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Abstract

The point-to-set principle of J. Lutz and N. Lutz (2018) has recently enabled the theory
of computing to be used to answer open questions about fractal geometry in Euclidean spaces
R™. These are classical questions, meaning that their statements do not involve computation or
related aspects of logic.

In this paper we extend the reach of the point-to-set principle from Euclidean spaces to
arbitrary separable metric spaces X. We first extend two fractal dimensions——computability-
theoretic versions of classical Hausdorff and packing dimensions that assign dimensions dim(x)
and Dim(x) to individual points x € X—to arbitrary separable metric spaces and to arbitrary
gauge families. Our first two main results then extend the point-to-set principle to arbitrary
separable metric spaces and to a large class of gauge families.

We demonstrate the power of our extended point-to-set principle by using it to prove new
theorems about classical fractal dimensions in hyperspaces. (For a concrete computational
example, the stages Ey, F1, Ea,... used to construct a self-similar fractal E in the plane are
elements of the hyperspace of the plane, and they converge to E in the hyperspace.) Our third
main result, proven via our extended point-to-set principle, states that, under a wide variety
of gauge families, the classical packing dimension agrees with the classical upper Minkowski
dimension on all hyperspaces of compact sets. We use this theorem to give, for all sets E that
are analytic, i.e., 31, a tight bound on the packing dimension of the hyperspace of E in terms
of the packing dimension of E itself.

1 Introduction

It is rare for the theory of computing to be used to answer open mathematical questions—especially
questions in continuous mathematics—whose statements do not involve computation or related as-
pects of logic.! The point-to-set principle [22], described below, has enabled several recent develop-
ments that do exactly this. This principle has been used to obtain strengthened lower bounds on the
Hausdorff dimensions of generalized Furstenberg sets [27], extend the fractal intersection formula
for Hausdorff dimension from Borel sets to arbitrary sets [25], and prove that Marstrand’s projec-
tion theorem for Hausdorff dimension holds for any set E whose Hausdorff and packing dimensions
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http://arxiv.org/abs/2004.07798v3

coincide, whether or not E is analytic [26].2 (See [4, 5, 23, 24] for reviews of these developments.)
These applications of the point-to-set principle all concern fractal geometry in Euclidean spaces
R" 3

This paper extends the reach of the point-to-set principle beyond Euclidean spaces. To explain
this, we first review the point-to-set principle to date. (All quantities defined in this intuitive
discussion are defined precisely later in the paper.) The two best-behaved classical fractal di-
mensions, Hausdorff dimension and packing dimension, assign to every subset E of a Euclidean
space R™ dimensions dimy(F) and dimp(FE), respectively. When E is a “smooth” set that in-
tuitively has some integral dimension between 0 and n, the Hausdorff and packing dimensions
agree with this intuition, but more complex sets E may have any real-valued dimensions satisfy-
ing 0 < dimg(F) < dimp(F) < n. Hausdorff and packing dimensions have many applications in
information theory, dynamical systems, and other areas of science [2, 8, 15, 36].

Early in this century, algorithmic versions of Hausdorff and packing dimensions were devel-
oped to quantify the information densities of various types of data. The computational resources
allotted to these algorithmic dimensions range from finite-state to computable enumerability and
beyond, but the point-to-set principle concerns the computably enumerable algorithmic dimensions
introduced in [21, 1].* These assign to each individual point = in a Euclidean space R™ an algo-
rithmic dimension dim(z) and a strong algorithmic dimension Dim(x). The point-to-set principle
of [22] is a complete characterization of the classical Hausdorff and packing dimensions in terms of
oracle relativizations of these very non-classical dimensions of individual points. Specifically, the
point-to-set principle says that, for every set E in a Euclidean space R",

dimy (E) = min sup dim?(z) (1.1)
ACN zeFE
and
dimp(F) = min sup Dim?(z), (1.2)
ACN zeFE

where the the dimensions on the right are relative to the oracle A. The point-to-set principle is so
named because it enables one to use a lower bound on the relativized algorithmic dimension of a
single, judiciously chosen point in a set E to prove a lower bound on the classical dimension of the
set E.

The classical Hausdorff and packing dimensions work not only in Euclidean spaces, but in arbi-
trary metric spaces. In contrast, nearly all work on algorithmic dimensions to date (the exception
being [29]) has been in Euclidean spaces or in spaces of infinite sequences over finite alphabets. Our
objective here is to significantly reduce this gap by extending the theory of algorithmic dimensions,
along with the point-to-set principle, to arbitrary separable metric spaces. (A metric space X is
separable if it has a countable subset D that is dense in the sense that every point in X has points
in D arbitrarily close to it.)

In parallel with extending algorithmic dimensions to separable metric spaces, we also extend
them to arbitrary gauge families. It was already explicit in Hausdorff’s original paper [10] that
his dimension could be defined via various “lenses” that we now call gauge functions. In fact, one

2These very non-classical proofs of new classical theorems have provoked new work in the fractal geometry com-
munity. Orponen [35] has very recently used a discretized potential-theoretic method of Kaufman [17] and tools of
Katz and Tao [16] to give a new, classical proof of the two main theorems of [26].

3 Applications of the theory of computing—specifically Kolmogorov complexity—to discrete mathematics are more
numerous and are surveyed in [20]. Other applications to continuous mathematics, not involving the point-to-
set principle, include theorems in descriptive set theory [33, 13, 18], Riemannian moduli space [43], and Banach
spaces [19].

4These have also been called “constructive” dimensions and “effective” dimensions by various authors.



often uses, as we do here, a gauge family p, which is a one-parameter family of gauge functions
ps for s € (0,00). For each separable metric space X, each gauge family ¢, and each set F C X,
the classical p-gauged Hausdorff dimension dim{j(E) and ¢-gauged packing dimension dimf(E)
are thus well-defined. In this paper, for each separable metric space X, each gauge family ¢,
and each point z € X, we define the ¢-gauged algorithmic dimension dim¥(z) and the p-gauged
strong algorithmic dimension Dim¥(z) of the point z. We should mention here that there is a
particular gauge family 6 that gives the “un-gauged” dimensions in the sense that the identities
dim%(E) = dimg(F), dim%(F) = dimp(E), dim?(z) = dim(z), and Dim®(z) = Dim(z) always
hold.

Our first two main results (Theorems 4.1 and 4.2) extend the point-to-set principle to arbitrary
separable metric spaces and a wide variety of gauge families, proving that, for every separable
metric space X, every gauge family ¢ satisfying mild asymptotic constraints, and every set £ C X,

dim{}(E) = min sup dim#4 (z) (1.3)
ACN zeFE
and
dim$(E) = min sup Dim#*(z). (1.4)
ACN z€E

Various nontrivial modifications to both machinery and proofs are necessary in getting from (1.1)
and (1.2) to (1.3) and (1.4).

As an illustration of the power of our approach, we investigate the dimensions of hyperspaces.
The hyperspace K(X) of a metric space X is the set of all nonempty compact subsets of X, equipped
with the Hausdorff metric [44]. (For example, the “stages” Ey, E1, Es,... of a self-similar fractal
E C R™ converge to E in the hyperspace R™.) The hyperspace of a separable metric space is
itself a separable metric space, and the hyperspace is typically infinite-dimensional, even when the
underlying metric space is finite-dimensional. One use of gauge families is reducing such infinite
dimensions to enable quantitative comparisons. For example, McClure [30] defined, for each gauge
family ¢, a jump @ (our notation) that is also a gauge family, and he proved [31] for every self-similar
subset E of a separable metric space X,

dim§(K(E)) = dimp(E),

where 6 is the above-mentioned “un-gauged” gauge family.

