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Regular graphs 5 to 16. This technical result gives rise to several intriguing
questions.
© 2023 Elsevier Inc. All rights reserved.

1. Introduction

For any connected graph G on n vertices, let S(G) denote the set of all real symmetric
n X n matrices A = [a;;] where a;; = 0 if and only if {7,j} is not an edge in G, and
the entries a;; can take any value. The inverse eigenvalue problem for a graph G asks to
determine all possible spectra of matrices in S(G) [5,14].

This problem and several of its sub-problems have been studied extensively. One of
these sub-problems is to consider all possible multiplicity lists of eigenvalues of matrices
in S(G). If we look at the multiplicity lists of eigenvalues of all matrices in S(G) as lists
of numbers, the shortest length among all these lists is the minimum number of distinct
eigenvalues of matrices in §(G). This parameter is denoted by ¢(G) and has been studied
in [2,7,15-17]. In this paper, we investigate the problem of determining which regular
connected graphs G have a matrix in S(G) with exactly two distinct eigenvalues, that
is, with ¢(G) = 2.

The connected graphs G with ¢(G) = n — 1 or n have been characterized, see [7].
Graphs with ¢(G) = 2 are much harder to describe; for example, there is no forbidden
subgraph characterization of graphs with ¢(G) = 2, as implied by Theorem 5.2 in [2].
It is known that ¢(G) = 2 if and only if there is an orthogonal matrix in S(G) [2], and
so studying graphs G on n vertices with ¢(G) = 2 is equivalent to studying all possible
zero patterns of n X n symmetric orthogonal matrices.

A graph G must have a sufficiently large number of edges to satisfy ¢(G) = 2. In
[6], we showed that a connected graph G on n vertices with ¢(G) = 2 has at least
2n — 4 edges. We also characterized the graphs for which equality is attained. This result
immediately implies that the number of r-regular graphs with r € {2, 3} is finite, and in
Section 2 we characterize these graphs. When considering 4-regular graphs with ¢(G) = 2,
the difficulty increases significantly. Our main theorem (Theorem 2.4) characterizes all
connected 4-regular graphs with ¢(G) = 2.

Throughout this paper, we only consider connected, simple, undirected graphs.

1.1. Preliminaries

One of the common ways to give a lower bound on ¢(G) is to find a unique shortest
path between vertices. This technique, specialized to the case ¢(G) = 2, is explained in
the following lemma, which is a corollary of Theorem 3.2 in [2].

Lemma 1.1. Let G be a connected graph with ¢(G) = 2. If zuy is a path of length 2, then
either x ~ y or there is another path xvy of length 2 between x and y.
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In [6], we used this lemma extensively in combination with a breadth-first search of
a graph, and we use this strategy here as well. Given a fixed vertex v, we perform a
breadth-first search from v. Denote the vertices at distance exactly ¢ from v by N;(v),
and call this set the ith distance set from v. We use €(v) to denote the eccentricity of
v, which is the maximum distance from v to any vertex in the graph. The distance sets
from v partition the vertex set of GG as

e(v)
@) =N

which we call the distance partition of G with respect to v. If u € N;(v) and w € N;11(v)
and u ~ w, we call u a predecessor of w and we call w a successor of u. A terminal vertex
is a vertex with no successors.

Assume that G is a graph with ¢(G) = 2 and consider the distance partition from a
vertex v. If a vertex u is in N;(v) for some ¢ > 2, then by Lemma 1.1, it must have at
least two predecessors, as otherwise there would be a unique shortest path of length 2
from u to a vertex in N;_o(v). If G is a 4-regular graph on n vertices, then there are
n — b vertices in

e(v)
U Ni(v) = V(G) \ ({v} U Ni(v)),

and each of these vertices has at least two predecessors so there are at least 2(n — 5)
edges incident to these vertices. With the 4 edges incident to v, this accounts for 2n — 6
of the 2n edges of G. We call the remaining six edges extra edges, and throughout the
paper we consider the possible locations of these six extra edges.

We use standard graph theory terminology and notations. Often we abbreviate an
edge {u,v} € E(G) as uv for vertices u,v € V(G). For two graphs G and H with vertex
sets V(G) and V(H), respectively, the Cartesian product GOH is the graph with vertex
set V(G) x V(H) and (g1, h1) adjacent to (ge, ho) if either g1 = g2 and hihy € E(H),
or hy = hy and ¢g1g2 € E(G). The complete graph on n vertices, the complete bipartite
graph on partite sets of sizes m and n, the cycle on n vertices, the path on n vertices, and
the hypercube graph (the graph on 2™ vertices obtained by an n-fold Cartesian product
of Ky with itself) are denoted by K, Ky, n, Cpn, Pn, Qn, respectively. The circulant
graph G = C(n, £i,17) is the graph with vertex set V(C(n,+i,+75)) = Z/nZ that has
edges {t,t £i} and {¢t,t £ j} for all t € V(G).

Let G be a graph with v € V(G). A graph jdup(G, v) is constructed from G by joined
duplicating a vertex v € V(G) if V(jdup(G,v)) = V(G) U {u} and E(jdup(G,v)) =
E(G)U{uw : w e {v} UN;(v)}. From Lemma 2.9 in [16], ¢(jdup(G,v)) < ¢(G) for any
vertex v in a connected graph G.

Lemma 1.2. [Lemma 2.3, [1]] Let G be a connected graph on n wvertices with ¢(G) =
2. If S is an independent set of vertices, then |S| < k where k is the least integer
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such that there is a matriz in S(G) with two distinct eigenvalues of multiplicities k and
n—k.

Lemma 1.3. Let

C B
M =
BT D
where C' is an m X m symmetric matriz, B = [by... b,] has no zero columns, and

D = diag(dy,...,d,). If M is orthogonal, then n < m, the vectors by, ..., b, are pairwise
orthogonal, and each b; is a (—d;)-eigenvector for C.

Proof. Consider the last n columns of M. Since D is diagonal, these columns are
pairwise orthogonal if and only if n < m and the vectors by,...,b, are pairwise or-

| I, O
I I A

From the (1, 2)-block we see CB + BD = 0. Rearranging this equation we have

thogonal.
Second, expanding M? = I we have

C?+BBT (CB+BD

M? =
BTC+DB" BTB+ D?

[Cby ...Cby) = —[diby .. .dyby]
from which it follows that each b; is a (—d;)-eigenvector for C. O

As an illustration of Lemma 1.3, suppose G is a connected bipartite graph with bi-
partition V' = V4 U V;. Further assume that |Vi| = [V2|. It follows that if ¢(G) = 2, then
there exists a matrix M € S(G), where

C B

M =
BT D

)

where M? = I, and both C and D are diagonal matrices. Applying Lemma 1.3 we have
that B must be a matrix with orthogonal rows and columns. In fact, the converse also
holds in this case. If such an orthogonal matrix B exists, then the matrix

1

V2

I B
BT I

is orthogonal and hence ¢(G) = 2.
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2. Certain regular graphs that allow two distinct eigenvalues

From Theorem 3.1 in [6], if a connected graph G has fewer than 2n — 4 edges, then
q(G) > 2. This implies that there are only finitely many r-regular graphs with r < 3
that satisfy ¢(G) = 2. We describe them below.

Lemma 2.1. Let r < 3. If G is a connected r-reqular graph with ¢(G) = 2, then G has at
most 8/(4 — r) vertices.

Proof. In order for G to have ¢(G) = 2, G has to have at least 2n — 4 edges. So we have
the inequality

(r/2)n > 2n — 4.
Since 0 < r/2 < 2, this simplifies to n < 8/(4 —r). O

Corollary 2.2. If G is a connected r-reqular graph with ¢(G) = 2 for some r < 3, then G
is one of:

(1) KZ;
(2) K3 or Cy; or,
(3) Ku, K33, KsOK», or Q3.

Proof. The graph K> is the only connected 1-regular graph and has ¢(K3) = 2. The only
connected 2-regular graphs on n < 4 vertices are K3 and C4 and both have ¢(G) = 2. By
Lemma 2.1, a 3-regular graph with ¢(G) = 2 has 4,6 or 8 vertices. If n = 4, G = K4 and
q(G) = 2. If n = 6, the complement of G is 2-regular and so must be Cg or 2K3. Thus
G is either K3OK, or Kj 3, respectively, both of which have ¢(G) = 2 from Corollaries
6.5 and 6.8 in [2]. If n = 8, G has 12 = 2(8) — 4 edges. Thus by Theorem 3.1 from [6],
G=Q3. O

We now proceed with the main purpose of this paper, to characterize the 4-regular
graphs G with ¢(G) = 2. We begin by defining an infinite family of graphs called closed
candles which are analogs to the single-ended and double-ended candles in [6]. For k& > 3
the closed candle, Hy, is constructed from 2C} as follows. Label the vertices of one Cj
with the odd integers from 1 to 2k — 1 and the other with the even integers from 2 to
2k. Insert 2k additional edges between the two C}’s according to the rule: 7 is adjacent
togj,i0dd, jevenif j—t=3,5—i=—-1,or j=2,t=2k—1,0ori=1, j =2k. Thus
Hj, is a 4-regular graph. The graph H;q is shown in Fig. 1.

In the proof of Theorem 2.4, we will consider induced subgraphs that have the same
structure as a closed candle. A candle section is a graph with vertices uy, ..., us, vy, ..., 0
with edges w;u; 11, V;Vi+1, Ui+10;, and u;v;4q1 for 1 <i <t —1, see Fig. 2.

The following lemma gives a construction of orthogonal matrices for the closed candles.
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Fig. 2. Candle section.

Lemma 2.3. For all k > 3, we have q(Hy) = 2.

Proof. To see that the graphs Hy, for k > 3 achieve two distinct eigenvalues, we construct

orthogonal matrices for this family of graphs.

Let
-1 1 1 1 1 1
],s_ll 1],J_[ ! 1],@0_

R =
1 -1

We consider two cases for k£ and construct the corresponding matrices W. Here all
of the blocks are 2 x 2. The matrix in each case is symmetric so the blocks below the

diagonal blocks are transposes of the corresponding matrices.

Case 1: n =2k and k > 4 is even.

