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Abstract—Accurate detection and estimation of precipitation
using satellite sensors is a challenging problem due to the
limitations on spatio-temporal sampling of the measurements,
as well as those of the parametric retrieval algorithms. In
this research, we propose a machine learning framework for
precipitation retrieval using observations from the Advanced
Baseline Imager (ABI) and Geostationary Lightning Mapper
(GLM) on GOES-R satellite series. In particular, a hybrid
convolutional neural network (CNN) model is designed for
precipitation detection and estimation using ABI multi-channel
cloud-top brightness temperatures and the GLM lightning flash
rate. The precipitation estimates from a ground-based multi-
radar multi-sensor (MRMS) system are used as target labels
in the training phase. Experimental results showed that the
proposed framework has better performance comparing to the
available operational precipitation products.

I. INTRODUCTION

Machine learning (ML) has been used for precipitation
retrievals based on satellite data over two decades. Typical
examples include the Precipitation Estimation from remotely
Sensed information using Artificial Neural Networks (PER-
SIANN) products [1]. However, almost all the ML-based pre-
cipitation retrieval algorithms previously developed were using
shallow artificial neural networks [1]-[3]. In recent years, deep
learning is emerging as a powerful tool for feature extraction
and pattern recognition. As such, this research focuses on
designing deep learning models for accurate precipitation
detection and estimation using Geostationary Operational En-
vironmental Satellites (GOES) data.
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Fig. 1: Study domain (red rectangular) in the southeast United
States.

Aboard the GOES-R satellite series, the Advanced Baseline
Imager (ABI) has 16 spectral bands [4]. The spectral bands
sensitive to water vapor are specifically used for this problem,
including the brightness temperatures (BTs) from bands 8, 10,
11, 14, and 15, as well as brightness temperatures differences
(BTDs) between band 10 and 8, band 11 and 10, band 14
and 10, band 11 and 14, and band 14 and 15. In addition, the
hourly flash rates calculated from the Geostationary Lightning
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Mapper (GLM) data by counting the hourly flashes is also
utilized. Thus, 11 features are applied to the deep learning
models. In the following, the deep learning model structure
and experimental results in a region over southeast U.S.
(rectangular area in Fig. 1) are detailed.
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Fig. 2: The deep learning framework for satellite retrievals of
precipitation. k, n, s, and p represent kernel size, number of
feature maps, stride size and pooling size, respectively. The
final rainfall rates are determined by fusing detection results
from CNN-1 and estimated rainfall rates from CNN-2.

II. METHODOLOGY

In the pre-processing, the 11 features are partitioned into
11 x 29 x 29 patches with stride size 1. The detection and es-
timation labels are devised based on the precipitation estimates
from a ground-based MRMS system [5]. In particular, MRMS
estimates at the center of the partitioned patches are used as
targets during the training. Both the satellite data and MRMS
estimates are aggregated to hourly scales in training the deep
learning model. Fig. 2 details the deep learning framework,
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including a detection CNN module (CNN-1) and an estimation
CNN module (CNN-2) both of which can capture spatial
and temporal features of precipitation from the muti-channel
satellite observations. In the detection model (CNN-1), the
cross entropy loss is calculated in the training, whereas the
mean absolute error (MAE) loss is used in the estimation
model (CNN-2). Both CNNs use ReLU as activation function
at each neuron, and the learning rate is set as le-5. In the
testing phase, the test data (i.e., features) were pre-processed
into 11 x 29 x 29 patches similar to the training data and
then applied to trained CNN models. The final precipitation
retrievals can easily be derived by combining the results from
the two models. Specifically, if precipitation is detected by
CNN-1 in a patch, then the rainfall rate at the center location
of this patch will be the estimate at the center location from
CNN-2. Otherwise, the rainfall rate is 0 mm/h.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The data from May to September in 2019 are used for
training the designed deep learning model and the data from
May to September in 2020 are used for independent testing.
The precipitation detection performance of the deep learning
model and the operational GOES-16 product is evaluated in
terms of Heidke skill score (HSS), critical success index (CSI),
probability of detection (POD), and false alarm rate (FAR),
and the results are presented in Table I. The impact of the
GLM data on the detection performance is also illustrated in
Table I. It can be observed that the precipitation detection was
improved with GLM data based on the higher HSS, CSI, and
POD.

Figure 3 shows an example of the deep learning-based
precipitation estimates for the test date of May 19, 2020. The
ground reference and the operational GOES-16 product are
also shown in Fig. 3. Overall, it can be seen that the deep
learning -based approach outperformed the operational prod-
ucts in terms of both precipitation detection and estimation.
These results reveal the potential of deep learning models for
satellite remote sensing and precipitation estimation. Future
work will focus on larger scale demonstration of the proposed
model, especially the generalized application over regions such
as mountains and oceans where ground-based radars are not
available or reliable.

TABLE I: Precipitation Detection Test Results.

Metrics CNN w/ GLM  CNN w/o GLM  GOES-16 RRQPE
Test Acc. 90.39% 86.62% 49.44%
HSS 0.73 0.73 0.18
CSI 0.88 0.79 0.35
POD 0.94 0.90 0.35
FAR 0.04 0.08 0.03
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Fig. 3: Daily precipitation retrieval results on May 19, 2020:
(a) retrievals from the design CNN model; (b) ground-based
MRMS product; (c) operational GOES-16 product.
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