
Correcting a substring edit error of bounded length
Yuanyuan Tang→, Sarvin Motamen→, Hao Lou→, Kallie Whritenour§,

Shuche Wang†, Ryan Gabrys‡, and Farzad Farnoud→§

→Electrical & Computer Engineering, §Computer Science, University of Virginia, U.S.A.,
{yt5tz,awz4up,hl2nu,kw5km,farzad}@virginia.edu

†Institute of Operations Research and Analytics, National University of Singapore, shuche.wang@u.nus.edu
‡Calit2, University of California-San Diego, U.S.A., rgabrys@ucsd.edu

Abstract—Localized errors, which occur in windows with
bounded lengths, are common in a range of applications. Such
errors can be modeled as k-substring edits, which replace one
substring with another string, both with lengths upper bounded
by k. This generalizes errors such as localized deletions or
burst substitutions studied in the literature. In this paper, we
show through statistical analysis of real data that substring edits
better describe differences between related documents compared
to independent edits, and thus commonly arise in problems
related to data synchronization. We also show that for the
dataset under study, assuming codes exist that can achieve the
Gilbert-Varshamov bound, substring-edit-correcting codes can
synchronize two documents with much lower overhead compared
to general indel/substitution-correcting codes. Furthermore, given
a constant k, we construct binary codes of length n for correcting
a k-substring edit with redundancy of roughly 2 log n, compared
to 8 log n, the lowest redundancy achievable by an existing code
for this problem. The time complexities of both encoding and
decoding are polynomial with respect to n.

I. INTRODUCTION

Localized errors are errors that cluster in windows with
lengths much shorter than the whole sequence and are ob-
served in various applications such as wireless communication,
disk data storage, DNA storage, and document synchroniza-
tion. The problem of burst or localized errors has been
studied by several works [1]–[10]. More specifically, codes for
correcting a burst of at most k substitutions were proposed
in [1], [3]. Codes capable of correcting a burst of exactly
k deletions were studied by [4]–[6], including [4], [5] over
binary sequences and [6] over q-ary sequences. Furthermore,
[5], [7], [10], [11] focused on correcting a burst of at most k
deletions (or k insertions) while the works in [8], [9] studied
localized deletions occurring in a window with bounded length
k. The current paper focuses on correcting a k-substring edit

error, which replaces one substring with another string at
the same position, both with lengths bounded by k. Note
that burst deletions, burst insertions, burst substitutions, and
deletions/insertions occurring in a bounded window can all be
considered as substring edits with a bounded length.

Unlike prior works that assume the prevalence of burst
errors, we first present an experimental analysis to statistically
evaluate this hypothesis. Based on two datasets, two versions

This work was supported in part by NSF grants under grant nos. CCF-
1816409, CAREER-2144974, and CCF-2212437.

of the source code of the bash shell and the DNA sequencing
data exposed to errors, statistical tests provide strong evi-
dence against the null hypothesis, namely that errors/edits are
distributed uniformly in the sequences. Moreover, we study
the suitability of substring-edit-correcting codes for error-
correction and data synchronization. For each data sequence
and its edited version, the experiment shows that substring-
edit-correcting codes achieve lower redundancy than general
indel/substitution-correcting codes.

Our problem is related to the problem of deletion-correcting
codes and burst-deletion-correcting codes. However, as we
will show in Lemma 1, a code that can correct a burst of
at most ω deletions (or one that can correct a burst of at most
ω insertions) cannot necessarily correct a k-substring edit, even
if ω is much larger than k. On the other hand, a k-substring
edit can be corrected by a code that can correct 2 bursts
of at most k deletions and a code that can correct at most
2k deletions. These observations lead to the conclusion that
existing codes for correcting multiple deletions [12], [13] or
multiple bursts of deletions [14] can correct a k-substring edit
with redundancy at least 8k log n [13]. The goal of the current
work is to construct codes that can correct a k-substring edit
with redundancy roughly 2 log n.