),(3,4),...,(k—3,k—2),(k—1,k)

DN

R, for (i,5) = (1,

J, for (4,5) =(2,3),(4,5),...,(k—2,k—1)
J, for (i,j) = (1,k)
o,

otherwise

Case 2: n =2k and k > 3 is odd.
First, note that when k = 3, the graph Hj is the octahedron (the graph obtained from

Kg by deleting a perfect matching). By Corollary 6.9 in [8], we have ¢(Hs) = ¢(G204) =

2. Now if k > 5, we construct the matrices as follows.
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O, otherwise

Each row of W has Euclidean length 2. Since each of the 2 x 4 matrices [J S], [J R],
[ST R], [S ST] has orthogonal rows, each pair of rows of W coming from the same
block is orthogonal. For i # j, the (i,7)-block of W? is one of JR, JS, SR, S? or their
transposes. In each of the cases the matrix is the zero matrix. Hence WTW = W?2 = 41.
We conclude that %W is an orthogonal matrix with whose graph is the closed candle on
n = 2k vertices. 0O

For example, the matrices for £ = 4 and k = 5 are respectively

o J O O S
O R O J J 0 S 0 O
R O J O and - )
J O R O O O R O S
sT o O S O
for k =6 and k = 7, the matrices are respectively
_ - O J O O O O S]]
O Rk 00 0 J J OR O 00 O
kRO J 0 0 0 O RO J OO O
o J o RrR OO 4o oJ o0 s o0 o0
O O R O J O -
O 0O O J O R O O O S* O R OT
J OO O R O O O O O R O S
B - _S’T O 0O O O S O]

Note that the closed candle Hj has independence number k if k is even, and k — 1
if k is odd. By Lemma 1.2 when k is even the only achievable multiplicity list for two
distinct eigenvalues is [k, k]; when k is odd, the only achievable multiplicity lists for two
distinct eigenvalues are [k, k] and [k — 1,k + 1].

Lemma 2.3 provides an infinite family of 4-regular graphs with ¢(G) = 2. Our main
theorem below characterizes all 4-regular graphs G for which ¢(G) = 2.

Theorem 2.4. If G is a connected 4-regular graph with q(G) = 2, then G is either:

(1> Ks;
(2) one of the graphs Rr 1, Rsa, Rs 3, Rsa, Rss, Rs from Fig. 3;
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Fig. 4. Sporadic 4-regular graphs with diameter at least 3.

(3) K3O0C4, K330Ks, one of the graphs Ryo2, Ri0,3, Ri0,4, Ri2,3, Ria,1 from Fig. J;
(4) Q4; or,

(5) a closed candle Hy, for some k > 3.

Notes: The graphs listed in items (1) through (4) of Theorem 2.4 have diameter 1 through
4 respectively. The graph R;1 = C(7,£1,£2), the graph Rgs = K40OK,, and the
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graph Rgg = C(8,+£1,+2). The graph Ryg 3 is the graph obtained from Qs by joined
duplicating a pair of antipodal vertices (in [6] we referred to this graph as Q%). The
graph Rqp4 = C(10,+£1,+3), and the graph Ri23 = C(12,£1,+3). The graph Ris:
appears in [19] as S14. Moreover Ri4 1 is the Cayley graph for the dihedral group D7
(with generators p and ¢ satisfying p? = ¢7 = ¢ and pp = ¢%p) with connection set
{p, p, ©%p, p*p}. Tt is also the point-block incidence graph of the non-trivial square
2 — (7,4,2) design and is distance regular with diameter 3, see [9]. The sporadic graphs
Rg1, Rs1, and Rig,1 in Fig. 3 are Hs, Hy, and Hj, respectively, so appear in item (5)
of Theorem 2.4. Also note that the closed candles are all circulants. For k£ > 3, it can be
verified that Hy = C(2k, £1, £(k — 1)).
The proof of Theorem 2.4 is split over Sections 3, 4, and 5.

3. Proof of Theorem 2.4 for 4-regular graphs with small diameter

In this section we prove items (1) and (2) of Theorem 2.4 for graphs with diameter
at most 2. The only 4-regular graph with diameter 1 is K5, and ¢(K5) = 2, so we focus
on 4-regular graphs with diameter 2. We begin by enumerating the 4-regular graphs G
with diameter 2 for which ¢(G) = 2 is not ruled out by Lemma 1.1.

Lemma 3.1. If G is a connected 4-regular graph with diameter 2 such that ¢(G) = 2, then
6 < [V(G)| < 10.

Proof. Let G be a connected 4-regular graph with diameter 2. Consider an arbitrary
vertex v in G and the distance partition of V(G) from v. In order for G to have ¢(G) = 2,
it must be the case that each x € Ny(v) has at least two neighbors in Np(v), otherwise
there is a unique path of length 2 between z and v. Let X be the set of edges between
Ni(v) and Na(v). Then

2|N2(v)| < |X| < 3|Ny(v)] = 12.

So |N2(v)| < 6 and G has at most 14446 = 11 vertices. This establishes 6 < |[V(G)| < 11.

We now show the upper bound can be improved to 10. Consider a 4-regular graph
G with 11 vertices and diameter 2. Using the notation above, we see |N2(v)| = 6, and
| X| = 12. So every vertex in Ni(v) has exactly three neighbors in Na(v), and every vertex
in Na(v) has exactly two neighbors in N (v). In particular, this means the subgraph H
of G induced by Na(v) is 2-regular. So we have two cases: either H is a 6-cycle, or H is
the disjoint union of two 3-cycles.

Case 1: H = Cg

Let the vertices of H be x1, 2, x3, 24, T5, Tg in cyclic order. Note that H is bipartite,
and in H there is a unique shortest path of length 2 between any two vertices in the
same partite set. Since there can be no unique shortest path of length 2 in G, the edges
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of X must supply an additional path of length 2 between every pair of vertices in each
partite set.

Let Ny(v) = {v1,v2,v3,v4}. Since v;vv; is a path of length 2, in order for this path
not to be unique there must be some x; that is adjacent to both v; and v;. In partic-
ular, this means we cannot have some v; whose neighbors are {z1, 23,25} and some vj
whose neighbors are {xs, x4, 26}. If there is no v; whose neighbors are {z1, z3, 25}, then
{1, 3,25} together with the common neighbor of {z1, 23}, the common neighbor of
{z3, x5} and the common neighbor of {z1, x5} form a 6-cycle. Without loss of generality,
suppose this 6-cycle is (v1, 21, v9, 23, v3, x5). Then, in order for each pair of vertices in
{2, 4,76} to have a common neighbor, we must have vy adjacent to each of {x2, x4, 26}.
Thus the edges between {v1,vs,vs} and {2, x4, z6} are a perfect matching.

We know vy is matched to one of zo, x4, or zg. We also know that vy is already
adjacent to x7 and x5. Note that in H, x; is at distance 3 from x4. So if v; is matched to
x4, then we have a unique shortest path of length 2, z1vx4. Similarly, x5 is at distance
3 from x5 in H, so if we match vy to z2, we get another unique shortest path of length
2. Thus v; must be matched to xg. A similar argument shows that vo must be matched
to x2, and vz must be matched to x4. This accounts for all of the edges in X. But now
we see that vixixs is a unique shortest path of length 2 in G.

Case 2: H = 2C5

Let the vertices of H be x1, 2, x3 and y1, Y2, y3, where all of the x;’s are adjacent, and
all of the y;’s are adjacent. Let Ny (v) = {v1,v2, v3,v4}. We know that x; has 2 neighbors
in Np(v). Without loss of generality, suppose x; is adjacent to v1. Then vizi22 and
vizizrs are paths of length 2. In order for them not to be unique shortest paths of length
2, we must have at least one of the edges v;x2 and vyx3. Suppose v; is adjacent to exactly
one of x5 and z3. Then v; is adjacent to exactly one of the y; vertices, and we have a
unique path vyy;y; between vy and some y;. Thus v; must be adjacent to both x5 and
x3. If vg is the other neighbor of z; in Ni(v), then following the same argument as for
v1, we must also have edges voxs and voxg. This accounts for all edges in X with ends
v1 and ve, and all edges in X with ends 21, x2, or 3. Thus the remaining edges in X are
all possible edges between {vs,v4} and {y1,y2,y3}. But now vivvs is a unique shortest
path of length 2. O

Since there are only 84 connected 4-regular graphs with order 6 < n < 10 [20], we can
generate the list of 4-regular graphs with diameter 2 for which ¢(G) = 2 is not ruled out
by Lemma 1.1. We do this by:

(1) using nauty’s geng function [18] to generate all connected 4-regular graphs on n
vertices for each 6 < n < 10;

(2) checking the diameter of the graphs generated in (1), and eliminating all with diam-
eter at least 3; then
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Table 1

The reduced list of thirteen 4-regular graphs with diameter 2.
Graph  g-value Graph  g-value Graph  g-value
Re.1 2 Rg3 2 Ry 1 > 2
R71 2 Rsg 4 2 Ry 2 > 2
R7.2 3 Rs 5 2 Ry 3 3
Rg1 2 Rge 2 Rio,1 2
Rg_yz 2

(3) checking the graphs remaining after (2) for any unique shortest paths connecting
two vertices at distance 2 and eliminating those graphs.

At the end of this computation we are left with a set of thirteen 4-regular graphs of
diameter 2 for which ¢(G) = 2 is not ruled out. Fig. 3 gives these thirteen graphs.
Lemma 3.2 completes the proof of Theorem 2.4 for graphs with diameter at most 2.

Lemma 3.2. Table 1 lists all thirteen candidate 4-regular graphs with diameter 2 (shown
in Fig. 3) and includes their q-values (or a bound on their q-value).

Proof. We treat each of the graphs in Table 1 separately, in the order they appear in
the table.

Rg,1: The graph Rg 1 is a closed candle, Rg1 = Hs. Thus ¢(Re1) = 2 by Lemma 2.3.

R71: The following matrix M is a matrix in S(R71 — {1,7}) (the graph R with the
edge {1, 7} deleted),

T3 V6 -3 0 0
V6 0 V6 2v2 0
-3 V6 -1 2v3 22

M== 0 2v2 23 -3 6 1 0
0 0 2v2 V6 -2 V6 2V3

23 0 0 1 V6 =3 22
0 —4 0 0 2v3 2V2 0 |

The matrix M is orthogonal and has the Strong Spectral Property; see pages 10 and 11
in [7]. Thus ¢(Rr71) = 2.

