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Abstract—The task of nowcasting by deep learning using
multivariate, rather than just reflectivity, is limited by poor
interpretability. The previous experiment designed MCT (Mul-
tivariate Channel Transformer), a deep learning model capable
of nowcasting with dual-polarization radar data. Four analytical
methods are designed to further explore the contribution of po-
larization parameters: (i) Case studies of different meteorological
processes. (ii) A permutation test ranking the significance of
each variable. (iii) Visualization of the feature maps obtained
by forward propagation of the input data. (iv) Data downscaling
of polarimetric radar data. The results show that the polarization
parameters serve as a guide to predict the location and shape
of strong reflectivity, as well as the energy retention of strong
echoes at 40-50 dBZ. The contributions of Zdr and Kdp are more
evident in the prediction results after 30 min, and the importance
of Kdp exceeds that of Zdr in case of strong convective weather.

Index Terms—polarization parameter, nowcasting, permuta-
tion test, feature map, data downscaling.

I. INTRODUCTION

The use of deep learning as a method for nowcasting is
gaining traction [1] [2] [3], yet the end-to-end opacity of
deep learning itself limits its reliability. Dual polarimetric
radar has been widely used in meteorological tasks such
as quantitative precipitation estimation and water condensate
phase identification [4] [5] [6], however, its application in
nowcasting tasks is not yet common. Therefore, the analysis
of the physical impact of the polarization parameters in the
task of nowcasting through dual-polarization radar data and
the deep learning approach to nowcasting not only verify the
contribution of the dual polarization parameters to nowcasting
but also enhance the interpretability of the deep learning to
accomplish the meteorological task.

The purpose of this paper is to further explore the con-
tribution of the input polarization variables toward the model
performance, unlocking the black box and empowering models
with interpretability. The remainder of this article is organized
as follows.

Section II examines two meteorological processes, and
analyzes the impact of polarization parameters under deep
learning. Section III ranks the contributions of the polarization
parameters at different prediction moments by conducting the
Breiman permutation tests for 20 cases. Section IV visualizes
the feature maps during forward propagation to exhibit the

feature extraction process of different parts of the network with
or without the introduction of dual-polarization parameters. In
section V, Z, Zdr, Kdp are downscaled to two-dimensional
space by the t-SNE method using 4096 cases to present the
relationship between the variables. Conclusion is presented in
Section VI.

II. CASES STUDY

In this section, the polarization parameter channels in the
original MCT-3 are removed and retrained to obtain the
MCT-R model. With different characteristics of meteorological
processes (movement and increase of strong convection) [7],
representative cases are analyzed and the laws are obtained
analytically.

A. Strong echos movement

Fig. 1. Prediction and observation of case A in KMLB area where T is 0000
UTC on 16 Feb 2021.

First, the squall line is used as an example to demonstrate
the characteristics of the movement of strong convection.
Such echoes are characterized by a predominantly moving
energy concentration of 40-50 dBZ (see Fig. 1), with no
significant growth or dissipation trend occurring. Observing
the forecasting, the introduction of the polarization parameter
enables MCT-3 to predict high reflectivity more accurately, as
seen in the retention for the stronger energy fraction (more
than 40 dBZ). The challenge of maintaining strong echoes
as the prediction time increases is often encountered in deep
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learning, which is mitigated by the polarization parameter in
this case.

B. Strong echos growth

Fig. 2. Prediction and observation of case B in KMLB area where T is 1517
UTC on 11 April 2021.

Next, a case of strong convective growth is analyzed. In
the case shown in Fig. 2, the intensity peaks up to 55 dBZ
and tends to increase. MCT-R predicts almost nothing in the
range of true values greater than 35 dBZ, but MCT-3 covers it
more accurately and the shape of MCT-3 predictions for strong
echoes (35-45 dBZ) is generally much closer. It is worth noting
that neither model predicts new strong cloud masses, which
is a difficulty in deep learning graph-to-graph prediction, but
MCT-3 is closer to the true value for 35-45 dBZ.

Combined with the analysis of the two precipitation types
in Section II, the following conclusions can be drawn:

The polarization parameter has a positive contribution in
predicting the intensity of the reflectivity factor and maintain-
ing high energy (40-50 dBZ) and forecasting the location of
the echoes.

III. PERMUTATION TEST

The basic idea of the Permutation Test (PT) is that the input
variable xi is reordered to obtain the control result Y

′
, which is

compared with the predicted result Y before the permutation
to obtain the difference ∆Y . A larger ∆Y reflects a more
dominant xi. This scheme allows more flexibility to examine
the contribution of individual variables without retraining (see
Section II). In this work, two permutation tests are conducted
to assess the impact of each variable using CSI (threshold=35
dBZ) as a measure, with 20 cases selected.

Breiman’s approach is to disrupt the different variable chan-
nels separately to different samples and rank them according
to the degradation of the model performance to validate the
factor pair forecasting results [8]. Scrutinizing the performance
ranking after permutation in Fig. 3, it is par of the course
that taking away the reflectivity causes the sharpest decrease
in model prediction performance since Z is the output itself.
The second-ranking of performance loss at all four prediction
moments is Kdp, indicating that it is of greater importance

Fig. 3. Breiman’s approach in four display moments. The length of the bar
represents the forecast performance of the model after removing each variable
separately, and the variables are ranked according to their performance loss.

than Zdr, which is in third place. Additionally, it can be seen
that the contribution of Kdp/Zdr manifests itself more in the
results of the 30 min-60 min prediction duration because the
metrics of the first 30 min show that the loss of CSI with Kdp

and Zdr removed is minor and almost close to the results
without permutation.

