4.13)
where
2bn if n is even
b = 2
" bno1 + bnt1 if n is odd.
2 2

Because T°" > TtPe | this will also establish P(T" > 1)) > cig.
To prove (4.13), first suppose that n is even and consider the three squares

S, — [0,%}2“@'—1) gJ ey fori—=1,2,3

with corresponding square passage times T),%(i) (all using the weights (tén))) We also define the
shifted squares
n

S = (Si+ﬁe1> +i LS

fori=1,2,3
> Jeg or 1 , 2,
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(n

along with their corresponding square passage times T, (i) (again using (¢
of (4.6) for Tp,* and Harris’s inequality, we have

))) From the version

P ( min_min {T3%(i), T34(i) } > b ) > 5.

1=1,2,3

As a consequence of (4.3), P(A,) — 1, and so

lim inf P <An, 'mlgl (T39(3) + T39(i)) > b;> > 0. (4.14)

n—oo

However, on the event in this probability, we have T, ,tl“be > b),. Indeed, choose a geodesic T'), for
Ttbe  We may assume by periodicity that the initial point xq of I', is contained in the interval
{0} x [n/12,n 4+ n/12]. Then if n is large, there exists some ¢ such that

zo + ([0,n] x [-n®*,n*]) C (S;US;) .
This means that I', contains an initial segment that is an admissible path for T; » (i) and a final
(disjoint) segment that is an admissible path for Tpd(i), so Tt = TUN(T,) > T(i) + Tpd(i) >
2b,,/5 = b},. Because of (4.14), we then conclude that (4.13) holds if n is even. In the case that n is
odd, the squares are instead defined as
n—11°

5 ] + (i —1) LgJeg fori=1,2,3

= o

and

2 2

but the rest of the proof is the same.
The second half of the proof serves to show that if 5 € (0, 1), there is ¢19 > 0 such that for large

S, = [n_l,n] X [O,n+1]+( —1){3Je2forz—123

n7
tor / C19
P(I" < an) 2 05, =55 (4.15)
where
, 2a% + 8nf if n is even
T Y aus fans +80°  ifnif odd.
2 2

We do this by approximately concatenating two low-weight paths in cylinders of height n®!, one
in the left half of the torus and one in the right. Again we will assume that n is even; a similar
argument works if n is odd.

First, in addition to the variable 7,5, we define T, /2 as the corresponding minimum over the
left-right times associated with shifted cylinders C¥) 4 +(n/2)e; and the same integer cylinder-heights

KS/)Q, ey KT(L/’;/Q) that satisfy equation (4.1) with n replaced by n/2. In these definitions, we use
(n)

the periodic weights (t¢ ’). By independence and (4.6), we have
P <max {72,72} < aa) > 0%6.
2 2 2

Let G, be the event that there exists a path « with initial point xg in {0} x [0,n], all of whose
edges intersect (0,n/2) x [0,n], with final point in {n/2} x [0,n], such that T (y) < a2 and
vy C xo+ (Z x [-2(n/2)*2,2(n/2)*2]). Similarly, define G,, as the event that there is a path 4 with
initial point yo in {n/2} x [0,n], all of whose edges intersect (n/2,n) x [0,n], with final point in
{n} x [0,n], such that T (3) < anjp and y C yo + (Z x [=2(n/2)*2,2(n/2)*?]). By (4.1), any
optimal path in the definition of 7,5 (or _n/Q) satisfies the properties in the definition of G,, (or
G), so for large n

P(G,NG,) > k. (4.16)
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On the event G, N G,,, we will build an admissible path for T°" consisting of v, 7, and vertical
line segments. To do this effectively, we need the endpoints of v and % to be close to each other.
For this purpose, we must introduce a few definitions. First, let 8 € (0,1) and define a family of
intervals

Ill = {0} x [O,TL'B],IZI = {0} x [n'B,Qnﬁ],...,I; = {0} x (Lnl_ﬁj - 1)n6, Lnl_ﬁjnﬁ] ,
and I}, = {0} x [|[n'=#|n®, n]. We need shifted intervals as well, so we set
=1+ gel and I3 = I! + ne.