R72: Note that R7 o can be constructed from Ky 3 by adding edges {1,2} and {3,4}.
Suppose M € S(R72). We write M as

C B

M =
BT D




W. Barrett et al. / Linear Algebra and its Applications 679 (2023) 127-164 139

where C is a 4 x 4 matrix, B = [by by b3] has no zero entries, and D = diag(dy, da, d3).

Moreover,

Ci 0

02002

where each C; € S(K>).
Assume M is an orthogonal matrix. Using Lemma 1.3, the columns of B are pairwise
orthogonal and Cb; = —d;b; for i = 1,2, 3. Partition each b; into vectors z;,y; € R2.

Now
Clxi . Cl 0 73
Czyi 0 O, Yi
so each x; is a (—d;)-eigenvector for Cy, and each y; is a (—d;)-eigenvector for Cs.

The matrices C7 and C5 are each 2 x 2 non-scalar symmetric matrices, so each has two
distinct eigenvalues. Thus, di,ds,ds cannot be all distinct. Without loss of generality,
suppose ds = d3. And since the dimension of the (—ds)-eigenspace of C; is 1, the (—ds)-
eigenvectors of C; are scalar multiples of each other. That is, there exist «, 8 # 0 so that

r3 = axy and y3 = fy.
Now we consider the (2,2)-block of M?. We have

—d;z;
=Chi = l—diyi] ’

Is—D? = BTB
of oyl
_ T T ry T2 QT2
B 2 Y2 Y1 Y2 Py
|zl Bys
xlTxl + ley1 0 0
= 0 ngxg + y2Ty2 0
i 0 0 o?xlzs + B2yl ys

From
vy +ysy2 = 1= dy = @?xy w0 + Pys o
we conclude
(o = V)atzy + (8% — D)ylys = 0. (3.0.1)
Since the second and third columns of B are orthogonal we also have

azlws + Byl ys = 0,
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thus
_ B
Tad2 == Y2 Yo (3.0.2)

Substituting (3.0.2) into (3.0.1) we obtain

(a®—1) (—gygzn)+(52—1)y§y2=0=>—a26+5+a,6’2—a=0
= B-a)(aB+1)=0

=pf=a or af=-1

Since the columns of B are orthogonal, o # (3. We show that af = —1 leads to a
contradiction which in turn implies that no orthogonal M € S(R72) exists. Hence,
q(R72) > 2. Suppose aff = —1; then

X ax
Li=| ) c2| = L-C*=BB" = [xl 2 521 xy oy
? o PR adk gyl

_ | maf + U+ aP)zazy ay! + (1+ af)zays
Lyirl + (L+aB)yerl  yyl + (1+5%)yeys

_ r12] + (14 a?)zaad 1yt
izl iyl + 1+ 8%)yeys

So z1y¥ = 0. This implies that either 1 = 0 or y; = 0 which is a contradiction since
the entries of B are nonzero.

To show ¢(R72) = 3, we see that Rz results from joined duplication of a vertex
of G189 in [3] or [8] (i.e., the graph obtained from R; o by contracting edge {3,4} is
isomorphic to G189). From Table 3 in [8] we find that ¢(G189) = 3. Thus ¢(R72) = 3.

Rg 1: The graph Rg; is a closed candle, Rg1 = Hy. Thus g(Rs,1) = 2 by Lemma 2.3.

Rg 2: The following matrix Mg o is a matrix in S(Rg 2),

1 1 1 0 0 1 0 -1

1 1 -1 0 -1 0 0 1

1 -1 08 0 0 a 0

11 0o o B0 1 1 0 a
Mgo=— ;
V5 0 -1 0 1 -1 1 -1 0

1 0 0 1 1 -1 -1 0

0 0 o« 0 -1 -1 0 8

1 1 0a 0 0 B 0]
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where a = (/5 +1)/2 and 8 = (v/5 — 1)/2. Since Mg 5 is orthogonal, q(Rg2) = 2.

Rs 3: The following matrix Mg 3 is a matrix in S(Rg 3),

1
Mgz = Niv)

SR I PN RN

V2
0
V2
0

o

The matrix Mg 3 is orthogonal, so g(Rs3) = 2.

V2
-2

Rs 4: Note that in our labeling of Rg 4, N1(7) = {1,3,6,8} and N1(8) = {1,3,6,7}. Let
G be the graph obtained from Rg 4 by contracting the edge {7,8} to the vertex (78)
(and replacing every pair of multiple edges by a single edge). The following matrix M is

a matrix in S(G),

Wl

|
@o,_.,_.a,_.§

(here the vertices are ordered as {1,2,3,4,5,6,(78)}). The matrix M is orthogonal, so
¢(G@) = 2. Since Rg 4 is obtained from G by joined duplication of (78), ¢(Rs4) = 2.

Rs 5: Note that Rg 5 = K40K>5. Thus by Corollary 6.8 in [2], we have ¢(Rg5) = 2.

Rs ¢: The following matrix Mg ¢ is a matrix in S(Rg ),

Mg =

o

(V2
V2

-1

= o O O

-1
-2

o O O =

RS
O = N NN = O
|
L 5%
O~ NN = O O

o O

I
SSLLlooolk

|
S\E)—looo»—lw
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The matrix Mg g is orthogonal, so q(Rge) = 2.

Ry 1: Consider a matrix M € S(Ry1) where we use variables for each edge and vertex.
That is,

Tij if 1j € E(RQJ),
[M]ij =\ Ty ifi = j, and
0 ifij ¢ E(Ron).
Suppose M is an orthogonal matrix. Note that the edges of Ry ; can be partitioned into

the 9-cycle (1,2,3,4,5,6,7,8,9,1), and the 3-cycles (1,4,7,1), (2,5,8,2), and (3,6,9,3).
Since the edge {1,2} does not lie in any triangle in Rg 1, we have

2
0= [M?]12 = 211212 + T12T22.

Since x12 # 0, we conclude that x9o = —x11. Repeating this argument for each edge of
the 9-cycle, we see that x;; = —x;;, or x;;, =0 forall 1 <¢ < 9.

Now consider the 3-cycle (1,4,7,1). Taking account of the walks of length 2 between
1 and 7, we have

2
0= [M?)i7 = 211217 + T17%77 + T14%a7 = T14Ta7.

But since x14,x47 # 0, this is impossible. Thus there is no orthogonal matrix M €
S(Rg.1), and we conclude g(Rg 1) > 2.

Ry 2: Consider a matrix M € S(Ry2) where we use variables for each edge and vertex.
That is,

xlj lf Z] € E(Rgg),
[M]ij =\ Ty if1 = j, and
0 ifij ¢ E(Roa).

Suppose M is an orthogonal matrix. Note that {6,7} € E(Ry2), but {6,7} is not
included in any 3-cycle in Rg 5. Thus

0 = [M?)g7 = zeswe7 + Tera77-
Since the variable xg7 # 0, this implies that xgs = —x77. Similarly, we see that edges
{2,6} and {3, 7} are not included in any 3-cycles in Ry . Considering [M?]56 and [M?]37

we derive xog = —xgg and w33 = —x77. Combining these three equations, we have
oo = —x33. Now consider the paths of length 2 between vertices 2 and 3. We have

2
0 = [M?]a3 = T20%93 + T23%33 + T12T13 = T12T13-
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But since x12,x13 # 0, this is impossible. Thus there is no orthogonal matrix M €
S(Ry,2), and we conclude g(Rg 2) > 2.

Ry 3: Note that {1, 2,3}, {4,5,9}, and {6, 7, 8} all induce K3 subgraphs in Ry 3. Moreover,
{1,8,9}, {2,5,6}, and {3,4, 7} also induce K3 subgraphs in Ry 3, and we see that Rg 3 =
K30OKs. We prove in Lemma 3.3 that ¢(K,,0K,,) = 3 for all m,n > 3. This establishes
q(Rg,3> =3.

Rip1: The graph Rip1 is a closed candle, Rig1 = Hs. Thus ¢(Ri01) = 2 by
Lemma 2.3. O

In order to complete the preceding proof, we establish the following lemma, which
shows that the bound in Proposition 3.1 of [8] is sharp for complete graphs.

Lemma 3.3. For m,n > 3, we have q(K,,0K,) = 3.

Proof. Since ¢q(K;) = 2 for any s > 2 it follows from a basic application of Kronecker
products that ¢(K,,0K,) < 3 (this inequality can also be deduced from Proposition 3.1
in [8]). It remains to verify that in fact ¢(K,,0K,) > 3.

If ¢(K,,0K,) = 2, then there exists a matrix C' € S(K,,0K,,) that satisfies C? = I
and is given by

Ain D2 Dis ... Din
Dia Az Doz ... Doy

C = ) ,
Diy Doy Dzp oo Apm

where D;; is an n X n diagonal matrix with nonzero diagonal entries for each 1 <¢,5 <m
and A4;; € S(K,) for 1 < i <m.

