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Abstract
We investigate the quantitative unique continuation properties of real-valued solutions to
Schrödinger equations in the plane with potentials that exhibit growth at infinity. More pre-
cisely, for equations of the form�u−Vu = 0 inR2, with |V (z)| � |z|N for some N ≥ 0, we
prove that real-valued solutions satisfy exponential decay estimates with a rate that depends
explicitly on N . The case N = 0 corresponds to the Landis conjecture, which was proved
for real-valued solutions in the plane in Logunov et al. (arXiv:2007.07034, 2020) As such,
the results in this article may be interpreted as generalized Landis-type theorems. Our proof
techniques rely heavily on the ideas presented in Logunov et al. (arXiv:2007.07034, 2020).
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1 Introduction

In the late 1960s, E.M. Landis [16] conjectured that if u is a bounded solution to

�u − Vu = 0 in R
n, (1)

where V is a bounded function and u satisfies |u(x)| � exp(−c|x |1+), then u ≡ 0. This con-
jecture was later disproved byMeshkov [19] who constructed non-trivialC-valued functions
u and V that solve �u − Vu = 0 in R

2, where V is bounded and |u(x)| � exp(−c|x |4/3).
Meshkov also proved a qualitative unique continuation result: If �u−Vu = 0 inRn , where
V is bounded and u satisfies a decay estimate of the form |u(x)| � exp(−c|x |4/3+), then
necessarily u ≡ 0.

In their work on Anderson localization [2], Bourgain and Kenig established a quantitative
version of Meshkov’s result. As a first step in their proof, they used three-ball inequalities
derived from Carleman estimates to establish order of vanishing estimates for local solutions
to Schrödinger equations. Then, through a scaling argument, they proved a quantitative
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unique continuation result. More specifically, they showed that if u and V are bounded, and
u is normalized so that |u(0)| ≥ 1, then for sufficiently large values of R,

inf|x0|=R
‖u‖L∞(B(x0,1)) ≥ exp (−CRβ log R), (2)

where β = 4
3 . Since

4
3 > 1, the constructions ofMeshkov, in combinationwith the qualitative

and quantitative unique continuation theorems just described, indicate that Landis’ conjecture
cannot be true for complex-valued solutions in R2. However, at the time, Landis’ conjecture
still remained open in the real-valued and higher-dimensional settings. In [15, Questions 1,
2], Kenig asked if the exponent could be reduced from 4

3 down to 1 in the real-valued setting;
and if the related order of vanishing estimate could be improved to match those of Donnelly–
Fefferman from [10, 11].

In recent years, there has been a surge of activity surrounding Landis’ conjecture in the
real-valued planar setting. The breakthrough article [13] byKenig, Silvestre andWang proved
a quantitative form of Landis’ conjecture under the assumption that the zeroth-order term
satisfies V ≥ 0 a.e. Subsequent papers established analogous results in the settings with
drift terms [14], variable coefficients [8], and singular lower-order terms [9, 14]. Then we
showed that this theorem still holds when V− exhibits rapid decay at infinity [4], and when
V− exhibits slow decay at infinity [7]. The work of Logunov, Malinnikova, Nadirashvili, and
Nazarov [18] shows that Landis’ conjecture holds in the real-valued planar setting. Their
proof uses the nodal structure of the domain along with a domain reduction technique to
eliminate any sign condition on the zeroth-order term. The techniques and ideas from [18]
will be used extensively in this article.

In [5], I studied the quantitative unique continuation properties of solutions tomore general
elliptic equations of the form

�u + W · ∇u + Vu = λu in R
n,

where V andW exhibit pointwise decay at infinity, and λ ∈ C. It was shown that if |V (x)| �
〈x〉−N and |W (x)| � 〈x〉−P for N , P ≥ 0, then the quantitative estimate (2) holds with β =
max{1, 4−2N

3 , 2− 2P}. These results complement those in [3], where analogous qualitative
unique continuation theorems are established in the setting where W ≡ 0 and N ∈ R. By
building on the ideas of Meshkov from [19], the article [5] contains examples which prove
that the estimates are sharp in certain settings, with further examples in [6]. These quantitative
estimates were generalized in [17], where they proved analogous estimates for solutions to
the corresponding equations with variable-coefficient leading terms.