Here we prove a hyperspace dimension theorem for the upper and lower Minkowski (i.e., box-
counting) dimensions dim ,, and dim . This states that, for every separable metric space X, every
gauge family ¢, and every F C X,

dim?, (K(E)) = dim?, (E) (1.5)

and _
i (K(E)) = Ty (B). (1.6)

We note that it is implicit in [30] that these identities hold for totally bounded sets E and gauge
families ¢ satisfying a doubling condition.

Our third main result (Theorem 5.2) says that, for every separable metric space X, every
“well-behaved” gauge family ¢, and every compact set ¥ C X,

dimg(K(E)) = dimy, (K(E)). (1.7)

Our proof of this result makes essential use of (1.6) and the point-to-set principle (1.4).



Finally, we use the point-to-set principle (1.4), the identities (1.6) and (1.7), and some additional
machinery to prove the hyperspace packing dimension theorem (Theorem 5.4), which says that, for
every separable metric space X, every well-behaved gauge family ¢, and every analytic (i.e., X1,
an analog of NP that Sipser famously investigated [38, 39, 40]) set £ C X,

dim?(K(E)) > dim?(E). (1.8)

It is implicit in [30] that (1.8) holds for all o-compact sets E.

At the time of this writing it is an open question whether there is an analogous hyperspace
dimension theorem for Hausdorff dimension.

David Hilbert famously wrote the following [11].

The final test of every new theory is its success in answering preexistent questions that
the theory was not specifically created to answer.

The theory of algorithmic dimensions passed Hilbert’s final test when the point-to-set principle
gave us the the results in the first paragraph of this introduction. We hope that the machinery
developed here will lead to further such successes in the wider arena of separable metric spaces.

2 Gauged Classical Dimensions

We review the definitions of gauged Hausdorff, packing, and Minkowski dimensions. We refer the
reader to [8, 28] for a complete introduction and motivation.

Let (X, p) be a metric space where p is the metric. (From now on we will omit p when referring
to the space (X,p).) X is separable if there exists a countable set D C X that is dense in X,
meaning that for every € X and 6 > 0, there is a d € D such that p(x,d) < §. The diameter of a
set E C X is diam(E) = sup{p(z,y) | z,y € E'}; notice that the diameter of a set can be infinite.
A cover of E C X is a collection U C P(X) such that E C J;;o, U, and a d-cover of E is a cover
U of E such that diam(U) < ¢ for all U € U.

Definition (gauge functions and families). A gauge function is a continuous,® nondecreasing func-

tion from [0, 00) to [0, 00) that vanishes only at 0 [10, 37]. A gauge family is a one-parameter family
o ={ps|s € (0,00)} of gauge functions ¢, satisfying

vs(8) = o(p(6)) as 6 — 0t
whenever s > t.

The canonical gauge family is 0 = {0s|s € (0,00) }, defined by 65(0) = ¢°. “Un-gauged”
or “ordinary” Hausdorff, packing, and Minkowski dimensions are special cases of the following
definitions, using ¢ = 6.

Some of our gauged dimension results will require the existence of a “precision family” for the
gauge family.

Definition (precision family). A precision sequence for a gauge function ¢ is a function a : N — Q*
that vanishes as r — oo and satisfies p(a(r)) = O(¢(a(r +1))) as r — oco. A precision family for

5Some authors require only that the function is right-continuous when working with Hausdorff dimension and
left-continuous when working with packing dimension. Indeed, left continuity is sufficient for our hyperspace packing
dimension theorem.



a gauge family ¢ = {ps | s € (0,00)} is a one-parameter family o = {as | s € (0,00)} of precision
sequences satisfying

Z pi(ors(r)) < 00

2 (o)
whenever s < t.

Observation 2.1. a4(r) = 27°" is a precision family for the canonical gauge family 6.

Definition (gauged Hausdorff measure and dimension). For every metric space X, set £ C X,
and gauge function ¢, the p-gauged Hausdorff measure of E is

H?(E) = lim inf { Z (diam(U)) | U is a countable d-cover of E} .

+
§—0 Ueu

For every gauge family ¢ = {ps|s € (0,00) }, the p-gauged Hausdorff dimension of E is
dim{;(E) = inf {s € (0,00) | H¥*(E) = 0}.

Definition (gauged packing measure and dimension). For every metric space X, set £ C X, and
d € (0,00), let V5(E) be the set of all countable collections of disjoint open balls with centers in E
and diameters at most §. For every gauge function ¢ and § > 0, define the quantity

PY(E)= sup Z o(diam(U)).
UeVs(E) Ueu

Then the p-gauged packing pre-measure of E is

P{(E) = lim Pf(E),

6—0t

and the -gauged packing measure of E is

P?(E) = inf { > RP(U)

Ueu

U is a countable cover of E} .

For every gauge family ¢ = {¢s|s € (0,00) }, the p-gauged packing dimension of E is
dim§(E) = inf {s € (0,00) | P?*(E) =0} .

Definition (gauged Minkowski dimensions). For every metric space X, F C X, and § € (0,00),
let

N(E,9) :min{\F\

FCXand FC UBg(az)},
el

where Bs(z) is the open ball of radius ¢ centered at x. Then for every gauge family ¢ = {©s}se(0,00)
the p-gauged lower and upper Minkowski dimension of E are

6—0t

dim%,(E) = inf {s

liminf N(F,6)ps(6) = O}

and
dim’y(E) = inf {s

limsup N(E,0)ps(d) = O} ,

6—0t

respectively.



When X is separable, it is sometimes useful to require that the balls covering F have centers
in the countable dense set D. For all E C X and ¢ € (0,00), let

N(E,§) = min {|F|

FCDand EC UB@(:E)}.
zeF

Observation 2.2. If X is a separable metric space and ¢ = {(Ps}se(o,oo) s a gauge family, then
forall EC X,

1. dim%,(E) = inf{s

lim inf N (B, 8)¢,(5) =0 ¢.
im inf N (E, 6)¢4(0) }

2. dim’(E) = inf {s

limsup N (E, 8)p,(8) = 0}.

6—0t

The following relationship between upper Minkowski dimension and packing dimension was
previously known to hold for the canonical gauge family 6, a result that is essentially due to
Tricot [42]. Our proof of this gauged generalization, which is in the appendix, is adapted from the
presentation by Bishop and Peres [3] of the un-gauged proof.

Lemma 2.3 (generalizing Tricot [42]). Let X be any metric space, E C X, and ¢ a gauge family.
1. If 91(26) = O(ps(8)) as & = 01 for all s < t, then

dim§(E) > inf {sup dim'’y(E;)
1€EN

2. If there is a precision family for ¢, then

dim{(E) < inf {sup dim'’(E;)
1€EN

3 Gauged Algorithmic Dimensions

In this section we formulate algorithmic dimensions in arbitrary separable metric spaces and with
arbitrary gauge families.

