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For an n × n matrix A, let q(A) be the number of distinct 
eigenvalues of A. If G is a connected graph on n vertices, let 
S(G) be the set of all real symmetric n ×n matrices A = [aij ]
such that for i #= j, aij = 0 if and only if {i, j} is not an 
edge of G. Let q(G) = min{q(A) : A ∈ S(G)}. Studying 
q(G) has become a fundamental sub-problem of the inverse 
eigenvalue problem for graphs, and characterizing the case 
for which q(G) = 2 has been especially difficult. This paper 
considers the problem of determining the regular graphs G
that satisfy q(G) = 2. The resolution is straightforward if the 
degree of regularity is 1, 2, or 3. However, the 4-regular graphs 
with q(G) = 2 are much more difficult to characterize. A 
connected 4-regular graph has q(G) = 2 if and only if either G
belongs to a specific infinite class of graphs, or else G is one of 
fifteen 4-regular graphs whose number of vertices ranges from 
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Regular graphs 5 to 16. This technical result gives rise to several intriguing 
questions.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

For any connected graph G on n vertices, let S(G) denote the set of all real symmetric 
n × n matrices A = [aij ] where aij = 0 if and only if {i, j} is not an edge in G, and 
the entries aii can take any value. The inverse eigenvalue problem for a graph G asks to 
determine all possible spectra of matrices in S(G) [5,14].

This problem and several of its sub-problems have been studied extensively. One of 
these sub-problems is to consider all possible multiplicity lists of eigenvalues of matrices 
in S(G). If we look at the multiplicity lists of eigenvalues of all matrices in S(G) as lists 
of numbers, the shortest length among all these lists is the minimum number of distinct 
eigenvalues of matrices in S(G). This parameter is denoted by q(G) and has been studied 
in [2,7,15–17]. In this paper, we investigate the problem of determining which regular 
connected graphs G have a matrix in S(G) with exactly two distinct eigenvalues, that 
is, with q(G) = 2.

The connected graphs G with q(G) = n − 1 or n have been characterized, see [7]. 
Graphs with q(G) = 2 are much harder to describe; for example, there is no forbidden 
subgraph characterization of graphs with q(G) = 2, as implied by Theorem 5.2 in [2]. 
It is known that q(G) = 2 if and only if there is an orthogonal matrix in S(G) [2], and 
so studying graphs G on n vertices with q(G) = 2 is equivalent to studying all possible 
zero patterns of n × n symmetric orthogonal matrices.

A graph G must have a sufficiently large number of edges to satisfy q(G) = 2. In 
[6], we showed that a connected graph G on n vertices with q(G) = 2 has at least 
2n −4 edges. We also characterized the graphs for which equality is attained. This result 
immediately implies that the number of r-regular graphs with r ∈ {2, 3} is finite, and in 
Section 2 we characterize these graphs. When considering 4-regular graphs with q(G) = 2, 
the difficulty increases significantly. Our main theorem (Theorem 2.4) characterizes all 
connected 4-regular graphs with q(G) = 2.

Throughout this paper, we only consider connected, simple, undirected graphs.

1.1. Preliminaries

One of the common ways to give a lower bound on q(G) is to find a unique shortest 
path between vertices. This technique, specialized to the case q(G) = 2, is explained in 
the following lemma, which is a corollary of Theorem 3.2 in [2].

Lemma 1.1. Let G be a connected graph with q(G) = 2. If xuy is a path of length 2, then 
either x ∼ y or there is another path xvy of length 2 between x and y.
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In [6], we used this lemma extensively in combination with a breadth-first search of 
a graph, and we use this strategy here as well. Given a fixed vertex v, we perform a 
breadth-first search from v. Denote the vertices at distance exactly i from v by Ni(v), 
and call this set the ith distance set from v. We use ε(v) to denote the eccentricity of 
v, which is the maximum distance from v to any vertex in the graph. The distance sets 
from v partition the vertex set of G as

V (G) =
ε(v)⋃

i=0
Ni(v),

which we call the distance partition of G with respect to v. If u ∈ Ni(v) and w ∈ Ni+1(v)
and u ∼ w, we call u a predecessor of w and we call w a successor of u. A terminal vertex
is a vertex with no successors.

Assume that G is a graph with q(G) = 2 and consider the distance partition from a 
vertex v. If a vertex u is in Ni(v) for some i ≥ 2, then by Lemma 1.1, it must have at 
least two predecessors, as otherwise there would be a unique shortest path of length 2
from u to a vertex in Ni−2(v). If G is a 4-regular graph on n vertices, then there are 
n − 5 vertices in

ε(v)⋃

i=2
Ni(v) = V (G) \ ({v} ∪N1(v)),

and each of these vertices has at least two predecessors so there are at least 2(n − 5)
edges incident to these vertices. With the 4 edges incident to v, this accounts for 2n − 6
of the 2n edges of G. We call the remaining six edges extra edges, and throughout the 
paper we consider the possible locations of these six extra edges.

We use standard graph theory terminology and notations. Often we abbreviate an 
edge {u, v} ∈ E(G) as uv for vertices u, v ∈ V (G). For two graphs G and H with vertex 
sets V (G) and V (H), respectively, the Cartesian product G!H is the graph with vertex 
set V (G) × V (H) and (g1, h1) adjacent to (g2, h2) if either g1 = g2 and h1h2 ∈ E(H), 
or h1 = h2 and g1g2 ∈ E(G). The complete graph on n vertices, the complete bipartite 
graph on partite sets of sizes m and n, the cycle on n vertices, the path on n vertices, and 
the hypercube graph (the graph on 2n vertices obtained by an n-fold Cartesian product 
of K2 with itself) are denoted by Kn, Km,n, Cn, Pn, Qn, respectively. The circulant 
graph G = C(n, ±i, ±j) is the graph with vertex set V (C(n, ±i, ±j)) = Z/nZ that has 
edges {t, t ± i} and {t, t ± j} for all t ∈ V (G).

Let G be a graph with v ∈ V (G). A graph jdup(G, v) is constructed from G by joined 
duplicating a vertex v ∈ V (G) if V (jdup(G, v)) = V (G) ∪ {u} and E(jdup(G, v)) =
E(G) ∪ {uw : w ∈ {v} ∪N1(v)}. From Lemma 2.9 in [16], q(jdup(G, v)) ≤ q(G) for any 
vertex v in a connected graph G.

Lemma 1.2. [Lemma 2.3, [1]] Let G be a connected graph on n vertices with q(G) =
2. If S is an independent set of vertices, then |S| ≤ k where k is the least integer 
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such that there is a matrix in S(G) with two distinct eigenvalues of multiplicities k and 
n − k.

Lemma 1.3. Let

M =
[

C B

BT D

]

where C is an m × m symmetric matrix, B = [b1 . . . bn] has no zero columns, and 
D = diag(d1, . . . , dn). If M is orthogonal, then n ≤ m, the vectors b1, . . . , bn are pairwise 
orthogonal, and each bi is a (−di)-eigenvector for C.

Proof. Consider the last n columns of M . Since D is diagonal, these columns are 
pairwise orthogonal if and only if n ≤ m and the vectors b1, . . . , bn are pairwise or-
thogonal.

Second, expanding M2 = I we have

M2 =
[

C2 + BBT CB + BD

BTC + DBT BTB + D2

]
=

[
Im 0
0 In

]
.

From the (1, 2)-block we see CB + BD = 0. Rearranging this equation we have

[Cb1 . . . Cbn] = −[d1b1 . . . dnbn]

from which it follows that each bi is a (−di)-eigenvector for C. !

As an illustration of Lemma 1.3, suppose G is a connected bipartite graph with bi-
partition V = V1 ∪ V2. Further assume that |V1| = |V2|. It follows that if q(G) = 2, then 
there exists a matrix M ∈ S(G), where

M =
[

C B

BT D

]
,

where M2 = I, and both C and D are diagonal matrices. Applying Lemma 1.3 we have 
that B must be a matrix with orthogonal rows and columns. In fact, the converse also 
holds in this case. If such an orthogonal matrix B exists, then the matrix

M = 1√
2

[
I B

BT −I

]

is orthogonal and hence q(G) = 2.
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2. Certain regular graphs that allow two distinct eigenvalues

From Theorem 3.1 in [6], if a connected graph G has fewer than 2n − 4 edges, then 
q(G) > 2. This implies that there are only finitely many r-regular graphs with r ≤ 3
that satisfy q(G) = 2. We describe them below.

Lemma 2.1. Let r ≤ 3. If G is a connected r-regular graph with q(G) = 2, then G has at 
most 8/(4 − r) vertices.

Proof. In order for G to have q(G) = 2, G has to have at least 2n − 4 edges. So we have 
the inequality

(r/2)n ≥ 2n− 4.

Since 0 < r/2 < 2, this simplifies to n ≤ 8/(4 − r). !

Corollary 2.2. If G is a connected r-regular graph with q(G) = 2 for some r ≤ 3, then G
is one of:

(1) K2;
(2) K3 or C4; or,
(3) K4, K3,3, K3!K2, or Q3.

Proof. The graph K2 is the only connected 1-regular graph and has q(K2) = 2. The only 
connected 2-regular graphs on n ≤ 4 vertices are K3 and C4 and both have q(G) = 2. By 
Lemma 2.1, a 3-regular graph with q(G) = 2 has 4, 6 or 8 vertices. If n = 4, G = K4 and 
q(G) = 2. If n = 6, the complement of G is 2-regular and so must be C6 or 2K3. Thus 
G is either K3!K2 or K3,3, respectively, both of which have q(G) = 2 from Corollaries 
6.5 and 6.8 in [2]. If n = 8, G has 12 = 2(8) − 4 edges. Thus by Theorem 3.1 from [6], 
G ∼= Q3. !

We now proceed with the main purpose of this paper, to characterize the 4-regular 
graphs G with q(G) = 2. We begin by defining an infinite family of graphs called closed 
candles which are analogs to the single-ended and double-ended candles in [6]. For k ≥ 3
the closed candle, Hk, is constructed from 2Ck as follows. Label the vertices of one Ck

with the odd integers from 1 to 2k − 1 and the other with the even integers from 2 to 
2k. Insert 2k additional edges between the two Ck’s according to the rule: i is adjacent 
to j, i odd, j even if j − i = 3, j − i = −1, or j = 2, i = 2k − 1, or i = 1, j = 2k. Thus 
Hk is a 4-regular graph. The graph H10 is shown in Fig. 1.

In the proof of Theorem 2.4, we will consider induced subgraphs that have the same 
structure as a closed candle. A candle section is a graph with vertices u1, . . . , ut, v1, . . . , vt
with edges uiui+1, vivi+1, ui+1vi, and uivi+1 for 1 ≤ i ≤ t − 1, see Fig. 2.

The following lemma gives a construction of orthogonal matrices for the closed candles.
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Fig. 1. Closed candle H10.

u1 u2 u3 ut−2 ut−1 ut

vtvt−1vt−2v3v2v1

. . .

. . .

. . .

Fig. 2. Candle section.

Lemma 2.3. For all k ≥ 3, we have q(Hk) = 2.

Proof. To see that the graphs Hk for k ≥ 3 achieve two distinct eigenvalues, we construct 
orthogonal matrices for this family of graphs.

Let

R =
[
−1 1

1 −1

]
, S =

[
1 1

−1 −1

]
, J =

[
1 1
1 1

]
, and O =

[
0 0
0 0

]
.