This paper is concernedwith proving quantitative unique continuation results for equations
of the form (1), where n = 2, u and V are real-valued, and V exhibits growth at infinity. We
build off of the techniques in [18] to establish quantitative versions of the results from [3] in
the setting where V is real-valued and growing (denoted by ε ≤ 0 in that article). We now
give the precise statement of the main theorem.

Theorem 1.1 For some N ≥ 0, a0 > 0, let V : R2 → R satisfy the growth condition

|V (z)| ≤ a0|z|N . (3)

Let u be a real-valued solution to (1) in R
2 with the properties that

|u(0)| = 1

and for some c0 > 0,

|u(z)| ≤ exp
(
c0|z|1+ N

2

)
.
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On Landis’ Conjecture in the Plane for Potentials with Growth 677

Then there exists constants C0 = C0(a0, c0, N ) > 0 and R0 > 0 so that whenever |z0| ≥ R0,
it holds that

‖u‖L∞(B(z0,1)) ≥ exp
(
−C0|z0|1+ N

2 log
3
2 |z0|

)
.

The results of [3] establish qualitative versions of (2) with β = 4+2N
3 = 4

3 (1+ N
2 ) under

the assumption (3) in the complex-valued setting. Thus, as in the case of bounded V , this
theorem shows that stronger bounds hold in the real-valued planar setting.

For some β > 0, c �= 0, let
u(z) = exp

(
c|z|β)

.

A computation shows that �u − Vu = 0, where V (z) := cβ2(c|z|β + 1)|z|β−2 satisfies
|V (z)| � |z|2β−2. By setting β = 1 + N

2 , this example shows that the theorem is sharp
whenever N ≥ 0. Based on this example, it seems reasonable to assume that a version of
Theorem 1.1 also holds for potentials that decay at infinity, i.e. for N < 0. To extend the
arguments in this paper to decaying potentials, an iterative argument reminiscent of those
in [4, 5, 17], or [7] may be needed. This approach was attempted in the preparation of this
manuscript, but the exponent “got stuck” above 1 and a resolution to this issue was unclear
at the time. In other words, modifications to the techniques of this paper do not appear to
give such results for decaying potentials. In subsequent articles, we will study both singular
potentials and potentials that exhibit decay at infinity.

To prove Theorem 1.1, we establish the following local result. Note that the R0 > 0 here
is the same universal constant as in Theorem 1.1.

Theorem 1.2 Let u be a real-valued solution to �u − Vu = 0 in B(0, R) ⊂ R
2, where V

is real-valued and ‖V ‖L∞(B(0,R)) ≤ a2R2δ for some δ ≥ 0, a ≥ 1, R > 0. If R ≥ R0,
S ∈ [ R

4 , R
2

]
, and there exists M > 0 so that

sup
z∈B(0,R−S)

|u(z)| ≥ e−M sup
z∈B(0,R)

|u(z)|, (4)

then there exists universal C1 > 0 so that whenever r ∈
(
0, R

210

)
, it holds that

sup
z∈B(0,r)

|u(z)| ≥
( r

R

)K (R,M)

sup
z∈B(0,R−S)

|u(z)|, (5)

where K (R, M) = C1 max
{
aR1+δ

√
log R, M + 1

log R

}
.

The proof of this theorem will be presented below in Section 3. As in [18], we reduce the
problem to a question about harmonic functions. Those details are provided in Section 2.

Assuming that Theorem 1.2 holds, we present the proof of Theorem 1.1.

Proof of Theorem 1.1 Fix z0 ∈ R
2 with |z0| ≥ R0

2 . Set R = 2|z0| ≥ R0 and S = R
2 . Define

u0(z) = u(z0 + z) and V0(z) = V (z0 + z)

so that
�u0 + V0u0 = 0 in B(0, R).

Since |z0 + z| ≤ 3
2 R for z ∈ B(0, R), then

‖V0‖L∞(B(0,R)) ≤ a0

(
3

2
R

)N

= a0

(
3

2

)N

RN
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and

sup
z∈B(0,R)

|u0(z)| ≤ exp

[
c0

(
3

2

)1+ N
2

R1+ N
2

]
.

