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Abstract

We investigate the quantitative unique continuation properties of real-valued solutions to
Schrodinger equations in the plane with potentials that exhibit growth at infinity. More pre-
cisely, for equations of the form Au —Vu = 0Oin R2?, with |V (z)] < |z|N forsome N > 0, we
prove that real-valued solutions satisfy exponential decay estimates with a rate that depends
explicitly on N. The case N = 0 corresponds to the Landis conjecture, which was proved
for real-valued solutions in the plane in Logunov et al. (arXiv:2007.07034, 2020) As such,
the results in this article may be interpreted as generalized Landis-type theorems. Our proof
techniques rely heavily on the ideas presented in Logunov et al. (arXiv:2007.07034, 2020).
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1 Introduction

In the late 1960s, E.M. Landis [16] conjectured that if u is a bounded solution to
Au—Vu=0 in R", (1)

where V is a bounded function and u satisfies |u(x)| < exp(—c|x|l+), then # = 0. This con-
jecture was later disproved by Meshkov [19] who constructed non-trivial C-valued functions
u and V that solve Au — Vu = 0 in R?, where V is bounded and |u(x)| < exp(—c|x|*/3).
Meshkov also proved a qualitative unique continuation result: If Au— Vu = 0in R", where
V is bounded and u satisfies a decay estimate of the form |u(x)| < exp(—c|x|4/3+), then
necessarily u = 0.

In their work on Anderson localization [2], Bourgain and Kenig established a quantitative
version of Meshkov’s result. As a first step in their proof, they used three-ball inequalities
derived from Carleman estimates to establish order of vanishing estimates for local solutions
to Schrodinger equations. Then, through a scaling argument, they proved a quantitative
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unique continuation result. More specifically, they showed that if # and V' are bounded, and
u is normalized so that |u(0)| > 1, then for sufficiently large values of R,

|xir|1fR ||u||Loc(B(xO71)) > exp (—CRﬁ lOg R), 2)
ol=

where 8 = %. Since % > 1, the constructions of Meshkov, in combination with the qualitative
and quantitative unique continuation theorems just described, indicate that Landis’ conjecture
cannot be true for complex-valued solutions in R2. However, at the time, Landis’ conjecture
still remained open in the real-valued and higher-dimensional settings. In [15, Questions 1,
2], Kenig asked if the exponent could be reduced from % down to 1 in the real-valued setting;
and if the related order of vanishing estimate could be improved to match those of Donnelly—
Fefferman from [10, 11].

In recent years, there has been a surge of activity surrounding Landis’ conjecture in the
real-valued planar setting. The breakthrough article [13] by Kenig, Silvestre and Wang proved
a quantitative form of Landis’ conjecture under the assumption that the zeroth-order term
satisfies V' > 0 a.e. Subsequent papers established analogous results in the settings with
drift terms [14], variable coefficients [8], and singular lower-order terms [9, 14]. Then we
showed that this theorem still holds when V_ exhibits rapid decay at infinity [4], and when
V_ exhibits slow decay at infinity [7]. The work of Logunov, Malinnikova, Nadirashvili, and
Nazarov [18] shows that Landis’ conjecture holds in the real-valued planar setting. Their
proof uses the nodal structure of the domain along with a domain reduction technique to
eliminate any sign condition on the zeroth-order term. The techniques and ideas from [18]
will be used extensively in this article.

In [5], I studied the quantitative unique continuation properties of solutions to more general
elliptic equations of the form

Au+W - -Vu+Vu=2ru in R",

where V and W exhibit pointwise decay at infinity, and A € C. It was shown that if |V (x)| <
(x)™N and |W (x)| < (x)~F for N, P > 0, then the quantitative estimate (2) holds with 8 =
max{l, %, 2 — 2 P}. These results complement those in [3], where analogous qualitative
unique continuation theorems are established in the setting where W = 0 and N € R. By
building on the ideas of Meshkov from [19], the article [5] contains examples which prove
that the estimates are sharp in certain settings, with further examples in [6]. These quantitative
estimates were generalized in [17], where they proved analogous estimates for solutions to
the corresponding equations with variable-coefficient leading terms.