We consider two cases for k and construct the corresponding matrices W . Here all 
of the blocks are 2 × 2. The matrix in each case is symmetric so the blocks below the 
diagonal blocks are transposes of the corresponding matrices.

Case 1: n = 2k and k ≥ 4 is even.

Wij =






R, for (i, j) = (1, 2), (3, 4), . . . , (k − 3, k − 2), (k − 1, k)
J, for (i, j) = (2, 3), (4, 5), . . . , (k − 2, k − 1)
J, for (i, j) = (1, k)
O, otherwise

Case 2: n = 2k and k ≥ 3 is odd.
First, note that when k = 3, the graph H3 is the octahedron (the graph obtained from 

K6 by deleting a perfect matching). By Corollary 6.9 in [8], we have q(H3) = q(G204) =
2. Now if k ≥ 5, we construct the matrices as follows.
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Wij =






J, for (i, j) = (1, 2), (3, 4), . . . , (k − 4, k − 3)
R, for (i, j) = (2, 3), (4, 5), . . . , (k − 5, k − 4), and (k − 2, k − 1);
S, for (i, j) = (1, k), (k − 3, k − 2)
ST , for (i, j) = (k − 1, k)
O, otherwise

Each row of W has Euclidean length 2. Since each of the 2 × 4 matrices [J S], [J R], 
[ST R], [S ST ] has orthogonal rows, each pair of rows of W coming from the same 
block is orthogonal. For i )= j, the (i, j)-block of W 2 is one of JR, JS, SR, S2 or their 
transposes. In each of the cases the matrix is the zero matrix. Hence WTW = W 2 = 4I. 
We conclude that 1

2W is an orthogonal matrix with whose graph is the closed candle on 
n = 2k vertices. !

For example, the matrices for k = 4 and k = 5 are respectively





O R O J

R O J O

O J O R

J O R O




and





O J O O S

J O S O O

O ST O R O

O O R O ST

ST O O S O




;

for k = 6 and k = 7, the matrices are respectively





O R O O O J

R O J O O O

O J O R O O

O O R O J O

O O O J O R

J O O O R O





and





O J O O O O S

J O R O O O O

O R O J O O O

O O J O S O O

O O O ST O R O

O O O O R O ST

ST O O O O S O





.

Note that the closed candle Hk has independence number k if k is even, and k − 1
if k is odd. By Lemma 1.2 when k is even the only achievable multiplicity list for two 
distinct eigenvalues is [k, k]; when k is odd, the only achievable multiplicity lists for two 
distinct eigenvalues are [k, k] and [k − 1, k + 1].

Lemma 2.3 provides an infinite family of 4-regular graphs with q(G) = 2. Our main 
theorem below characterizes all 4-regular graphs G for which q(G) = 2.

Theorem 2.4. If G is a connected 4-regular graph with q(G) = 2, then G is either:

(1) K5;
(2) one of the graphs R7,1, R8,2, R8,3, R8,4, R8,5, R8,6 from Fig. 3;
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Fig. 3. Thirteen 4-regular graphs with diameter 2.
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Fig. 4. Sporadic 4-regular graphs with diameter at least 3.

(3) K3!C4, K3,3!K2, one of the graphs R10,2, R10,3, R10,4, R12,3, R14,1 from Fig. 4;
(4) Q4; or,
(5) a closed candle Hk for some k ≥ 3.

Notes: The graphs listed in items (1) through (4) of Theorem 2.4 have diameter 1 through 
4 respectively. The graph R7,1 ∼= C(7, ±1, ±2), the graph R8,5 ∼= K4!K2, and the 
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graph R8,6 ∼= C(8, ±1, ±2). The graph R10,3 is the graph obtained from Q3 by joined 
duplicating a pair of antipodal vertices (in [6] we referred to this graph as Q′

3). The 
graph R10,4 ∼= C(10, ±1, ±3), and the graph R12,3 ∼= C(12, ±1, ±3). The graph R14,1
appears in [19] as S14. Moreover R14,1 is the Cayley graph for the dihedral group D7
(with generators ρ and ϕ satisfying ρ2 = ϕ7 = ε and ρϕ = ϕ6ρ) with connection set 
{ρ, ϕρ, ϕ2ρ, ϕ4ρ}. It is also the point-block incidence graph of the non-trivial square 
2 − (7, 4, 2) design and is distance regular with diameter 3, see [9]. The sporadic graphs 
R6,1, R8,1, and R10,1 in Fig. 3 are H3, H4, and H5, respectively, so appear in item (5) 
of Theorem 2.4. Also note that the closed candles are all circulants. For k ≥ 3, it can be 
verified that Hk

∼= C(2k, ±1, ±(k − 1)).
The proof of Theorem 2.4 is split over Sections 3, 4, and 5.

3. Proof of Theorem 2.4 for 4-regular graphs with small diameter

In this section we prove items (1) and (2) of Theorem 2.4 for graphs with diameter 
at most 2. The only 4-regular graph with diameter 1 is K5, and q(K5) = 2, so we focus 
on 4-regular graphs with diameter 2. We begin by enumerating the 4-regular graphs G
with diameter 2 for which q(G) = 2 is not ruled out by Lemma 1.1.

Lemma 3.1. If G is a connected 4-regular graph with diameter 2 such that q(G) = 2, then 
6 ≤ |V (G)| ≤ 10.

Proof. Let G be a connected 4-regular graph with diameter 2. Consider an arbitrary 
vertex v in G and the distance partition of V (G) from v. In order for G to have q(G) = 2, 
it must be the case that each x ∈ N2(v) has at least two neighbors in N1(v), otherwise 
there is a unique path of length 2 between x and v. Let X be the set of edges between 
N1(v) and N2(v). Then

2|N2(v)| ≤ |X| ≤ 3|N1(v)| = 12.

So |N2(v)| ≤ 6 and G has at most 1 +4 +6 = 11 vertices. This establishes 6 ≤ |V (G)| ≤ 11.
We now show the upper bound can be improved to 10. Consider a 4-regular graph 

G with 11 vertices and diameter 2. Using the notation above, we see |N2(v)| = 6, and 
|X| = 12. So every vertex in N1(v) has exactly three neighbors in N2(v), and every vertex 
in N2(v) has exactly two neighbors in N1(v). In particular, this means the subgraph H
of G induced by N2(v) is 2-regular. So we have two cases: either H is a 6-cycle, or H is 
the disjoint union of two 3-cycles.

Case 1: H ∼= C6
Let the vertices of H be x1, x2, x3, x4, x5, x6 in cyclic order. Note that H is bipartite, 

and in H there is a unique shortest path of length 2 between any two vertices in the 
same partite set. Since there can be no unique shortest path of length 2 in G, the edges 
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of X must supply an additional path of length 2 between every pair of vertices in each 
partite set.

Let N1(v) = {v1, v2, v3, v4}. Since vivvj is a path of length 2, in order for this path 
not to be unique there must be some xk that is adjacent to both vi and vj . In partic-
ular, this means we cannot have some vi whose neighbors are {x1, x3, x5} and some vj
whose neighbors are {x2, x4, x6}. If there is no vi whose neighbors are {x1, x3, x5}, then 
{x1, x3, x5} together with the common neighbor of {x1, x3}, the common neighbor of 
{x3, x5} and the common neighbor of {x1, x5} form a 6-cycle. Without loss of generality, 
suppose this 6-cycle is (v1, x1, v2, x3, v3, x5). Then, in order for each pair of vertices in 
{x2, x4, x6} to have a common neighbor, we must have v4 adjacent to each of {x2, x4, x6}. 
Thus the edges between {v1, v2, v3} and {x2, x4, x6} are a perfect matching.

We know v1 is matched to one of x2, x4, or x6. We also know that v1 is already 
adjacent to x1 and x5. Note that in H, x1 is at distance 3 from x4. So if v1 is matched to 
x4, then we have a unique shortest path of length 2, x1v1x4. Similarly, x5 is at distance 
3 from x2 in H, so if we match v1 to x2, we get another unique shortest path of length 
2. Thus v1 must be matched to x6. A similar argument shows that v2 must be matched 
to x2, and v3 must be matched to x4. This accounts for all of the edges in X. But now 
we see that v1x1x2 is a unique shortest path of length 2 in G.

Case 2: H ∼= 2C3
Let the vertices of H be x1, x2, x3 and y1, y2, y3, where all of the xi’s are adjacent, and 

all of the yi’s are adjacent. Let N1(v) = {v1, v2, v3, v4}. We know that x1 has 2 neighbors 
in N1(v). Without loss of generality, suppose x1 is adjacent to v1. Then v1x1x2 and 
v1x1x3 are paths of length 2. In order for them not to be unique shortest paths of length 
2, we must have at least one of the edges v1x2 and v1x3. Suppose v1 is adjacent to exactly 
one of x2 and x3. Then v1 is adjacent to exactly one of the yi vertices, and we have a 
unique path v1yiyj between v1 and some yj . Thus v1 must be adjacent to both x2 and 
x3. If v2 is the other neighbor of x1 in N1(v), then following the same argument as for 
v1, we must also have edges v2x2 and v2x3. This accounts for all edges in X with ends 
v1 and v2, and all edges in X with ends x1, x2, or x3. Thus the remaining edges in X are 
all possible edges between {v3, v4} and {y1, y2, y3}. But now v1vv3 is a unique shortest 
path of length 2. !

Since there are only 84 connected 4-regular graphs with order 6 ≤ n ≤ 10 [20], we can 
generate the list of 4-regular graphs with diameter 2 for which q(G) = 2 is not ruled out 
by Lemma 1.1. We do this by:

(1) using nauty’s geng function [18] to generate all connected 4-regular graphs on n
vertices for each 6 ≤ n ≤ 10;

(2) checking the diameter of the graphs generated in (1), and eliminating all with diam-
eter at least 3; then
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Table 1
The reduced list of thirteen 4-regular graphs with diameter 2.

Graph q-value
R6,1 2
R7,1 2
R7,2 3
R8,1 2
R8,2 2

Graph q-value
R8,3 2
R8,4 2
R8,5 2
R8,6 2

Graph q-value
R9,1 > 2
R9,2 > 2
R9,3 3
R10,1 2

(3) checking the graphs remaining after (2) for any unique shortest paths connecting 
two vertices at distance 2 and eliminating those graphs.

At the end of this computation we are left with a set of thirteen 4-regular graphs of 
diameter 2 for which q(G) = 2 is not ruled out. Fig. 3 gives these thirteen graphs. 
Lemma 3.2 completes the proof of Theorem 2.4 for graphs with diameter at most 2.

Lemma 3.2. Table 1 lists all thirteen candidate 4-regular graphs with diameter 2 (shown 
in Fig. 3) and includes their q-values (or a bound on their q-value).

Proof. We treat each of the graphs in Table 1 separately, in the order they appear in 
the table.

R6,1: The graph R6,1 is a closed candle, R6,1 ∼= H3. Thus q(R6,1) = 2 by Lemma 2.3.

R7,1: The following matrix M is a matrix in S(R7,1 − {1, 7}) (the graph R7,1 with the 
edge {1, 7} deleted),

M = 1
6





3
√

6 −3 0 0 2
√

3 0√
6 0

√
6 2

√
2 0 0 −4

−3
√

6 −1 2
√

3 2
√

2 0 0
0 2

√
2 2

√
3 −3

√
6 1 0

0 0 2
√

2
√

6 −2
√

6 2
√

3
2
√

3 0 0 1
√

6 −3 2
√

2
0 −4 0 0 2

√
3 2

√
2 0





.