While codes for correcting a burst of at most k deletions
cannot correct a k-substring edits, the idea of first identifying
an approximate location for the error presented in Lenz et
al. [7] and Bitar et al. [8] using the position of specific patterns
is useful for our problem. We divide k-substring edits into
strict k-substring edits (that will change the length in the
outputs) and bursts of at most k substitutions, referred to as
k-burst substitutions. For strict edits, we first extend the codes
in [7], [8] to locate the error to be in an interval of length
O((log n)2) and then correct it. For k-burst substitutions,
which cannot be located using the patterns mentioned above,
we adapt the Fire code [1]. Then we combine the two error-
correcting codes in a manner that enables polynomial-time
encoding and decoding.

The paper is organized as follows. Section II presents the
notation and preliminaries. Section III discusses the prevalence
of burst errors in real data and the utility of substring-
edit-correcting codes. Finally, Section IV presents the code
constructions and an analysis of the time complexity and the

redundancy. Due to space limitations, the proofs are omitted.

II. NOTATION AND PRELIMINARIES

A. Notation

Without loss of generality, let !q = {0, 1, . . . , q → 1} be
a finite alphabet of size q. The set of length-n strings and
finite strings over !q are denoted as !n

q and !→
q , respectively.

The empty string, denoted ”, is also considered a member of
!→

q . In this paper, we focus on the binary alphabet !2. For
a, b ↑ Z, let [a, b] = {a, a+ 1, . . . , b} and [b] = [1, b]. Unless
otherwise stated, logarithms are to the base of 2. For x,y ↑
!n

2 , let x[a,b] = xaxa+1 · · ·xb and let xy and (x,y) denote
the concatenation of x,y. For x,v ↑ !→

q , v is a substring of
x if x = uvw for some u,w ↑ !→

q . Furthermore, |x| is the
length of a sequence x and ↓S↓ is the number of elements
in a set S. Given an integer r and a symbol a ↑ !2, let ar
denote a run of r consecutive symbols a.

B. The k-substring edit channel

Given a string x, a k-burst deletion (resp. insertion) in x
removes (resp. inserts) at most k consecutive symbols, while a
k-substring edit replaces a substring v of x by another string
v↑, where |v|, |v↑| ↔ k and at least one of v,v↑ is non-empty.
The k-substring edit is a k-burst substitution if |v| = |v↑|
and a strict k-substring edit otherwise. In particular, v↑ = ”
results in a burst deletion addressed by previous works. For
example, given x = 100111011101 ↑ !n

2 , a 4-substring edit
may generate z = 10010101101 by replacing x[5,8] = 1101
with z[5,7] = 010.

The next lemma discusses the relationship between deletion-
correcting codes and codes that can correct a k-substring edit.

Lemma 1. The codes in the statements below are over !n
q ,

where n, q ↗ 2. Let k be a positive integer.

1) A code that can correct 2 k-burst deletions can correct

a k-substring edit.

2) For any ω < n, there exists a code that can correct a

burst of at most ω deletions but not a k-substring edit.

3) For any ω < n, if ω < 2k, then there exists a code that

can correct up to ω deletions but not a k-substring edit.

Given a code C ↘ !n
q , the redundancy of the code C is

defined as n log q→ log ↓C↓. For binary, which is the focus of
our code construction, part 1 of the above lemma implies the
code given in [13] for correcting ↔ 2k deletions can correct a
k-substring edit over the binary alphabet with the redundancy
of roughly 8k log n bits. To the best of our knowledge, that
is the lowest redundancy that can be achieved by an existing
code for this problem. The code we present in Theorem 19
has redundancy of roughly 2 log n.

Given a string x ↑ !n
q , let Db,k(x) ↘ !→

q denote the set of
strings generated from x by at most b k-substring edit errors
and let Bb,k(x) ↘ !n

q denote the confusable set of x, i.e.,
the set of sequences y other than x for which Db,k(x) ≃
Db,k(y) ⇐= ⊋. When b = 1 and k is clear from the context,
we use D(x), B(x) instead of Db,k(x), Bb,k(x).

We now find the Gilbert-Varshamov (GV) bound on the size
of the code. Define rn(b, k) = maxx↓!n

q
↓Bb,k(x)↓+ 1.