This paper is concerned with proving quantitative unique continuation results for equations
of the form (1), where n = 2, u and V are real-valued, and V exhibits growth at infinity. We
build off of the techniques in [18] to establish quantitative versions of the results from [3] in
the setting where V' is real-valued and growing (denoted by ¢ < 0 in that article). We now
give the precise statement of the main theorem.

Theorem 1.1 For some N >0, a9 > 0, let V : R2 SR satisfy the growth condition
V(@I < aolzl™. 3)
Let u be a real-valued solution to (1) in R? with the properties that
@) =1

and for some cy > 0,
N
u(@)] < exp (colzl' 7).
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On Landis’ Conjecture in the Plane for Potentials with Growth 677

Then there exists constants Co = Co(ao, co, N) > 0and Ry > 0 so that whenever |zg| > Ry,
it holds that N s
(a1 = exp (~Colzol 7 log? [20])

The results of [3] establish qualitative versions of (2) with 8 = % = %(1 + %) under
the assumption (3) in the complex-valued setting. Thus, as in the case of bounded V, this
theorem shows that stronger bounds hold in the real-valued planar setting.

For some 8 > 0, ¢ # 0, let

u(z) = exp (clz?).

A computation shows that Au — Vu = 0, where V (z) := cB2(c|z|P + 1)|z|P~2 satisfies
V) < |z|2A2. By setting 8 = 1 + %, this example shows that the theorem is sharp
whenever N > 0. Based on this example, it seems reasonable to assume that a version of
Theorem 1.1 also holds for potentials that decay at infinity, i.e. for N < 0. To extend the
arguments in this paper to decaying potentials, an iterative argument reminiscent of those
in [4, 5, 17], or [7] may be needed. This approach was attempted in the preparation of this
manuscript, but the exponent “got stuck” above 1 and a resolution to this issue was unclear
at the time. In other words, modifications to the techniques of this paper do not appear to
give such results for decaying potentials. In subsequent articles, we will study both singular
potentials and potentials that exhibit decay at infinity.

To prove Theorem 1.1, we establish the following local result. Note that the Ry > O here
is the same universal constant as in Theorem 1.1.

Theorem 1.2 Let u be a real-valued solution to Au — Vu = 0 in B(0, R) C R2, where V
is real-valued and ||V | p~B0,R)) < a’R? for some 8 > 0,a > 1, R > 0. If R > R,
S e [% g], and there exists M > 0 so that

sup  [u(z)| =e™ sup |u(2)l, )
z€B(0,R-S) z€B(0,R)

then there exists universal C; > 0 so that whenever r € (0, 2%), it holds that

sup  |u(z)l, 5)

r )K(R,M)
z€B(0,R-S)

sp fu(2)| = (%
2€B(0,7) R

where K (R, M) = C; max {aRl“"s«/log R, M + @}.

The proof of this theorem will be presented below in Section 3. As in [18], we reduce the
problem to a question about harmonic functions. Those details are provided in Section 2.
Assuming that Theorem 1.2 holds, we present the proof of Theorem 1.1.

Proof of Theorem 1.1 Fix zog € R? with |zg| > %. Set R = 2|z9| > Rpand S = g. Define

uo(z) =u(zo+z) and Vo(z) = V(zo +2)

so that
Aug + Voup =0 in B(0, R).

Since |20 + z| < 3R for z € B(0, R), then
3 \V 3\N
IVoll (a0, < ao (§R> ~ a (5) RN
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and .
3\ iy
sup |up(z)| <exp|co| = R ™2 |.
2€B(0,R) 2
As
sup |ugl = sup |u|l > |u(0)]| =1,
B(0,R—S) B(z0.1z01)

then Theorem 1.2 is applicable with § = - max{A/ao(%)%, 1}, and M =

7’
co(%)H%RH% Since
1N 3 I+5 14N 1 1+
K(R, M) = Cimax {aR'"2 /logR, ¢ > R+7+ﬁ <c R /logR,
og

where ¢; = Ci[a + (%)H’%co], then

( r >C1R1+Nq/logR

sup |u| = sup |uol = ( sup  [uol
B(z0,r) B(0,r) B(0,R—5)
r\Cc1 RN /logR r\ci RN /logR
= (E> sup |u| > (—) .
B(z0,%)