The matrix M is orthogonal and has the Strong Spectral Property; see pages 10 and 11 
in [7]. Thus q(R7,1) = 2.

R7,2: Note that R7,2 can be constructed from K4,3 by adding edges {1, 2} and {3, 4}. 
Suppose M ∈ S(R7,2). We write M as

M =
[

C B

BT D

]
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where C is a 4 × 4 matrix, B = [b1 b2 b3] has no zero entries, and D = diag(d1, d2, d3). 
Moreover,

C =
[
C1 0
0 C2

]

where each Ci ∈ S(K2).
Assume M is an orthogonal matrix. Using Lemma 1.3, the columns of B are pairwise 

orthogonal and Cbi = −dibi for i = 1, 2, 3. Partition each bi into vectors xi, yi ∈ R2. 
Now

[
C1xi

C2yi

]
=

[
C1 0
0 C2

][
xi

yi

]
= Cbi =

[
−dixi

−diyi

]
,

so each xi is a (−di)-eigenvector for C1, and each yi is a (−di)-eigenvector for C2.
The matrices C1 and C2 are each 2 ×2 non-scalar symmetric matrices, so each has two 

distinct eigenvalues. Thus, d1, d2, d3 cannot be all distinct. Without loss of generality, 
suppose d2 = d3. And since the dimension of the (−d2)-eigenspace of Ci is 1, the (−d2)-
eigenvectors of Ci are scalar multiples of each other. That is, there exist α, β )= 0 so that 
x3 = αx2 and y3 = βy2.

Now we consider the (2, 2)-block of M2. We have

I3 −D2 = BTB

=




xT

1 yT1
xT

2 yT2
αxT

2 βyT2





[
x1 x2 αx2
y1 y2 βy2

]

=




xT

1 x1 + yT1 y1 0 0
0 xT

2 x2 + yT2 y2 0
0 0 α2xT

2 x2 + β2yT2 y2



 .

From

xT
2 x2 + yT2 y2 = 1 − d2

2 = α2xT
2 x2 + β2yT2 y2

we conclude

(α2 − 1)xT
2 x2 + (β2 − 1)yT2 y2 = 0. (3.0.1)

Since the second and third columns of B are orthogonal we also have

αxT
2 x2 + βyT2 y2 = 0,
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thus

xT
2 x2 = −β

α
yT2 y2. (3.0.2)

Substituting (3.0.2) into (3.0.1) we obtain

(α2 − 1)
(
−β

α
yT2 y2

)
+ (β2 − 1)yT2 y2 = 0 ⇒ −α2β + β + αβ2 − α = 0

⇒ (β − α)(αβ + 1) = 0
⇒ β = α or αβ = −1.

Since the columns of B are orthogonal, α )= β. We show that αβ = −1 leads to a 
contradiction which in turn implies that no orthogonal M ∈ S(R7,2) exists. Hence, 
q(R7,2) > 2. Suppose αβ = −1; then

I4 −
[
C2

1 0
0 C2

2

]
= I4 − C2 = BBT =

[
x1 x2 αx2
y1 y2 βy2

]


xT

1 yT1
xT

2 yT2
αxT

2 βyT2





=
[
x1xT

1 + (1 + α2)x2xT
2 x1yT1 + (1 + αβ)x2yT2

y1xT
1 + (1 + αβ)y2xT

2 y1yT1 + (1 + β2)y2yT2

]

=
[
x1xT

1 + (1 + α2)x2xT
2 x1yT1

y1xT
1 y1yT1 + (1 + β2)y2yT2

]
.

So x1yT1 = 0. This implies that either x1 = 0 or y1 = 0 which is a contradiction since 
the entries of B are nonzero.

To show q(R7,2) = 3, we see that R7,2 results from joined duplication of a vertex 
of G189 in [3] or [8] (i.e., the graph obtained from R7,2 by contracting edge {3, 4} is 
isomorphic to G189). From Table 3 in [8] we find that q(G189) = 3. Thus q(R7,2) = 3.

R8,1: The graph R8,1 is a closed candle, R8,1 ∼= H4. Thus q(R8,1) = 2 by Lemma 2.3.

R8,2: The following matrix M8,2 is a matrix in S(R8,2),

M8,2 = 1√
5





1 1 1 0 0 1 0 −1
1 1 −1 0 −1 0 0 1
1 −1 0 β 0 0 α 0
0 0 β 0 1 1 0 α

0 −1 0 1 −1 1 −1 0
1 0 0 1 1 −1 −1 0
0 0 α 0 −1 −1 0 β

−1 1 0 α 0 0 β 0





,
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where α = (
√

5 + 1)/2 and β = (
√

5 − 1)/2. Since M8,2 is orthogonal, q(R8,2) = 2.

R8,3: The following matrix M8,3 is a matrix in S(R8,3),

M8,3 = 1√
12





2
√

2 0 −
√

2
√

2 0 0
√

2√
2 0

√
2 0 −2 −2 0 0

0
√

2 −2
√

2 0 −
√

2 −
√

2 0
−
√

2 0
√

2 0 0 0 −2 2√
2 −2 0 0 1 0 −2 −1
0 −2 −

√
2 0 0 −1 1 2

0 0 −
√

2 −2 −2 1 −1 0√
2 0 0 2 −1 2 0 1





.

The matrix M8,3 is orthogonal, so q(R8,3) = 2.

R8,4: Note that in our labeling of R8,4, N1(7) = {1, 3, 6, 8} and N1(8) = {1, 3, 6, 7}. Let 
G be the graph obtained from R8,4 by contracting the edge {7, 8} to the vertex (78)
(and replacing every pair of multiple edges by a single edge). The following matrix M is 
a matrix in S(G),

M = 1
3





0 −
√

3 0 0
√

3 0
√

3
−
√

3 1 −
√

3 1 1 0 0
0 −

√
3 0

√
3 0 0 −

√
3

0 1
√

3 1 1
√

3 0√
3 1 0 1 1 −

√
3 0

0 0 0
√

3 −
√

3 0
√

3√
3 0 −

√
3 0 0

√
3 0





(here the vertices are ordered as {1, 2, 3, 4, 5, 6, (78)}). The matrix M is orthogonal, so 
q(G) = 2. Since R8,4 is obtained from G by joined duplication of (78), q(R8,4) = 2.

R8,5: Note that R8,5 ∼= K4!K2. Thus by Corollary 6.8 in [2], we have q(R8,5) = 2.

R8,6: The following matrix M8,6 is a matrix in S(R8,6),

M8,6 = 1√
10





−
√

2
√

2 −1 0 0 0 −1 −2√
2

√
2 −2 1 0 0 0 1

−1 −2 −
√

2
√

2 1 0 0 0
0 1

√
2

√
2 2 −1 0 0

0 0 1 2 −
√

2
√

2 −1 0
0 0 0 −1

√
2

√
2 −2 1

−1 0 0 0 −1 −2 −
√

2
√

2
−2 1 0 0 0 1

√
2

√
2





.



142 W. Barrett et al. / Linear Algebra and its Applications 679 (2023) 127–164

The matrix M8,6 is orthogonal, so q(R8,6) = 2.

R9,1: Consider a matrix M ∈ S(R9,1) where we use variables for each edge and vertex. 
That is,

[M ]ij =






xij if ij ∈ E(R9,1),
xii if i = j, and
0 if ij /∈ E(R9,1).

Suppose M is an orthogonal matrix. Note that the edges of R9,1 can be partitioned into 
the 9-cycle (1, 2, 3, 4, 5, 6, 7, 8, 9, 1), and the 3-cycles (1, 4, 7, 1), (2, 5, 8, 2), and (3, 6, 9, 3). 
Since the edge {1, 2} does not lie in any triangle in R9,1, we have

0 = [M2]12 = x11x12 + x12x22.

Since x12 )= 0, we conclude that x22 = −x11. Repeating this argument for each edge of 
the 9-cycle, we see that xii = −xii, or xii = 0 for all 1 ≤ i ≤ 9.

Now consider the 3-cycle (1, 4, 7, 1). Taking account of the walks of length 2 between 
1 and 7, we have

0 = [M2]17 = x11x17 + x17x77 + x14x47 = x14x47.

But since x14, x47 )= 0, this is impossible. Thus there is no orthogonal matrix M ∈
S(R9,1), and we conclude q(R9,1) > 2.

R9,2: Consider a matrix M ∈ S(R9,2) where we use variables for each edge and vertex. 
That is,

[M ]ij =






xij if ij ∈ E(R9,2),
xii if i = j, and
0 if ij /∈ E(R9,2).

Suppose M is an orthogonal matrix. Note that {6, 7} ∈ E(R9,2), but {6, 7} is not 
included in any 3-cycle in R9,2. Thus

0 = [M2]67 = x66x67 + x67x77.

Since the variable x67 )= 0, this implies that x66 = −x77. Similarly, we see that edges 
{2, 6} and {3, 7} are not included in any 3-cycles in R9,2. Considering [M2]26 and [M2]37
we derive x22 = −x66 and x33 = −x77. Combining these three equations, we have 
x22 = −x33. Now consider the paths of length 2 between vertices 2 and 3. We have

0 = [M2]23 = x22x23 + x23x33 + x12x13 = x12x13.
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But since x12, x13 )= 0, this is impossible. Thus there is no orthogonal matrix M ∈
S(R9,2), and we conclude q(R9,2) > 2.

R9,3: Note that {1, 2, 3}, {4, 5, 9}, and {6, 7, 8} all induce K3 subgraphs in R9,3. Moreover, 
{1, 8, 9}, {2, 5, 6}, and {3, 4, 7} also induce K3 subgraphs in R9,3, and we see that R9,3 ∼=
K3!K3. We prove in Lemma 3.3 that q(Km!Kn) = 3 for all m, n ≥ 3. This establishes 
q(R9,3) = 3.

R10,1: The graph R10,1 is a closed candle, R10,1 ∼= H5. Thus q(R10,1) = 2 by 
Lemma 2.3. !

In order to complete the preceding proof, we establish the following lemma, which 
shows that the bound in Proposition 3.1 of [8] is sharp for complete graphs.

Lemma 3.3. For m, n ≥ 3, we have q(Km!Kn) = 3.

Proof. Since q(Ks) = 2 for any s ≥ 2 it follows from a basic application of Kronecker 
products that q(Km!Kn) ≤ 3 (this inequality can also be deduced from Proposition 3.1 
in [8]). It remains to verify that in fact q(Km!Kn) ≥ 3.

If q(Km!Kn) = 2, then there exists a matrix C ∈ S(Km!Kn) that satisfies C2 = I

and is given by

C =





A11 D12 D13 . . . D1m
D12 A22 D23 . . . D2m

. . .
D1m D2m D3m . . . Amm




,

where Dij is an n ×n diagonal matrix with nonzero diagonal entries for each 1 ≤ i, j ≤ m

and Aii ∈ S(Kn) for 1 ≤ i ≤ m.
Let [C2]ij denote the (i, j) block of the matrix C2 partitioned conformally with C

above. Then

[C2]12 = A11D12 + D12A22 +
m∑

j=3
D1jD2j = 0,

[C2]13 = A11D13 + D13A33 +
∑

j #=1,3
D1jD3j = 0,

[C2]23 = A22D23 + D23A33 +
∑

j #=2,3
D2jD3j = 0.