Let [C?];; denote the (i,7) block of the matrix C? partitioned conformally with C
above. Then

[C?hi2 = A11 D1z + D12 Ay + ZDljDQj =0,

=3

[C?13 = A11 D13 + Di3Ass + Z D1 Dsj =0,
J#1,3

[C?las = A2 Das + D3 Ass + Z DyjDs; = 0.
J#2,3

Since D;; is invertible, we have

Agy = =Dy ADiy — D' | Y DiDyj | (3.0.3)
j=3
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Aszz = *D1_31A11D13 - D1_31 Z Dy;Ds; |, (3.0.4)
J#1,3
Ass = =DigAs3Dyy — | Y DojDs; | Di. (3.0.5)
j#2,3

From (3.0.4) and (3.0.5) we have

Azo = Dy3 D73 A1 D13 D3y + Dog Dy Z Dy;Ds; | D3y — Z Ds;Ds; | Dy
J#1,3 J#2,3
(3.0.6)
Note that [Dia]ij = Citnj)s [Di13lij = Ci2nay), and [Daslij = C(n+iy2n+j), and, by
assumption, each such entry is nonzero when ¢ = j. By a direct calculation we have

Cij C(n+i)(2n+i) Cj (2n+75)
Ci(2n+i) C(n+7) (2n+7)

[Dy3 D15 A1 D13 Dyy'lij =

and

CijCj(n+j
[D1_21A11D12]ij _ v j(n+j) )
Ci(n+i)

Using (3.0.3) and (3.0.6), and letting (¢,7) = (1,2),(1,3), and (2,3) (there are no
contributions from the diagonal terms in (3.0.3) nor (3.0.6)) we have

C12C(n4+1)(2n+1)C2(2n42) _ €12C2(n42)

(3.0.7)
C1(2n+1)C(n+2)(2n+2) Cl(n+1)
C13C(n+1)(2n+1)C3(2n+3) _ _ C13C3(n+3) (3.0.8)
C1(2n+1)C(n+3)(2n+3) Cl(n+1)
C23C(n+2)(2n+2)C3(2n+3) _ _C23CB(n+3). (3.019)
C2(2n42)C(n4+3)(2n+3) C2(n42)

Manipulating equations (3.0.7) and (3.0.8) produces the equation

C2(2n+2)C(n+3)(2n+3) _ C2(n+2)

C(n+2)(2n+2)C3(2n4+3) C3(n+3)

or
€3(n+3)C2(2n+2)C(n+3)(2n+3) = C(n+2)(2n+2)C3(2n+3)C2(n+2)-
However from (3.0.9) we have
C(n+2)(2n+2)C3(2n+3)C2(n+2) = ~C2(2n+2)C(n+3)(2n+3)C3(n+3)>

which is a contradiction. O
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Table 2
Sporadic 4-Regular Graphs with diameter at
least 3.
Graph  g-value Graph  g-value
Rio,2 2 Ri22 > 2
Rio,3 2 Ri2,3 2
R10,4 2 R14,1 2
Ri21 > 2

This completes the verification of the g-values listed in Table 1, which completes the
proof of Theorem 2.4 for graphs with diameter at most 2.

4. Sporadic 4-regular graphs and Theorem 2.4

In this section we establish whether or not ¢(G) = 2 for a collection of sporadic graphs.
These graphs are all connected with diameter at least 3 and arise within the proofs in
Section 5.

Lemma 4.1. Table 2 lists candidate 4-regular graphs with diameter at least 3 (also shown
in Fig. /) and includes their g-values (or a bound on their q-value).

Proof. Ryg2: To see that g(R10,2) = 2, note that the following matrix My 2 € S(R10,2)
is orthogonal,

[—V2 -2 0 V2 0 0 2 0 —2]

-2 V2 2 0 0 V2 0 0 -2 0

0 2 —v2 =2 0 0 V2 0 0 -2

0 0 -2 V2 2 0 0 —v2 -2 0

Mm_l V2 0 0 2 —V2 2 0 0 0 —2
’ 0 V2 0 0 2 V2 o =2 0 2 0

0 0 V2 0 0 -2 —V/2 -2 0 -2

2 0 0 —V/2 0 0 -2 V2 -2 0

0 —2 0o -2 0 2 0 -2 0 0

. -2 0 -2 0o -2 0 =2 0 0 0]

Ry0,3: Note that contracting edges {1,2} and {6,7} in Ry 3 gives a graph isomorphic
to (3. Since Rig 3 can be obtained from @3 by joined duplicating a pair of antipodal
vertices, Corollary 3.3 from [3] implies that ¢(Ri0,3) < ¢(Q3) = 2. Thus ¢(R10,3) = 2.

R19,4: Theorem 5.3 in [4] shows that K, , with a perfect matching deleted has g-value
2 for all n # 1,3. Since Rjp.4 is isomorphic to K55 with a perfect matching deleted,
q(R10,4) = 2.
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Ri2,1: Following the example after Lemma 1.3, set V4 = {1,3,5,7,10,12} and V5 =
{2,4,6,8,9,11}. Assume that there exists an M € S(Ri2,1) with M? = I and M is of
the form

C B

M =
BT D

)

where C' and D are diagonal matrices. Then by Lemma 1.3 we know that B must be
an orthogonal matrix. Consider the last two rows of B (whose nonzero patterns are the
same since vertices 10 and 12 have the same neighbors) and suppose they are equal to
u = [a,b,¢,d,0,0] and v = [z,y, z,w,0,0]. Since both u and v are orthogonal to row
4 of B we may deduce that [z,w] = a]c,d] for some nonzero scalar «. Similarly since
both w and v are orthogonal to row 2 and to row 3 we conclude that [y, z] = 5[b, ¢] and
[z,y] = 7[a, b], where 8 and ~ are nonzero. Now it follows that « = 8 = 7 and hence row
5 is a multiple of row 6 which contradicts the assumption that B is orthogonal. Hence
q(Ri2,1) > 2.

Ri2: Using a similar setup as in the case of Ria1 set Vi = {2,3,4,5,11,12} and Vo =
{1,6,7,8,9,10}. Assume that there exists an M € S(Ri22) with M? = I and M is of
the form

C B

M =
BT D

)

where C' and D are diagonal matrices. Then by Lemma 1.3 we know that B must be an
orthogonal matrix. Consider rows 2 and 3 of B (whose nonzero patterns are the same
since vertices 3 and 4 have the same neighbors). Following a similar argument as used
for the graph Ry21 (both rows 2 and 3 must be orthogonal to rows 1,5, and 6) we can
deduce that rows 2 and 3 must be multiples of one another which is a contradiction.
Hence q(R1272) > 2.

Ri2,3: To see that q(Ri2,3) = 2, we present an orthogonal matrix Miz 3 € S(Ri2,3) in
block form, as above. We take V; = {1,2,3,4,5,6} and Vo = {7,8,9,10,11,12}. Let

[ ¢ -8 ¢ —VB/5 0 0]
e —v B 0 ) 0
B _|VE/5 0 0 - -8 =
2TV 0 V/B/5 0 —¢ ¢l
0 1) 0 - v I6]
| 0 —  —¢ —VB/5 0 V5/5]

where

a=(56+1)/2, B=1/2V5/5-4/5, ~= \/—7\/5/10 +17/10, §=+/5/10+1/2,
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e=af, and (= ay.

Thus

has the desired properties.

Ry41: To see that ¢(Ri4,1) = 2, we provide an orthogonal matrix Mys1 € S(Ri4,1) in
block form. We take Vi = {1,2,3,4,5,6,7} and Vs = {8,9,10,11,12,13, 14}, and let

1 0 1 0 0 -1 1
1 1 0 1 0 0 -1
-1 1 1 0 1 0 0
Bui=-| 0 -1 1 1 0 1 0
0 0 -1 1 1 0 1
1 0 0 -1 1 1 0
Lo 1 0 0 -1 1 1
Then
Mgy = Bg Bias
14,1 0

has the desired properties. We note that M4 was presented in [19]. O
5. Proof of Theorem 2.4 for 4-regular graphs with large diameter

In this section we complete the proof of items (3), (4) and (5) of Theorem 2.4 for
graphs with diameter at least 3. Recall from Section 1.1, in the distance partition from
any vertex v, every u € N;(v) has at least two neighbors in N;_1(v) for all ¢ > 2. These
edges account for 2n — 2 — deg(v) = 2n — 6 of the edges of G. We consider the possible
locations of the six extra edges not accounted for by these predecessors. Throughout the
proofs in this section, once all of the edges incident with a vertex have been accounted
for, we say that the vertex is full.

Lemma 5.1. Let G be a connected 4-reqular graph with diameter at least 3 and let v be a
vertex for which e(v) > 3. Suppose that every vertex in Na(v) and N3(v) has exactly two
predecessors and that G[N1(v)]UG[N2(v)] contains at most three edges. Then q(G) > 2.

Proof. Assume ¢(G) = 2.

Case 1: N1(v) is an independent set.
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Each pair of vertices of Ny (v) shares v as a common neighbor, so each pair must share a
4
2

distinct vertex in Na(v) with two predecessors in Nj(v) and accounting for all the edges
between Ni(v) and Na(v), also implying that |No(v)| = 6.

Suppose each vertex in Na(v) has a neighbor in Na(v). Then there are three edges in
G[N2(v)] and G[N2(v)] = 3K>. Let 2y be an edge in N2(v) and let a, b be the predecessors
of z. Then a,b are not both predecessors of y. Suppose that b and y are not adjacent.

common neighbor in Ny(v) as well. There are ( ) = 6 such pairings, each resulting in a

Then bzy is a unique shortest path of length 2 between b and y.

Otherwise some vertex, say u € Na(v), has no neighbor in Ny(v). Vertex u shares a
common neighbor in Nj(v) with four other vertices in No(v), call them x1,xo, 23, 24.
To avoid unique paths from u to x; for ¢ = 1,2,3,4, v and z; must have a common
successor. These common successors are distinct since each has just 2 predecessors. But
then deg(u) > 6.

Case 2: G[N1(v)] contains exactly one edge.

This case follows the same logic as Case 1, with the exception that there are five pairings
of nonadjacent vertices in Nj(v) that share v as a common neighbor so each of these
pairs must have a common neighbor in Na(v). As before, this accounts for all the edges
between Nj(v) and Na(v), so there are exactly five vertices in Na(v). Since G[Na(v)]
contains at most two edges, some vertex u in Na(v) has no neighbors in Ny(v). Vertex u
shares a neighbor in Nj(v) with at least three other vertices in Na(v). Arguing similarly
to Case 1, deg(u) > 5.

Case 3: G[N1(v)] contains exactly two edges.
Suppose the two edges do not share a vertex. Then the four pairs of nonadjacent vertices
in Np(v) that have v as a common neighbor must each have a common neighbor in
Ns(v), accounting for all the edges between Nj(v) and Na(v) and resulting in exactly
four vertices in Na(v). Since there is at most one edge in Na(v), there is a vertex u in
N3 (v) that has no neighbor in Na(v). Let a be a neighbor of u in Ny (v) with ab one of
the two edges in G[Ny(v)]. Then wab is a unique shortest path of length 2 in G.
Otherwise the two edges in G[Ny(v)] share a vertex, say c¢. Then ¢ has exactly one
neighbor w in N3(v). Let the non-neighbor of ¢ in Ny (v) be d. Since ¢ and d have v as a
common neighbor, the other predecessor of w in N;(v) must be d. To prevent a unique
shortest path of length 2 between w and the neighbors of ¢ in Nj(v), there must be an
edge connecting w to a vertex, y € No(v) whose two predecessors are the two neighbors
of ¢ in Ny (v). But this creates a unique shortest path dwy of length 2. Note that in this
case we did not use the hypothesis that each vertex in N3(v) has two predecessors. This
will be used later in the proof of Lemma 5.3.