Setting r = 1 then shows that

1+4 3 1+y 3
sup [u] = exp (—c1 R'* % log? R) = exp (~Colzol"* ¥ log? Jzol) .
B(zo.1)

¥ 3
where Co = ¢;2!172 (%)2. u]

The remainder of the article is organized as follows. In Section 2, we present and prove
a unique continuation theorem for harmonic functions in punctured domains. As in [18],
this result for harmonic functions is essential to the proof of Theorem 1.2. We describe this
reduction in Section 3, and explain how it implies the proof of Theorem 1.2. We use ¢, C to
denote constants that may change from line to line, while constants with subscripts are fixed.
Unless stated otherwise, all constants are universal.

2 Decay Properties of Harmonic Functions in Punctured Domains

In this section, we present and prove quantitative unique continuation results (in the form
of three-ball inequalities) for harmonic functions in punctured domains. The next section
shows how these results lead to the proof of Theorem 1.2. We begin with an application of
the Harnack inequality.

Lemma 2.1 Let {D;} be a finite collection of 100-separated unit disks in the plane. Assume
that h is real-valued and harmonic in R* \ UD; and that for each j, h does not change sign
in5D; \ Dj. There exists an absolute constant Cy > 10 for which

1. max |h| < Cy min |h|.
83D; 83D;

J J
2. max |Vh| < Cy min |A|.
83D; 83D;
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On Landis’ Conjecture in the Plane for Potentials with Growth 679

Proof An application of the Harnack inequality shows that there exists Cy > 0 so that for
every j

max |h| < sup |h| <Cpgx inf |h| <Cpg min |h|.
83D; 4D;\2D; 4D;\2D; 83D;

For each z € 83D, since h does not change signs in B(z, 2), an application of Cauchy’s
inequality as in [12, Lemma 1.11] shows that

IVh(z)| < |h(2)]

and the conclusion follows. ]

We now state and prove the main result of this section. The following is a slight modifi-
cation of the result [18, Theorem 5.3].

Proposition 2.2 Let {D|} be a finite collection of 100-separated unit disks in the plane for
which O ¢ U3D;. For some R > 210 Jet h be a harmonic function in B(0, R) \ UD; with
the property that for each j, h does not change sign in (5D \ D;) N B(0, R). Assume that
for S € [%, %] and for some M > (0, it holds that

sup h@|=e™  sup  |h). (©6)
zEB(O,R—_%)\LBDj 2€B(0,R\U3D;

Then for every r € (0, 2%), we have

167\ KR
sup  |h(z)| = <?> sup |h(2)], @)
2€BO.N\U3D; 2eB(0.R—$)\U3D;

where K(R, M) = max{6CyR,CoM}, Cy > 10 is from Lemma 2.1, and C, > 0 is
universal.

Remark 2.3 Since this statement, Proposition 2.2, appears to be very similar to [18, Theo-
rem 5.3], we point out the main differences:

1. The domain on the left-hand side of (6) depends on § and is therefore variable.

2. The domain on the right-hand side of (7) matches that on the left-hand side of (6),
while in [18, Theorem 5.3], the domain on the right-hand side of (7) matches that on the
right-hand side of (6).

3. The power K (R, M) here is given as a maximum of two values instead of a sum as in
[18, Theorem 5.3].

4. There are differences in the assumed bounds on R and r and therefore constants are
different.

Proof We may assume without loss of generality that

sup lh(2)| = 1.
zeB(0.R—$)\U3D;

Setk = max{2CyR, %M }, where C, will be specified below. For the sake of contradiction,

assume that

16r\*

sup h@ <\—) - ®)
2€B(0,)\U3D; R
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680 B. Davey

Define the punctured annular region

Q::{%<IZI<R—1}\U3Dj

and the function
hy —ih,y
f@) = T —
z

Observe that f is analytic in 2 and | f(2)| = IVh(z)||z| 5. We'll analyze the behavior of
f over Q. We begin with bounding / and V& over the innermost and outermost parts of the
boundary of 2 (Figs. 1 and 2).