To summarize, the understanding of the contribution of the
polarization parameters through the permutation test in this
paper is as follows:

(1). The contribution of Kdp is higher than that of Zdr.
(2). The effect of polarization covariance is more significant

at the forecast duration of the latter 30 min.

IV. FEATURE MAP VISUALIZATION

The feature map presents how much the neural unit is
activated during forward propagation [9]. MCT belongs to
multi-scale coding and decoding neural network, and different
scales of network extract information with different focus.
Comparing the feature maps of multiple depths, the learning
process of the neural network could be intuited.

Using the MCT model as the object of study, a strong
convective forecast process on February 13, 2021 is analyzed,
and Fig. 4 visualizes the characteristic maps at different scales,
and the conclusions that can be drawn from the observations:

(1). Comparing the shallow and deep semantics (down1/4,
up 2/3/4), the focus of each layer is different, but the more
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Fig. 4. Visualization results of feature maps at different semantic scales of the Feb. 13, 2021 case. It includes the encoder parts (Down), decoder parts (Up)
and Channel Transformer parts (Reconstruct).

Fig. 5. Comparison of feature maps of MCT-3/R in Channel Transformer
reconstruction layer 1 of the Feb. 13, 2021 case.

shallow the information, the more details it is (down1, up2),
while the deeper the information the more abstract and im-
portant it is. (2). Comparing the encoder-decoder information
(down/up), the encoder-decoder focus is not exactly the same.
The encoder extracts features that are still closer to the storm
shape, while the decoder extracts to more abstract features.
(3). Focusing on the semantic information generated by the
Transformer, the focus generated at different semantic layers
is different, but all are more abstract and important (reconstruct
1/4). The semantic information generated by the attention
mechanism in the same layer (reconstruct 4, up/down 4) is
different from the output of the encoder, indicating that the

attention mechanism in the Transformer plays a better role in
providing more information.

Fig. 5 shows a comparison of the feature maps of the re-
constructed layer of the attention mechanism with and without
the polarization parameter to observe their contribution. From
this, the semantic information extracted by each layer is not
equivalent and the MCT-R sometimes suffers from invalid
features such as random distribution, which also demonstrates
that the presence of polarization parameters may enrich the
data information and enhance the ability of the model to
extract abstract information.

V. DATA DOWNSCALING VISUALIZATION

When the three physical variables are characterized in terms
of space, the strength of correlation of physical locations
can be well represented; however, such a representation is
more redundant if the characterization between data is de-
sired. Therefore, this paper considers mapping the samples
characterized by complex high-dimensional features (spatial
dimensionality, H × W) to a low-dimensional, more easily
understood space. In this way the distance and aggregation
between samples provides a visual representation of the sim-
ilarity between samples.

Therefore, this paper attempts to implement data dimen-
sionality reduction using t-Distributed Stochastic Neighbor
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Fig. 6. t-SNE visualization results. (a) t-SNE with 2048 perplexity. (b) t-
SNE with 4000 perplexity. The more p is, the global perspective the method
presents. 0 (green) represents the horizontal reflectivity Zh, 1 (blue) represents
the differential reflectivity Zdr , and 2 (gray) represents the differential phase
shift Kdp.

Embedding (t-SNE) [10]. The t-SNE can keep an eye on the
overall characteristics as well as the local details, distributing
similar samples at closer distances in a lower dimensional,
easily human-observable space, while pulling apart clusters
with t-distribution. This algorithm contains the parameter
perplexity p. p characterizes the consideration of the number
of surrounding samples when calculating the similarity of two
samples in the original space, which needs to be smaller than
the number of samples. the larger p is, the more macroscopic
the perspective considered by the algorithm. In this subsection,
4092 samples in the test set are taken for visualization, the
dimension of former space is 256*256 and the dimension of
latter space is 2. In Fig. 6, 0 (green) represents the horizontal
reflectivity Zh, 1 (blue) represents the differential reflectivity
Zdr, and 2 (gray) represents the differential phase shift Kdp. It
can be seen that the distribution of (a) and (b) are similar, both
forming three concentric circles, with the sample of Zh in the
outermost layer, then Zdr, and finally Kdp. As p increases, the
samples considered by t-SNE are more comprehensive, and the
distance between Zh and the polarization parameter Zdr/Kdp

is farther, indicating that the difference in features is greater.
Also, the distance between Kdp and Zh is greater than the
distance between Zdr and Zh, indicating that the “Kdp-Zh”
mutual information is smaller, which is conducive to the model
to get more angles and more comprehensive information, and
also verifies the previous conclusion that the contribution of
Kdp is higher.

VI. CONCLUSION

In this paper, four methods are designed to analyze dual
polarization based on a deep learning nowcasting model MCT
that incorporates attention mechanisms and dual polarization
radar data, using selected precipitation data from the KMLB
WSR88D. The focus of the study is to explore the physical
significance of the dual polarization and its contribution to
nowcasting through deep learning approaches. The main find-
ings are summarized as follows:

(i). The polarization parameter contributes to the prediction
of strong convection, the retention of energy in high intensity
echoes, and the position determination.

(ii). The dual polarization data does provide additional
information to assist the model and the contribution of Kdp

is higher than that of Zdr in the deep learning method like
MCT.

(iii). In the experiment with 60 min forecast duration, the
contribution of polarization data is more prominent at longer
forecast durations.
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