Lemma 2. Assuming an alphabet of size q, we have

rn(b, k) ↔ (n+ bk)2b(k + 1)4bq2kb

and there exists a code C ↘ !n
q of length n capable of

correcting at most b k-substring edits with the size at least

↓C↓ ↗ q
n

(n+ bk)2b(k + 1)4bq2kb
.

Assuming b, k are constants, the redundancy is bounded
above by 2b log n + o(log n), which is the same as the
redundancy of the codes proposed in this paper for b = 1
and the binary alphabet.

C. Relevant Prior Results

We first adapt a result from syndrome compression, a
technique used to construct codes with low redundancy [15],
to our problem.

Theorem 3 (c.f. [15, Theorem 5]). Given x ↑ !n
2 , let

f : !n
2 ⇒ !2R(n) be a (labeling) function over the confusable

set B(x) such that f(x) ⇐= f(y) for every y ↑ B(x), where

R(n) = o(log log n · log n). Then there exists an integer

a ↔ 2log ↔B(x)↔+o(logn)
such that for all y ↑ B(x), we have

f(x) ⇐⇑ f(y) mod a.

We will use the following definitions and results from
[7], [8]. These works correct a burst of deletions with low
redundancy by first locating the approximate position of the
error. Given sequences x ↑ !n

2 and a pattern (string) P ,
define 1P(x) ↑ !n

2 as the indicator vector whose ith element
is 1 if x[i,i+|P|↗1] = P and is 0 if x[i,i+|P|↗1] ⇐= P or
i+ |P|→ 1 > n. Further, let nP(x) denote the number of 1’s
in 1P(x) and aP(x) represent a length-(nP(x) + 1) vector
whose ith element is the distance between positions of the
(i→1)-th and the ith 1 in the string (1,1P(x), 1). A sequence
x is (P, ε)-dense if each interval of length ε in x contains at
least one substring P . The set of (P, ε)-dense binary strings
of length n is denoted DP,ω(n). For P = 0k1k, n ↗ 5, and
ε = k22k+1⇓log n⇔, we have [7]

|DP,ω(n) ≃ !n
2 | ↗ 2n↗1

. (1)

Given a binary string x ↑ !n
2 , define the Varshamov-

Tenengolts (VT) check sum as V T (x) =
∑n

i=1 ixi. We next
recall the code in [8] used to locate the burst of deletions or
localized deletions in an interval.

Lemma 4 (cf. [8]). Given integers c1 ↑ [0, 4], c2 ↑ [0, 6n→1],
and ε = k22k+1⇓log n⇔, there exists a code

Cd = {x ↑ !n
2 ≃DP,ω(n), nP(x) = c1 mod 5,

V T (aP(x)) = c2 mod 6n.}
(2)

that can locate a burst of deletions or localized deletions in

an interval with length O((log n)2).

III. SUBSTRING EDITS IN NANOPORE SEQUENCING AND
DOCUMENT EDITING

In this section, we investigate the hypothesis that in real-
world settings, errors/edits commonly occur in a bursty man-
ner, rather than being distributed uniformly. We also study
whether substring-edit-correcting codes can achieve lower
redundancy than general edit-correcting codes. We performed
experimental studies on two real-world datasets, corresponding
to two applications of the codes:

• Error-correction: We investigate the set of errors en-
countered in nanopore sequencing [16] in DNA data
storage. The data consists of 1000 input-output pairs,
where the input represents the (true) base sequence of
a DNA molecule, and the output represents the sequence
detected by nanopore, as simulated by using the nanopore
deep simulator [17] and the Nanopore’s Guppy basecaller.

• Data synchronization: Suppose Alice, who knows only
x, needs to communicate x to Bob, who knows only z,
where x is the edited version of z. This task is referred
to as data synchronization, and can be accomplished
using error-correcting codes [18]. The dataset consists of
versions 5.0 and 5.1 of the source code for the Bash
utility1, containing 1301 and 1383 files, respectively,
where each common file in version 5.1 is viewed as an
edited version of the one in version 5.0.