Let W be the connected component of 9<2 that intersects the inner circle {|z| = 5}. If
z € Wy, then there are three cases to consider:

(b) |z| = 5 and there exists j for whichz € 4D; \ 3D;.
(¢) |z] = 5 and zN 4D is empty for all j.

Case (a): There exists j for which z € 93D; and 3D; N {|z| = 5} is non-empty. An
application of Lemma 2.1 combined with the fact that 93D; N B(0, r) is non-empty shows
that

. 16r 3k

[h(D)], [Vh(z)| < Cpmin || <Cyxg  sup |[A|<Cyx|—] ,
a3D; B(0,)\U3D; R
where the last inequality follows from (8).
Case (b): Since & does not change signs in B(z, 1), then an application of [12, Lemma 1.11]
shows that
16\ *
IVh()| =2lh()| =2  sup |h| =2(— ) ,
B(0,r)\U3D; R

where the second inequality uses that z ¢ U3D; and we have again applied (8).
Case (¢): Let d = min{l, %} and observe that B(z,d) C B(0,r) \ U3D;, so an application
of Cauchy’s inequality, [12, Lemma 1.10], shows that

2 2 2 (16r\*
IVh(z)| < = sup |h| <=  sup |h| < - (7;’) )
d B(z.a) d B.r\U3D; d

Fig. 1 Possible images of W; with cases (a), (b) and (c) illustrated by the points z4, z5, and z., respectively
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On Landis’ Conjecture in the Plane for Potentials with Growth 681

Fig.2 A possible image of W, with case (a) illustrated by the points z4; and z4,, and case (b) illustrated by
<b

_ 2 [16r\* ter\* 32 1 1
Ifd =1,sincek > 1,then— | — )] =2 — ) < — < — < —. On the other hand,
d\ R R R 25 2

2 /16r\* 4 /16)\* 64 f16h\D 1 1
ifd=12then=(—) =2(—2) =2 (X)) <= <-.
d R r R R \R 2472

Since k = 2CyR > 2''Cy, then 2'% > max{Cp,2} = Cp and (%)* < 271% <

m. Therefore, by combining all three cases, we see that

16r\*

sup |hl, sup|VA| < | — ] . ©

W W R

Let W, be the connected component of 92 that intersects the outer circle {|z| = R — 1}

and note that Wo € B(0,R — 1) \ B(0, R — 7). Now if z € W, there are two cases to
consider:

(a) there exists j for which z € 4D;.
(b) |zl =R —1and zN4D; is empty for all j.

Case (a): Since i does not change sign in B(z, 1), then an application of [12, Lemma 1.10]
shows that
IVh()| <2/h(x)| <2 sup |k <2eM,
B(0,R)\U3D;
where we have applied (6).
Case (b): Since B(z, 1) C B(0, R) \ U3Dj, then

IVi(z)| <2 sup |h| <2  sup  |h| <2eM.
Bz, 1) B(0.R)\U3D;

By combining both cases, we see that

sup |h] < eM, sup|Vh| < 2eM. (10
Wy Ws
Now we’ll use these estimates on / to understand the behavior of the function f = iy ;k' By,

Define the set 2; C 2 as

r S

Using containment, assumption (8), and our rescaling, we see that

7\ 3k
sup lh| < sup |h| < (—) <1= sup |h).
B(0,5)\U3D, B(0,r)\U3D; R B(0.8-§)\U3D,
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682 B. Davey