For the rest of this paper, let X = (X, p) be a separable metric space, and fix a function
f:4{0,1}* — X such that the set D = range(f) is dense in X. The metric space X is computable
if there is a computable function g : ({0,1}*)2 x QT — Q that approximates p on D in the sense
that, for all v,w € {0,1}* and 6 € Q™.

l9(v,w,0) = p(f(v), f(w))] < 0.

Our results here hold for all separable metric spaces, whether or not they are computable, but our
methods make explicit use of the function f.

Following standard practice [34, 6, 20], fix a universal oracle Turing machine U, and define the
(plain) Kolmogorov complexity of a string w € {0,1}* relative to an oracle A C N to be

C*(w) = min {|x]|m € {0,1}* and UA(n) = w},

6



i.e., the minimum number of bits required to cause U to output w when it has access to the oracle
A. The (plain) Kolmogorov complexity of w is then C(w) = C?(w).
We define the (plain) Kolmogorov complexity of a point ¢ € D to be

C(g) = min{C(w) |w € {0,1}* and f(w) =q},

noting that this depends on the enumeration f of D that we have fixed.
The Kolmogorov complexity of a point z € X at precision § € (0,00) is

Cs(z) =min{C(q)|q € D and p(q,z) <d}.

The algorithmic dimension of a point x € X is

. e Cs(o)
dim(x) = lgg(l)rlf Tog(1/0)’ (3.1)

and the strong algorithmic dimension of x is

Cs(x)

Dim(z) = limsup ———. 3.2
() =10 P 1ogi1/6) 22

These two dimensions® have been extensively investigated in the special cases where X is a
Euclidean space R™ or a sequence space %% [23, 6].

Having generalized algorithmic dimensions to arbitrary separable metric spaces, we now gener-
alize them to arbitrary gauge families.

Let ¢ = {ps|s € (0,00) } be a gauge family. Then, the p-gauged algorithmic dimension of a
point z € X is

6—0t

dim¥(x) = inf {s

lim inf 2% () (8) = 0} : (3.3)

and the -gauged strong algorithmic dimension of x is

Dim?(x) = inf {s

lim sup 2@ () = 0} , (3.4)

6—0t

Gauged algorithmic dimensions dim?(x) have been investigated by Staiger [41] in the special
case where X is a sequence space X,
A routine inspection of (3.1)—(3.4) verifies the following.

Observation 3.1. For all z € X, dim?(z) = dim(z) and Dim®(z) = Dim(z), where 0 is the
canonical gauge family given by 05(5) = §°.

A specific investigation of algorithmic (or classical) dimensions might call for a particular gauge
function on family for one of two reasons. First, many gauge functions may assign the same
dimension to an object under consideration (because they converge to 0 at somewhat similar rates
as & — 07) but additional considerations may identify one of these as being the most precisely
tuned to the phenomenon of interest. Finding such a gauge function is called finding the “exact

5The definitions given here differ slightly from the standard formulation in which prefix Kolmogorov complexity
is used instead of plain Kolmogorov complexity and the precision parameter ¢ belongs to {27 | » € N}. The present
formulation is equivalent to the standard one for un-gaugued dimensions and facilitates our generalization to gauged
algorithmic dimensions. In particular, plain Kolmogorov complexity is only needed to accommodate gauge functions
¢ in which the convergence of  to 0 as § — 07 is very slow.



dimension” of the object under investigation. This sort of calibration has been studied extensively
for classical dimensions [8, 37] and by Staiger [41] for algorithmic dimension.

The second reason, and the reason of interest to us here, why specific investigations might call
for particular gauge families is that a given gauge family ¢ may be so completely out of tune with the
phenomenon under investigation that the ¢-gauged dimensions of the objects of interest are either
all minimum (all 0) or else all maximum (all the same dimension as the space X itself). In such
a circumstance, a gauge family that converges to 0 more quickly or slowly than ¢ may yield more
informative dimensions. Several such circumstances were investigated in a complexity-theoretic
setting by Hitchcock, J. Lutz, and Mayordomo [12].

The following routine observation indicates the direction in which one adjusts a gauge family’s
convergence to 0 in order to adjust the resulting gauged dimensions upward or downward.

Observation 3.2. If p and v are gauge families with o5(8) = o(1s(8)) as § — 0T for all s € (0, 00),
then, for all x € X, dim?(z) < dim¥(z) and Dim?(z) < Dim¥(z).

We now define an operation on gauge families that is implicit in earlier work [31] and is explicitly
used in the results of Section 5.

Definition (jump). The jump of a gauge family ¢ is the family @ given @4(d) = 2 1/es(9),
Observation 3.3. The jump of a gauge family is a gauge family.

We now note that the jump of a gauge family always converges to 0 more quickly than the
original gauge family.

Lemma 3.4. For all gauge families ¢ and all s € (0,00), $5(8) = o(ps(d)) as § — 07
Observation 3.3 and Lemma 3.4 immediately imply the following.

Corollary 3.5. For all gauge families ¢ and all z € X, dim®(z) < dim?(z) and Dim®(z) <
Dim¥(x).

The definitions and results of this section relativize to arbitrary oracles A C N in the obvious
manner, so the Kolmogorov complexities C4(q) and C£(x) and the dimensions dim” (), Dim*(z),
dim?4(z), and Dim#(z) are all well-defined and behave as indicated.

Observation 3.6. For all gauge families ¢, all z € X, and all s > 0,

Cé(:p)(vps(é) —1
es(0)

The p-gauged algorithmic dimensions admit the following characterizations, the second of which
is used in the proof of our hyperspace packing dimension theorem.

log (205(@@5(5)) —

Theorem 3.7. For all gauge families ¢ and all x € X, the following identities hold.

1. dim®(z) = inf {s

lim inf Cs(2)ps(8) = 0}-

2. Dim®(z) = inf {s

lim sup Cy(x)ps(d) = 0}.

6—0t



4 The General Point-to-Set Principle

We now show that the point-to-set principle of J. Lutz and N. Lutz [22] holds in arbitrary separable
metric spaces and for gauged dimensions. The proofs of these theorems, which can be found in the
appendix, are more delicate and involved than those in [22]. This is partially due to the fact that
the metric spaces here need not be finite-dimensional, and to the weak restrictions we place on the
gauge family.

Theorem 4.1 (general point-to-set principle for Hausdorff dimension). For every separable metric
space X, every gauge family ¢, and every set £ C X,

dim{;(E) > min sup dim?4 ().
ACN zeFE

Equality holds if there is a precision family for .

Theorem 4.2 (general point-to-set principle for packing dimension). Let X be any separable metric
space, E C X, and ¢ a gauge family.

1. If 94(26) = O(ps(0)) and ps(8) = O(1/loglog(1/8)) as & — 0T for all s < t, then

dim§(E) > min sup Dim#4 (z).
ACN zeFE

2. If there is a precision family for ¢, then

dim{(E) < min sup Dim#4(z).
ACN zeFE

Proof of Theorem 4.2. 1. Assume that ¢;(20) = O (ps(d)) and ¢s(d) = O(1/loglog(1/6)) hold
for all s < t. It suffices to show that there exists A C N such that, for all x € E,

Dim?4(z) < dim§(E). (4.1)

Let s > ¢ > u > dimj(F). Since u > dim{(E), Lemma 2.3 and our hypothesis on ¢ tell us
that there is a cover {E;};cz+ of E such that, for all i € ZT,

dim’y,(E;) < u. (4.2)

For each i € ZT and § € QN (0,1), let F(i,0) C D satisfy
|[F(i,8)] = N(E;.6)

and
E;c |J Bs(a).
dEF(i,5)

Define h: Z* x QN (0,1) — ({0, 1}*)1\7(&,5) by

h(i, (5) = (wi,é,ly cee 7wi,57N(Ei76))7

where, recalling that f is the function mapping bit strings onto the dense set D,
F(Z’ 6) = (f(wi7571)7 e ’f(wl,(;,N(El,(g))) :

9



Let A be an oracle encoding h.