Since Dij is invertible, we have

A22 = −D−1
12 A11D12 −D−1

12




m∑

j=3
D1jD2j



 , (3.0.3)



144 W. Barrett et al. / Linear Algebra and its Applications 679 (2023) 127–164

A33 = −D−1
13 A11D13 −D−1

13




∑

j #=1,3
D1jD3j



 , (3.0.4)

A22 = −D23A33D
−1
23 −




∑

j #=2,3
D2jD3j



D−1
23 . (3.0.5)

From (3.0.4) and (3.0.5) we have

A22 = D23D
−1
13 A11D13D

−1
23 + D23D

−1
13




∑

j #=1,3
D1jD3j



D−1
23 −




∑

j #=2,3
D2jD3j



D−1
23 .

(3.0.6)
Note that [D12]ij = ci(n+j), [D13]ij = ci(2n+j), and [D23]ij = c(n+i)(2n+j), and, by 
assumption, each such entry is nonzero when i = j. By a direct calculation we have

[D23D
−1
13 A11D13D

−1
23 ]ij =

cijc(n+i)(2n+i)cj(2n+j)
ci(2n+i)c(n+j)(2n+j)

and

[D−1
12 A11D12]ij =

cijcj(n+j)
ci(n+i)

.

Using (3.0.3) and (3.0.6), and letting (i, j) = (1, 2), (1, 3), and (2, 3) (there are no 
contributions from the diagonal terms in (3.0.3) nor (3.0.6)) we have

c12c(n+1)(2n+1)c2(2n+2)
c1(2n+1)c(n+2)(2n+2)

= −
c12c2(n+2)
c1(n+1)

(3.0.7)

c13c(n+1)(2n+1)c3(2n+3)
c1(2n+1)c(n+3)(2n+3)

= −
c13c3(n+3)
c1(n+1)

(3.0.8)

c23c(n+2)(2n+2)c3(2n+3)
c2(2n+2)c(n+3)(2n+3)

= −
c23c3(n+3)
c2(n+2)

. (3.0.9)

Manipulating equations (3.0.7) and (3.0.8) produces the equation

c2(2n+2)c(n+3)(2n+3)
c(n+2)(2n+2)c3(2n+3)

=
c2(n+2)
c3(n+3)

or

c3(n+3)c2(2n+2)c(n+3)(2n+3) = c(n+2)(2n+2)c3(2n+3)c2(n+2).

However from (3.0.9) we have

c(n+2)(2n+2)c3(2n+3)c2(n+2) = −c2(2n+2)c(n+3)(2n+3)c3(n+3),

which is a contradiction. !
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Table 2
Sporadic 4-Regular Graphs with diameter at 
least 3.

Graph q-value
R10,2 2
R10,3 2
R10,4 2
R12,1 > 2

Graph q-value
R12,2 > 2
R12,3 2
R14,1 2

This completes the verification of the q-values listed in Table 1, which completes the 
proof of Theorem 2.4 for graphs with diameter at most 2.

4. Sporadic 4-regular graphs and Theorem 2.4

In this section we establish whether or not q(G) = 2 for a collection of sporadic graphs. 
These graphs are all connected with diameter at least 3 and arise within the proofs in 
Section 5.

Lemma 4.1. Table 2 lists candidate 4-regular graphs with diameter at least 3 (also shown 
in Fig. 4) and includes their q-values (or a bound on their q-value).

Proof. R10,2: To see that q(R10,2) = 2, note that the following matrix M10,2 ∈ S(R10,2)
is orthogonal,

M10,2 = 1
4





−
√

2 −2 0 0
√

2 0 0 2 0 −2
−2

√
2 2 0 0

√
2 0 0 −2 0

0 2 −
√

2 −2 0 0
√

2 0 0 −2
0 0 −2

√
2 2 0 0 −

√
2 −2 0√

2 0 0 2 −
√

2 2 0 0 0 −2
0

√
2 0 0 2

√
2 −2 0 2 0

0 0
√

2 0 0 −2 −
√

2 −2 0 −2
2 0 0 −

√
2 0 0 −2

√
2 −2 0

0 −2 0 −2 0 2 0 −2 0 0
−2 0 −2 0 −2 0 −2 0 0 0





.

R10,3: Note that contracting edges {1, 2} and {6, 7} in R10,3 gives a graph isomorphic 
to Q3. Since R10,3 can be obtained from Q3 by joined duplicating a pair of antipodal 
vertices, Corollary 3.3 from [3] implies that q(R10,3) ≤ q(Q3) = 2. Thus q(R10,3) = 2.

R10,4: Theorem 5.3 in [4] shows that Kn,n with a perfect matching deleted has q-value 
2 for all n )= 1, 3. Since R10,4 is isomorphic to K5,5 with a perfect matching deleted, 
q(R10,4) = 2.
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R12,1: Following the example after Lemma 1.3, set V1 = {1, 3, 5, 7, 10, 12} and V2 =
{2, 4, 6, 8, 9, 11}. Assume that there exists an M ∈ S(R12,1) with M2 = I and M is of 
the form

M =
[

C B

BT D

]
,

where C and D are diagonal matrices. Then by Lemma 1.3 we know that B must be 
an orthogonal matrix. Consider the last two rows of B (whose nonzero patterns are the 
same since vertices 10 and 12 have the same neighbors) and suppose they are equal to 
u = [a, b, c, d, 0, 0] and v = [x, y, z, w, 0, 0]. Since both u and v are orthogonal to row 
4 of B we may deduce that [z, w] = α[c, d] for some nonzero scalar α. Similarly since 
both u and v are orthogonal to row 2 and to row 3 we conclude that [y, z] = β[b, c] and 
[x, y] = γ[a, b], where β and γ are nonzero. Now it follows that α = β = γ and hence row 
5 is a multiple of row 6 which contradicts the assumption that B is orthogonal. Hence 
q(R12,1) > 2.

R12,2: Using a similar setup as in the case of R12,1 set V1 = {2, 3, 4, 5, 11, 12} and V2 =
{1, 6, 7, 8, 9, 10}. Assume that there exists an M ∈ S(R12,2) with M2 = I and M is of 
the form

M =
[

C B

BT D

]
,

where C and D are diagonal matrices. Then by Lemma 1.3 we know that B must be an 
orthogonal matrix. Consider rows 2 and 3 of B (whose nonzero patterns are the same 
since vertices 3 and 4 have the same neighbors). Following a similar argument as used 
for the graph R12,1 (both rows 2 and 3 must be orthogonal to rows 1,5, and 6) we can 
deduce that rows 2 and 3 must be multiples of one another which is a contradiction. 
Hence q(R12,2) > 2.

R12,3: To see that q(R12,3) = 2, we present an orthogonal matrix M12,3 ∈ S(R12,3) in 
block form, as above. We take V1 = {1, 2, 3, 4, 5, 6} and V2 = {7, 8, 9, 10, 11, 12}. Let

B12,3 =





−ζ −β ζ −
√

5/5 0 0
ε −γ β 0 δ 0√

5/5 0 0 −ζ −β −ζ√
5/5 0

√
5/5 0 −ε ζ

0 δ 0 −ε γ β

0 −ε −ζ −
√

5/5 0
√

5/5





,

where

α = (
√

5 + 1)/2, β =
√

2
√

5/5 − 4/5, γ =
√

−7
√

5/10 + 17/10, δ =
√

5/10 + 1/2,
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ε = αβ, and ζ = αγ.

Thus

M12,3 =
[

0 B12,3
BT

12,3 0

]

has the desired properties.

R14,1: To see that q(R14,1) = 2, we provide an orthogonal matrix M14,1 ∈ S(R14,1) in 
block form. We take V1 = {1, 2, 3, 4, 5, 6, 7} and V2 = {8, 9, 10, 11, 12, 13, 14}, and let

B14,1 = 1
2





1 0 1 0 0 −1 1
1 1 0 1 0 0 −1

−1 1 1 0 1 0 0
0 −1 1 1 0 1 0
0 0 −1 1 1 0 1
1 0 0 −1 1 1 0
0 1 0 0 −1 1 1





.

Then

M14,1 =
[

0 B14,1
BT

14,1 0

]

has the desired properties. We note that M14,1 was presented in [19]. !

5. Proof of Theorem 2.4 for 4-regular graphs with large diameter

In this section we complete the proof of items (3), (4) and (5) of Theorem 2.4 for 
graphs with diameter at least 3. Recall from Section 1.1, in the distance partition from 
any vertex v, every u ∈ Ni(v) has at least two neighbors in Ni−1(v) for all i ≥ 2. These 
edges account for 2n − 2 − deg(v) = 2n − 6 of the edges of G. We consider the possible 
locations of the six extra edges not accounted for by these predecessors. Throughout the 
proofs in this section, once all of the edges incident with a vertex have been accounted 
for, we say that the vertex is full.

Lemma 5.1. Let G be a connected 4-regular graph with diameter at least 3 and let v be a 
vertex for which ε(v) ≥ 3. Suppose that every vertex in N2(v) and N3(v) has exactly two 
predecessors and that G[N1(v)] ∪G[N2(v)] contains at most three edges. Then q(G) > 2.

Proof. Assume q(G) = 2.

Case 1: N1(v) is an independent set.
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Each pair of vertices of N1(v) shares v as a common neighbor, so each pair must share a 
common neighbor in N2(v) as well. There are 

(4
2
)

= 6 such pairings, each resulting in a 
distinct vertex in N2(v) with two predecessors in N1(v) and accounting for all the edges 
between N1(v) and N2(v), also implying that |N2(v)| = 6.

Suppose each vertex in N2(v) has a neighbor in N2(v). Then there are three edges in 
G[N2(v)] and G[N2(v)] = 3K2. Let xy be an edge in N2(v) and let a, b be the predecessors 
of x. Then a, b are not both predecessors of y. Suppose that b and y are not adjacent. 
Then bxy is a unique shortest path of length 2 between b and y.

Otherwise some vertex, say u ∈ N2(v), has no neighbor in N2(v). Vertex u shares a 
common neighbor in N1(v) with four other vertices in N2(v), call them x1, x2, x3, x4. 
To avoid unique paths from u to xi for i = 1, 2, 3, 4, u and xi must have a common 
successor. These common successors are distinct since each has just 2 predecessors. But 
then deg(u) ≥ 6.

Case 2: G[N1(v)] contains exactly one edge.
This case follows the same logic as Case 1, with the exception that there are five pairings 
of nonadjacent vertices in N1(v) that share v as a common neighbor so each of these 
pairs must have a common neighbor in N2(v). As before, this accounts for all the edges 
between N1(v) and N2(v), so there are exactly five vertices in N2(v). Since G[N2(v)]
contains at most two edges, some vertex u in N2(v) has no neighbors in N2(v). Vertex u
shares a neighbor in N1(v) with at least three other vertices in N2(v). Arguing similarly 
to Case 1, deg(u) ≥ 5.

Case 3: G[N1(v)] contains exactly two edges.
Suppose the two edges do not share a vertex. Then the four pairs of nonadjacent vertices 
in N1(v) that have v as a common neighbor must each have a common neighbor in 
N2(v), accounting for all the edges between N1(v) and N2(v) and resulting in exactly 
four vertices in N2(v). Since there is at most one edge in N2(v), there is a vertex u in 
N2(v) that has no neighbor in N2(v). Let a be a neighbor of u in N1(v) with ab one of 
the two edges in G[N1(v)]. Then uab is a unique shortest path of length 2 in G.