Case 4: G[N1(v)] contains exactly three edges.
If G[N1(v)] & Py, then the two endpoints of the Py must have a common neighbor w in
Ns(v). Then w has a unique shortest path of length 2 to both non-end vertices of Pyj.
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If G[N1(v)] = C3 U K, the same argument as in Case 3 applies, with ¢ being any
vertex in the C3. Note again, that in these first two possibilities that the hypothesis that
each vertex in N3(v) has two predecessors was not used. This will be used at the end of
the proof of Lemma 5.3.

Suppose G[N1(v)] & Kj 3. Then each pair of nonadjacent vertices in Ni(v) has a
common neighbor in Ny (v), in addition to the common neighbor v. But in order for each
vertex in Nj(v) to have degree 4, there must be three vertices in Na(v), each adjacent
to a different pair of leaves of the K7 3. Each pair of vertices in Na(v) has one common
neighbor in N;(v), and since Na(v) is an independent set, this implies that each pair of
vertices in Na(v) must have a common neighbor in N3(v). These neighbors are distinct
because each vertex in N3(v) has two predecessors. Note that all three vertices in Na(v)
are full. Let a be a leaf vertex of the K 3; then there exist two paths of length 2, asz
and aty for some s,t € No(v) and z,y € N3(v), that are the unique ax and ay paths of
length 2. O

Corollary 5.2. Let G be a connected 4-reqular graph with diameter at least 3. If v is a
vertex with e(v) > 3 and for which there is no vertex in the distance partition from v
with 3 or 4 predecessors, then q(G) > 2.

Proof. Let N4(v) be the furthest distance set of v. Since every vertex in Ng(v) has
exactly two predecessors, we know that G[Ng4(v)] is 2-regular. So at least three of the
six extra edges must be in Ny(v), and the maximum number of edges that could appear
within the subgraphs G[N;(v)] for 1 <i < d—1 is three. So the hypotheses of Lemma 5.1
are satisfied and ¢(G) > 2. O

Lemma 5.3. Let G be a connected 4-reqular graph with diameter at least 3 and let v
be a vertex for which e(v) > 3. If in the distance partition from v no vertex has four
predecessors, then either G = Ryo 3, G = K30C4y, or ¢(G) > 2.

Proof. Suppose ¢(G) = 2. We assume G has a vertex with three predecessors as otherwise
the result follows from Corollary 5.2. We begin by establishing three claims.

Claim #1. Any vertex with three predecessors cannot have a successor.

Proof of Claim #1. Suppose some vertex w in N;(v) has three predecessors in N;_1(v)
and one successor z in N;41(v). Note that ¢ must be at least 2. Since z has at most three
predecessors in N;(v), there must be a neighbor « of z in N;41(v) or N;yo(v). But then
there is a unique shortest path of length 2 between w and z, as w is full.

Observe that the proof of Claim #1 also implies that if G is a graph and v € V(G)
for which some vertex in the distance partition from v has four predecessors, any vertex
w € N;(v) with three predecessors cannot have a successor z unless z is a vertex with
four predecessors. We will use this in Case 4 of the proof of Lemma 5.4.
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Claim #2. Vertices with three predecessors occur in pairs, with each pair the endpoints
of a path in some distance set N;(v).

Proof of Claim #2. Suppose w; € N;(v) has three predecessors. Since it can have no
successors but has degree 4, it must have a neighbor wy € N;(v). So w; is one end of
a path wiws ... wy in N;(v), where wa, ..., wg—1 have two predecessors each, and hence
is full, and wg—1 is the only neighbor of wy in N;(v). If wy has a successor y, then
YywipWg_1 1S a unique shortest path of length 2 between y and wg_1. So wg must have
three predecessors.

Claim #3. A pair of vertices with three predecessors can occur only in N;(v) for i > 3.

Proof of Claim #3. Let w be a vertex with three predecessors. Suppose w € Na(v).
Note that w cannot have a successor. Let z be another vertex in Np(v) with three
predecessors, and no successor. Then there are at least two vertices in Nj(v) that are
common predecessors of w and z. Since e(v) > 3, there must be a vertex € Na(v) that
has a successor y € N3(v). So  cannot have three predecessors and therefore must have
two. If a predecessor of x is a common predecessor of w and z, then there is a unique
shortest path of length 2 between y and this predecessor of z. So w and z must have
exactly two shared predecessors, and the two predecessors of x each has exactly one of
{w, z} as a successor. This implies that, via N1(v), there is a path of length 2 between z
and w (and between x and z). Since these paths cannot be unique shortest paths, and x
cannot be adjacent to w (as it would then be on the wz path in Ny(v), and hence have
degree at least 5),  must have a common neighbor ¢t # z in Na(v) with w. But then yxt
is a unique shortest path of length 2 between y and t.

Let S represent the set of vertices with three predecessors. We have shown that no
vertex in S can have a successor and all vertices in S must occur in pairs in the distance
sets N;(v) for i > 3. A pair of such vertices requires a minimum of three of the six
additional edges. It follows that |S| = 2 or |S| = 4, leaving at most three or zero edges
that could appear in the subgraphs G[N;(v)] for 1 < ¢ < €(v) — 1, respectively. Let j
represent the smallest value of ¢ for which V;(v) contains an element of S. If j > 3, then
Lemma 5.1 implies that ¢(G) > 2, so we only have to consider j = 3.

Case 1: N1(v) is an independent set.

By the argument in Case 1 of Lemma 5.1, No(v) consists of six vertices, such that each
vertex shares one common neighbor in N;(v) with each of four other vertices in Na(v).
Consider u € Na(v), and denote by w the unique vertex in Na(v) with which « does not
share a neighbor in Ny (v).

Case 1(a): No(v) is also an independent set.
Let y1,y2 be the successors of u in N3(v) and let x1, 29, 23,24 be the vertices in Na(v)
that share a unique common predecessor with u. Since there cannot be a unique shortest
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path of length 2 between u and x; for any i, each x; must be adjacent to y; or y,. Since
neither y; nor o has four predecessors, y; must be adjacent to two of the z; and ys
to the other two. Then y;,y2 € S. Neither y; nor y» is adjacent to w, so repeating the
same argument, there are successors 21,22 € S of w such that z; is adjacent to two of
the x; and z5 to the other two. This accounts for all edges between Na(v) and N3(v), so
N3(v) = {y1,¥2,21,22} = S. Note that each z; is adjacent to exactly one of y;,y> and
one of z1, z9. Since none of y1, Yo, 21, 22 has a successor by Claim #1, there are exactly
two edges in G[N3(v)] that do not share an endpoint. If y;y2 is not an edge, then y;uy,
is the unique shortest path of length 2. So y1y2 is an edge, and z; 25 is an edge. Without
loss of generality, suppose that x; is adjacent to y;. Then z; and y, are not adjacent
and z1y1y2 is a unique shortest path of length 2.

Case 1(b): Ny(v) is not independent, so |S| = 2.
Suppose there is an edge ut in G[N3(v)], not sharing an endpoint with any other edge
in G[N2(v)]. Then there is a shortest path of length 2 through N;(v) from u to at least
three other vertices in Na(v). So for each of these three vertices there must be a shortest
path of length 2 through N3(v). Since deg(u) = 4, u can only have one successor, so
there is a single vertex € N3(v) on all three paths. But then x has four predecessors.
Now suppose ut and rt are edges in G[Na(v)]. Recall that w is the vertex in Na(v)
that shares no predecessors with u. Let y and z be the remaining vertices in No(v). To
avoid a unique shortest path of length 2 through N;(v) from w to y or z, there must be
a vertex x in N3(v) whose predecessors are u, y, and z. Then tuz is a unique shortest
path of length 2.

Therefore Case 1 cannot occur, and N;(v) is never an independent set.

Case 2: G[N1(v)] contains exactly one edge, so |S| = 2.
We follow the proof of Case 2 of Lemma 5.1 but make more careful note of the location
of the edges in N3(v). Let a and b represent the adjacent vertices in Ny(v). Let u be the
vertex in Na(v) whose two predecessors are Ni(v) \ {a,b}. Each of the four vertices in
Ny(v) \ {u} has exactly one of a or b as a predecessor. Note that there are four shortest
paths of length 2 between these vertices and the other vertex in {a,b}. Since these paths
cannot be unique, there must be two independent edges in No(v) that connect vertices
with no common predecessor in {a,b}. Note that if two adjacent vertices in Ny(v) do
not share a predecessor in Niy(v) \ {a, b}, then there are unique shortest paths of length
2 between the vertices Ny(v) \ {a,b} and the neighbors of their successors in Na(v). So
the independent edges between the vertices of Na(v) \ {u} connect vertices so that each
pair has one common predecessor in Ny (v) \ {a, b} and has one non-common predecessor
in {a,b}.

Each endpoint of the independent edges in Ny(v) has exactly one successor, and u
must have two successors. It follows that there are six edges between the vertices in
Ns(v) and the vertices in N3(v). Since each of the two vertices in S N N3(v) has three
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predecessors, there can be no other vertices in N3(v) and S = N3(v). From Claim #1,
these two vertices must be adjacent to each other. Each of the four vertices in Na(v)\ {u}
is adjacent to one of the vertices in S. The two predecessors other than u of each vertex
in S must be a pair of nonadjacent vertices in Na(v) \ {u} to avoid unique paths of
length 2 between vertices in Na(v) \ {u} and their non-neighbor in N3(v). Additionally,
the two successors of a (respectively, b) must have a common successor in S, otherwise
there is a unique shortest path of length 2 between a (respectively, b) and a vertex in S.
This implies that the predecessors of a vertex in S are u and two nonadjacent vertices
in Nz(v) that share a predecessor in {a,b}. Thus G = K30C4.

Case 8: G[N1(v)] contains exactly two edges, so |S| = 2.
Then ¢(G) > 2 by Lemma 5.1, Case 3 and the observation at the end of its proof.