To prove (4.1), let € E. It suffices to show that

lim 295 @)y (5) = 0.

6—0t

For this, let ¢ > 0. It suffices to show that, for all sufficiently small 6 € QT

€
Ci(z) < log ——. 4.3
For each § € QN (0,1), let r(8) = [log %] and & = 2770 o that % < § < 6. Since s > t,
our hypothesis on ¢ tells us that there is a constant a > 0 such that, for all sufficiently small

§eQt,

1 a a
< < . 4.4
) = 5a29) = 20) )
Since t > u, (4.2) tells us that, for all i € N,
lim N (E;,8)¢(6) = 0.
Jim N (E;; )¢ ()
Hence, for all 7 € N and all sufficiently small § € Q,
- €
N(Ei,0)pu(6) < 5 (4.5)
In particular, then, (4.4) and (4.5) tell us that, for all sufficiently small § € QT
N(E;,§) < —° ° (4.6)

< ~ < .
2a¢(0') ~ 2¢5(9)
For each i,k € Z* and § € QN (0,1), let € {0,1}* be a string that encodes i, r(d), and k,
with
|7| = log k + O(logi + log r(9)).
Let M be an oracle Turing machine that, with oracle A and program m, outputs the string

w; g1, that is the k™ component of h(i,d") (if there is one), where &' = 277, Let cps be an
optimality constant for M.

To see that (4.3) holds, choose i € 77 such that z € E;, and let § € QN (0,1). Let & = 2770,
and choose k € {1, ..., N(E;, (5’)} such that z € By (f(wi75/7k)). Then
f(wis k) € DN Bs(x) € DN Bs(x),
so (4.6) gives, for all sufficiently small § € QT
Cil(a) < CH(wip 1)

< Cy(wig k) +cum

<|ml+em

<logk + cpr + O(logi + logr())

< log N(E;,8") + O(logi + log r(6))
€
25(0)

Since i is a constant and, by our assumption, logr(d) < log(log(1/d) + 1) = O(1/¢¢(9)) =
o(1/¢ps(d)), the second term vanishes as § — 01, affirming (4.3).

<log + O(log i + log r(9)).

10



2. Let s >t > sup,cp Dim?*(2) < t < 5. Then for each z € E and all sufficiently small § € Q,
Ci(z) < log(1/¢¢(5)). For all 6 € QT let

Us = {Bs(f(w)) | C*(w) < log(1/¢¢(6))}

and for each i € N, let
E,={x |V <1/i, z € Us}.

Then E C J,eny Ei- For each § < 1/i, N(E;,6) < 2/¢4(5), so N(E;,6)ps(6) = o(1), and
therefore di—mﬁ,l (E;) < s. Assuming that there is a precision family for ¢, the result follows
by Lemma 2.3.

O

5 Hyperspace Dimension Theorems

This section presents our main theorems.

As before, let X = (X, p) be a separable metric space. The hyperspace of X is the metric space
K(X) = (K(X), pu), where K(X) is the set of all nonempty compact subsets of X and pg is the
Hausdorff metric [9] on (X)) defined by

IOH(Ev F) = max{supp(:E,F),supp(E,y)} )
zel yeFl

where p(z, F) = inf,ep p(z, ) and p(E,y) = infoep ple,y).

Let f:{0,1}* — X and D = range(f) be fixed as at the beginning of section 3, so that D
is dense in X. Let D be the set of all nonempty, finite subsets of D. It is well known and easy
to show that D is a countable dense subset of K(X), and it is routine to define from f a function
f 40,1} — K(X) such that range(f) = D. Thus K(X) is a separable metric space, and the
results in section 4 hold for K(X).

It is important to note the distinction between the classical Hausdorff and packing dimensions
dimy(FE) and dimp(E) of a nonempty compact subset E of X and the algorithmic dimensions
dim(E) and Dim(E) of this same set when it is regarded as a point in K(X). In the appendix, we
construct an example of a set F with Hausdorff and packing dimensions dimyg(F) = dimp(F) =
log(2)/1og(4) ~ 0.356 and dim(E) = Dim(E) = oc.

Our first hyperspace dimension theorem applies to lower and upper Minkowski dimensions. This
theorem, which is proven using a counting argument, is very general, placing no restrictions on the
gauge family ¢ or the separable metric space X.

Theorem 5.1 (hyperspace Minkowski dimension theorem). For every gauge family ¢ and every
ECX,

dim?, (K(E)) = dimf,(E) and  dimi,(K(E)) = dimf, (E).

Our third main result is the surprising fact that in a hyperspace, packing dimension and upper
Minkowski dimension are equivalent for compact sets.

Theorem 5.2. For every separable metric space X, every compact set E C X, and every gauge
family ¢ such that ¢1(26) = O(ps(0)) and ¢s(6) = O(1/loglog(1/6)) as & — 01 for all s < t and
there is a precision family for ¢,

dimf (K (E)) = dimy, (K(E)).
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The point-to-set principle is central to our proof of this theorem: We recursively construct a
single compact set L C E (i.e., a single point in the hyperspace K(FE)) that has high Kolmogorov
complexity at infinitely many precisions, relative to an appropriate oracle A. We then invoke
Theorem 3.7 to show that this L has high p-gauged strong algorithmic dimension relative to A.
By the point-to-set principle, then, JC(F) has high packing dimension.

Observation 5.3. The conclusion of Theorem 5.2 does not hold for arbitrary sets E.

Proof. Let E = {1/n:n € N}. Then di—mi,, (E) = 1/2, but every compact subset of FE is finite, so
K(E) is countable and dim&(K(E)) = 0. O

Theorem 5.4 (hyperspace packing dimension theorem). If X is a separable metric space, E C X is
an analytic set, and ¢ is a gauge family such that ¢5(28) = O(ps(9)) and ¢s(5) = O(1/loglog(1/9))
as & — 0T for all s € (0,00) and there is a precision family for ¢, then

dim?(K(E)) > dim?(E).

Proof. For compact sets E, Theorem 5.2 and the hyperspace Minkowski dimension theorem (The-
orem 5.1) imply dim§(K(E)) = dim’y(E).

A result of Joyce and Preiss (Corollary 1 in [14]) states that every analytic set with positive
(possibly infinite) gauged packing measure contains a compact subset with positive (finite) packing
measure in the same gauge. It follows that if F is analytic, then for all ¢ > 0 there exists a compact
subset E. C E with dim§(E.) > dim{(E) — e. Therefore

dim? (K(E.)) = dim’, (E.)
> dim§(E;)
> dimj(E) —e.