As
sup

B(0,R−S)

|u0| = sup
B(z0,|z0|)

|u| ≥ |u(0)| = 1,

then Theorem 1.2 is applicable with δ = N
2 , a = max

{√
a0(

3
2 )

N
2 , 1

}
, and M =

c0(
3
2 )

1+ N
2 R1+ N

2 . Since

K (R, M) = C1 max

{
aR1+ N

2
√
log R, c0

(
3

2

)1+ N
2

R1+ N
2 + 1

log R

}
≤ c1R

1+ N
2
√
log R,

where c1 = C1
[
a + ( 32 )

1+ N
2 c0

]
, then

sup
B(z0,r)

|u| = sup
B(0,r)

|u0| ≥
( r

R

)c1R1+N√
log R

sup
B(0,R−S)

|u0|

=
( r

R

)c1R1+N√
log R

sup
B(z0,

R
2 )

|u| ≥
( r

R

)c1R1+N√
log R

.

Setting r = 1 then shows that

sup
B(z0,1)

|u| ≥ exp
(
−c1R

1+ N
2 log

3
2 R

)
≥ exp

(
−C0|z0|1+ N

2 log
3
2 |z0|

)
,

where C0 = c121+
N
2

( 10
9

) 3
2 . ��

The remainder of the article is organized as follows. In Section 2, we present and prove
a unique continuation theorem for harmonic functions in punctured domains. As in [18],
this result for harmonic functions is essential to the proof of Theorem 1.2. We describe this
reduction in Section 3, and explain how it implies the proof of Theorem 1.2. We use c, C to
denote constants that may change from line to line, while constants with subscripts are fixed.
Unless stated otherwise, all constants are universal.

2 Decay Properties of Harmonic Functions in Punctured Domains

In this section, we present and prove quantitative unique continuation results (in the form
of three-ball inequalities) for harmonic functions in punctured domains. The next section
shows how these results lead to the proof of Theorem 1.2. We begin with an application of
the Harnack inequality.

Lemma 2.1 Let {Dj } be a finite collection of 100-separated unit disks in the plane. Assume
that h is real-valued and harmonic in R2 \ ∪Dj and that for each j , h does not change sign
in 5Dj \ Dj . There exists an absolute constant CH ≥ 10 for which

1. max
δ3Dj

|h| ≤ CH min
δ3Dj

|h|.
2. max

δ3Dj
|∇h| ≤ CH min

δ3Dj
|h|.
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On Landis’ Conjecture in the Plane for Potentials with Growth 679

Proof An application of the Harnack inequality shows that there exists CH > 0 so that for
every j

max
δ3Dj

|h| ≤ sup
4Dj \2Dj

|h| ≤ CH inf
4Dj \2Dj

|h| ≤ CH min
δ3Dj

|h|.

For each z ∈ δ3Dj , since h does not change signs in B(z, 2), an application of Cauchy’s
inequality as in [12, Lemma 1.11] shows that

|∇h(z)| ≤ |h(z)|
and the conclusion follows. ��

We now state and prove the main result of this section. The following is a slight modifi-
cation of the result [18, Theorem 5.3].

Proposition 2.2 Let {Dj } be a finite collection of 100-separated unit disks in the plane for
which 0 /∈ ∪3Dj . For some R ≥ 210, let h be a harmonic function in B(0, R) \ ∪Dj with
the property that for each j , h does not change sign in (5Dj \ Dj ) ∩ B(0, R). Assume that
for S ∈ [ R

4 , R
2

]
and for some M > 0, it holds that

sup
z∈B

(
0,R− S

32

)
\∪3Dj

|h(z)| ≥ e−M sup
z∈B(0,R)\∪3Dj

|h(z)|. (6)

Then for every r ∈
(
0, R

210

)
, we have

sup
z∈B(0,r)\∪3Dj

|h(z)| ≥
(
16r

R

)K (R,M)

sup
z∈B

(
0,R− S

32

)
\∪3Dj

|h(z)|, (7)

where K (R, M) = max{6CH R,C2M}, CH ≥ 10 is from Lemma 2.1, and C2 > 0 is
universal.