Otherwise the two edges in G[N1(v)] share a vertex, say c. Then c has exactly one 
neighbor w in N2(v). Let the non-neighbor of c in N1(v) be d. Since c and d have v as a 
common neighbor, the other predecessor of w in N1(v) must be d. To prevent a unique 
shortest path of length 2 between w and the neighbors of c in N1(v), there must be an 
edge connecting w to a vertex, y ∈ N2(v) whose two predecessors are the two neighbors 
of c in N1(v). But this creates a unique shortest path dwy of length 2. Note that in this 
case we did not use the hypothesis that each vertex in N3(v) has two predecessors. This 
will be used later in the proof of Lemma 5.3.

Case 4: G[N1(v)] contains exactly three edges.
If G[N1(v)] ∼= P4, then the two endpoints of the P4 must have a common neighbor w in 
N2(v). Then w has a unique shortest path of length 2 to both non-end vertices of P4.
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If G[N1(v)] ∼= C3 ∪ K1, the same argument as in Case 3 applies, with c being any 
vertex in the C3. Note again, that in these first two possibilities that the hypothesis that 
each vertex in N3(v) has two predecessors was not used. This will be used at the end of 
the proof of Lemma 5.3.

Suppose G[N1(v)] ∼= K1,3. Then each pair of nonadjacent vertices in N1(v) has a 
common neighbor in N1(v), in addition to the common neighbor v. But in order for each 
vertex in N1(v) to have degree 4, there must be three vertices in N2(v), each adjacent 
to a different pair of leaves of the K1,3. Each pair of vertices in N2(v) has one common 
neighbor in N1(v), and since N2(v) is an independent set, this implies that each pair of 
vertices in N2(v) must have a common neighbor in N3(v). These neighbors are distinct 
because each vertex in N3(v) has two predecessors. Note that all three vertices in N2(v)
are full. Let a be a leaf vertex of the K1,3; then there exist two paths of length 2, asx
and aty for some s, t ∈ N2(v) and x, y ∈ N3(v), that are the unique ax and ay paths of 
length 2. !

Corollary 5.2. Let G be a connected 4-regular graph with diameter at least 3. If v is a 
vertex with ε(v) ≥ 3 and for which there is no vertex in the distance partition from v
with 3 or 4 predecessors, then q(G) > 2.

Proof. Let Nd(v) be the furthest distance set of v. Since every vertex in Nd(v) has 
exactly two predecessors, we know that G[Nd(v)] is 2-regular. So at least three of the 
six extra edges must be in Nd(v), and the maximum number of edges that could appear 
within the subgraphs G[Ni(v)] for 1 ≤ i ≤ d −1 is three. So the hypotheses of Lemma 5.1
are satisfied and q(G) > 2. !

Lemma 5.3. Let G be a connected 4-regular graph with diameter at least 3 and let v
be a vertex for which ε(v) ≥ 3. If in the distance partition from v no vertex has four 
predecessors, then either G ∼= R10,3, G ∼= K3!C4, or q(G) > 2.

Proof. Suppose q(G) = 2. We assume G has a vertex with three predecessors as otherwise 
the result follows from Corollary 5.2. We begin by establishing three claims.

Claim #1. Any vertex with three predecessors cannot have a successor.

Proof of Claim #1. Suppose some vertex w in Ni(v) has three predecessors in Ni−1(v)
and one successor z in Ni+1(v). Note that i must be at least 2. Since z has at most three 
predecessors in Ni(v), there must be a neighbor x of z in Ni+1(v) or Ni+2(v). But then 
there is a unique shortest path of length 2 between w and x, as w is full.

Observe that the proof of Claim #1 also implies that if G is a graph and v ∈ V (G)
for which some vertex in the distance partition from v has four predecessors, any vertex 
w ∈ Ni(v) with three predecessors cannot have a successor z unless z is a vertex with 
four predecessors. We will use this in Case 4 of the proof of Lemma 5.4.
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Claim #2. Vertices with three predecessors occur in pairs, with each pair the endpoints 
of a path in some distance set Ni(v).

Proof of Claim #2. Suppose w1 ∈ Ni(v) has three predecessors. Since it can have no 
successors but has degree 4, it must have a neighbor w2 ∈ Ni(v). So w1 is one end of 
a path w1w2 . . . wk in Ni(v), where w2, . . . , wk−1 have two predecessors each, and hence 
is full, and wk−1 is the only neighbor of wk in Ni(v). If wk has a successor y, then 
ywkwk−1 is a unique shortest path of length 2 between y and wk−1. So wk must have 
three predecessors.

Claim #3. A pair of vertices with three predecessors can occur only in Ni(v) for i ≥ 3.

Proof of Claim #3. Let w be a vertex with three predecessors. Suppose w ∈ N2(v). 
Note that w cannot have a successor. Let z be another vertex in N2(v) with three 
predecessors, and no successor. Then there are at least two vertices in N1(v) that are 
common predecessors of w and z. Since ε(v) ≥ 3, there must be a vertex x ∈ N2(v) that 
has a successor y ∈ N3(v). So x cannot have three predecessors and therefore must have 
two. If a predecessor of x is a common predecessor of w and z, then there is a unique 
shortest path of length 2 between y and this predecessor of x. So w and z must have 
exactly two shared predecessors, and the two predecessors of x each has exactly one of 
{w, z} as a successor. This implies that, via N1(v), there is a path of length 2 between x
and w (and between x and z). Since these paths cannot be unique shortest paths, and x
cannot be adjacent to w (as it would then be on the wz path in N2(v), and hence have 
degree at least 5), x must have a common neighbor t )= z in N2(v) with w. But then yxt
is a unique shortest path of length 2 between y and t.

Let S represent the set of vertices with three predecessors. We have shown that no 
vertex in S can have a successor and all vertices in S must occur in pairs in the distance 
sets Ni(v) for i ≥ 3. A pair of such vertices requires a minimum of three of the six 
additional edges. It follows that |S| = 2 or |S| = 4, leaving at most three or zero edges 
that could appear in the subgraphs G[Ni(v)] for 1 ≤ i ≤ ε(v) − 1, respectively. Let j
represent the smallest value of i for which Ni(v) contains an element of S. If j > 3, then 
Lemma 5.1 implies that q(G) > 2, so we only have to consider j = 3.

Case 1: N1(v) is an independent set.
By the argument in Case 1 of Lemma 5.1, N2(v) consists of six vertices, such that each 
vertex shares one common neighbor in N1(v) with each of four other vertices in N2(v). 
Consider u ∈ N2(v), and denote by w the unique vertex in N2(v) with which u does not 
share a neighbor in N1(v).

Case 1(a): N2(v) is also an independent set.
Let y1, y2 be the successors of u in N3(v) and let x1, x2, x3, x4 be the vertices in N2(v)
that share a unique common predecessor with u. Since there cannot be a unique shortest 
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path of length 2 between u and xi for any i, each xi must be adjacent to y1 or y2. Since 
neither y1 nor y2 has four predecessors, y1 must be adjacent to two of the xi and y2
to the other two. Then y1, y2 ∈ S. Neither y1 nor y2 is adjacent to w, so repeating the 
same argument, there are successors z1, z2 ∈ S of w such that z1 is adjacent to two of 
the xi and z2 to the other two. This accounts for all edges between N2(v) and N3(v), so 
N3(v) = {y1, y2, z1, z2} = S. Note that each xi is adjacent to exactly one of y1, y2 and 
one of z1, z2. Since none of y1, y2, z1, z2 has a successor by Claim #1, there are exactly 
two edges in G[N3(v)] that do not share an endpoint. If y1y2 is not an edge, then y1uy2
is the unique shortest path of length 2. So y1y2 is an edge, and z1z2 is an edge. Without 
loss of generality, suppose that x1 is adjacent to y1. Then x1 and y2 are not adjacent 
and x1y1y2 is a unique shortest path of length 2.

Case 1(b): N2(v) is not independent, so |S| = 2.
Suppose there is an edge ut in G[N2(v)], not sharing an endpoint with any other edge 
in G[N2(v)]. Then there is a shortest path of length 2 through N1(v) from u to at least 
three other vertices in N2(v). So for each of these three vertices there must be a shortest 
path of length 2 through N3(v). Since deg(u) = 4, u can only have one successor, so 
there is a single vertex x ∈ N3(v) on all three paths. But then x has four predecessors.

Now suppose ut and rt are edges in G[N2(v)]. Recall that w is the vertex in N2(v)
that shares no predecessors with u. Let y and z be the remaining vertices in N2(v). To 
avoid a unique shortest path of length 2 through N1(v) from u to y or z, there must be 
a vertex x in N3(v) whose predecessors are u, y, and z. Then tux is a unique shortest 
path of length 2.

Therefore Case 1 cannot occur, and N1(v) is never an independent set.

Case 2: G[N1(v)] contains exactly one edge, so |S| = 2.
We follow the proof of Case 2 of Lemma 5.1 but make more careful note of the location 
of the edges in N2(v). Let a and b represent the adjacent vertices in N1(v). Let u be the 
vertex in N2(v) whose two predecessors are N1(v) \ {a, b}. Each of the four vertices in 
N2(v) \ {u} has exactly one of a or b as a predecessor. Note that there are four shortest 
paths of length 2 between these vertices and the other vertex in {a, b}. Since these paths 
cannot be unique, there must be two independent edges in N2(v) that connect vertices 
with no common predecessor in {a, b}. Note that if two adjacent vertices in N2(v) do 
not share a predecessor in N1(v) \ {a, b}, then there are unique shortest paths of length 
2 between the vertices N1(v) \ {a, b} and the neighbors of their successors in N2(v). So 
the independent edges between the vertices of N2(v) \ {u} connect vertices so that each 
pair has one common predecessor in N1(v) \{a, b} and has one non-common predecessor 
in {a, b}.

Each endpoint of the independent edges in N2(v) has exactly one successor, and u
must have two successors. It follows that there are six edges between the vertices in 
N2(v) and the vertices in N3(v). Since each of the two vertices in S ∩ N3(v) has three 
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predecessors, there can be no other vertices in N3(v) and S = N3(v). From Claim #1, 
these two vertices must be adjacent to each other. Each of the four vertices in N2(v) \{u}
is adjacent to one of the vertices in S. The two predecessors other than u of each vertex 
in S must be a pair of nonadjacent vertices in N2(v) \ {u} to avoid unique paths of 
length 2 between vertices in N2(v) \ {u} and their non-neighbor in N3(v). Additionally, 
the two successors of a (respectively, b) must have a common successor in S, otherwise 
there is a unique shortest path of length 2 between a (respectively, b) and a vertex in S. 
This implies that the predecessors of a vertex in S are u and two nonadjacent vertices 
in N2(v) that share a predecessor in {a, b}. Thus G ∼= K3!C4.

Case 3: G[N1(v)] contains exactly two edges, so |S| = 2.
Then q(G) > 2 by Lemma 5.1, Case 3 and the observation at the end of its proof.

Case 4: G[N1(v)] contains exactly three edges, so |S| = 2.
If G[N1(v)] ∼= P4 or G[N1(v)] ∼= C3 ∪ K1, then by Case 4 of Lemma 5.1 and the 

observations within its proof, there is a pair of nonadjacent vertices with a unique path 
of length 2 between them. So we assume G[N1(v)] ∼= K1,3. As in that proof, N2(v)
consists of three vertices, each being the common successor of two leaves of the K1,3. 
Since j = 3, there are two adjacent vertices of S in N3(v), each with three predecessors. 
Since N2(v) is an independent set, each of its three vertices has two successors, so there 
are six edges between N2(v) and N3(v). It can now be verified that G ∼= R10,3. For 
instance, let v correspond to vertex 1 in the drawing of R10,3 in Fig. 4.