Recall that our goal is to determine whether edits/errors
are i) bursty or ii) uniformly/independently distributed. To
rigorously answer this question, one way is to first define
a uniform/independent random process for errors and edits
and then use hypothesis testing to determine if such a model
explains the observed data, which will be discussed in Sub-
section III-B. First, however, we perform an intuitive but less
rigorous test over the alignment of pairs of sequences in
Subsection III-A. Finally, in Subsection III-C, we consider
choosing the model that leads to the lowest cost in error-
correction and synchronization tasks for our data.

A. Independence test on alignment

Let z be the erroneous/edited version of x. An align-
ment between x and z identifies the positions where
the sequences match and how they differ (see Figure 1).

Figure 1: An alignment of
two DNA sequences, where
the top sequence can be ob-
tained from the bottom one
via deletions (/), insertions
(→), and substitutions (·).

From the alignment, let us pro-
duce the binary sequence, de-
noted a, in which 1 represents
a match and 0 represents an edit
(substitution, insertion, deletion).
If edits/errors are distributed in
a uniform manner over x, e.g.,
resulting from an “independent”
process, then it is reasonable to
expect the alignment a to resem-
ble an iid sequence. Therefore, we
apply the Wald-Wolfowitz runs-test [19].

1https://ftp.gnu.org/gnu/bash/

Here, the null hypothesis is that a is iid generated and the
number R of runs in a is the test statistic. Conditioned on
the number of 0’s t0 and the number of 1’s t1, the p-value is
Pr (R ↔ r|t0, t1), as we do not expect to see very few runs in
an iid sequence. As in “RUNS-TEST” column of Table I, this
test strongly suggests that edits are not iid for both datasets.

RUNS-TEST INS-TEST SUBDEL-TEST
Bash 97.2% 100% 97.6%
DNA 95.7% 97.1% 76.1%

Table I: Fraction of sequences rejecting the null hypothesis at p-value
threshold of 5%.

B. A probabilistic edit process

A more reasonable approach is to perform hypothesis testing
on a probabilistic edit process. Again, let x be our data
sequence of length n, and z its edited version. Based on
an intuitive interpretation of “uniform edits”, we define the
following simple edit process: i) A random number Ki of
insertions are uniformly distributed over the n+1 bins between
xi and xi+1, i = 0, . . . , n, where x0 and xn+1 are defined as
the empty symbol. ii) A random number Kd of substitutions
and deletions are uniformly applied on x1, . . . , xn.

The null hypothesis is that z is generated by this edit
process. Since insertions occur independently of substitutions
and deletions, we apply two separate tests. For insertions,
we consider W , the number of non-empty bins as the test
statistic. If most insertions cluster in a small number of bins,
i.e., W being small, then we reject the null hypothesis. The p-
value Pr (W ↔ w|Ki) is summarized in “INS-TEST” column
of Table I. For substitutions and deletions, we consider again
R, the number of runs in the edit pattern (excluding insertions)
as the test statistic, and reject the null hypothesis if R is small.
The results are given in “SUBDEL-TEST” column of Table I.
High rejection rates for both tests suggest that edits are not
uniform.

C. Operational evaluation of error/edit models

Given two sequences x ↑ !n
q and z ↑ !→

q , their differences
can be described via b k-substring edits for a range of possible
pairs (b, k). Operationally, the best description, i.e., (b, k) pair,
is the one that leads to the lowest cost for the task at hand. For
error-correction, where z is an erroneous copy of x, the cost is
the redundancy of the code that allows correcting the errors in
z. If z can be obtained from x via b k-substring edits, based
on the GV bound, there exists such a code of length n with
redundancy log rn(b, k). For synchronization, the cost is the
information exchange, i.e., the number of bits needed to be
transmitted. It can be shown [18] that exchanging log rn(b, k)
bits is sufficient, achievable using a systematic code with n

information symbols and logq rn(b, k) check symbols.
For each pair of sequences in the genome data set, among

all valid (b, k) pairs, we find the one that minimizes rn(b, k),
where n = 200, q = 4. The histogram of the best (b, k) pairs
is given in Figure 2, which indicates that viewing the errors as
13 2-substring edits minimizes the redundancy for the largest

Figure 2: Histogram of optimal (b, k) values for the Nanopore
sequencing dataset.

number of input-output pairs.2. This suggests that edits with
k > 1 better describe our data and codes correcting b k-
substring edits for k > 1 are of use in DNA data storage.
The similar conclusion can also be drawn from the analysis
of the bash dataset.

