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Abstract—Real-time and accurate precipitation estimation is
critical for environmental protection and water resources man-
agement. Compared to traditional methods, i.e., radar reflectivity
(Z) and rainfall rate (R) relations, relying on local raindrop size
distributions, the deep learning model can fit the functional rela-
tionship between radar observations and rainfall rate measure-
ments. However, the black-box nature of deep learning models
makes it difficult to explain the physical mechanisms behind their
results. To address this problem, this study proposes DQPENet, a
deep learning model for polarimetric radar QPE utilizing dense
blocks. We employ a permutation test to understand the relative
importance of different radar data input variables. Additionally,
we propose a regression importance value (RIV) method for
the precipitation estimation task to visualize feature importance
regions. Our experimental results show that radar reflectivity
and specific differential phase at the lowest elevation angle are
the two most important observables for the model’s precipitation
estimation. Furthermore, we find that radar data closer to the
rain gauge are more influential on the model’s results, indicating
that the deep learning model is able to capture the underlying
physical mechanism of atmospheric data.

Index Terms—Dual-polarization, quantitative precipitation es-
timation, deep learning, permutation test, regression importance
value

I. INTRODUCTION

In the field of atmospheric science, the task of quantitative
precipitation estimation (QPE) is crucial. It aims to provide ac-
curate and timely estimates of rainfall rate and amount, as well
as precipitation distribution, on a global and regional scale.
Traditionally, the relationship between radar reflectivity (Z)
and precipitation intensity (R), also known as Z-R relations,
has been the main basis for radar data retrieval of precipitation
[1–3]. Nevertheless, these conventional parametric relations
are sophisticated to be derived and do not incorporate the
spatial information of precipitation from radar observations.

With the development of deep learning (DL) technology,
various DL models are used for classification or regression
tasks, and have achieved impressive performances [4–6].
Studies have proved that it is feasible to estimate ground
precipitation rate from polarimetric radar measurements using
deep learning networks, so deep learning methods exhibit great
potential in QPE tasks [7]. However, due to the black-box
nature of the model, we cannot understand the basis of the

model decisions, resulting in a lack of physical interpretability
of the model results [8].

In recent years, research on the interpretability of DL
models has yielded some achievements. It attempts to mine
the underlying physical mechanisms captured by DL models,
and reveal the reasons for the model results [9–11]. In this
paper, we first proposed a DQPENet model for precipitation
estimation. Then, we designed a regressor importance value
(RIV) method to visualize the features that have the greatest
impact on the model’s results. Additionally, we introduce a
permutation test method to rank the importance of features.
The feasibility of applying interpretation techniques to the
QPE task is demonstrated using the Weather Surveillance
Radar - 1988 Doppler (WSR-88D) observations near Mel-
bourne (KMLB), Florida, USA.

II. DATASET AND METHODOLOGY
Figure 1 illustrates the pipeline of our DL model interpre-

tation technology framework for QPE. In the first module, we
introduce the study domain and the data set.

A. Datasets

In this article, our study domain is located in the city of
Melbourne on the Florida peninsula. Dual-polarization radar
data are collected from KMLB Weather Surveillance Radar -
1988 Doppler (WSR-88D) near Melbourne, Florida. We use
three polarimetric observables, i.e., reflectivity (Z), differential
reflectivity (Zdr) and specific differential phase (Kdp) as the
inputs for the model. The ground truth for the model is
obtained from rain gauge data collected by the South Florida
Water Management District (SFWMD) rain gauge network.
Only radar observations and rain gauge data within 150km
from the KMLB radar station are selected as the dataset to
ensure data quality. The above radar and rain gauge data from
2016-2019 are used in this study, where the data from 2016-
2018 as training and validation data, and the data from 2019
as testing data.

B. Overview of DQPENet

The concept of the DQPENet essentially consists of two
main components: dense blocks and transition layers. The
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Fig. 1. Flowchart of the deep learning interpretation technology for polarimetric radar QPE: (a) DQPENet module; (b)
permutation test; (c) regression importance value.

radar data are fed into a 3×3 convolution layer, followed by
four dense blocks and three transition layers. In the end, the
precipitation intensity is obtained through an adaptive average
pooling layer and a fully connected layer. Each dense block
is composed of several bottleneck layers, and each bottleneck
layer has a batch normalization, ReLU and convolution sub-
layers, i.e., BN-ReLU-Conv(1×1), followed by a BN-ReLU-
Conv(3×3) set of layers. The four dense blocks contain 6, 12,
36 and 24 bottleneck layers respectively. The transition layers
have the same internal structure, consisting of a BN layer and
a 1×1 Conv layer, followed by an average pooling layer with
stride 2. The input of the model is (6, 9, 9) containing the 3D
radar data of the above 3 variables in a 9 × 9 pixel window
at two elevation angles. The total number of samples in our
dataset is 101337, including training, validation, and testing
data.