Case 4: G[N1(v)] contains exactly three edges, so |S| = 2.

If G[N1(v)] & Py or G[N1(v)] & C3 U K7, then by Case 4 of Lemma 5.1 and the
observations within its proof, there is a pair of nonadjacent vertices with a unique path
of length 2 between them. So we assume G[N;(v)] = K 3. As in that proof, No(v)
consists of three vertices, each being the common successor of two leaves of the Kj 3.
Since j = 3, there are two adjacent vertices of S in N3(v), each with three predecessors.
Since N3(v) is an independent set, each of its three vertices has two successors, so there
are six edges between Ny(v) and N3(v). It can now be verified that G = Rig3. For
instance, let v correspond to vertex 1 in the drawing of Rig 3 in Fig. 4.

In all of the above cases, we either reach a contradiction to ¢(G) = 2, or G is
isomorphic to either Rig3 or K3OC;. Lemma 4.1 establishes ¢(Rip3) = 2. Since
K3;0Cy = K30OK.0OK,, Corollary 6.8 in [2] implies ¢(K30C4) = 2. This completes
the proof. O

Lemma 5.4. If G is a connected 4-regular graph with q(G) = 2 and diameter at least 3,
then G is either

(1) K3D04, K3,3\:|K2, one Of the gmphs Rlo’g, R10,3, R10’4, R12,3, or R14’1 given m
Fig. 4;
(2) Q4; or,

(3) a closed candle Hy, for some k > 6.

Proof. Recall that a full vertex is a vertex whose incident edges have all been accounted
for.

Let v be a vertex of G with ¢(v) > 3. If no vertex in the distance partition of v has
four predecessors, then G = Rjp 3 or G = K30C,; by Lemma 5.3. For the remainder of
this proof, we assume that the distance partition of v contains at least one vertex with
four predecessors. Let d = €(v) be the index of the farthest distance set. Each vertex
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with four predecessors uses two of the six extra edges, so Nyg(v) may contain no more
than three vertices with four predecessors.

Case 1: Exactly three vertices in Ny(v), say 21, 22, and z3, have four predecessors.
All six of the extra edges are used by z1, 22, and z3. By Case 1 of Lemma 5.1, Na(v)
contains exactly six vertices, each being the common successor of a different pair of
vertices in Ny (v), and d = 3. Since Na(v) has exactly six vertices with two successors
each, N3(v) = {z1, 22, 23} and each vertex in No(v) has two neighbors in {z1, 2o, 23 }.
Let Nao(v) = {y1,92, Y3, Y4, Y5, Ys }, and recall from Case 1 of Lemma 5.1 that each
vertex in Ny (v) shares a common predecessor in Nj(v) with exactly four other vertices
in Na(v). This partitions Na(v) into three pairs, say {y1,v2}, {ys, y4}, and {ys, ys }, where
each pair does not share a predecessor in N;(v). Since each y; has two successors among
{21, 22, 23}, each of these pairs must share at least one successor in N3(v). Suppose y1
and y, share z; as a common successor. To avoid y;z1y2 being a unique path of length
2, y1 and y must also share their second successor, say zz. Similarly, each of {ys,ys}
and {ys, ys} has two shared successors among {z1, 22, 23 }. Without loss of generality, we
may assume that the successors of {ys, y4} are {21, 23} and the successors of {ys,ys} are
{#2,23}. Thus G = R141, and Lemma 4.1 completes the proof.

Case 2: Exactly two vertices in Ng(v), say z1 and 2o, have four predecessors.
In this case there remain two extra edges. We treat the possibilities for these edges in
the following four subcases.

Case 2(a): z1 and zo share all their predecessors in Ng_1(v).
Denote the common predecessors of z; and zo by {y1,y2,¥s3,vs}. Suppose d > 3. Let
{z1,22} C Ng_o(v) denote the predecessors of y;. If 1 has three predecessors, then
y1 is its unique successor, and z1y;21 is a unique shortest path of length 2 between x;
and z;. So we may let {wi, w2} C Ny_3(v) denote the predecessors of xp. Since y; is
full and wyz1y; is a shortest path of length 2, w; must be adjacent to xo. Similarly,
ws is adjacent to xo. We repeat this argument, with x; replacing y;, and then with w;
replacing 21, forming successive induced candle sections from {1, 25} until we reach, say,
{ay,a2} C Ny(v). Since both x; and x4 are just one edge short of being full, there must
exist a vertex, say y4, whose predecessors are not x; or xo. Denote the predecessors of
y4 by {x3,z4}. By the same argument, starting with y, we see successive induced candle
sections from {x3, x4} until {a3, a4} C Ny(v). Recall that {z1, z2}N{x3, 4} = 0. A vertex
in {wy,ws} N {ws,ws} would have to have four successors, so {wy, ws} N {ws, ws} = 0.
Continuing, the two candle sections must be disjoint, including {ai, as} N {as,as} = 0.
It follows that Ny(v) = {a1, a2, a3, a4}.

Suppose the two predecessors of yo are z; € {x1,22} and x; € {x3,z4}. Then z;, z;,
and ¥, are all full, and z;y»x; is a unique shortest path of length 2 between z; and z;.
So we assume without loss of generality that the predecessors of y are {z1,z2}, and of

y3 are {Ts, Tq}.



154 W. Barrett et al. / Linear Algebra and its Applications 679 (2023) 127-164

Each vertex in Nj(v) is one edge short of being full, and any pair of these vertices
shares v as a common neighbor. Suppose a; is adjacent to one of {as, a4}, say az. Then
a1 and ag are both full, and ajvay is a unique shortest path of length 2 between a; and
ay. So a1, az, and a4 must share a common successor v € Ny(v). Similarly, as, a3, and
a4 must share a common successor, which must be u since a3z and a4 are full. Therefore,
u has four predecessors, using up the remaining two extra edges, and all vertices listed
so far are full. It follows that G cannot contain any additional vertices, and G = Hj, for
some even k > 6 (as the number of vertices accounted for in the proof is divisible by 4).
Recall that ¢(H) = 2 by Lemma 2.3.

Suppose d = 3 and again write N;(v) = {a1,as,a3,a4}. The exact number of edges
that connect {y1,¥y2,ys,ys} to vertices in Nj(v) is eight. Furthermore, since z; and
zo are full, each vertex in Np(v) must have either zero or at least two successors in
{y1,Y2,Ys3, Y4}, to prevent a unique shortest path of length 2 between N (v) and N3(v). If,
say a1, has no successor in {y1, y2, s, y4 }, then it must be adjacent to each of {asz, as, a4 }.
However, to account for the edges between Nj(v) and Na(v), some a; must have three
successors. This is impossible as deg(a;) = 4 for all i. So each a; has two successors
in {y1,y2,¥s3,y4}, accounting for eight edges. These eight edges and {y1,y2,y3,ya} U
{a1,as,a3,a4} form 2Cy or Cg. In the first case, it follows as in the previous paragraph
that G = Hg.

Suppose the eight edges connecting the vertices {y1, y2, y3, ¥4} to {a1,as, a3, as} form
a Cg. Then there are two pairs of vertices in Ny (v) that share v as a predecessor but
share no successor in {y1,y2,ys,ys}. Without loss of generality, assume these pairs are
{a1,a3} and {az,a4}. Suppose the two remaining extra edges are contained in Nj(v).
Then the two non-isomorphic ways to place these edges are {ajas, azas} or {ajas, azaq}.
In the first case, ajvas is a unique shortest path of length 2. If aya3 and asay are edges,
and if the common successor of a; and a4 is, say yi, then yjaia3 is a unique shortest
path of length 2 between y; and az. Therefore Ny (v) cannot contain two edges and there
is at least one (and at most two) additional vertex (vertices) in No(v).

In either case, a vertex ys ¢ {y1,¥2,¥s, Y4} cannot have a successor, since there would
be a unique shortest path of length 2 between this successor and the predecessors of
Y5 in N1(v). So ys must be a terminal vertex. Because we have only two extra edges
remaining, ys must have at most one neighbor in Na(v) and hence must have at least
three predecessors. If there were a second terminal vertex yg € Na(v), then there would
be at least six edges from {ys, ys} to N1 (v), contradicting that all four vertices in Ny (v)
are only one edge short of being full. The only possibility then is for No(v) to contain
the one additional vertex, ys, with all four vertices in Ni(v) as its predecessors, using
up the two remaining extra edges. Then all vertices are full, and in this case G = Rj2 1,
which satisfies ¢(R12.1) > 2, by Lemma 4.1, and leads to a contradiction.

Case 2(b): z; and zo share exactly three of their four predecessors in Ng_;(v).
Denote the predecessors of z1 by {y1,¥2,ys3,y4} and of zo by {y2,vys3,vs,¥5}. Then y;
shares one common successor with ys, y3, and y4. Given that these three vertices have
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two predecessors each, they are full, as is their other successor z;. So y; cannot be
adjacent to any of them, nor can it have a second common successor with any of them.
Therefore, y; must have a common predecessor with each of s, y3, and y4. In particular,
let 1 be a common predecessor of y; and y. Then the path ziy2z5 implies x7 must
be adjacent to ys, ya4, or ys, which implies 21 € Nj(v) and d = 3. Denote the three
remaining vertices in Ny(v) by {x2,z3,24}. Moreover, the fullness of z1, y2, y3, and y4
implies that any neighbor of y; other than z; must be its predecessor (to avoid a unique
shortest path of length 2 between z; and this neighbor of 1), and hence y; has three
predecessors in Nj(v). Similarly, ys has three predecessors in Np(v), using up the two
remaining extra edges.

We make two observations. First, since there are exactly twelve edges connecting
{y1, 92, Y3, Y4, Y5} to vertices in Ni(v), any successor of z1, x2, x3, and x4 must be in

{y17y2ay37y4;y5}7 and
V(G) = {2’1,22’91#27y3vy4,y5al‘171‘271‘371‘4,11}.

Second, y; and ys5 share at least two predecessors.

Suppose y; and ys5 share all three predecessors, say {x1, z2,z3}. Then the three suc-
cessors of x4 must be yo, y3, and y4. Finally, the remaining predecessor of y3 and 4
must be, without loss of generality, xo and x3, respectively. Hence all vertices are full,
and G = K3 30K,. Corollaries 6.5 and 6.8 of [2] show that ¢(K3 30K5) = 2.