Therefore, there exists zg € 21 for which |h(z9)| = 1. By (9), we have
16r\* 1
suplh| < (— ) <3,
W, R 2
so there exists z; € Wy for which |h(z1)] = @ < % Let I" be a path in Q2 from zq to z; for

which ¢(I") < 4R. If we assume that |[VA(z)| < 8LR for all z € ", then

! < |h(z1) — h(zo)| = V Vh(w) - dw
2 r

1 1
< Vh d —(T) < =,
_/rl (W)l w|<8R <3
which is impossible so it follows that

1
sup |Vh| > sup |Vh| > —.
Q Q 8R

Therefore,

[fl = Ifl = V|| R AN > ! R S\
su Su su _ —_— —_ — .
e ) “ 3R £

An application of (9) shows that

2\ e\ Nk 0Nt
max |f| <max |Vh[| -] <|— =) =(=) R*<27*R7F,
Wi 114} r R r R

where we have used that § > 210 Since k > 2C R > 20R, then 27k < ﬁ. In particular,
by combining the previous two inequalities, we deduce that

Fe (k2" sy
max < — - — su .
W, 8R ) =%P

Similarly, an application of (10) shows that

R—3\" s\ 7*
max | f| <max |VA[(R -7 F <2 | —22) (R- =) .
Ws Wo R

-1 32
Now
R—3\*
32
— kl M + log(16R). 11
R—7) <8R <= 0g<R_3S2>> + log( ) (11)

| R—7> | (1—7-R1>>l (1—7-R1)
og v | =log| ——F— | zlog| ———
R—3 I — 5% 1= 135
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On Landis’ Conjecture in the Plane for Potentials with Growth 683

while k > 2Cy R > 20R implies that

2 S

k R—-7 _10
—log > 27""10R > log(16R),
R-—35

since R > 210 1f we choose C) = g, then (11) holds. Thus, we see that
max < su .
ha [f] Qp [f]

Since f is aholomorphic function in €2, then the maximum principle guarantees that supg, | f|
= sup,q | f|. As shown above, the maximum does not occur on W or W5, so there must
existadisk 3D; C {% < |z] < R — 1} for which supq, | f| = SUPy3p; [ fl.

Considering only the disks D; for which 3D; C {% < |zl < R - 1}, define z; € 93D;
to be the point that is closest to the origin, i.e. has the smallest modulus. Then set m; =
miny3p; |A|. Define jo to be the index for which

mj0|zj0|_k:mjaxmj|zj|_k (12)
and let j; be the index for which

sup | f| = sup [f].
Q 3D,

For any z € €2, an application of Lemma 2.1 shows that

IVA@|lzI ™ < 1z 17* Sup IVh(2)| < Cymjylzj,| ™" < Camjylzjol ™%, (13)
9 J1

so we see that

k
Z
sup |Vh(z)| < Cgmj, (L> )
72€Q |Zjo|

Since supg, |[Vh| > # and z € Q is arbitrary,

Lo (2 k<c 2R\
sr = "R \Tgl) TR

1 ro\k
h(zi)| > ->7<—). 14
|(Z/‘))l—m“—sc,,,ie 2R (14)

Define s = inf{r < 1:1tz;, € Qforallt € (r, 1)} so that the straight line path defined by
y(t) =tzj, fors <t < lis contained in 2 while sz;, € 9. In particular, we may integrate
Vh along y to get

and then

1
h(zjy) — h(szj) = / Vh(z) -dz = / Vh(tzj,) - zj,dt.
y s
Applications of (13) and (14) show that
1 1
|h(SZj0)| > |h(Zj0)| - / Vh(ZZjO) ~Zj0dt / CHmjotkdt
A N

m'CHR CHR m;,

= |h(zjo)| = 1zl
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684 B. Davey

where the last inequality uses that k + 1 > 2CgxR. Since k > 2Cy R, then 2k >~ 16Cx R
and it follows that

R\K
(7) > 2% > 16y R - 2%
P
Combining (15) with (14) shows that
m; 1 ro\k rk ek 16\ H
= = i ) = () G = ()
el > 5" = teear \2r) 72 &) 3z R
By comparing this bound with (9), we conclude that sz, ¢ Wi so it must hold that sz, €

03D, for some 3D, C {% < |z] < R — 1}. Then Lemma 2.1, that |z,| < |szj,|, and (15)
show that

—k

—k —k
|SZj0| > 7mj0|zjo| . (16)