In all of the above cases, we either reach a contradiction to q(G) = 2, or G is 
isomorphic to either R10,3 or K3!C4. Lemma 4.1 establishes q(R10,3) = 2. Since 
K3!C4 ∼= K3!K2!K2, Corollary 6.8 in [2] implies q(K3!C4) = 2. This completes 
the proof. !

Lemma 5.4. If G is a connected 4-regular graph with q(G) = 2 and diameter at least 3, 
then G is either

(1) K3!C4, K3,3!K2, one of the graphs R10,2, R10,3, R10,4, R12,3, or R14,1 given in 
Fig. 4;

(2) Q4; or,
(3) a closed candle Hk for some k ≥ 6.

Proof. Recall that a full vertex is a vertex whose incident edges have all been accounted 
for.

Let v be a vertex of G with ε(v) ≥ 3. If no vertex in the distance partition of v has 
four predecessors, then G ∼= R10,3 or G ∼= K3!C4 by Lemma 5.3. For the remainder of 
this proof, we assume that the distance partition of v contains at least one vertex with 
four predecessors. Let d = ε(v) be the index of the farthest distance set. Each vertex 
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with four predecessors uses two of the six extra edges, so Nd(v) may contain no more 
than three vertices with four predecessors.

Case 1: Exactly three vertices in Nd(v), say z1, z2, and z3, have four predecessors.
All six of the extra edges are used by z1, z2, and z3. By Case 1 of Lemma 5.1, N2(v)
contains exactly six vertices, each being the common successor of a different pair of 
vertices in N1(v), and d = 3. Since N2(v) has exactly six vertices with two successors 
each, N3(v) = {z1, z2, z3} and each vertex in N2(v) has two neighbors in {z1, z2, z3}.

Let N2(v) = {y1, y2, y3, y4, y5, y6}, and recall from Case 1 of Lemma 5.1 that each 
vertex in N2(v) shares a common predecessor in N1(v) with exactly four other vertices 
in N2(v). This partitions N2(v) into three pairs, say {y1, y2}, {y3, y4}, and {y5, y6}, where 
each pair does not share a predecessor in N1(v). Since each yi has two successors among 
{z1, z2, z3}, each of these pairs must share at least one successor in N3(v). Suppose y1
and y2 share z1 as a common successor. To avoid y1z1y2 being a unique path of length 
2, y1 and y2 must also share their second successor, say z2. Similarly, each of {y3, y4}
and {y5, y6} has two shared successors among {z1, z2, z3}. Without loss of generality, we 
may assume that the successors of {y3, y4} are {z1, z3} and the successors of {y5, y6} are 
{z2, z3}. Thus G ∼= R14,1, and Lemma 4.1 completes the proof.

Case 2: Exactly two vertices in Nd(v), say z1 and z2, have four predecessors.
In this case there remain two extra edges. We treat the possibilities for these edges in 
the following four subcases.

Case 2(a): z1 and z2 share all their predecessors in Nd−1(v).
Denote the common predecessors of z1 and z2 by {y1, y2, y3, y4}. Suppose d > 3. Let 
{x1, x2} ⊆ Nd−2(v) denote the predecessors of y1. If x1 has three predecessors, then 
y1 is its unique successor, and x1y1z1 is a unique shortest path of length 2 between x1
and z1. So we may let {w1, w2} ⊆ Nd−3(v) denote the predecessors of x1. Since y1 is 
full and w1x1y1 is a shortest path of length 2, w1 must be adjacent to x2. Similarly, 
w2 is adjacent to x2. We repeat this argument, with x1 replacing y1, and then with w1
replacing x1, forming successive induced candle sections from {x1, x2} until we reach, say, 
{a1, a2} ⊆ N1(v). Since both x1 and x2 are just one edge short of being full, there must 
exist a vertex, say y4, whose predecessors are not x1 or x2. Denote the predecessors of 
y4 by {x3, x4}. By the same argument, starting with y4 we see successive induced candle 
sections from {x3, x4} until {a3, a4} ⊆ N1(v). Recall that {x1, x2} ∩{x3, x4} = ∅. A vertex 
in {w1, w2} ∩ {w3, w4} would have to have four successors, so {w1, w2} ∩ {w3, w4} = ∅. 
Continuing, the two candle sections must be disjoint, including {a1, a2} ∩ {a3, a4} = ∅. 
It follows that N1(v) = {a1, a2, a3, a4}.

Suppose the two predecessors of y2 are xi ∈ {x1, x2} and xj ∈ {x3, x4}. Then xi, xj , 
and y2 are all full, and xiy2xj is a unique shortest path of length 2 between xi and xj . 
So we assume without loss of generality that the predecessors of y2 are {x1, x2}, and of 
y3 are {x3, x4}.



154 W. Barrett et al. / Linear Algebra and its Applications 679 (2023) 127–164

Each vertex in N1(v) is one edge short of being full, and any pair of these vertices 
shares v as a common neighbor. Suppose a1 is adjacent to one of {a3, a4}, say a3. Then 
a1 and a3 are both full, and a1va4 is a unique shortest path of length 2 between a1 and 
a4. So a1, a3, and a4 must share a common successor u ∈ N2(v). Similarly, a2, a3, and 
a4 must share a common successor, which must be u since a3 and a4 are full. Therefore, 
u has four predecessors, using up the remaining two extra edges, and all vertices listed 
so far are full. It follows that G cannot contain any additional vertices, and G ∼= Hk for 
some even k ≥ 6 (as the number of vertices accounted for in the proof is divisible by 4). 
Recall that q(Hk) = 2 by Lemma 2.3.

Suppose d = 3 and again write N1(v) = {a1, a2, a3, a4}. The exact number of edges 
that connect {y1, y2, y3, y4} to vertices in N1(v) is eight. Furthermore, since z1 and 
z2 are full, each vertex in N1(v) must have either zero or at least two successors in 
{y1, y2, y3, y4}, to prevent a unique shortest path of length 2 between N1(v) and N3(v). If, 
say a1, has no successor in {y1, y2, y3, y4}, then it must be adjacent to each of {a2, a3, a4}. 
However, to account for the edges between N1(v) and N2(v), some ai must have three 
successors. This is impossible as deg(ai) = 4 for all i. So each ai has two successors 
in {y1, y2, y3, y4}, accounting for eight edges. These eight edges and {y1, y2, y3, y4} ∪
{a1, a2, a3, a4} form 2C4 or C8. In the first case, it follows as in the previous paragraph 
that G ∼= H6.

Suppose the eight edges connecting the vertices {y1, y2, y3, y4} to {a1, a2, a3, a4} form 
a C8. Then there are two pairs of vertices in N1(v) that share v as a predecessor but 
share no successor in {y1, y2, y3, y4}. Without loss of generality, assume these pairs are 
{a1, a3} and {a2, a4}. Suppose the two remaining extra edges are contained in N1(v). 
Then the two non-isomorphic ways to place these edges are {a1a2, a3a4} or {a1a3, a2a4}. 
In the first case, a1va3 is a unique shortest path of length 2. If a1a3 and a2a4 are edges, 
and if the common successor of a1 and a4 is, say y1, then y1a1a3 is a unique shortest 
path of length 2 between y1 and a3. Therefore N1(v) cannot contain two edges and there 
is at least one (and at most two) additional vertex (vertices) in N2(v).

In either case, a vertex y5 /∈ {y1, y2, y3, y4} cannot have a successor, since there would 
be a unique shortest path of length 2 between this successor and the predecessors of 
y5 in N1(v). So y5 must be a terminal vertex. Because we have only two extra edges 
remaining, y5 must have at most one neighbor in N2(v) and hence must have at least 
three predecessors. If there were a second terminal vertex y6 ∈ N2(v), then there would 
be at least six edges from {y5, y6} to N1(v), contradicting that all four vertices in N1(v)
are only one edge short of being full. The only possibility then is for N2(v) to contain 
the one additional vertex, y5, with all four vertices in N1(v) as its predecessors, using 
up the two remaining extra edges. Then all vertices are full, and in this case G ∼= R12,1, 
which satisfies q(R12,1) > 2, by Lemma 4.1, and leads to a contradiction.

Case 2(b): z1 and z2 share exactly three of their four predecessors in Nd−1(v).
Denote the predecessors of z1 by {y1, y2, y3, y4} and of z2 by {y2, y3, y4, y5}. Then y1
shares one common successor with y2, y3, and y4. Given that these three vertices have 
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two predecessors each, they are full, as is their other successor z2. So y1 cannot be 
adjacent to any of them, nor can it have a second common successor with any of them. 
Therefore, y1 must have a common predecessor with each of y2, y3, and y4. In particular, 
let x1 be a common predecessor of y1 and y2. Then the path x1y2z2 implies x1 must 
be adjacent to y3, y4, or y5, which implies x1 ∈ N1(v) and d = 3. Denote the three 
remaining vertices in N1(v) by {x2, x3, x4}. Moreover, the fullness of z1, y2, y3, and y4
implies that any neighbor of y1 other than z1 must be its predecessor (to avoid a unique 
shortest path of length 2 between z1 and this neighbor of y1), and hence y1 has three 
predecessors in N1(v). Similarly, y5 has three predecessors in N1(v), using up the two 
remaining extra edges.

We make two observations. First, since there are exactly twelve edges connecting 
{y1, y2, y3, y4, y5} to vertices in N1(v), any successor of x1, x2, x3, and x4 must be in 
{y1, y2, y3, y4, y5}, and

V (G) = {z1, z2, y1, y2, y3, y4, y5, x1, x2, x3, x4, v}.

Second, y1 and y5 share at least two predecessors.
Suppose y1 and y5 share all three predecessors, say {x1, x2, x3}. Then the three suc-

cessors of x4 must be y2, y3, and y4. Finally, the remaining predecessor of y3 and y4
must be, without loss of generality, x2 and x3, respectively. Hence all vertices are full, 
and G ∼= K3,3!K2. Corollaries 6.5 and 6.8 of [2] show that q(K3,3!K2) = 2.

Now suppose y1 and y5 share two predecessors, say {x1, x2}. Without loss of generality, 
let x3 and x4 be the third predecessors of y1 and y5, respectively. Either x1 and x2 share 
their third successor as well or they do not. Suppose x1 and x2 share all three successors, 
{y1, y2, y5}. Then y1, y2, and y5 are all full, and the four remaining edges between N2(v)
and N1(v) are determined. In this case, G ∼= R12,2, contradicting q(G) = 2 by Lemma 4.1. 
Therefore, we must have that x1 and x2 do not share a third common successor. Since the 
third successor of x1 is y2, let the third successor of x2 be y3. Again, the four remaining 
edges between N2(v) and N1(v) are determined, up to one choice, which yields graphs 
that are isomorphic. In this case, it can be verified that G ∼= R12,3 ∼= C(12, ±1, ±3), and 
Lemma 4.1 implies q(R12,3) = 2.