Now suppose y; and y5 share two predecessors, say {1, x2 }. Without loss of generality,
let 3 and x4 be the third predecessors of y; and ys, respectively. Either x; and x5 share
their third successor as well or they do not. Suppose x; and x5 share all three successors,
{y1,¥2,y5}. Then y1, ya, and ys are all full, and the four remaining edges between Na(v)
and Ni(v) are determined. In this case, G & Ry 9, contradicting ¢(G) = 2 by Lemma 4.1.
Therefore, we must have that 1 and x5 do not share a third common successor. Since the
third successor of x is ys, let the third successor of x5 be y3. Again, the four remaining
edges between Na(v) and Nj(v) are determined, up to one choice, which yields graphs
that are isomorphic. In this case, it can be verified that G = Ry2 3 =2 C(12,+1,+3), and
Lemma 4.1 implies g(R12,3) = 2.

Case 2(c): z1 and z share exactly two of their four predecessors in Ng_1(v).

Suppose the predecessors of z; are {y1,y2,ys3,y4} and the predecessors of zy are
{y3, Y4, s,y - With two predecessors, ys is full (as is y4). To resolve the unique shortest
paths of length 2 through z; or 2o, y3 must share a predecessor with each of y1,y2, ys,
and yg. It follows that the predecessors of y3 have three successors each, and therefore
d=3.

Since there are at least twelve edges from {y1, y2,¥s, Y4, Y5, Y6 } to N1(v), and at most
twelve edges from Nj(v) to Na(v), we must have: Na(v) = {y1,¥2,Y3, Y4, Y5, Ys}, each
vertex in Ny(v) has exactly two predecessors in Nj(v), and each vertex in Ni(v) has
exactly three successors in Na(v). Note that y3 and y4 are full while y1, y2, ys5, and ys
are each one edge short of full. We label Ny (v) = {x1, z2, x3, 4}
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To prevent unique shortest paths of length 2 between z; and z;, each x; must be
adjacent to at least one vertex in {ys,ys}. It follows that each x; must have exactly one
neighbor in {ys,y4}. Assume one successor of x; is y3. To avoid unique paths of length
2 between x7 and both z; and 29, 1 must have at least one more successor in {y1,y2}
and at least one more successor in {ys, ys}. Assume, without loss of generality, that the
successors of z1 are {y1,ys, ys }. Suppose y; has a successor, z3, in addition to z;. Then
z3 must be adjacent to ys (to prevent x1y;25 being a unique shortest path of length 2
between z; and z3) and z3 must be adjacent to ys (to prevent zzysze being a unique
shortest path of length 2 between z3 and z3). This leaves all vertices in Nao(v) except ys
full, but any successor of ys distinct from z1, 2z, and z3 would create a unique shortest
path of length 2 between this successor and a predecessor of y,. So the successor of ¥
must be z3, contradicting the assumption of Case 2.

To become full, y; must have exactly one neighbor in {ya, ys,vys}. If y1 is adjacent to
Y2, then x1y1y2 is a unique shortest path of length 2 between the full vertices x; and
yo. But if y1 is adjacent to ys or yg, then z1y1ys or z1y1ys is a unique shortest path of
length 2 between z; and ys or yg, respectively, which would contradict ¢(G) = 2.

Case 2(d): z1 and zy share exactly one, or none, of their four predecessors in Ny_1(v).
Here Ny—1(v) must contain seven or eight vertices, at least six of which, after accounting
for two predecessors, are exactly one edge short of being full. If any such y € Ng_1(v)
has another successor z3 € N4(v), then z3 must have a neighbor z4 € Ng(v) \ {z1, 22}.
Since y, z1, and zy are full, yz3z4 is a unique shortest path of length 2 between y and z4.
In order for the vertices in Ny_1(v) to become full, at least six vertices require incidence
with one of the two remaining extra edges, which is impossible.

Case 8: Exactly one vertex, say z, in Ny(v) has four predecessors.
Four extra edges remain. Denote the predecessors of z by {y1,y2, y3, ¥4} C Ng_1(v).

Case 8(a): Each of y1, ya, y3, and y4 has three predecessors.
All remaining extra edges are used, and Ny(v) = {z} and Ng_1(v) = {y1,v2,Y3, Y4}
Suppose d = 3. Each vertex in Nj(v) has three successors in No(v) (to account for the
twelve edges connecting Na(v) to Ni(v)), and each y; has one vertex in Ni(v) as its
non-neighbor. If y; # y; have the same non-neighbor, then that vertex cannot have three
successors. So the four vertices in Ny(v) are in bijection with the four vertices in Ny (v),
via non-neighbors, determining the graph as G = R0 4. Lemma 4.1 shows g(R10.4) = 2.
Suppose d > 3. Each pair of vertices in {y1, 2, y3, y4 } shares z as a common successor,
and each y; is full with three predecessors, so each pair must share a common predecessor
in Ng_o(v). The vertices in Ng_o(v) must have two predecessors each and therefore can
have at most two successors in Ng_1(v). This forces Ng_o(v) to contain six vertices
{x1,x2, 3, 24,75, 26}, each being the common predecessor of a different pair of vertices
in {y1,v2,ys, ya}, exhausting all edges between {y1,y2, y3,ya} and {1, 29, 3, 24, x5, ¢}
Consider y; and, without loss of generality, let {21, zq, 25} denote its three predeces-
sors. Then x4, x5, and xg each must have their two successors in {y2, y3, y4}. We claim
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that 4, 25, and ¢ must have a common predecessor in Ny_3(v). Note that if x4, x5 and
xg have a common predecessor, this predecessor must lie in Ny (v), and d = 4. Indeed, if
any two of {4, x5, x¢} share a predecessor, then all three must share a predecessor, in
order to prevent a unique shortest path of length 2 between this predecessor and one of
{y2,y3, ya}. However, if x4, x5, and xg have three distinct predecessors in Ny_3(v) that
are not predecessors of either of the other two, then each of these three predecessors
must have two successors in {1, xa, z3}, thereby causing 1, x2, and z3 to be full; the
fourth vertex of Ny_5(v) = Ny (v) must then have x4, x5, and x4 as its three successors.

Let wy be a shared predecessor of {z4, x5, zs}. Then there are two paths of length 2
between w; and each of {y2,ys3,y4} and no paths of length 2 between w; and y;. Repeat
this procedure for ys, y3, and y4, each time finding a common predecessor w; of

{1’13 T2,T3,T4,T5, xﬁ} \ {predecessors of y’L}

for i = 2,3,4. The choice of edges between {y1,y2,ys,ys} and {z1, 22, x3, T4, x5, 76}
therefore determines the edges between {1, 29, 3, 24, 5, 6 } and {w1, wa, w3, w4 }. How-
ever, since all pairs of vertices in {y1,y2,ys,ysa} share a predecessor among the inde-
pendent set {1, 2,3, x4, 25,26} of vertices, all choices yield isomorphic graphs. All
vertices are now full, so we have listed all elements of each distance set, and G = Q4. By
[2] Corollary 6.9, ¢(Q4) = 2.

Case 3(b): There exists a vertex in Ng_1(v), say y1, that does not have three predecessors.
The edges incident with z account for two of the extra edges. If y; has another successor
zo € Ng(v), then zz must have a neighbor z3 € Ng(v) \ {z, 22}; since y; (with two
predecessors) and z are both full, y;2223 is a unique shortest path of length 2 between
y1 and z3. So y; must have a neighbor u € Ny_;(v), using up an extra edge.

Suppose u € {y2,ys,ys}. Then u must be adjacent to another vertex in {y1, y2, ¥3, Y4},
say Yo, to avoid a unique shortest path of length 2 between itself and z. This leaves two
remaining extra edges. Let x; and x5 denote the two predecessors of u. Suppose x; has
two predecessors. Then it cannot be adjacent to both y; and ys. So there must exist
23 € Ng—o(v) (possibly x3 = x2) such that z; is adjacent to x3, and x3 is adjacent to y;
and y-. But then x3 can have only one predecessor, so we must have d = 3.

Let N1(v) = {1, 22,23, x4} If 21 and x5 are not incident with an edge of G[N;(v)],
then z7 and x5 both must be adjacent to {u,y1,y2} (to avoid uniqueness of the shortest
paths between each z1, zo and each y1, y2 through «); but then y; and yo are full, and
y12y3 is a unique shortest path of length 2 between y; and y3. Hence G[Ny(v)] must
contain an edge, using a third extra edge. It follows that there are exactly ten edges
connecting Nj(v) to No(v). Then no vertex in Ny(v) can have three predecessors, which
implies G[N2(v)] must contain another edge, the last of the extra edges. Moreover, this
edge must connect y3 and y4. Note this implies Ny (v) cannot be an independent set of
vertices.

Suppose z9 is incident with the edge in G[N;(v)], and x; is not. Then 7 must be
adjacent to {u,y1,y2}. And since 7 shares v as a common predecessor with 3 and 4,
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and since w is full while y; and y5 are one edge short of being full, we must have, without
loss of generality, y; adjacent to x3 and yo adjacent to x4. Since x; and y; are full, the
uniqueness of the path zouy; can only be avoided if x5 is adjacent to x3. Similarly, the
uniqueness of the path xouys can only be avoided if x4 is adjacent to xz4. But G[Ny(v)]
can only have one edge.

So the edge in G[Ny(v)] must be xx5. Then x; has only one more successor in
N3 (v) which must simultaneously resolve v being the unique common neighbor of the
pairs {z1, 23} and {x1,z4}. This successor must then have three predecessors, which is
impossible. Therefore u € {y2,y3, Y4}

Without loss of generality, suppose u = yo. As at the start of this case, {y1,¥2,y3, Y4}
can have no more successors in Ngy(v). And y; and yo cannot be incident to another
edge in G[Ng4_1(v)], in order to allow for each to have two predecessors. To prevent y;
and y3 having z as a unique common neighbor, they must therefore share a common
predecessor, say ©1 € Ng_o(v). If z1 has two predecessors, then it is full, and x1y1y2
is a unique shortest path of length 2 between x; and ys. So x; must have only one
predecessor, which implies d = 3.