Letting ¢ — 0 completes the proof. O

6 Conclusion

Our results exhibit and amplify the power of the theory of computing to make unexpected contri-
butions to other areas of the mathematical sciences. We hope and expect to see more such results
in the near future.

We mention three open problems whose solutions may contribute to such progress. First, at
the time of this writing, a hyperspace Hausdorff dimension theorem remains an open problem. The
difficulty in adapting our approach to that problem is that in the proof of Theorem 5.2, the set L we
construct is only guaranteed to have high complexity at infinitely many precisions. An analogous
proof for Hausdorff dimension would require constructing a set L that has high complexity at all
but finitely many precisions.

Second, it would be useful to identify classes of spaces in which Billingsley-type algorithmic
dimensions—dimensions shaped by probability measures—can be formulated.

Finally, we do not at this time know how to characterize algorithmic dimensions in separable
metric spaces in terms of martingales or more general gales. This is despite the fact that algorithmic
dimensions were first formulated in these terms in sequence spaces.

Acknowledgments

We thank anonymous reviewers of an early draft of this paper for several observations that have
improved this paper.

12



References

1]

[14]

[15]

[16]

[17]

Krishna B. Athreya, John M. Hitchcock, Jack H. Lutz, and Elvira Mayordomo. Effective
strong dimension in algorithmic information and computational complexity. SIAM Journal on
Computing, 37(3):671-705, 2007.

Patrick Billingsley. Ergodic Theory and Information. John Wiley & Sons, 1965.

Christopher J. Bishop and Yuval Peres. Fractals in Probability and Analysis.
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2016.
doi:10.1017/9781316460238.

Rod Downey and Denis R. Hirschfeldt. Algorithmic randomness. Communications of the
ACM, 62(5):70-80, 2019.

Rod Downey and Denis R. Hirschfeldt. Computability and randomness. Notices of the Amer-
ican Mathematical Society, 66(7):1001-1012, 2019.

Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Complexity.
Springer-Verlag, 2010.

K. Falconer. Dimensions and measures of quasi self-similar sets. Proc. Amer. Math. Soc.,
106:543-554, 1989.

Kenneth Falconer. Fractal Geometry: Mathematical Foundations and Applications, 3rd edition.
John Wiley & Sons, 2014.

Felix Hausdorff. Grundziige der Mengenlehre. Leipzig, 1914. English translation available as
Felix Hausdorff, Set Theory, AMS Chelsea Publishing, 2005.

Felix Hausdorff. Dimension und dufleres Maf3. Math. Ann., 79:157-179, 1919.

David Hilbert. On the infinite. In Jean van Heijenoort, editor, From Frege to Gédel: A Source
Book in Mathematical Logic, 1879-1931. Harvard University Press, 1967. Translation by Stefan
Bauer-Mengelberg of Hilbert’s 1925 essay.

John M. Hitchcock, Jack H. Lutz, and Elvira Mayordomo. Scaled dimension and nonuniform
complexity. Journal of Computer and System Sciences, 69:97-122, 2004.

Greg Hjorth and Alexander S. Kechris. New dichotomies for Borel equivalence rela-
tions. Bull. Symbolic Logic, 3(3):329-346, 1997. URL: https://doi.org/10.2307/421148,
doi:10.2307/421148.

H. Joyce and D. Preiss. On the existence of subsets of finite positive packing measure. Math-
ematika, 42(1):15-24, 1995.

Anatole Katok and Boris Hasselblatt. Introduction to the Modern Theory of Dynamical Sys-
tems. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1995.

Nets Hawk Katz and Terence Tao. Some connections between Falconer’s distance set conjecture
and sets of Furstenburg type. New York Journal of Mathematics, 7:149-187, 2001.

Robert Kaufman. On Hausdorff dimension of projections. Mathematika, 15(2):153-155, 1968.

13


http://dx.doi.org/10.1017/9781316460238
https://doi.org/10.2307/421148
http://dx.doi.org/10.2307/421148

[18]

[25]

[26]

[27]

[31]

32]

[33]

Alexander S. Kechris, Slawomir Solecki, and Stevo Todorcevic. Borel chromatic num-
bers. Adv. Math., 141(1):1-44, 1999. URL: https://doi.org/10.1006/aima.1998.1771,
d0i:10.1006/aima.1998.1771.

Takayuki Kihara and Arno Pauly. Point degree spectra of represented spaces. CoRR,
abs/1405.6866, 2014. URL: http://arxiv.org/abs/1405.6866, arXiv:1405.6866.

Ming Li and Paul M. B. Vitanyi. An Introduction to Kolmogorov Complexity and its Applica-
tions. Springer-Verlag, Berlin, 2019. Fourth Edition.

Jack H. Lutz. The dimensions of individual strings and sequences. Information and Compu-
tation, 187(1):49-79, 2003.

Jack H. Lutz and Neil Lutz. Algorithmic information, plane Kakeya sets, and conditional
dimension. ACM Transactions on Computation Theory, 10(2):7:1-7:22, 2018.

Jack H. Lutz and Neil Lutz. Who asked us? How the theory of computing answers questions
about analysis. In Dingzhu Du and Jie Wang, editors, Complexity and Approximation: In
Memory of Ker-I Ko, pages 48-56. Springer, 2020.

Jack H. Lutz and Elvira Mayordomo. Algorithmic fractal dimensions in geometric measure the-
ory. In Vasco Brattka and Peter Hertling, editors, Handbook of Computability and Complexity
in Analysis. Springer, to appear.

Neil Lutz. Fractal intersections and products via algorithmic dimension. ACM Transactions
on Computation Theory, to appear.

Neil Lutz and D. M. Stull. Projection theorems using effective dimension. In 43rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-51,
2018, Liverpool, UK, pages 71:1-71:15, 2018.

Neil Lutz and D.M. Stull. Bounding the  dimension of points
on a line. Information  and  Computation, 275, 2020. URL:
http://www.sciencedirect.com/science/article/pii/S0890540120300894,
doi:https://doi.org/10.1016/j.1ic.2020.104601.

Pertti Mattila. Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability.
Cambridge University Press, 1995.

Elvira Mayordomo. Effective Hausdorff dimension in general metric spaces. Theory of Com-
puting Systems, 62:1620-1636, 2018.

Mark McClure. Entropy dimensions of the hyperspace of compact sets. Real Anal. Exchange,
21(1):194-202, 1995. URL: https://projecteuclid.org:443/euclid.rae/1341343235.

Mark McClure. The Hausdorff dimension of the hyperspace of compact sets. Real Anal.
Ezchange, 22:611-625, 1996.

P. A. P. Moran. Additive functions of intervals and Hausdorff dimension. Proceedings of the
Cambridge Philosophical Society, 42:5-23, 1946.

Yiannis N. Moschovakis. Descriptive Set Theory, volume 100 of Studies in Logic and the
Foundations of Mathematics. North-Holland Publishing, 1980.

14


https://doi.org/10.1006/aima.1998.1771
http://dx.doi.org/10.1006/aima.1998.1771
http://arxiv.org/abs/1405.6866
http://arxiv.org/abs/1405.6866
http://www.sciencedirect.com/science/article/pii/S0890540120300894
http://dx.doi.org/https://doi.org/10.1016/j.ic.2020.104601
https://projecteuclid.org:443/euclid.rae/1341343235

[34]
[35]

[36]

37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Andre Nies. Computability and Randomness. Oxford University Press, 2009.