Remark 2.3 Since this statement, Proposition 2.2, appears to be very similar to [18, Theo-
rem 5.3], we point out the main differences:

1. The domain on the left-hand side of (6) depends on S and is therefore variable.
2. The domain on the right-hand side of (7) matches that on the left-hand side of (6),

while in [18, Theorem 5.3], the domain on the right-hand side of (7) matches that on the
right-hand side of (6).

3. The power K (R, M) here is given as a maximum of two values instead of a sum as in
[18, Theorem 5.3].

4. There are differences in the assumed bounds on R and r and therefore constants are
different.

Proof We may assume without loss of generality that

sup
z∈B

(
0,R− S

32

)
\∪3Dj

|h(z)| = 1.

Set k = max{2CH R, C2
3 M}, where C2 will be specified below. For the sake of contradiction,

assume that

sup
z∈B(0,r)\∪3Dj

|h(z)| ≤
(
16r

R

)3k

. (8)

123



680 B. Davey

Define the punctured annular region

� :=
{ r
2

< |z| < R − 1
}

\ ∪3Dj

and the function

f (z) = hx − ihy

zk
.

Observe that f is analytic in � and | f (z)| = |∇h(z)||z|−k . We’ll analyze the behavior of
f over �. We begin with bounding h and ∇h over the innermost and outermost parts of the
boundary of � (Figs. 1 and 2).

Let W1 be the connected component of ∂� that intersects the inner circle {|z| = r
2 }. If

z ∈ W1, then there are three cases to consider:

(a) |z| �= r
2 .

(b) |z| = r
2 and there exists j for which z ∈ 4Dj \ 3Dj .

(c) |z| = r
2 and z ∩ 4Dj is empty for all j .

Case (a): There exists j for which z ∈ ∂3Dj and 3Dj ∩ {|z| = r
2 } is non-empty. An

application of Lemma 2.1 combined with the fact that ∂3Dj ∩ B(0, r) is non-empty shows
that

|h(z)|, ‖∇h(z)| ≤ CH min
∂3Dj

|h| ≤ CH sup
B(0,r)\∪3Dj

|h| ≤ CH

(
16r

R

)3k

,

where the last inequality follows from (8).
Case (b): Since h does not change signs in B(z, 1), then an application of [12, Lemma 1.11]
shows that

|∇h(z)| ≤ 2|h(z)| ≤ 2 sup
B(0,r)\∪3Dj

|h| ≤ 2

(
16r

R

)3k

,

where the second inequality uses that z /∈ ∪3Dj and we have again applied (8).
Case (c): Let d = min{1, r

2 } and observe that B(z, d) ⊂ B(0, r) \ ∪3Dj , so an application
of Cauchy’s inequality, [12, Lemma 1.10], shows that

|∇h(z)| ≤ 2

d
sup
B(z,d)

|h| ≤ 2

d
sup

B(0,r)\∪3Dj

|h| ≤ 2

d

(
16r

R

)3k

.

Fig. 1 Possible images of W1 with cases (a), (b) and (c) illustrated by the points za , zb , and zc , respectively
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On Landis’ Conjecture in the Plane for Potentials with Growth 681

Fig. 2 A possible image of W2 with case (a) illustrated by the points za1 and za2 , and case (b) illustrated by
zb

If d = 1, since k > 1, then
2

d

(
16r

R

)k

= 2

(
16r

R

)k

<
32r

R
<

1

25
<

1

2
. On the other hand,

if d = r
2 , then

2

d

(
16r

R

)k

= 4

r

(
16r

R

)k

= 64

R

(
16r

R

)k−1

<
1

24
<

1

2
.

Since k ≥ 2CH R ≥ 211CH , then 210k ≥ max{CH , 2} = CH and
( r
R

)k ≤ 2−10k ≤
1

max{CH ,2} . Therefore, by combining all three cases, we see that

sup
W1

|h|, sup
W1

|∇h| ≤
(
16r

R

)2k

. (9)

Let W2 be the connected component of ∂� that intersects the outer circle {|z| = R − 1}
and note that W2 ⊂ B(0, R − 1) \ B(0, R − 7). Now if z ∈ W2, there are two cases to
consider:

(a) there exists j for which z ∈ 4Dj .
(b) |z| = R − 1 and z ∩ 4Dj is empty for all j .