Case 2(c): z1 and z2 share exactly two of their four predecessors in Nd−1(v).
Suppose the predecessors of z1 are {y1, y2, y3, y4} and the predecessors of z2 are 
{y3, y4, y5, y6}. With two predecessors, y3 is full (as is y4). To resolve the unique shortest 
paths of length 2 through z1 or z2, y3 must share a predecessor with each of y1, y2, y5, 
and y6. It follows that the predecessors of y3 have three successors each, and therefore 
d = 3.

Since there are at least twelve edges from {y1, y2, y3, y4, y5, y6} to N1(v), and at most 
twelve edges from N1(v) to N2(v), we must have: N2(v) = {y1, y2, y3, y4, y5, y6}, each 
vertex in N2(v) has exactly two predecessors in N1(v), and each vertex in N1(v) has 
exactly three successors in N2(v). Note that y3 and y4 are full while y1, y2, y5, and y6
are each one edge short of full. We label N1(v) = {x1, x2, x3, x4}.
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To prevent unique shortest paths of length 2 between xi and zj , each xi must be 
adjacent to at least one vertex in {y3, y4}. It follows that each xi must have exactly one 
neighbor in {y3, y4}. Assume one successor of x1 is y3. To avoid unique paths of length 
2 between x1 and both z1 and z2, x1 must have at least one more successor in {y1, y2}
and at least one more successor in {y5, y6}. Assume, without loss of generality, that the 
successors of x1 are {y1, y3, y5}. Suppose y1 has a successor, z3, in addition to z1. Then 
z3 must be adjacent to y5 (to prevent x1y1z3 being a unique shortest path of length 2 
between x1 and z3) and z3 must be adjacent to y6 (to prevent z3y5z2 being a unique 
shortest path of length 2 between z3 and z2). This leaves all vertices in N2(v) except y2
full, but any successor of y2 distinct from z1, z2, and z3 would create a unique shortest 
path of length 2 between this successor and a predecessor of y2. So the successor of y2
must be z3, contradicting the assumption of Case 2.

To become full, y1 must have exactly one neighbor in {y2, y5, y6}. If y1 is adjacent to 
y2, then x1y1y2 is a unique shortest path of length 2 between the full vertices x1 and 
y2. But if y1 is adjacent to y5 or y6, then z1y1y5 or z1y1y6 is a unique shortest path of 
length 2 between z1 and y5 or y6, respectively, which would contradict q(G) = 2.

Case 2(d): z1 and z2 share exactly one, or none, of their four predecessors in Nd−1(v).
Here Nd−1(v) must contain seven or eight vertices, at least six of which, after accounting 
for two predecessors, are exactly one edge short of being full. If any such y ∈ Nd−1(v)
has another successor z3 ∈ Nd(v), then z3 must have a neighbor z4 ∈ Nd(v) \ {z1, z2}. 
Since y, z1, and z2 are full, yz3z4 is a unique shortest path of length 2 between y and z4. 
In order for the vertices in Nd−1(v) to become full, at least six vertices require incidence 
with one of the two remaining extra edges, which is impossible.

Case 3: Exactly one vertex, say z, in Nd(v) has four predecessors.
Four extra edges remain. Denote the predecessors of z by {y1, y2, y3, y4} ⊆ Nd−1(v).

Case 3(a): Each of y1, y2, y3, and y4 has three predecessors.
All remaining extra edges are used, and Nd(v) = {z} and Nd−1(v) = {y1, y2, y3, y4}. 
Suppose d = 3. Each vertex in N1(v) has three successors in N2(v) (to account for the 
twelve edges connecting N2(v) to N1(v)), and each yi has one vertex in N1(v) as its 
non-neighbor. If yi )= yj have the same non-neighbor, then that vertex cannot have three 
successors. So the four vertices in N2(v) are in bijection with the four vertices in N1(v), 
via non-neighbors, determining the graph as G ∼= R10,4. Lemma 4.1 shows q(R10,4) = 2.

Suppose d > 3. Each pair of vertices in {y1, y2, y3, y4} shares z as a common successor, 
and each yi is full with three predecessors, so each pair must share a common predecessor 
in Nd−2(v). The vertices in Nd−2(v) must have two predecessors each and therefore can 
have at most two successors in Nd−1(v). This forces Nd−2(v) to contain six vertices 
{x1, x2, x3, x4, x5, x6}, each being the common predecessor of a different pair of vertices 
in {y1, y2, y3, y4}, exhausting all edges between {y1, y2, y3, y4} and {x1, x2, x3, x4, x5, x6}.

Consider y1 and, without loss of generality, let {x1, x2, x3} denote its three predeces-
sors. Then x4, x5, and x6 each must have their two successors in {y2, y3, y4}. We claim 
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that x4, x5, and x6 must have a common predecessor in Nd−3(v). Note that if x4, x5 and 
x6 have a common predecessor, this predecessor must lie in N1(v), and d = 4. Indeed, if 
any two of {x4, x5, x6} share a predecessor, then all three must share a predecessor, in 
order to prevent a unique shortest path of length 2 between this predecessor and one of 
{y2, y3, y4}. However, if x4, x5, and x6 have three distinct predecessors in Nd−3(v) that 
are not predecessors of either of the other two, then each of these three predecessors 
must have two successors in {x1, x2, x3}, thereby causing x1, x2, and x3 to be full; the 
fourth vertex of Nd−3(v) = N1(v) must then have x4, x5, and x6 as its three successors.

Let w1 be a shared predecessor of {x4, x5, x6}. Then there are two paths of length 2 
between w1 and each of {y2, y3, y4} and no paths of length 2 between w1 and y1. Repeat 
this procedure for y2, y3, and y4, each time finding a common predecessor wi of

{x1, x2, x3, x4, x5, x6} \ {predecessors of yi}

for i = 2, 3, 4. The choice of edges between {y1, y2, y3, y4} and {x1, x2, x3, x4, x5, x6}
therefore determines the edges between {x1, x2, x3, x4, x5, x6} and {w1, w2, w3, w4}. How-
ever, since all pairs of vertices in {y1, y2, y3, y4} share a predecessor among the inde-
pendent set {x1, x2, x3, x4, x5, x6} of vertices, all choices yield isomorphic graphs. All 
vertices are now full, so we have listed all elements of each distance set, and G ∼= Q4. By 
[2] Corollary 6.9, q(Q4) = 2.

Case 3(b): There exists a vertex in Nd−1(v), say y1, that does not have three predecessors.
The edges incident with z account for two of the extra edges. If y1 has another successor 
z2 ∈ Nd(v), then z2 must have a neighbor z3 ∈ Nd(v) \ {z, z2}; since y1 (with two 
predecessors) and z are both full, y1z2z3 is a unique shortest path of length 2 between 
y1 and z3. So y1 must have a neighbor u ∈ Nd−1(v), using up an extra edge.

Suppose u /∈ {y2, y3, y4}. Then u must be adjacent to another vertex in {y1, y2, y3, y4}, 
say y2, to avoid a unique shortest path of length 2 between itself and z. This leaves two 
remaining extra edges. Let x1 and x2 denote the two predecessors of u. Suppose x1 has 
two predecessors. Then it cannot be adjacent to both y1 and y2. So there must exist 
x3 ∈ Nd−2(v) (possibly x3 = x2) such that x1 is adjacent to x3, and x3 is adjacent to y1
and y2. But then x3 can have only one predecessor, so we must have d = 3.

Let N1(v) = {x1, x2, x3, x4}. If x1 and x2 are not incident with an edge of G[N1(v)], 
then x1 and x2 both must be adjacent to {u, y1, y2} (to avoid uniqueness of the shortest 
paths between each x1, x2 and each y1, y2 through u); but then y1 and y2 are full, and 
y1zy3 is a unique shortest path of length 2 between y1 and y3. Hence G[N1(v)] must 
contain an edge, using a third extra edge. It follows that there are exactly ten edges 
connecting N1(v) to N2(v). Then no vertex in N2(v) can have three predecessors, which 
implies G[N2(v)] must contain another edge, the last of the extra edges. Moreover, this 
edge must connect y3 and y4. Note this implies N1(v) cannot be an independent set of 
vertices.

Suppose x2 is incident with the edge in G[N1(v)], and x1 is not. Then x1 must be 
adjacent to {u, y1, y2}. And since x1 shares v as a common predecessor with x3 and x4, 
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and since u is full while y1 and y2 are one edge short of being full, we must have, without 
loss of generality, y1 adjacent to x3 and y2 adjacent to x4. Since x1 and y1 are full, the 
uniqueness of the path x2uy1 can only be avoided if x2 is adjacent to x3. Similarly, the 
uniqueness of the path x2uy2 can only be avoided if x2 is adjacent to x4. But G[N1(v)]
can only have one edge.

So the edge in G[N1(v)] must be x1x2. Then x1 has only one more successor in 
N2(v) which must simultaneously resolve v being the unique common neighbor of the 
pairs {x1, x3} and {x1, x4}. This successor must then have three predecessors, which is 
impossible. Therefore u ∈ {y2, y3, y4}.

Without loss of generality, suppose u = y2. As at the start of this case, {y1, y2, y3, y4}
can have no more successors in Nd(v). And y1 and y2 cannot be incident to another 
edge in G[Nd−1(v)], in order to allow for each to have two predecessors. To prevent y1
and y3 having z as a unique common neighbor, they must therefore share a common 
predecessor, say x1 ∈ Nd−2(v). If x1 has two predecessors, then it is full, and x1y1y2
is a unique shortest path of length 2 between x1 and y2. So x1 must have only one 
predecessor, which implies d = 3.

Suppose that G[N2(v)] contains no edges other than y1y2; then y3 and y4 must have 
three predecessors each. Denote the other vertices in N1(v) by x2, x3, and x4. Now, y3
and y4 must share at least two of their predecessors in N1(v), but x1 cannot be this 
shared predecessor, since that would leave x1y1y2 as the unique shortest path of length 
2 between x1 and y2. So assume the two shared predecessors of y3 and y4 are {x3, x4}. 
Neither x3 nor x4 can be adjacent to y1 or y2, as these adjacencies would result in a 
unique shortest path of length 2 between one of {x3, x4} and one of {y1, y2}. With exactly 
one remaining extra edge, this edge must be x3x4 to ensure that each of x3 and x4 has 
four neighbors. It now follows that x1 is adjacent to y2, and hence the three remaining 
edges are x2y1, x2y2, and x2y4. After connecting each xi to v, all vertices are full, and 
G ∼= R10,3 (to see this let v be vertex 3 in the drawing of R10,3 in Fig. 4). Applying 
Lemma 4.1 establishes q(R10,3) = 2.

Finally, suppose G[N2(v)] contains another edge, which can only be y3y4, as otherwise 
y1 or y2 would not have enough predecessors. So each yi has exactly two predecessors. 
Then there are eight edges between N2(v) and N1(v), and each vertex in N1(v) must 
have exactly two successors. Each pair {y1, y3}, {y1, y4}, {y2, y3}, and {y2, y4} must share 
a single predecessor in N1(v), causing each yi to be full. Denote these unique common 
predecessors by x1, x2, x3, and x4, respectively. To simultaneously avoid the unique 
shortest paths of length 2 from x1 to y2 and y4, x1 must be adjacent to x4. Similarly, x2
must be adjacent to x3. This uses up the remaining extra edges. After connecting each 
xi to v, all vertices are full, and G ∼= R10,2. Using Lemma 4.1 establishes q(R10,2) = 2.