Also define i1 as the minimal value of ¢ for which there is a path  satisfying the conditions of the
definition of G,, such that its initial point x( is in Il-l. Set i5 to be the minimal value of ¢ for which
there is a path ~ satisfying the conditions of the definition of G,, such that its initial point zg is in
Iz-l1 but its final point is in 11'2- Next, define i3 as the minimal value of ¢ for which there is a path ¥
satisfying the conditions in the definition of G,, such that its initial point yq is in IZ2. Finally, set iy
to be the minimal value of ¢ for which there is a path % satisfying the conditions of the definition
of G,, such that its initial point yq is in Ii23 and its final point is in I3. If Gy, occurs, then iy and ig
are defined, and if G, occurs, then i3 and i4 are defined. Whenever any ij is not defined, we set it
to be +00.
From (4.16), we have

P(i; <ooforj=1,...,4) > c. (4.17)

Furthermore, by independence,

P(i1:i4<oo,2'2:z'3<oo)

p+1 [p+1
=Y D Plip=izg=j|iy=ig=1i)| P(iy =iy =)
i=1 [j=1
pt+1 [pt1
=Y D Plia=j|ir=i)P(ig=j | ia =) | P(iy = )P (i = i). (4.18)
i=1 [j=1
Observe that if iy = i, then + begins at xp in the interval I} but must end at an interval in

xo + (Z x [-2(n/2)*2,2(n/2)*?]). Therefore iy can take only take values in a set &; which has
cardinality at most 8227 if n is large. Using Jensen’s inequality and symmetry, the inner sum is

ZP(i2=j!i1=i)P(i3=j!i4=i)=#6z“#16,ZP(izzjlilzi)z

JEG; JEG;
2
1
> > Plig=j| i =1)
#6i \ /o,
> <8na2_5)_1.

By a similar argument, and now using (4.17), we obtain
p+1

4

C
P(i; =i)P(is =i) > ——P(i; < 00)2 > 16,
;:1 (i1 = 9)P(is )_p+1(1 )_p+1

Putting these back in (4.18) and using p 4+ 1 < 2n'~? gives

4
P(iy = iy < 00,ip = i3 < 00) > “i6 (4.19)

= 16nltaz—26"
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On the event in the probability of (4.19), the endpoints of v and 7 are within n® of each other;
now we will connect them with vertical segments. So let H, be the event that any vertex self-
avoiding path 7 with at most 2n” many edges and which is contained in U3_; ({in/2} x [0,n])
satisfies T(" (1) < 4nf. By the argument of (3.6), any such 7 satisfies

P(T™ (7) > 4n®) < e 4m’ (Ee”te)#7r < e’

for some cog > 0, and so a union bound produces for large n
P(H,) >1-3(n+1)-2n". P B
So, if n is large, we can combine this with (4.19) for

4

. . . . c
P(Hn,ll =1y < 00,12 =13 < OO) > 32n1++62_26. (420)

Now consider an outcome for which H,, occurs, and also i1 = i4 < 00, and i5 = i3 < co. Then we
may produce a path T' by starting with -, following the line {n/2} x [0,n] from the final point of v
to the initial point yg of 7, traversing 7, and then following the line {n} x [0, n] from the final point
of 4 to xg + nei, where xg is the initial point of . In this way we produce an admissible path for
Tter, and T (1) < 2(a,, /2 + 4n°). Together with (1.20), this implies (1.15).

Having shown both inequalities (4.13) and (4.15), we complete the proof of Corollary 1.5. For
concreteness, we again assume that n is even. For our ag > 3/4,let § > 0 and set § = 1/2—ag/2—9.
Then by (4.5), for large n,

b;l—a;:2(b%—a%)—8n522016 W

Furthermore, by (4.13) and (4.15), for large n,

tor / C19
P(T,*" < ay) > n2(a2+0)

and .
tor / 19
P 2b0) 2 sty

For any random variable Y with finite mean satisfying P(Y < a) > ¢ and P(Y > b) > c for reals
a < b, one has E|Y — EY|¥ > ((b—a)/2)*c. Applying this to T\°" gives

k
1—ao
tor tor |k Ci6 |1 C19
E|T,” — ET”|" = (2\/ logn) " 2(a2t0)

Last, taking ag = 3/4 + 0 gives for large n
1.8 \Fk
g niE T e
2 Jlo@)

This implies Corollary 1.5 and completes the proof.

> Clgn(%its)ki%izm.

E|T\ — BT " > ( NPT
na

Appendix A. Gaussian fluctuation lemmas

This section provides the fluctuation result for normal random variables used to justify (3.15)
and (3.16) in the proof of Proposition 3.6. It relates the fluctuations of the minimum of indepen-
dent normal variables with different means and variances to the fluctuations of the minimum of
i.i.d. normal variables. For notational convenience, the result is stated for the maximum, though
by symmetry it holds for the minimum.
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Theorem A.l. There exists a universal constant co; > 0 such that the following holds. Let
Ziy..., 2y be independent normal variables with variances a%, ...,02 and set 0 = min;— 1.0 i

There exist reals an, by, with
o

2y/1+logn

by, — an =

(A1)

such that
P < max Z; < an> > co1 and P <‘max Z; > bn> > o1
1 1

=1,....,n =1,...,n

By Durrett (2019, Ex. 3.2.3), the right side of (A.1) is the order of the fluctuations of the
maximum of i.i.d. normal random variables with variance 0. Before the proof of Theorem A.1, we
state three lemmas. The first establishes a certain logconcavity property of the normal distribution.