IV. ERROR-CORRECTING CODES FOR A k-SUBSTRING EDIT

Given a constant k, this section focuses on constructing
codes of length N for correcting a k-substring edit error with
redundancy roughly 2 logN and polynomial time complexities
in both the encoding and decoding processes. Unless otherwise
stated, let n represent the length of (P, ε)-dense strings.

Based on Lemma 4, given an input x ↑ DP,ω(n), locating
the burst of deletions relies on the number of patterns nP(x)
and the relative distances of every two adjacent patterns
aP(x). Compared with locating a burst of deletions, locating
a k-substring edit is more complicated. Suppose x ↑ DP,ω(n)
and y ↑ D(x) is an output generated from x by a k-substring
edit. We need to overcome the following challenges. First,
when the k-substring edit is a substitution, i.e., |x| = |y|, it is
possible for both aP and nP to remain the same, preventing
us from locating the error. Second, even if the substring edit
is strict, i.e., |x| ⇐= |y|, there is no guarantee that the changes
affecting aP and nP will enable us to identify the approximate
location of the error.

The following corollary summarizes our approach to con-
struct error-correcting codes reaching the GV bound.

Corollary 5. The code C ↘ !N
2 is capable of correcting a

k-substring edit if it can correct either a k-burst substitution

or a strict k-substring edit error.

A. Error-correcting code for a strict k-substring edit

Similar to works in [7], [8], given a constant k, this
subsection focuses on correcting a strict k-substring edit by
first localizing the error and then correcting it in the interval.
More specifically, it consists of two steps. First, we extend
the error-locating code in Lemma 4 from [8] to locate the
strict k-substring edit in an interval of length L = O((log n)2)
with redundancy roughly log n. Second, a modified syndrome

compression code [10], [15] is designed to correct the error in
the specific interval with redundancy roughly O(log log n).

2We point out that only 272 sequence pairs are included as the rest are so
erroneous that they have their minimum redundancy log rn(b, k) larger than
the original length (400 bits for n = 200, q = 4).

1) Locating the error in an interval: This subsection fo-
cuses on extending the codes in Lemma 4 to locate a strict
k-substring edit since it will affect at least one of nP(x) and
aP(x).

Lemma 6. Given P = 0k1k and ε = k22k+1⇓log n⇔, let x ↑
DP,ω(n) ≃ !n

2 be a (P, ε)-dense string and y ↑ D(x). Then

a k-substring edit does not create nor destroy more than two

adjacent patterns P in x, i.e., nP(y) ↑ [nP(x)→2, nP(x)+2].

Then we have the following corollary.

Corollary 7. Let x ↑ DP,ω(n) and y ↑ D(x). Then aP(y)
can be generated from aP(x) as a result of a 3-substring-edit.

According to the changes of nP(x) and aP(x), we extend
the code in Bitar et al. work [8] as the following construction
that helps to locate a strict k-substring edit in x ↑ DP,ω(n).

Construction 8. Given 0 ↔ c1 ↔ 4 and 0 ↔ c2 < 7n, let

Cloc(c1, c2) = {x ↑ !n
2 ≃DP,ω(n), nP(x) = c1 mod 5,

V T (aP(x)) = c2 mod 7n}.

Then we have the following lemma.

Lemma9. Let k be a constant. Given x ↑ Cloc(c1, c2), a strict

k-substring edit occurring in x can be located in a substring

of x with length L = O(ε2) = O((log n)2).