SUPa3p;, | | s
2Cy

—k
Zpl " =
CH J2

—k |h(szjo)l
mi, |z, " >

a2lZpl =

Cy

Since zj, € 33D, and sz, € 33D, where jo # j2, and the balls { D} are of unit radius and
100-separated, then |z, — szj,| > 96. After rearrangement, we see that sTk> (- 976)’]‘ .
Since 10 < Cy, 2CHR < k,and % < —log(1 — %), then

96 96
log(2Cy) <96 -2Cy < ?k < —klog <1 — ;) < —klogs,

from which it follows that s ¥ > 2Cp. We then conclude from (16) that m plz jzl’k >
mjylz j0|_k which contradicts (12) and gives the desired contradiction. In other words, (8)
fails to hold and we see that

16 3k 16 3k
sup |h(z)|>(—r> =(7r) sup h()],

. R !
z2€B(0,r)\U3D; zeB(O,R—%)\U3Dj

which implies (7) by our choice of k. O

3 The Proof of Theorem 1.2

In this section, we show how Theorem 1.2 follows from Proposition 2.2. This reduction is
very similar to that described in [18] with rescaling changes to account for the size of V.
Letu : B(0, R) C R? — R be a solution to

Au—Vu=0 in B(0, R),
where for somea > 1,6 > 0,
IVl B0.r) < a’R*.
Let Fy denote the nodal set of u, i.e.
Fo={zeR?:u(z) =0}
Define zg € B(0, R — S) to satisfy

lu(zo)| = sup |ul. a7
B(O,R-S)
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On Landis’ Conjecture in the Plane for Potentials with Growth 685

For p > 0 to be specified below and c; a universal constant, there exists a set /1 C B(0, R)
which consists of a collection of ¢, p-separated closed disks of radius p which are also c; p-
separated from 0, zg, Fo, and d B(0, R). Moreover, the set Fo U F1 UdB(0, R) is a 10c¢ p-net
in B(0, R). A more detailed description of this process is given in [18, §2, ActI].

Define @ = B(0, R) \ (Fp U F1) and 21 = B(0, R) \ Fi. As shown in [18, §3.1], there
exists a constant cp (depending on c¢;) so that 2 has Poincare constant bounded above by
cpp?. In particular, since cP,o2||V||Loc(B(0,R)) < cpp2a’R*¥, then by choosing p < 1, we
can apply [18, Lemma 3.2]. For ¢ <« 1 to be defined later on, let

p=¢ea 'R7S. (18)

An application of the arguments in [18, §3.2] then shows that there exists ¢ : 2 — R with
the properties that

Ap —Vep=0 inQ
9 —1e W, (Q
g — oo < ch(paR®)* = cpe?, (19)

where ¢}, is a universal constant depending on ¢ p, and we have used (18). By extending ¢ to
equal 1 across Fp U Fy, it is then shown in [18, Lemma 4.1] that f := % € Wli)'cz(B(O, R))
is a weak solution to the divergence-form equation

div(’Vf) =0 inQ.

We then introduce the Beltrami coefficient w, defined as follows:

s e e
o { Lo L0 in Q) when Vf #0,
otherwise.
Since |u| < &2, then as shown in [1], there exists a K -quasiconformal homeomorphism of the
com lex plane where K < 14-Cg &2, where Cg depends on ¢p. That is, there exists some w €
Wloc which satisfies the Beltrami equation %’i’ =plv 5~ - In fact, an application of the Riemann
uniformization theorem shows that there exists a K-quasiconformal homeomorphism g of
B(0, R) onto itself with g(0) = 0. Moreover, the function 4 := f o g~! is harmonic in
2(Q).
Mori’s Theorem implies that

e

1|z —nlf _ls@) —g@)l _ 1 ju—-n
16 R - R ~ 16 R
Thus, if we set
= (20)
J1og R
2
for some ¢, > 0, then K € [1, 1+ ﬁ)’g]g] and R ~ RK ~ R¥%. By appropriately choosing

our (universal) constants ¢, and c, it can be shown that 4 is harmonic in B(0, R) \ UD;,
where each D; is a disk of radius 32p. Moreover, the disks are 3200p-separated from each
other, 0, and g(zo), while & does not change sign in any of the annuli 100D; \ D;.