Lemma A.2. Let ® be the distribution function of the standard normal distribution and f be its
density function. Then f/® is logconcave.

Proof: We must show that (log(f/®))” <0, but since (log f)” = —1, this reduces to (log ®(x))”
—1, or

f(2)®(z) — f2(2) + ®*(x) > 0. (A.2)
Solet F' = f'® — f2 4+ ®2. Because lim;_,_o F(z) = 0, it will suffice to show that F'(x) > 0 for all
x. Using f'(z) = —xf(z), a computation gives

F'(z) = f(2)[(1 +2*)®(z) + zf ()],
so we can just prove that H(z) > 0 for all 2, where H(z) = (1 +22)®(x) + zf(z). We observe that
H'(z) = 22®(x) + (1 +2°) f(2) + f(2) + 2 f'(x) = 2(2®(2) + f(2)).
and
H"(z) =2[®(z) + zf(z) — 2 f(x)] = 2®(z) > 0.

From the first display, we obtain lim,_, ., H'(x) = 0, and combining this with the second display,
we obtain H'(x) > 0, for all z. Last, since lim,_,_~, H(z) = 0, this implies H(z) > 0 for all z, and
o (A.2) follows. O

The next lemma tells us how the quantiles of max; Z; change as we shift the Z;. Although it is
stated for normal variables, it holds for more general distributions.

Lemma A.3. Let Zy,...,Z, be independent normal random variables with distribution functions
Py, ..., F, and densities f1,..., fn. Fora € R, set

Fraz(z,a) = P(max{Z, + a,Zs,...,Zy} < 2),
and for t € (0,1) define F,;L (t,a) as the unique real such that

Fmaiv(Fmam(t CL) ) =1. (A3)
Then
fi(z—a)
O Pkl ) = g .
¢ e o, FG e rrd )

Proof: Fix t € (0,1) and define H : R — R? by H(a) = (F,,L,
Fraz(H(a)) =t. By the chain rule,
0 d

7Fmaz(zaa) 7F7;(1z( ) +
az (z,a):H(a) 8(,7/

(t,a),a), so that (A.3) becomes

4 —Fraz(2,0)

da =0,

(z.0)=H(a)
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which implies

o)
7Fmaz ’
D pt .0 = — a5 ) . (A4)
da &Fmaz(zy a) (z,a)=H(a)
Using Frnae(2,a) = Fi(z — a) [}, Fi(2), these derivatives are
fanasz:0) = = =) [T )
and
0 filz—a) | fil2)
7Fmam s = Fma:p ) FEERY
0z (2,0) (2,a) (Fl(z —a) * pars Fi(z)
Place these back into (A.1) to complete the proof. O

Our last lemma uses the previous two in its proof, and implies Theorem. A.1 in the case that the
Z; have the same variances but different means. The result is stronger, and is stated in terms of
the dispersive order.

Definition A.4. The random variable X, with distribution function F, is said to be less dispersed
that the random variable Y, with distribution function G, if

Flb) - F Y a) <G b) -G a) forall0<a<b<l.

If X is less dispersed than Y, then Var X < VarY provided that X and Y have finite variances.
See, for instance, Shaked and Shanthikumar (2007, Sec. 3.B) for this and more facts on the dispersive
order. Moreover, we observe that if X,, is less dispersed than Y,, for all n, then {X,}>°, has
fluctuations of lower order than {Y;,}> .

The following result on fluctuations of the maximum of shifted normal variables holds for more
general distributions. The proof only uses Lemma A.3 and the logconcavity property of normal
random variables from Lemma A.2.