2) Correcting the error in an interval: Suppose a strict k-
substring edit is located in an interval of lenth L = O(ε2).
Next, we present error-correcting codes that can correct the
strict k-substring edit in the specific interval with length L.

Similar to the work [10], we generate two sets of blocks
of length 2L by partitioning x ↑ DP,ω(n). More specifically,
given N̂ = n/2L, let Se = (se1, se2, · · · , seN̂) and So =
(so1, so2, · · · , so(N̂↗1)) denote the set of even and odd blocks
respectively, where sei = x[2(i↗1)L+1:2iL] for i ↑ [N̂] and
soi = x[(2i↗1)L+1:(2i+1)L] for i ↑ [N̂ → 1].

Since the k-substring edit is located in a specific interval
with the length bounded by L, then it will occur in at least
one block of either Se and So. In the following, we apply a
modified syndrome compression code [15] to correct a strict
k-substring edit in a length-2L string.

Based on Theorem 3, for u ↑ !2L
2 and a labeling function

f over B(u), the decoder can recover u by v ↑ D(u), a, and
f(u) mod a. Furthermore, a complex labeling function f does
not affect the redundancy of the code since the redundancy
2 log a is affected by the size of B(u). Since a strict k-
substring edit can be viewed as a k-burst deletion followed
by a k-burst insertion, we introduce a labeling function that
can correct at most 2k insertions, deletions, and substitutions
from [13].

Theorem 10 (cf. [13]). Given a constant k, t = 2k, and

L = O((log n)2), There exists a labeling function g : !2L
2 ⇒

!2R(t,2L) such that for any two distinct strings s1 and s2 con-

fusable under at most t insertions, deletions, and substitutions,

we have g(s1) ⇐= g(s2), where R(t, 2L) = ((t2+1)(2t2+1)+
2t2(t→ 1)) log 2L+ o(log 2L) = O(log log n) + o(log log n).

Based on Lemma 2, given u ↑ !2l
2 , the size of the

confusable set B(u) satisfies ↓B(u)↓ < (2L+k)2(k+1)422k.
Then for each sei ↑ !2L

2 and wei ↑ B(sei), there exists an
integer aei such that g(sei) ⇐⇑ g(wei) mod aei for i ↑ [N̂],
where aei ↔ 2log ↔B(sei)↔+o(logL). The same property holds
for each soi ↑ !2L

2 for i ↑ [N̂ → 1].
Based on the two sets of messages Se, So, we have the

following construction for a k-substring edit.

Construction 11. Let ω = (ϑ1,ϑ2, · · · ,ϑ6). Given x ↑
Cloc(ϑ1,ϑ2) with length n, we generate two sets of message

blocks Se and So. Let ϑ3, · · · ,ϑ6 < ϖ. Then we have

Cstrict(ϖ,ω) = {x ↑ Cloc(ϑ1,ϑ2),

N̂∑

i=1

aei = ϑ3 mod ϖ,

N̂∑

i=1

(g(sei) mod aei) = ϑ4 mod ϖ,

N̂↗1∑

i=1

aoi = ϑ5 mod ϖ,

N̂↗1∑

i=1

(g(soi) mod aoi) = ϑ6 mod ϖ.}

where ϖ satisfies ϖ ↗ (2L + k)2(k + 1)422k2o(logL)
>

max(ae1, ao1 · · · , ae(N̂↗1), ao(N̂↗1), aeN) .

Note that a similar construction appeared recently in [10],
[11] for burst deletions. However, our construction includes a
more powerful error-locating code and modified modulus so
that our code can correct a strict k-substring edit.

Lemma 12. Given a constant k, the error-correcting code

Cstrict(ω,ϖ) in Construction 11 can correct a strict k-

substring edit error with the redundancy of roughly log n +
16 log log n+ o(log log n) bits.

B. Error-correcting code for a k-burst substitution

In this subsection, we present a code that can correct a k-
burst substitution error.