Since g : B(0, R) — B(0, R), then we may rescale the map to get

- g R
= —:B(0,R B0, —
§1= 5, POR = ( 32p)
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686 B. Davey

which is onto with g(0) = 0. Using (18) and (20), set

R R
= —RH‘S\/logR = CgaRH‘S\/logR

32p 32

R= = — i ——
\/75’ “IR=8  32¢,

where we introduce C3 = ﬁ From here, we see that h = fo g—l
e

is harmonic in g(21).
In particular, h is harmonic in B(0, ﬁ) \ uD; j» where now the D; j are unit disks that are

100-separated from each other, from 0, and from £(zo). Moreover, h doesn’t change signs
on any annuli 5D; i\ D
Forr <« 1, since g(B(O, r)) contains a disk of radius rg, where

R /r\K R /r\2
nzye(7) =16 (%)
16 16 \R

then g(B(0,r)) D B(0,F), where 7 = 32 so that

167 - (r )2 21
R ~\R/ "~
Since g(0) = 0, then for r < 1, it holds that B(0, 7) \ U3l~)j = B(0, 7) and then
sup |kl = sup |A| < sup [foZ '|= sup |f]. (22)
B(0,/)\U3D; B(0,7) 3(B(0.r)) B(0,r)

Since u = ¢ f, then the bound on ¢ from (19) implies that
(1 =) f(@] < u@)] < (1 + cped)| f Q). (23)
As 70 is as given by (17), then for any z; € B(0, R — S), it follows that
lu(zn)| < luzo)l < (1 + cpe?)| f z0)]-

Since zo € B(0, R — §) N €, then the distortion estimate and the separation of g(zo) from
U35J- implies that g(zg) € B(O, R-— %) \U 35j, where we introduce

~ S
S:= — = C3aSR’/logR.

32p

Combining these observations shows that,

Tro s lul <IfGol=lhog(kol = sup | (24)
+ b2 BO.R-5) 3(0’137%%%5/
Moreover, ~ ~
sup |kl < sup |hl= sup |fog”'|= sup |fI]. (25)
B(0,R)\U3D; B(0,R) §(B(0.R)) B(0,R)

Subsequent applications of (24), the assumption (4) from Theorem 1.2, (23), and (25) then
show that

M
>——— sup |ul>=——e sup |ul
14 cpe? po.r-5) 1+ cpe? B(O,R)

1 — cpe? — (ML ~
> . 2e_M sup |f|>e ( +‘°5R) sup |h|,
L+ cpe B(O,R) B(0,R)\U3D;
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where ¢; depends on ¢ and ce as in (20).

Set Ry = max{2!%, exp(C5 )} Since a > 1, then R > Ry implies that C3aR5m >
aR® > 1and R > 2'° sothat R = RC3aR‘S«/10gR > 210 aswell. AsSR™! = SR~ then
the hypotheses of Proposition 2.2 hold with &, {D;}, r, R, S, and M replaced by h, {D] I
R,S,M: =M+ Jﬁ’ respectively.

Applications of (23), (22), the conclusion (7) from Proposition 2.2, (21), and (24) show
that

_ 167\ K(R.01) 3
Tz s lul= sup |fl= sup || = (T) sup |A]
— ChE” B(0,r) B(0.r) B(0,/»\U3D; 3(0’5_3%)\%5_7.

1 r\K(R.M)
>z — (f) sup |ul,
1 —+ ChH€ R B(0,R—S)

where we have introduced

K(R, M) = 2K (R, M) = 2max {6Cy R, C, M
— max {12ch3aR1+5,/1og R.2C» (M ca )}
log R
‘d

. —_ 2 —_ S
Since ! e > ¢ TR ande < 4 < (210)5 < (R) 3 then with universal C| and

1+cpe? —
1
K(R, M) := C) max {aRH‘S\/log R, <M + —)}

log R

we deduce that

N\ K(RM)
sup Jul = (%) sup Jul
B(0,r) R B(O,R—5)

and the conclusion described by (5) has been shown.
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