Case (a): Since h does not change sign in B(z, 1), then an application of [12, Lemma 1.10]
shows that

|∇h(z)| ≤ 2|h(z)| ≤ 2 sup
B(0,R)\∪3Dj

|h| ≤ 2eM ,

where we have applied (6).
Case (b): Since B(z, 1) ⊂ B(0, R) \ ∪3Dj , then

|∇h(z)| ≤ 2 sup
B(z,1)

|h| ≤ 2 sup
B(0,R)\∪3Dj

|h| ≤ 2eM .

By combining both cases, we see that

sup
W2

|h| ≤ eM , sup
W2

|∇h| ≤ 2eM . (10)

Nowwe’ll use these estimates on h to understand the behavior of the function f = hx−ihy
zk

.
Define the set �1 ⊂ � as

�1 :=
{
r

2
< |z| < R − S

32

}
\ ∪3Dj .

Using containment, assumption (8), and our rescaling, we see that

sup
B(0, r2 )\∪3Dj

|h| ≤ sup
B(0,r)\∪3Dj

|h| ≤
( r

R

)3k
< 1 = sup

B
(
0,R− S

32

)
\∪3Dj

|h|.
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682 B. Davey

Therefore, there exists z0 ∈ �1 for which |h(z0)| = 1. By (9), we have

sup
W1

|h| ≤
(
16r

R

)2k

<
1

2
,

so there exists z1 ∈ W1 for which |h(z1)| = α < 1
2 . Let 
 be a path in �1 from z0 to z1 for

which �(
) ≤ 4R. If we assume that |∇h(z)| < 1
8R for all z ∈ 
, then

1

2
< |h(z1) − h(z0)| =

∣∣∣∣
∫




∇h(w) · dw

∣∣∣∣ ≤
∫




|∇h(w)||dw| <
1

8R
�(
) <

1

2
,

which is impossible so it follows that

sup
�

|∇h| ≥ sup
�1

|∇h| ≥ 1

8R
.

Therefore,

sup
�

| f | ≥ sup
�1

| f | ≥ sup
�1

|∇h|
(
R − S

32

)−k

≥ 1

8R

(
R − S

32

)−k

.

An application of (9) shows that

max
W1

| f | ≤ max
W1

|∇h|
(
2

r

)k

≤
(
16r

R

)2k (
2

r

)k

=
(
29r

R

)k

R−k < 2−k R−k,

where we have used that R
r > 210. Since k ≥ 2CH R ≥ 20R, then 2−k < 1

8R . In particular,
by combining the previous two inequalities, we deduce that

max
W1

| f | <
1

8R

(
R − S

32

)−k

≤ sup
�

| f |.

Similarly, an application of (10) shows that

max
W2

| f | ≤ max
W2

|∇h|(R − 7)−k ≤ 2eM
(
R − S

32

R − 7

)k (
R − S

32

)−k

.

Now

2eM
(
R − S

32

R − 7

)k

<
1

8R
⇐⇒ k log

(
R − 7

R − S
32

)
> M + log(16R). (11)

Since S ∈ [ R
4 , R

2

]
and R ≥ 210, then

log

(
R − 7

R − S
32

)
= log

(
1 − 7 · R−1

1 − S
32R

)
≥ log

(
1 − 7 · R−1

1 − 1
128

)

≥ c1 := log

(
1 − 7 · 2−10

1 − 2−7

)
> 2−10.

Since k ≥ C2
3 M , then

k

2
log

(
R − 7

R − S
32

)
≥ C2c1

6
M,
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while k ≥ 2CH R ≥ 20R implies that

k

2
log

(
R − 7

R − S
32

)
> 2−1010R > log(16R),

since R ≥ 210. If we choose C2 = 6
c1
, then (11) holds. Thus, we see that

max
W2

| f | < sup
�

| f |.

Since f is a holomorphic function in�, then themaximumprinciple guarantees that sup� | f |
= sup∂� | f |. As shown above, the maximum does not occur on W1 or W2, so there must
exist a disk 3Dj ⊂ { r2 < |z| < R − 1} for which sup� | f | = sup∂3Dj

| f |.
Considering only the disks Dj for which 3Dj ⊂ { r2 < |z| < R − 1}, define z j ∈ ∂3Dj

to be the point that is closest to the origin, i.e. has the smallest modulus. Then set m j =
min∂3Dj |h|. Define j0 to be the index for which

m j0 |z j0 |−k = max
j

m j |z j |−k (12)

and let j1 be the index for which

sup
�

| f | = sup
∂3Dj1

| f |.