Lemma A.5. Let Xy,...,X,, be i.i.d. normal random variables, let a1,...,a, € R and let Z; =
Xi+a;, forallt=1,...,n. Then maxi<;<n X; ts less dispersed than maxi<i<p Z;.
Proof: We may assume that a; < ay < --- < a,. Write F' and f for the common distribution

function and density of the X, so that the distribution function and density of Z; is F'(z — a;) and
f(z —a;). Define F;} (t,a1,...,ay,) analogously to (A.3): it is the unique real such that

mazx
P < Hl]ax (ai —+ Xz) < Frgéaz(t? at, ... ,an)> =t.
i=1,....,n

We aim to prove that for t; < t9, one has

Fg;z(tg,al, N Fn;éx(tl,al, ceeylp) > Fn;;x(tg,an, N FL (t1,an,...,an). (A.5)

mazx
Putting
Ylay,. .. an) = F L (ta,ay,...,an) — Fl (t1,a1,. .., a,),
Lemma A.3 implies that
f(z—ay) f(z—ag)
0 (a1, ay) = — =) _ Fap)
day S };((ZZ:‘;)) p=Fta(to,a1,an) P oieg l{i(é:fl)) 2= Fin ke (t,a1,..pan)
We claim that if a1 = --- = a < agp1 < -+ - < ay, then

0
%d)(al, cosap) <0. (A.6)
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This will imply (A.5) after integrating the derivative of ¢ along the concatenation of straight

line segments connecting the points (a1, as...,a,), (a2,a2,as,...,a,), (as,as,as3,a4,...,a,), ...,
(@n,...,ay) in order. To simplify notation, put z; = F,l (t;,a1,...,a,), so that zo > 21, let
g = f/F, and write
f(z2—ag) g(z2—ar)
FCa—an) 9(22 — ak) 9(21 — ) gZi=a)
n JGaa) S g(za —ay) Ty g(z2—a;) (A7)
2int Flogmay =192 T ) Y g(a — ai) g =gy
By Lemma A.2, g is logconcave, so because a; > ag for i = 1,...,n, we have
29 — a;
olz - o) _ exp (log g(z2 — a;) —log g(z1 — a;)) > exp (log g(z2 — ax) —logg(z1 — ax))
9(z1 — a;)
_ 9(z2 —ap)
g9(z1 —ag)’
and (A.7) above becomes
f(z2—ay) 9(z2—ak) f(z1—ag)
F(zz—a];) g(z1 B ak)g(z?—a;:) o F(zll—aIZ)
son f(z2—ai)) — —n o Ng(zm—ap)] Sor fzi—a;) ~
i=1 Flza)  2oim1 |9(21 — @)ooy i=1 F(z1—a,)
This proves (A.6). O

Given the preparatory lemmas above, we can now prove Theorem A.1l.

Proof of Theorem A.1: By Durrett (2019, Ex. 3.2.3), there is an absolute constant ca2 > 0 such that
if Wi, Wha, ... are i.i.d. normal variables with mean zero and variance o2, then there are reals a’,, b/,
such that
b —ad = 7
Tt T+ Togn
and both
P (max W, < a%) > co9 and P (max W; > b%) > 9.
i=1,....,n i=1,....,n
We consider W/ +V;, where W/ = W;+EZ;, and the V; are independent normal random variables
(and independent of (W;)) with Var V; = o2 — 02 Then (Z;) and (W} + V;) have the same
distribution. Conditional on V = (Vi,...,V,), the variables W/ + V; are independent normals
with variance o2 and possibly different means V; + EZ;. Lemma A.5 therefore gives that they
(conditionally) are more dispersed than the sequence Wi,...,W,,. Therefore we can find reals

— —

an (V') and b, (V') such that

g

b(V) — an(V) = JTilogn

and

P <.ma (W] + Vi) > by (V) | x7> > ¢99,

1,...,n
P (Anllax (W] + Vi) < an(V) | V) > 9.

We can choose an(V) and bn(V) as Borel measurable functions of the vector ‘7, for instance by
selecting them to be quantiles of the conditional distribution of max;(W/ + V;) given V. We now

—

choose reals a,, and b, depending on the distributions of these a, (V) and b, (V) as

ap = sup {:B ER:Pa,(V)<z) < 1/2},

o
bn:an—i—2

V1+logn
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We observe with this definition that, since the distribution function of an(‘?) is right-continuous,
we have

P(a, (V) < ay) > 1/2.
Furthermore,

P(by(V) > by) > P(an(V) > an) =1 — P(an(V) < an) > 1/2.

Then

.....

>
-2

and

P (_rrllax (W +V;) > bn> =E|P (llrllax (W] +V;) > by, | V)]

>E |P (_ngax (W] + Vi) > bp(V),bu (V) > by | Vﬂ
j— / ¥ 7 -
—E|P (anl?*}fn(wz + Vi) = bn(V) | V) 1{bn(V)>bn}]
> o P (b (V) > by,)
L
- 2

Therefore the original claim has been proved with co; = ¢22/2. O
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