Tuomas Orponen. Combinatorial proofs of two theorems of Lutz and Stull. Technical Report
arXiv:2002.01743, arXiv.org, 2020.

Yakov Pesin. Dimension Theory in Dynamical Systems: Contemporary Views and Applica-
tions. University of Chicago Press, 1998.

Claude A. Rogers. Hausdorff Measures. Cambridge University Press, 1998. Originally pub-
lished in 1970.

M. Sipser. A complexity-theoretic approach to randomness. In Proceedings of the 15th ACM
Symposium on Theory of Computing, pages 330-335, 1983.

M. Sipser. A topological view of some problems in complexity theory. In Proceedings of the
11th Symposium on Mathematical Foundations of Computer Science, pages 567-572, 1984.

M. Sipser. The history and status of the P versus NP question. In Proceedings of the 24th
Annual ACM Symposium on the theory of Computing, pages 603—-618, 1992.

Ludwig Staiger. Exact constructive and computable dimensions. Theory Comput. Syst.,
61(4):1288-1314, 2017.

Claude Tricot. Two definitions of fractional dimension. Mathematical Proceedings of the
Cambridge Philosophical Society, 91:57-74, 1982.

Shmuel Weinberger. Computers, Rigidity, and Moduli: The Large-Scale Fractal Geometry of
Riemannian Moduli Space. Princeton University Press, Princeton, NJ, USA, 2004.

Stephen Willard. General Topology. Dover Publications, 2004.

15



A Proofs from Section 2

Observation A.1. If E is separable and 0 < § < 6, then N(E,$) < N(E, ).

Proof. Let F' C X be a witness to N(Elé). For all z € F, there exists & € D with 0 < p(z,%) <
0 — 6, s0 Bs(x) € Bs(#). Thus, the set F' = {Z |z € F'} C D satisfies

Ec | Bstx) € | B;(a)

zeF ek
so N(E,8) < |F| = |F| = N(E, ). O

Proof of Observation 2.2. Since N(E,8) > N(E,§), it is clear that the left-hand side of each equa-
tion is bounded above by the right-hand side. We now prove the other direction. Fix s € (0, 00).

1. Assume that liminfs g+ N(E,)ps(d) = 0, and let dp,e > 0. Then there is some § < §y such
that N(E,6)ps(0) < /2. By the (right) continuity of ¢y, there exists some 5 € (6,00) such
that ¢4(8) < 2¢,(8). By Observation A.1, N(E,$) < N(E,d), so we have N(E,8)ps(8) <
2N (E,0)ps(0) < e

2. Assume that limsups_,o+ N(E,6)ps(0) = 0, and let € > 0. Then there is some Jp > 0 such
that N(E,0)p,(8) < /2 for all § < &. For every 6 < &y, by the (left) continuity of ¢, there
is some & < § such that ¢g(8) < 2ps(8). Observation 2.2 tells us that N(E,d) < N(E,d), so
we have N(E,8)ps(8) < 2N(E, 8)ps(6) < &

O

Proof of Lemma 2.3. We follow the presentation by Bishop and Peres [3] of the proof for the canon-
ical gauge family.

1. Fix t > s > 0, and assume there is some constant ¢ > 0 such that ¢;(2d) < ¢ @4(0)
for all sufficiently small §. Let F' C E be a set with Py*(F) < oo. It suffices to show
that limsupgs_,o+ N(F,0)p:(6) < oco. To see this, fix § > 0 and let N,(F,d) denote the
maximum number of disjoint open balls of diameter § with centers in F', and observe that
Np(F,0)ps(6) < PP*(F) and N(F,20) < N,(F,9). It follows that N (F,28)¢.(26)/c < oo for
all sufficiently small §, which yields the desired bound.

2. Suppose that a = {as}e(0,00) 15 @ precision family for ¢, fix t > s > 0, and suppose that
F C E is a set with P{*(F) > 0. It suffices to show that limsups_,o+ N(F,8)¢ps(5) > 0, and
since Ny (F,6) < N(F,6), it suffices to show that lim sups_,o+ Np(F,d)ps(d) > 0.

Let v > 0 be such that for every ¢ > 0 there is a collection {Bjs, /o(z;)}jen of disjoint
balls with diameters §; < e, centers x; € F, and ZjeN wi(6j) > v. Fix an e > 0 and a
corresponding collection of balls. Let rg = max{r € N | as(r) > ¢}, and for each r € N, let
nr=j €ENJas(r+1) <d; < as(r)}. Then N,(F,as(r+1)) > n,, so

ZN (Fyas(r+ 1)) e (ag(r ancpt (as(r
=70 T=To
> Z‘Pt(éj)
jEN
> 7.
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For every r € N, define

(ry) £2(02()

C

I

ar = Np(F,as(r+ 1))ps(as(r +1)) > Ny(F, as

where c¢ is the implicit constant in the precision sequence condition for az. Then

3 ar% > % 3 Np(F as(r + 1) (as(r + 1)) > %

r=rQ r=rQ

If {a,}reny were bounded, then the sum would tend to 0 as 79 — oo since « is a precision
family. This is a contradiction, so we have lim sup,._, . Np(F, as(r+1))ps(as(r+1)) > 0, and
the claim holds.

O
B Proofs from Section 3
Proof of Lemma 3.4. Letting x = ﬁ;(g) and noting that z — 0% as § — 01, we have
5u(9) = 2770 = V= ofa) = oy (9)
as § — 0T, O

Proof of Theorem 3.7. Let ¢ and z be as given, and let S~ and ST be the sets on the right-hand
sides of 1 and 2, respectively.

1. It suffices to show that ~ ~
(dim“”,oo) cSsS C [dim“”,oo).
To verify the first inclusion, note that, by Observation 3.6,
t>s>dim?(z) = liminf 29@ g (6) =0
d—0+

0—07t (,03(5)

— liminf C s(0) <1
im inf Cs()ps(9)
— te S
To verify the second inclusion, note that, by Observation 3.6,
s €87 <= liminf Cs(x)ps(d) =0
6—07+
C(S(l‘)‘ps(é) —1

lim inf 20\/#Ps\%) = 2
= limin :(0) 00
= liminflog (2@ &,(4)) = —c0

im inf log (2707 2,(9))

limi fQC‘S(x)NS §5) =
= limin ©s(0) =0

— s> dim® ().

2. It suffices to show that N B
(Dim‘p,oo) c st cC [Dim“”,oo).

The proof of this is completely analogous to the proof of part 1 of the theorem.
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C Proofs from Section 4

Proof of Theorem 4.1. Let X, ¢, and E be as given. A function f : {0,1}* — X such that
D = range(f) is dense in X is an implicit oracle in all Kolmogorov complexities and algorithmic
dimensions in this proof, but we omit f from the notation.

For any s € Q*, the density of D implies that H¥:(F) = 0 can be witnessed by balls with
rational radii and centers in D. Hence, for every s,e € QT with s > dimﬁ(E), there exist sequences
{z7"}ien C D and {07 }ien € Q* such that {Bgs (27°) }ien is an e-cover of £ and

D es(67°) < 1. (C.1)

1€N
Let h: N x (QN (dimfj(E), 0)) x QT — {0,1}* x Q be such that

h(i,s,e) = (w;*,6°),

)

where f(w;°) = 2, and let g : (Q7)® — R be the (continuous) function

s 4 908(6)
g(s,t,e) = (131%£10g \/ o1(0)

Let A be an oracle encoding h and ¢, and let s, € QT such that dimﬁ(E) < s < t. We will show
that for every = € E, dim¥4(z) < t.