Case 4: Nd(v) contains no vertices with four predecessors.
Since the distance partition from v contains at least one vertex with four predecessors, 
let b denote a vertex with four predecessors. This accounts for two of the six extra edges. 
By the proofs of Lemmas 5.1 and 5.3, Nd(v) must contain a pair of vertices with three 
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predecessors each or a cycle of vertices with two predecessors each. Furthermore, each 
edge in Nd(v) is an extra edge and any vertex in Nd(v) with three predecessors accounts 
for an extra edge, and so G[Nd(v)] must be isomorphic to one of K2, P3, C3, or C4. Each 
of these options requires either three or four of the remaining extra edges. Therefore, 
there is at most one extra edge unaccounted for. This implies b is the unique vertex with 
four predecessors.

We first claim that b ∈ N2(v). Indeed, suppose b ∈ Ni(v) for some 2 < i < d, and 
let {a1, a2, a3, a4} ⊆ Ni−1(v) be the four predecessors of b. Then each ai has at least 
two predecessors. With at most one of the extra edges left, we may assume, without 
loss of generality, that a1 has a successor b1 ∈ Ni(v). Now, b1 cannot be a terminal 
vertex, as that would require more extra edges than are currently unaccounted for, so 
let c1 ∈ Ni+1(v) be a successor of b1. Then a1b1c1 is a unique shortest path of length 2. 
So b ∈ N2(v).

We next claim that there are no vertices with three predecessors in Ni(v) for any 
i < d. As observed at the end of Claim #1 in the proof of Lemma 5.3, any successor of a 
vertex with three predecessors must be a vertex with four predecessors. Since b ∈ N2(v), 
any vertex with three predecessors in Ni(v) for i ≥ 2 cannot have a successor. It follows 
that such a vertex requires an edge in G[Ni(v)], which would require the use of at least 
three extra edges. A similar argument shows that any vertex in Ni(v) for 2 ≤ i < d − 1
cannot have a unique successor in Ni+1(v). If there were a vertex x with two predecessors 
and a unique successor y, it must be adjacent to another vertex in Ni(v). Then y must 
either be adjacent to a vertex in Ni+2(v) or Ni+1(v) yielding either a unique shortest 
path or too many extra edges. So, with the exception of b, every vertex in Ni(v) for 
2 ≤ i < d has exactly two predecessors, and every vertex in Ni(v) for 2 ≤ i < d − 1 has 
exactly two successors.

We have {a1, a2, a3, a4} = N1(v), and b is a common successor of these four vertices. 
With only one remaining extra edge, each ai must have another successor in N2(v). Let 
b1 )= b be a successor of a1 in N2(v), let a2 be the second predecessor of b1, and let 
c1 ∈ N3(v) be a successor of b1. Note that this implies a1 and a2 are not adjacent. To 
avoid unique paths of length 2 between c1 and each of a1 and a2, the second predecessor of 
c1, say b2, must have a1 and a2 as its predecessors. Continuing in this way through Ni(v)
for all 3 ≤ i ≤ d − 2, we see successive induced candle sections starting with {a1, a2}, 
and ending say at {y1, y2} ⊆ Nd−1(v). Let z1 be the common successor of {y1, y2} in 
Nd(v). This argument is similar to the argument we used in Case 2(a). Starting again 
from a3, we see successive induced candle sections starting with {a3, a4} and ending at 
say {y3, y4} ⊆ Nd−1(v) whose common successor is z2 ∈ Nd(v).

Note that all vertices in Ni(v) for i < d − 1 are full, which implies Nd−1(v) =
{y1, y2, y3, y4}. Each Ni(v) is independent for i < d − 1, and we claim that Nd−1(v)
is independent as well. To see this, yiyj an edge for i ∈ {1, 2} and j ∈ {3, 4} would create 
a unique shortest path of length 2 from Nd−1(v) to Nd−2(v). If y1y2 is an edge, then 
y1 and y2 are full and hence y1z1z is a unique shortest path for any neighbor z of z1 in 
Nd(v). The same observation shows y3y4 cannot be an edge. Hence the last remaining 
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extra edge must be in G[Nd(v)]. This implies that G[Nd(v)] is either isomorphic to P3
or C4. Note that if some vertex in Nd(v) has three predecessors, then without loss of 
generality, it is adjacent to y1, y2, and y3. This results in a unique shortest path of length 
2 through y3. Thus G[Nd(v)] ∼= C4.

We now claim that any successor of y1 or y2 must be a successor of both. Indeed, if 
z is a successor of y1, then the paths zy1x1 and zy1x2 force z to be adjacent to y2 as 
well. Similarly, any successor of y3 or y4 must be a successor of both. Hence we have four 
vertices in Nd(v) forming a cycle C4 where each vertex is adjacent to either {y1, y2} or 
{y3, y4}. This implies that the vertices around the cycle must alternate between being 
adjacent to {y1, y2} and {y3, y4} and so G ∼= Hk for some odd k ≥ 7 (as the size of 
V (G) \ {b, v} is divisible by 4). Applying Lemma 2.3 establishes q(Hk) = 2. !

This completes the proof of Theorem 2.4.

6. Further observations and related problems

Corollary 2.2 and Theorem 2.4 give a complete characterization of the r-regular graphs 
that admit two distinct eigenvalues for r ≤ 4. For r = 4, the closed candles Hk for k ≥ 3
give the only infinite family of 4-regular graphs G with q(G) = 2. From these graphs we 
can construct an infinite family of r-regular graphs G with q(G) = 2 for all r ≥ 5.

From Corollary 6.8 in [2], if G is any graph with q(G) = 2, then q(G!K2) = 2. Define 
Hd

k = Hk!Qd for any d ≥ 0 and k ≥ 3. Now from Lemma 2.3 and [2, Cor. 6.9] we 
immediately have the following result.

Proposition 6.1. For all k ≥ 3 and d ≥ 0, Hd
k is a (4 + d)-regular graph with q(Hd

k) = 2.

When r ≥ 5, the number of edges in an r-regular graph grows faster than the lower 
bound |E(G)| ≥ 2n −4. So, characterizing r-regular graphs with two distinct eigenvalues 
for r ≥ 5 could be difficult using the methods in this paper. This motivates questions 
about existence and structure of such graphs. That is, are there other infinite families 
of r-regular graphs G with q(G) = 2, and if so, can they be constructed with a method 
other than the Cartesian product used in Proposition 6.1?

Problem 6.2. Determine whether or not an infinite family of 5-regular graphs G with 
q(G) = 2 disjoint from the family {H1

k : k ≥ 3} exists.

This paper builds on the work in [6], where we established a lower bound on the 
number of edges a graph on n vertices must have in order to have q(G) = 2, and 
characterized the graphs that meet the bound with equality. The graphs that meet the 
bound |E(G)| ≥ 2n − 4 are Q3 and an infinite family of graphs called double-ended 
candles. The lower bound is improved to |E(G)| ≥ 2n − 3 if G has an odd number of 
vertices, and the graphs that meet this improved bound are exactly the infinite family 
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of graphs called single-ended candles. These graphs, along with the closed candles Hk

and some of the sporadic graphs in Theorem 2.4, appear in a set of papers focusing on 
a different problem.

McKee and Smyth [19], Taylor [21], and Greaves [12,13] all consider the following 
problem: for which graphs G is there a matrix compatible with G whose eigenvalues 
are contained in the interval [−2, 2]? For this problem, “compatible” means that the 
matrix M has exactly the same zero pattern as A(G) off of the diagonal entries, and 
the entries of M are restricted to lie in the ring of integers for some quadratic field 
(McKee and Smyth consider matrices with integer entries. Taylor and Greaves consider 
matrices whose entries lie in the ring of integers for an imaginary quadratic extension 
of Q). It follows from interlacing that if G has a compatible matrix whose eigenvalues 
are contained in [−2, 2], then so do all of its induced subgraphs. This motivates the 
characterization of the maximal graphs G for which there is a matrix compatible with 
G whose eigenvalues are contained in [−2, 2]. Each of the papers [19], [12], [13], and [21]
gives a characterization for the respective rings under consideration. The graphs that 
appear in these characterizations are a collection of small sporadic graphs, and a few 
infinite families: the single-ended candles, the double-ended candles, the closed candles, 
and the graphs obtained from a candle section by adding an edge between each pair of 
nearest degree 2 vertices.

We are currently unable to explain the overlap between the graphs in our characteri-
zations of graphs with 2n − 4, 2n − 3, or 2n edges that admit two distinct eigenvalues, 
and the graphs in the characterizations in [19], [12], [13], and [21]. It seems reasonable to 
expect that the maximal graphs whose compatible matrices have all of their eigenvalues 
contained in [−2, 2] should have all of their eigenvalues contained in {−2, 2} and hence 
have q-value 2. But we do not have a proof of this claim. A complete explanation of this 
coincidence may help the investigation of r-regular graphs G with q(G) = 2 for r ≥ 5.

Problem 6.3. For a given integer l ≥ 3, determine whether the maximal graphs that 
admit an integer (or similarly constrained) matrix whose eigenvalues are contained in 
[−l, l] have q(G) = 2.

A regular graph G that is neither complete nor empty is strongly regular if there exist 
constants a and c so that any two adjacent vertices in G have a common neighbors, and 
any two non-adjacent vertices have c common neighbors. The definition implies that the 
diameter of a connected strongly regular graph is at most 2. If G is a connected regular 
graph, then A(G) has three distinct eigenvalues if and only if G is a strongly regular 
graph (see, e.g., Lemma 10.2.1 in [11]). So q(G) ∈ {2, 3} for a strongly regular graph G. 
In [10], Furst and Grotts show that L(Kn), the line graph of Kn, has q(L(Kn)) = 2 for 
all n ≥ 3 (note that L(Kn) is a strongly regular graph for all n ≥ 3).

A connected graph G is distance regular if there are integers bi and ci for all i ≥ 0 so 
that for any two vertices u and v at distance i in G,
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|N1(v) ∩Ni+1(u)| = bi and |N1(v) ∩Ni−1(u)| = ci.

(See [9] for an extensive treatment of distance-regular graphs.) Distance-regular graphs 
with diameter 2 are strongly regular. Since Corollary 2.2 and Theorem 2.4 give a complete 
characterization of the r-regular graphs that admit two distinct eigenvalues for r ≤ 4, 
they also determine the distance-regular graphs of valency at most 4 that admit two 
distinct eigenvalues. Excluding the complete graphs and complete multipartite graphs in 
the list, these are Q3, R10,4, R14,1, and Q4. Note that these graphs all have diameter at 
least 3, and thus are not strongly regular. The closed candles H3 and H4 are complete 
multipartite graphs, and all Hk for k ≥ 5 are not distance regular.

Problem 6.4. Determine the distance-regular graphs G with q(G) = 2.

We finish with two observations about the 4-regular graphs G with q(G) = 2, and 
problems they raise. With the exception of K5 and R7,1, all of the 4-regular graphs that 
appear in Theorem 2.4 have even order. In particular, if |V (G)| ≥ 8, then G must have 
even order.

Problem 6.5. Determine whether for every integer k, there is some value nk so that every 
k-regular graph G with |V (G)| ≥ nk and q(G) = 2 has even order.

The graphs Hk are all circulant graphs, as are some of the sporadic graphs listed 
in Theorem 2.4. More broadly, many of the graphs in our characterization are vertex 
transitive. It would be interesting to investigate the highly symmetric graphs that admit 
a matrix with two distinct eigenvalues.

Problem 6.6. Determine the circulant graphs G that have q(G) = 2. What can be said 
about the automorphism groups of regular graphs with q(G) = 2?
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