Construction 13 (cf. [20], Fire code). Let g0(x) be an

irreducible polynomial of degree m ↗ k that does not divide

x
2k↗1 → 1. Then, there exists a linear cyclic code (called

Fire code) of length n1 = LCM(2k → 1, 2m → 1) with

the generator polynomial g(x) = (x2k↗1 → 1)g0(x) and

deg(g(x)) = m + 2k → 1. Then the Fire code CF can be

represented as [n1, n] code with the codeword length n1 and

the dimension n = n1 → (m+ 2k → 1).

Theorem 14 (cf. [20]). The Fire code CF can correct a single

k-burst substitution.

Then the redundancy of the Fire code can be presented by
the following lemma.

Lemma15. Given a constant k, the Fire code CF corrects a k-

burst substitution with the redundancy roughly log n+o(log n).

Hence, given x ↑ !n
2 , there exists a function hF (x) of

length roughly log n+ o(log n) such that (x, hF (x)) ↑ CF is
capable of fighting against a k-burst substitution.

C. Combined error-correcting codes

Based on Lemma 5, given x ↑ DP,ω(n) ≃!n
2 , the receiver

can correct a k-substring edit from y ↑ D(x) if hF (x) and
(ω,ϖ) are sent to the receiver by an error-free channel. For
simplicity, let rx := (hF (x),ω,ϖ) be a binary representation
of the data. Then each codeword of the final error-correcting
codes can be generated by concatenating two parts, i.e.,
(x, rx). Furthermore, we may add a buffer between x and
rx such that a k-substring edit affects either x or rx. Finally,
We also need another function that can detect or correct a k-
substring edit occurring in rx. We start by finding a suitable
buffer bx.

Since a k-substring edit should not affect both x and rx,
the length of the buffer satisfies |bx| > k. The buffer in
the following lemma helps distinguish whether the strict k-
substring edit affects x or rx.

Lemma 16. Given a string w = xbxu with x ↑ !n
2 and

u ↑ !→
2. A buffer bx = 1k+10k+11k+1

can distinguish whether

a strict k-substring edit affect either x or u.

Then a burst-substitution-detecting function E1 suffices to
decode x if it can detect an k-burst substitution in rx.

Lemma 17. Given a constant k and bx = 1k+10k+11k+1
,

a burst-substitution-detecting function E1 in xbxrxE1(rx) is

sufficient to decode x for a k-substring edit.

The simplest burst-substitution-detecting function is a
parity-checking function. Given rx, let L1 = |rx| > k. Then
we partition rx into T = ⇓L1/(k+1)⇔ blocks of length (k+1),
i.e., wj for j ↑ [T], where additional 0s are appended if the
last block has less than (k+1) binary symbols. Then the error-
detecting function E1 : !L1

2 ⇒ !2k+2
2 appends ε1 and ε2 in

the binary form (each with length (k+1)) following rx, where

ε1 =
(∑↘T/2≃

j=1 w2j↗1

)
mod 2k+1

,ε2 =
(∑⇐T/2⇒

j=1 w2j

)
mod 2k+1

.

The final construction is shown below.

Construction 18. Given a constant k, bx = 1k+10k+11k+1
,

we have a construction CN as

CN = {xbxrxε1ε2 ↑ !N
2 ,x ↑ !n

2 ≃DP,ω(n)},

where rx = (hF (x),ω,ϖ) and ε1ε2 are in binary form

generated by E1(rx) in each codeword xbxrxε1ε2 ↑ !N
2 .

Theorem19. The error-correcting code CN in Construction 18

can correct a k-substring edit with the redundancy of roughly

2 logN + o(logN) bits, where N = n+ 2 log n+ o(log n).

D. Time complexity

Given a constant k, the encoding process consists of encod-
ing message to a (P, ε)-dense string [11], appending a buffer,
generating rx, and appending ε1 and ε2 with time complexity
polynomial with respect to N . Similarly, the time complexity
of the decoder is also polynomial with respect to N .

REFERENCES

[1] P. Fire, A class of multiple-error-correcting binary codes for non-

independent errors. Stanford University, 1959, vol. 55.
[2] G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion

(corresp.),” IEEE Transactions on Information Theory, vol. 30, no. 5,
pp. 766–769, 1984.