For any z ∈ �, an application of Lemma 2.1 shows that

|∇h(z)||z|−k ≤ |z j1 |−k sup
∂3Dj1

|∇h(z)| ≤ CHm j1 |z j1 |−k ≤ CHm j0 |z j0 |−k, (13)

so we see that

sup
z∈�

|∇h(z)| ≤ CHm j0

( |z|
|z j0 |

)k

.

Since sup� |∇h| ≥ 1
8R and z ∈ � is arbitrary,

1

8R
≤ CHm j0

( |z|
|z j0 |

)k

≤ CHm j0

(
2R

r

)k

and then

|h(z j0)| ≥ m j0 ≥ 1

8CH R

( r

2R

)k
. (14)

Define s = inf{τ ≤ 1 : t z j0 ∈ � for all t ∈ (τ, 1)} so that the straight line path defined by
γ (t) = t z j0 for s < t < 1 is contained in � while szt0 ∈ ∂�. In particular, we may integrate
∇h along γ to get

h(z j0) − h(sz j0) =
∫

γ

∇h(z) · dz =
∫ 1

s
∇h(t z j0) · z j0dt .

Applications of (13) and (14) show that

|h(sz j0)| ≥ |h(z j0)| −
∣∣∣∣
∫ 1

s
∇h(t z j0) · z j0dt

∣∣∣∣ ≥ |h(z j0)| − |z j0 |
∣∣∣∣
∫ 1

s
CHm j0 t

kdt

∣∣∣∣

≥ m j0 − m j0CH R

k + 1
= m j0

(
1 − CH R

k + 1

)
>

m j0

2
, (15)
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684 B. Davey

where the last inequality uses that k + 1 > 2CH R. Since k ≥ 2CH R, then 2k > 16CH R
and it follows that (

R

r

)k

≥ 210k > 16CH R · 29k .

Combining (15) with (14) shows that

|h(sz j0)| >
m j0

2
≥ 1

16CH R

( r

2R

)k
> 29k

( r

R

)k ( r

2R

)k =
(
16r

R

)2k

.

By comparing this bound with (9), we conclude that sz j0 /∈ W1 so it must hold that sz j0 ∈
∂3Dj2 for some 3Dj2 ⊂ { r2 < |z| < R − 1}. Then Lemma 2.1, that |z j2 | ≤ |sz j0 |, and (15)
show that

m j2 |z j2 |−k ≥
sup∂3Dj2

|h|
CH

|z j2 |−k ≥ |h(sz j0)|
CH

|sz j0 |−k ≥ s−k

2CH
m j0 |z j0 |−k . (16)

Since z j0 ∈ ∂3Dj0 and sz j0 ∈ ∂3Dj2 where j0 �= j2, and the balls {Dj } are of unit radius and
100-separated, then |z j0 − sz j0 | ≥ 96. After rearrangement, we see that s−k ≥ (1 − 96

R )−k .
Since 10 ≤ CH , 2CH R ≤ k, and 96

R < − log(1 − 96
R ), then

log(2CH ) < 96 · 2CH ≤ 96

R
k < −k log

(
1 − 96

R

)
≤ −k log s,

from which it follows that s−k > 2CH . We then conclude from (16) that m j2 |z j2 |−k >

m j0 |z j0 |−k which contradicts (12) and gives the desired contradiction. In other words, (8)
fails to hold and we see that

sup
z∈B(0,r)\∪3Dj

|h(z)| >

(
16r

R

)3k

=
(
16r

R

)3k

sup
z∈B

(
0,R− S

32

)
\∪3Dj

|h(z)|,

which implies (7) by our choice of k. ��

3 The Proof of Theorem 1.2

In this section, we show how Theorem 1.2 follows from Proposition 2.2. This reduction is
very similar to that described in [18] with rescaling changes to account for the size of V .

Let u : B(0, R) ⊂ R
2 → R be a solution to

�u − Vu = 0 in B(0, R),

where for some a ≥ 1, δ ≥ 0,

‖V ‖L∞(B(0,R)) ≤ a2R2δ.