Fix z € E and ¢ € QT such that C4(e) < g(s,t,€); such an e exists because g(s,t,-) is
unbounded and computable relative to A (cf. Section 3.3 of [20]). Let j be such that « € B(;Js;,s (a:j’a),

and let § = 5;”6 <e. Then as § — 07,

Ci(x) < C(23°) + O(1)
< Ce,j) +O(1).
By (C.1) there are fewer than 1/¢,(8) values of i for which 67 = §. Therefore
C(e,j) <2C4(e) + C(j) + O(1)
+0(1)

1
< 2¢(s,t,e) + lo
9(s,t,€) 8 n0)

Since we can choose arbitrarily small € in the above analysis, we have shown

©s(8) _1
i 291 01(0) < i 27 S0 003

. ‘Pt(é)
<O0(1)-1 f
= O ity /%)




and so dim?4(z) < t.
For the other direction, assume that there is a precision family o = {s}se(0,00) for ¢, fix any
oracle A C N, and let s,t € Q be such that

sup dim#4(z) < s < t. (C.2)
zel

For all r € N, let

te = { B () | CH(w) < tog— L}

and notice that

2
U | < ———.
ps(as(r))
Now fix any r € N, and let
We = | Us.
k=r

For every = € E, (C.2), together with the fact that ¢(as(r)) = O(p(as(r +1))) as r — oo, tells us

that the set
{r ‘ Qcﬁsm(x)(ps(as(r)) < 1} = {T m}

is unbounded, as is the set {k | z € Uy}, so x € W,. Thus W, is a countable a,(r)-cover of E with

Y wuldiam(U)) =" > eulas(k)

Uew; k=r Ucl),

Cﬁs(r) () < log

o

2
< ; @s(as(k)) : ‘pt(as(k))'

Since « is a precision family for ¢, this sum converges. We thus have

< 22 pr(as(r))
eN ps(as(r))
< 00,
so dim$(E) < t. We conclude that dim$(E) < sup,cp dim?(z). O
D Proofs from Section 5
Construction D.1. Given a sequence R € {0,1}¥, define a sequence Ag, A1, ... of 2’-element sets

Ay € {0,1}% by the following recursion.

(i) Ag = {\}, where A is the empty string.
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(ii) Assume that
Ag = {u,

has been defined, where the u; are in lexicographical order. Let

0§i<2f}g{o,1}2f

bul(]a bulla bu207 bu217 B bu2507 buﬂl
be the first 2¢T! bits of R that have not been used in earlier stages of this construction. Then

Apyr1 = {uabyy |u € Ay and a € {0,1} }.

For each string w € {0,1}* of even length, define the closed interval I,, C [0, 1] of length 7-1%I/2 by
the following recursion.

(i) In =10,1].

(ii) Assume that I, has been defined, and divide I,, into seven equal-length closed intervals, calling
these K1, Joo, Jo1, K2, Jio, J11, and K3, from left to right. Then, for each a,b € {0,1}, we
have I,qp = Jab-

For each ¢ € N, let

E, = U Iwy

wEAy

o0
E = ﬂ E,.
=0

and let

This completes the construction.

Intuitively, each F; in Construction D.1 consists of 2¢ closed intervals of length 7~¢, with gaps
between them of length at least 7~¢. For each of these, one bit of R decides which of the subintervals
Joo and Jy; is included in Eyy1, and the next bit of R decides which of the subintervals Jip and
J11 is included in Ey4q. The set E is a Cantor-like set chosen in this fashion. It is clear that F is
compact.

Observation D.2. For all R € {0,1}%, the set E of Construction D.1 has Hausdorff and packing

dimensions
_ log2

log 7
Proof. Let R € {0,1}*, and let Ry = 0“. Let E be the set constructed from R as in Construc-

tion D.1, and let Ey be the set constructed from Ry. Note that Ej is the set of all reals in [0, 1]
whose base-7 expansions consist entirely of 1s and 4s. Define the function

dimg (F) = dimp(E) ~ 0.356.

g:{1,4}* — {1,2,4,5}*
by
9(S)[n] = S[n] + R[2n + S[n]]

for all S € {1,4}* and n € N. Note that g transforms each 1 in S to a 1 or 2 in g(S5), and g¢
transforms each 4 in S to a 4 or 5 in g(5). If we identify sequences in {1,2,4,5} with the reals that
they represent in base 7, then we now have a bijection



Moreover, if x,y € Fy are distinct, and n is the first position at which x and y have different base-7
digits, then
=yl lg(x) —g(y)| € [T, 7],

so g is bi-Lipschitz and hence preserves Hausdorff and packing dimensions [8]. We thus have
dimyg(E) = dimp(Ey), dimp(F) = dimp(Ep). (D.1)

The set Ey is the self-similar fractal given by an iterated function system consisting of two contrac-
tions, each with ratio % It follows by the fundamental theorem on self-similar fractals [32, 7, 8]
that the Hausdorff and packing dimensions of Fy are both the unique solution s of the equation
2.-77% =1, i.e., that

log 2

log 7

dimp(Eo) = dimp(Eo) = (D.2)

The observation follows from (D.1) and (D.2). O

Observation D.3. If R € {0,1}* is Martin-Ldf random, then the set E of Construction D.1 has
algorithmic dimensions
dim(F) = Dim(E) = co.

Proof of Observation D.3 (sketch). Let R and E be as given. By (3.1) it suffices to show that, for
all sufficiently large r,
C.(E) > 2'/3,

For this is suffices to show that, for all sufficiently large r» and all F' € D,
pu(F,E) <277 = C(F) > 273 (D.3)

Let r € N be large, and assume that py(F, E) < 27". Let £ = [r/3]. Then 27" < 1/2-77¢ so
the finite set I’ can be used to compute the set A; of Construction D.1. This implies that F' can
be used to compute the (2° — 1)-bit prefix w of R that was used to decide the set A,. Since R is
random and 7 is large, this implies that C(F) > 27/3, O

In addition to illustrating the difference between classical and algorithmic dimensions, Obser-
vation D.3 combines with our general point-to-set principle to give a very non-classical proof of the
following known classical fact.

Corollary D.4. dimy(K([0,1])) = dimp(K([0,1]) = cc.