[3] W. Zhou, S. Lin, and K. Abdel-Ghaffar, “Burst or random error
correction based on Fire and BCH codes,” in 2014 Information Theory

and Applications Workshop (ITA). IEEE, 2014, pp. 1–5.
[4] L. Cheng, T. G. Swart, H. C. Ferreira, and K. A. Abdel-Ghaffar, “Codes

for correcting three or more adjacent deletions or insertions,” in 2014

IEEE International Symposium on Information Theory. IEEE, 2014,
pp. 1246–1250.

[5] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes
correcting a burst of deletions or insertions,” IEEE Transactions on

Information Theory, vol. 63, no. 4, pp. 1971–1985, 2017.
[6] C. Schoeny, F. Sala, and L. Dolecek, “Novel combinatorial coding

results for DNA sequencing and data storage,” in 2017 51st Asilomar

Conference on Signals, Systems, and Computers. IEEE, 2017, pp. 511–
515.

[7] A. Lenz and N. Polyanskii, “Optimal codes correcting a burst of
deletions of variable length,” in 2020 IEEE International Symposium

on Information Theory (ISIT). IEEE, 2020, pp. 757–762.
[8] R. Bitar, S. K. Hanna, N. Polyanskii, and I. Vorobyev, “Optimal codes

correcting localized deletions,” in 2021 IEEE International Symposium

on Information Theory (ISIT). IEEE, 2021, pp. 1991–1996.
[9] S. K. Hanna and S. El Rouayheb, “Codes for correcting localized

deletions,” IEEE Transactions on Information Theory, vol. 67, no. 4,
pp. 2206–2216, 2021.

[10] S. Wang, Y. Tang, R. Gabrys, and F. Farnoud, “Permutation codes for
correcting a burst of at most t deletions,” in 2022 58th Annual Allerton

Conference on Communication, Control, and Computing (Allerton).
IEEE, 2022, pp. 1–6.

[11] S. Wang, Y. Tang, J. Sima, R. Gabrys, and F. Farnoud, “Non-binary
codes for correcting a burst of at most t deletions,” 2022. [Online].
Available: https://arxiv.org/abs/2210.11818

[12] J. Sima and J. Bruck, “On optimal k-deletion correcting codes,” IEEE

Transactions on Information Theory, vol. 67, no. 6, pp. 3360–3375,
2020.

[13] J. Sima, R. Gabrys, and J. Bruck, “Optimal systematic t-deletion cor-
recting codes,” in 2020 IEEE International Symposium on Information

Theory (ISIT). IEEE, 2020, pp. 769–774.
[14] Y. Tang, H. Lou, and F. Farnoud, “Error-correcting codes for short

tandem duplications and at most p substitutions,” in 2021 IEEE In-

ternational Symposium on Information Theory (ISIT). IEEE, 2021, pp.
1835–1840.

[15] J. Sima, R. Gabrys, and J. Bruck, “Syndrome compression for optimal
redundancy codes,” in 2020 IEEE International Symposium on Informa-

tion Theory (ISIT). IEEE, 2020, pp. 751–756.
[16] D. Deamer, M. Akeson, and D. Branton, “Three decades of nanopore

sequencing,” Nature Biotechnology, vol. 34, no. 5, pp. 518–524, May
2016.

[17] Y. Li, S. Wang, C. Bi, Z. Qiu, M. Li, and X. Gao, “Deepsimulator1. 5: a
more powerful, quicker and lighter simulator for nanopore sequencing,”
Bioinformatics, vol. 36, no. 8, pp. 2578–2580, 2020.

[18] A. Orlitsky, “Interactive communication: Balanced distributions, corre-
lated files, and average-case complexity,” in [1991] Proceedings 32nd

Annual Symposium of Foundations of Computer Science, Oct. 1991, pp.
228–238.

[19] C. R. Mehta and N. R. Patel, “IBM SPSS exact tests,” Armonk, NY:

IBM Corporation, pp. 23–24, 2011.
[20] R. E. Blahut, Algebraic codes for data transmission. Cambridge

university press, 2003.