Let F0 denote the nodal set of u, i.e.

F0 = {z ∈ R
2 : u(z) = 0}.

Define z0 ∈ B(0, R − S) to satisfy

|u(z0)| = sup
B(0,R−S)

|u|. (17)
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For ρ > 0 to be specified below and cs a universal constant, there exists a set F1 ⊂ B(0, R)

which consists of a collection of csρ-separated closed disks of radius ρ which are also csρ-
separated from 0, z0, F0, and ∂B(0, R). Moreover, the set F0 ∪ F1 ∪ ∂B(0, R) is a 10csρ-net
in B(0, R). A more detailed description of this process is given in [18, §2, Act I].

Define � = B(0, R) \ (F0 ∪ F1) and �1 = B(0, R) \ F1. As shown in [18, §3.1], there
exists a constant cP (depending on cs) so that � has Poincare constant bounded above by
cPρ2. In particular, since cPρ2‖V ‖L∞(B(0,R)) ≤ cPρ2a2R2δ , then by choosing ρ � 1, we
can apply [18, Lemma 3.2]. For ε � 1 to be defined later on, let

ρ = εa−1R−δ. (18)

An application of the arguments in [18, §3.2] then shows that there exists ϕ : � → R with
the properties that

�ϕ − Vϕ = 0 in �

ϕ − 1 ∈ W 1,2
0 (�)

‖ϕ − 1‖∞ ≤ cb(ρaR
δ)2 = cbε

2, (19)

where cb is a universal constant depending on cP , and we have used (18). By extending ϕ to
equal 1 across F0 ∪ F1, it is then shown in [18, Lemma 4.1] that f := u

ϕ
∈ W 1,2

loc (B(0, R))

is a weak solution to the divergence-form equation

div(ϕ2∇ f ) = 0 in �1.

We then introduce the Beltrami coefficient μ, defined as follows:

μ =
{

1−ϕ2

1+ϕ2
fx+i fy
fx−i fy

in �1 when ∇ f �= 0,

0 otherwise.

Since |μ| � ε2, then as shown in [1], there exists a K -quasiconformal homeomorphism of the
complex planewhere K ≤ 1+CK ε2, whereCK depends on cb. That is, there exists somew ∈
W 1,2

loc which satisfies the Beltrami equation ∂w
∂z = μ∂w

∂z . In fact, an application of the Riemann
uniformization theorem shows that there exists a K -quasiconformal homeomorphism g of
B(0, R) onto itself with g(0) = 0. Moreover, the function h := f ◦ g−1 is harmonic in
g(�1).

Mori’s Theorem implies that

1

16

∣∣∣∣
z1 − z2

R

∣∣∣∣
K

≤ |g(z1) − g(z2)|
R

≤ 1

16

∣∣∣∣
z1 − z2

R

∣∣∣∣
1
K

.

Thus, if we set

ε = ce√
log R

(20)

for some ce > 0, then K ∈
[
1, 1 + CK c2e

log R

]
and R � RK � R

1
K . By appropriately choosing

our (universal) constants cs and ce, it can be shown that h is harmonic in B(0, R) \ ∪Dj ,
where each Dj is a disk of radius 32ρ. Moreover, the disks are 3200ρ-separated from each
other, 0, and g(z0), while h does not change sign in any of the annuli 100Dj \ Dj .

Since g : B(0, R) → B(0, R), then we may rescale the map to get

g̃ := g

32ρ
: B(0, R) → B

(
0,

R

32ρ

)
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which is onto with g̃(0) = 0. Using (18) and (20), set

R̃ = R

32ρ
= R

32 ce√
log R

a−1R−δ
= a

32ce
R1+δ

√
log R =: C3aR

1+δ
√
log R,

where we introduce C3 = 1
32ce

. From here, we see that h̃ := f ◦ g̃−1 is harmonic in g̃(�1).

In particular, h̃ is harmonic in B(0, R̃) \ ∪D̃ j , where now the D̃ j are unit disks that are
100-separated from each other, from 0, and from g̃(z0). Moreover, h̃ doesn’t change signs
on any annuli 5D̃ j \ D̃ j .