III. INTERPRETATION METHODS

A. Permutation Test

The permutation test quantifies the importance of each vari-
able to the precipitation estimation results. When disrupting
the matrix of a variable, the method ranks it by quantifying
whether the model loss has increased or decreased, i.e., the
more the loss has increased, the more important the variable
is [12]. This algorithm consists of N steps, where N stands
for the total number of variables. At the end of each step,
the most important variable is permanently permuted. In this
paper, we rank the following six variables: Z1, Zdr1, Kdp1,
Z2, Zdr2, Kdp2, where 1 and 2 represent the lowest and the
second lowest elevation angles respectively.

B. Regressor Importance Value

In this paper, we design an RIV method that can be used
for regression tasks and apply it to precipitation estimation.

Specifically, through the backpropagation process, RIV op-
timizes the model parameters and calculates the gradient
information (i.e., the importance value, Iv) of each input pixel
through the chain rule, and visualizes the value of Iv . RIV is
defined by:

Iv =
∂L

∂θi,j
|θi,j=θi,j

0
(1)

where L is the mean square error (MSE) between the pre-
cipitation estimates and rain gauge observations, i and j are
the horizontal and vertical coordinates of each grid point
respectively, θi,j is one scale regressor at one grid point, θi,j0

is the value of θi,j in a testing sample. This method does not
need to increase the complexity of the model and can calculate
the importance value of all pixels, so the RIV result has the
same dimensions as the input radar data. Iv can be regarded
as the correlation between L and θi,j , and reflects the degree
of θi,j influence on the loss function, which can explain the
reason why the model makes this decision.

IV. RESULTS AND ANALYSIS

A. Example Estimation Products

To compare the performance of the DQPENet model in
precipitation estimation, this paper adopts two commonly used
traditional Z-R relations, as follows:

R(Z) = 1.70× 10−2 × Z0.714 (2)

R(Z,Zdr) = 1.42× 10−2 × Z0.770 × (10
Zdr
10 )−1.670 (3)

where R stands for the rainfall rate in mm/h. In this article, the
precipitation intensity over an hour is accumulated to obtain
the hourly radar precipitation amount. In order to quantify the
performance of the DQPENet model, five evaluation metrics
are computed, including root mean absolute error (MAE),
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mean square error (RMSE), deviation (BIAS), the correlation
coefficient (CC), and normalized standard error (NSE).

TABLE I: Evaluation results of hourly rainfall estimates from
three QPE methods

.
Model MAE RMSE CC NSE BIAS

(mm) (mm) (ratio) (%) (ratio)

DQPENet 1.58 2.68 0.92 26 0.91
R(Z) 3.26 5.07 0.76 54 0.54

R(Z,Zdr) 3.34 5.15 0.78 55 0.49

Table I shows the MAE, RMSE, CC, NSE and BIAS ratio
values of the three QPE methods. It can be seen that DQPENet
achieves superior estimation performance than the other two
methods, it has MAE of 1.58 mm, RMSE of 2.68 mm, NSE of
26%, correlation of 0.92, and bias of 0.91 for hourly rainfall
estimates.

B. Results of Interpretable Methods

Figure 2 shows the results of the permutation test for the
DQPENet model, the more important features are above, and
the less important features are below. It can be seen that the
most important feature is Z1, i.e., the radar reflectivity of the
lowest elevation angle, followed by Kdp1. In fact, Kdp1 is
less susceptible to radar observation bias and hail, and is more
accurate than estimates obtained by using Z and Zdr in heavy
precipitation, so the relationship between Kdp1 and R is closer
to linear [13]. This also indicates that the heavy precipitation
data have a strong influence on the estimated results.

Fig. 2. Results of permutation test for DQPENet, based on
24493 testing examples. The most important variables are in
orange.

Figure 3 shows the result of RIV, where subplots (a) and (c)
are one sample of the input model at four different times for
light and high rainfall rates respectively, i.e., images of size 9
× 9. Fig. 3(b) and (d) are RIV visualizations of each variable
corresponding to the one sample, with the color guide being
values of importance, the larger the value and the brighter
the color, the more important it is to the model results. As
can be seen from Fig. 3, the highlighted areas of all variables
are in the center, this is because the center points of radar
samples correspond to the rain gauge measurements, so the
data at the center point and its surroundings have the strongest
correlation with the rain gauge data, and are more important
for the estimation of precipitation. Combined with the result of
the permutation test in Fig. 2, the two variables Z1 and Kdp1

are the most important for the model result, so the highlighted
areas of these two variables in Fig. 3 are the most obvious.

V. CONCLUSION

In this paper, we discuss the feasibility of applying inter-
pretability methods to QPE tasks, including the permutation
test and regression importance values. First, we transform the
task of estimating precipitation into a regression problem and
design a DQPENet model using dense blocks. Then, through
the permutation test, the importance of model input variables is
sorted, among which Z1 and Kdp1 are the most important for
precipitation estimation. According to the back-propagation of
the loss function and the change of the model gradient, the RIV
method visualizes the areas of samples that have the greatest
impact on the model results. From the visualization results of
RIV, it can be concluded that the radar data with a stronger
association with rain gauge data are more important to the
precipitation estimation. The experimental results can provide
further guidance on how to select observed variables from
radar data as model inputs for precipitation estimation and
verify whether the deep learning model results are plausible.
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