Proof. Let A C N. By Theorem 4.1 applied to K([0, 1]), it suffices to exhibit a point E € K(]0,1])
such that dim”(FE) = co. If we choose R € {0,1}* to be Martin-Lf random relative to A, then
Observation D.3, relativized to A, tells us that Construction D.1 gives us just such a point. O

Proof of Theorem 5.1. Let E C X and ¢ be a gauge family. Let 6 > 0 and F C X be such that
|F| = N(E,J) and
E C U B5($).

zeF
For every L € K(E), we have pu(L,{x € F'| Bs(x) N L # 0}) < 4, so

K(E) € | Bs(D),

TCF
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and therefore N(K(E),d) < |2F| = 2N(E9),
Now suppose that liminfs_,q+ N(FE,§)ps(d) = 0. Then since ps(6) — 0T as § — 01, we have
liminf N(K(E), §)3s(6) < liminf 2V (E0)971/¢:(9)
it VK(E) 002, < i
N(E,8)ps(8)—1

= liminf 2 ?s(3)
6—0Tt

=0,

so dim%, (K(E)) < dim%,(E).
We now show that dim*%,(K(E)) > dim%,(E). Let § > 0, let P be a set of 2§-separated points
in E, and observe that |P| < N(FE,0). Let F C K(FE) satisty |F| = N(K(E),d) and

E)C ] Bs(F

FeF

For every distinct pair S,S" C P, we have py(S,S’) > 24, so, for each F' € F, the ball Bs(F) can
contain at most one subset of P. Hence,

N(K(E),8) = |F| = 27| = 250,
Now let t > s > dl_m/a(lC(E)) Then

liminf N(K(E), 8)3s(5) = 0 —> liminf 2VE82-1/:0) _ g

§—0+ §—0t
<= liminf | N(F L
§—0t @5(5
<= liminf N(E,0)¢s(9) —
6—0* (,08((5)

= liminf N(E,d)ps(0) < 1
6—0t
= liminf N(E,d)p:(d) =0
§—0t
= dim%,(F) < t.
The argument for upper Minkowski dimension is completely analogous. O
Observation D.5. Let ¢ be any gauge family, X any metric space, E C X, and § > 0.
1. If dim%(E) < oo, then there exists a point x € E such that dim*%,(E N Bj(x)) = dim¥,(E).
2. If dim’y(F) < oo, then there exists a point x € E such that dim’y(E N Bs(x)) = dim'y,(E).
Proof. 1t follows from the monotonicity of Minkowski dimensions that
dim®, (F 1 By(2)) < dim¥,(E)

holds for every z € X.
If dim%,(E) < oo, then N(F,d/2) is finite; let the set {x1,...,2n(gg/2)} C X testify to this
value. Then every E N Bj/y(w;) is nonempty, and
N(E,5/2)

E C U (E N Bs/a(wi)),
i=1
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so by the finite stability of dim?,, there is some 1 < i < N(E,§/2) such that
dim%,(E) < dim%(E N By ().
Now let z € E'N Bs/y(z;) and observe that E N Bs/y(z;) € E£N Bs(x), so monotonicity gives
dim?, (1 1 By (w1)) < dim?, (B 1 Bs(a)).

This proves the first statement, and the proof of the second statement is completely analogous. [
Lemma D.6. Let ¢ be any gauge family, X any metric space, and E C X a compact set.

1. There exists a point x € E such that dim*(E N Bs(z)) = dim*((E) holds for all 6 > 0.

2. There exists a point © € E such that dimy,(E N Bs(x)) = dim’y((E) holds for all § > 0.

Proof. By the compactness of E, N(FE,¢) is finite for every ¢ > 0, and the Minkowski dimensions
of E are finite as well. Hence, Observation D.5 yields a sequence {z; } ey of points in X such that

dim%, (BN By + () = dim¥(E)

for all » € N. Since F is compact, there is a subsequence {z,, };en of {x,}ren that converges to
some point z € E. Thus, for all § > 0, there is an i € N such that p(z,,,z) < 27" < /2, so

B27'ri (xT’l) g B217'ri (II;) g Bé(f]}')
By the monotonicity of Minkowski dimensions, then,
dim?, (E) = dim%(E N\ By +, (2,,)) < dim%(E 1 By(2)) < dim¥, ().
The proof of the second statement is completely analogous. O

Proof of Theorem 5.2. Lemma 2.3 immediately gives dimg(lC(E)) < ch—mf/t(lC(E))
For the other direction, apply the general point-to-set principle for packing dimension (Theo-
rem 4.2) to let A be an oracle such that

dimS(K(E)) > sup Dim?4(L), (D.4)
LEK(E)

and let t = ﬁﬁ,, (E). Applying Lemma D.6, let = € E be a point such that for all § > 0
dim’y,(E N Bs(x)) = t.
By the hyperspace Minkowski dimension theorem, then, we also have
dim'o, (K(E N Bs(x))) = ¢ (D.5)

for all § > 0.
Let s < t. We will recursively define a compact set L € IC(F) such that

Dim#4(L) > s.
Let Ag be an oracle that encodes both A and . By (D.5) and Observation 2.2,

limsup N (K(E N By (z)),8)@s(6) = oo.

6—0t
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Thus there is a precision dg € QT such that

~

N(’C(E N Bl(iﬂ)), 50)(,53(50) > 1.

That is, it requires at least 1/ps(dp) open balls of radius dp (in the py metric), with centers that
are finite subsets of D, to cover K(E N Bj(x)). By the pigeonhole principle, the number of finite

sets J C D satisfying

is at most )

Ps (50) ‘
Hence there is some compact set Ly € K(B1(z) N E) with

210g(%+60))+1 1<

CJoLo)ealto) > 105 (5= ) 0:(00)

=1- 908(60)
> 1/2.

Define the compact set
Ly = (Lo \ Bs,(2)) U{z},
and notice that pp(Lo U {z}, L{)) < dg, so

Cy(Lo) < Cp(Lo,x) + O(1) < Cp° (L) + O(1),
since Ag encodes x. Thus, as long as dq is sufficiently small, we have
2 (Lh)es(00) = 1/4.
Now, for each i > 1, let A; be an oracle encoding A;_1 and §;_1. Let §; € Q" and
L; € K (Bs,_,2(x) NE)
be such that L, N Bs,(z) = {z} and
Coi(L)ps(61) > 1/4.

This pair exists for exactly the same reason that dp and Ly, exist.
Define the set
L=z

1€N

(D.6)

Notice first that this set belongs to K(E). Consider any sequence {z, }ren of points in L. If the
sequence is contained within {x} UJ;"_, L] for some finite n—i.e., within a finite union of compact
sets, which is compact—then it has a convergent subsequence that converges to a point in that
union. Otherwise, the sequence has points in infinitely many of the L}, and there is a subsequence
{2r; }jen such that, for every pair j/ > j there exists a pair ¢ > 4 such that x,, € Lj\ {2} and
Ty, € L, \ {x}; such a subsequence converges to z. Thus L is sequentially compact and therefore

compact.

24



Let D be a countable dense set in X, and recall that U is a fixed universal oracle prefix Turing
machine. Consider an oracle prefix Turing machine M, with access to an oracle for z and ;. On
input 7 such that U(w) = F C D, M outputs the set

{y € F|p(z,y) < d;/2}.

Now let 7 testify to Cgi(L). Then M(7w) C D is a set of points satisfying pp (L}, U(7)) < d;, so we
have
CRi(L}) < |m| + enr = Cf¥ (L) + enr (D.7)

where cjs is an optimality constant for the machine M. Furthermore,
Cii(L) < CiH(L) +O(1).
Combining this fact with (D.6) and (D.7) yields
C5(L)pa(d) 2 1/4 = pa(8) - O(1).
The latter term vanishes as i — oo, so

lim sup C4 (L), (8) > 1/4.

6—0t

By Theorem 3.7, this implies that Dim?“(L) > s. We conclude that Dim?4(L) > ¢, so by (D.4),
the proof is complete. O
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