For r � 1, since g(B(0, r)) contains a disk of radius r0, where

r0 ≥ R

16

( r

R

)K ≥ R

16

( r

R

)2
,

then g̃(B(0, r)) ⊃ B(0, r̃), where r̃ = r0
32ρ so that

16r̃

R̃
≥

( r

R

)2
. (21)

Since g̃(0) = 0, then for r � 1, it holds that B(0, r̃) \ ∪3D̃ j = B(0, r̃) and then

sup
B(0,r̃)\∪3D̃ j

|h̃| = sup
B(0,r̃)

|h̃| ≤ sup
g̃(B(0,r))

| f ◦ g̃−1| = sup
B(0,r)

| f |. (22)

Since u = ϕ f , then the bound on ϕ from (19) implies that

(1 − cbε
2)| f (z)| ≤ |u(z)| ≤ (1 + cbε

2)| f (z)|. (23)

As z0 is as given by (17), then for any z1 ∈ B(0, R − S), it follows that

|u(z1)| ≤ |u(z0)| ≤ (1 + cbε
2)| f (z0)|.

Since z0 ∈ B(0, R − S) ∩ �, then the distortion estimate and the separation of g̃(z0) from
∪3D̃ j implies that g̃(z0) ∈ B

(
0, R̃ − S̃

32

) \ ⋃
3D̃ j , where we introduce

S̃ := S

32ρ
= C3aSR

δ
√
log R.

Combining these observations shows that,

1

1 + cbε2
sup

B(0,R−S)

|u| ≤ | f (z0)| = |h̃ ◦ g̃(z0)| ≤ sup
B

(
0,R̃− S̃

32

)
\∪3D̃ j

|h̃|. (24)

Moreover,
sup

B(0,R̃)\∪3D̃ j

|h̃| ≤ sup
B(0,R̃)

|h̃| = sup
g̃(B(0,R))

| f ◦ g̃−1| = sup
B(0,R)

| f |. (25)

Subsequent applications of (24), the assumption (4) from Theorem 1.2, (23), and (25) then
show that

sup
B

(
0,R̃− S̃

32

)
\∪3D̃ j

|h̃| ≥ 1

1 + cbε2
sup

B(0,R−S)

|u| ≥ 1

1 + cbε2
e−M sup

B(0,R)

|u|

≥ 1 − cbε2

1 + cbε2
e−M sup

B(0,R)

| f | ≥ e
−

(
M+ cd

log R

)
sup

B(0,R̃)\∪3D̃ j

|h̃|,
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where cd depends on cb and ce as in (20).
Set R0 = max{210, exp(C−2

3 )}. Since a ≥ 1, then R ≥ R0 implies that C3aRδ
√
log R ≥

aRδ ≥ 1 and R ≥ 210, so that R̃ = RC3aRδ
√
log R ≥ 210 as well. As S R−1 = S̃ R̃−1, then

the hypotheses of Proposition 2.2 hold with h, {Dj }, r , R, S, and M replaced by h̃, {D̃ j }, r̃ ,
R̃, S̃, M̃ := M + cd

log R , respectively.
Applications of (23), (22), the conclusion (7) from Proposition 2.2, (21), and (24) show

that

1

1 − cbε2
sup
B(0,r)

|u| ≥ sup
B(0,r)

| f | ≥ sup
B(0,r̃)\∪3D̃ j

|h̃| ≥
(
16r̃

R̃

)K (R̃,M̃)

sup
B

(
0,R̃− S̃

32

)
\∪3D̃ j

|h̃|

≥ 1

1 + cbε2

( r

R

)K̃ (R,M)

sup
B(0,R−S)

|u|,

where we have introduced

K̃ (R, M) = 2K (R̃, M̃) = 2max
{
6CH R̃,C2M̃

}

= max

{
12CHC3aR

1+δ
√
log R, 2C2

(
M + cd

log R

)}
.

Since 1−cbε2

1+cbε2
≥ e− cd

log R and e < 4 ≤ (210)
1
5 ≤ ( R

r

) 1
5 , then with universal C1 and

K (R, M) := C1 max

{
aR1+δ

√
log R,

(
M + 1

log R

)}

we deduce that

sup
B(0,r)

|u| ≥
( r

R

)K (R,M)

sup
B(0,R−S)

|u|

and the conclusion described by (5) has been shown.
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