Suppose that G[N2(v)] contains no edges other than y;ys; then y3 and y4 must have
three predecessors each. Denote the other vertices in Ny (v) by 22, x3, and x4. Now, ys3
and y4 must share at least two of their predecessors in Nj(v), but 7 cannot be this
shared predecessor, since that would leave x1y,y2 as the unique shortest path of length
2 between x7 and yo. So assume the two shared predecessors of y3 and y4 are {x3,x4}.
Neither x3 nor x4 can be adjacent to y; or ys, as these adjacencies would result in a
unique shortest path of length 2 between one of {3, x4} and one of {y1, y2}. With exactly
one remaining extra edge, this edge must be z3z4 to ensure that each of 3 and x4 has
four neighbors. It now follows that x; is adjacent to y2, and hence the three remaining
edges are xoy1, Toly2, and xoys. After connecting each x; to v, all vertices are full, and
G = Ry (to see this let v be vertex 3 in the drawing of Rio3 in Fig. 4). Applying
Lemma 4.1 establishes ¢(Ri03) = 2.

Finally, suppose G[Nz(v)] contains another edge, which can only be y3y4, as otherwise
y1 or yo would not have enough predecessors. So each y; has exactly two predecessors.
Then there are eight edges between Ni(v) and N;j(v), and each vertex in Nj(v) must
have exactly two successors. Each pair {y1,ys}, {y1, 94}, {y2,y3}, and {y2, y4} must share
a single predecessor in Nj(v), causing each y; to be full. Denote these unique common
predecessors by x1, x2, x3, and x4, respectively. To simultaneously avoid the unique
shortest paths of length 2 from z; to y2 and y4, 1 must be adjacent to z4. Similarly, x4
must be adjacent to x3. This uses up the remaining extra edges. After connecting each
x; to v, all vertices are full, and G = Ry 2. Using Lemma 4.1 establishes ¢(R19,2) = 2.

Case 4: N4(v) contains no vertices with four predecessors.

Since the distance partition from v contains at least one vertex with four predecessors,
let b denote a vertex with four predecessors. This accounts for two of the six extra edges.
By the proofs of Lemmas 5.1 and 5.3, N4(v) must contain a pair of vertices with three
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predecessors each or a cycle of vertices with two predecessors each. Furthermore, each
edge in Ng(v) is an extra edge and any vertex in N4(v) with three predecessors accounts
for an extra edge, and so G[Ng4(v)] must be isomorphic to one of Ky, P3, C3, or Cy. Each
of these options requires either three or four of the remaining extra edges. Therefore,
there is at most one extra edge unaccounted for. This implies b is the unique vertex with
four predecessors.

We first claim that b € Ny(v). Indeed, suppose b € N;(v) for some 2 < i < d, and
let {a1,a2,as,a4} C N;_1(v) be the four predecessors of b. Then each a; has at least
two predecessors. With at most one of the extra edges left, we may assume, without
loss of generality, that a; has a successor by € N;(v). Now, b; cannot be a terminal
vertex, as that would require more extra edges than are currently unaccounted for, so
let ¢; € Niy1(v) be a successor of by. Then ajbic; is a unique shortest path of length 2.
So b € Na(v).

We next claim that there are no vertices with three predecessors in N;(v) for any
i < d. As observed at the end of Claim #1 in the proof of Lemma 5.3, any successor of a
vertex with three predecessors must be a vertex with four predecessors. Since b € Na(v),
any vertex with three predecessors in NV;(v) for ¢ > 2 cannot have a successor. It follows
that such a vertex requires an edge in G[N;(v)], which would require the use of at least
three extra edges. A similar argument shows that any vertex in N;(v) for 2 <i<d—1
cannot have a unique successor in N;41(v). If there were a vertex x with two predecessors
and a unique successor y, it must be adjacent to another vertex in N;(v). Then y must
either be adjacent to a vertex in N;;2(v) or N;1(v) yielding either a unique shortest
path or too many extra edges. So, with the exception of b, every vertex in N;(v) for
2 < i < d has exactly two predecessors, and every vertex in N;(v) for 2 < i < d — 1 has
exactly two successors.

We have {a1,as,a3,a4} = N1(v), and b is a common successor of these four vertices.
With only one remaining extra edge, each a; must have another successor in No(v). Let
by # b be a successor of a; in No(v), let as be the second predecessor of by, and let
¢1 € N3(v) be a successor of b;. Note that this implies a; and ay are not adjacent. To
avoid unique paths of length 2 between c¢; and each of a; and as, the second predecessor of
c1, say by, must have a; and a9 as its predecessors. Continuing in this way through N;(v)
for all 3 < i < d— 2, we see successive induced candle sections starting with {a;,as},
and ending say at {y1,y2} C Ng—1(v). Let z; be the common successor of {y1,y2} in
Ng(v). This argument is similar to the argument we used in Case 2(a). Starting again
from ag, we see successive induced candle sections starting with {as, a4} and ending at
say {y3,ys} C Ng—1(v) whose common successor is zo € Ng(v).

Note that all vertices in N;(v) for i« < d — 1 are full, which implies Ng_;(v) =
{y1,92,y3,ya}. Each N;(v) is independent for i < d — 1, and we claim that N4_;(v)
is independent as well. To see this, y;y; an edge for ¢ € {1,2} and j € {3,4} would create
a unique shortest path of length 2 from Ny_1(v) to Ny_o(v). If y1y2 is an edge, then
y1 and yo are full and hence y; 21z is a unique shortest path for any neighbor z of z; in
Ny(v). The same observation shows ysys cannot be an edge. Hence the last remaining
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extra edge must be in G[Ny(v)]. This implies that G[Ng(v)] is either isomorphic to Pj
or C4. Note that if some vertex in Ng4(v) has three predecessors, then without loss of
generality, it is adjacent to y1, y2, and y3. This results in a unique shortest path of length
2 through y3. Thus G[N4(v)] & Cy.

We now claim that any successor of y; or yo must be a successor of both. Indeed, if
z is a successor of y1, then the paths zy;z; and zyixo force z to be adjacent to ys as
well. Similarly, any successor of y3 or y4 must be a successor of both. Hence we have four
vertices in Ngy(v) forming a cycle Cy where each vertex is adjacent to either {y;,y2} or
{y3,y4}. This implies that the vertices around the cycle must alternate between being
adjacent to {y1,y2} and {ys,ys} and so G = Hy, for some odd k > 7 (as the size of
V(G) \ {b,v} is divisible by 4). Applying Lemma 2.3 establishes q(Hy) =2. O

This completes the proof of Theorem 2.4.
6. Further observations and related problems

Corollary 2.2 and Theorem 2.4 give a complete characterization of the r-regular graphs
that admit two distinct eigenvalues for r < 4. For r = 4, the closed candles Hy for k > 3
give the only infinite family of 4-regular graphs G with ¢(G) = 2. From these graphs we
can construct an infinite family of r-regular graphs G with ¢(G) = 2 for all r > 5.

From Corollary 6.8 in [2], if G is any graph with ¢(G) = 2, then ¢(GOK>) = 2. Define
H? = Hy0Q, for any d > 0 and k > 3. Now from Lemma 2.3 and [2, Cor. 6.9] we
immediately have the following result.

Proposition 6.1. For all k > 3 and d > 0, H{ is a (4 + d)-regular graph with q(H{) = 2.

When r > 5, the number of edges in an r-regular graph grows faster than the lower
bound |E(G)| > 2n—4. So, characterizing r-regular graphs with two distinct eigenvalues
for r > 5 could be difficult using the methods in this paper. This motivates questions
about existence and structure of such graphs. That is, are there other infinite families
of r-regular graphs G with ¢(G) = 2, and if so, can they be constructed with a method
other than the Cartesian product used in Proposition 6.17

Problem 6.2. Determine whether or not an infinite family of 5-regular graphs G with
q(G) = 2 disjoint from the family {H} : k > 3} exists.

This paper builds on the work in [6], where we established a lower bound on the
number of edges a graph on n vertices must have in order to have ¢(G) = 2, and
characterized the graphs that meet the bound with equality. The graphs that meet the
bound |E(G)| > 2n — 4 are @3 and an infinite family of graphs called double-ended
candles. The lower bound is improved to |E(G)| > 2n — 3 if G has an odd number of
vertices, and the graphs that meet this improved bound are exactly the infinite family
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of graphs called single-ended candles. These graphs, along with the closed candles Hj
and some of the sporadic graphs in Theorem 2.4, appear in a set of papers focusing on
a different problem.

McKee and Smyth [19], Taylor [21], and Greaves [12,13] all consider the following
problem: for which graphs G is there a matrix compatible with G whose eigenvalues
are contained in the interval [—2,2]? For this problem, “compatible” means that the
matrix M has exactly the same zero pattern as A(G) off of the diagonal entries, and
the entries of M are restricted to lie in the ring of integers for some quadratic field
(McKee and Smyth consider matrices with integer entries. Taylor and Greaves consider
matrices whose entries lie in the ring of integers for an imaginary quadratic extension
of Q). It follows from interlacing that if G has a compatible matrix whose eigenvalues
are contained in [—2,2], then so do all of its induced subgraphs. This motivates the
characterization of the maximal graphs G for which there is a matrix compatible with
G whose eigenvalues are contained in [—2, 2]. Each of the papers [19], [12], [13], and [21]
gives a characterization for the respective rings under consideration. The graphs that
appear in these characterizations are a collection of small sporadic graphs, and a few
infinite families: the single-ended candles, the double-ended candles, the closed candles,
and the graphs obtained from a candle section by adding an edge between each pair of
nearest degree 2 vertices.

We are currently unable to explain the overlap between the graphs in our characteri-
zations of graphs with 2n — 4, 2n — 3, or 2n edges that admit two distinct eigenvalues,
and the graphs in the characterizations in [19], [12], [13], and [21]. It seems reasonable to
expect that the maximal graphs whose compatible matrices have all of their eigenvalues
contained in [—2, 2] should have all of their eigenvalues contained in {—2,2} and hence
have g-value 2. But we do not have a proof of this claim. A complete explanation of this
coincidence may help the investigation of r-regular graphs G with ¢(G) = 2 for r > 5.

Problem 6.3. For a given integer [ > 3, determine whether the maximal graphs that
admit an integer (or similarly constrained) matrix whose eigenvalues are contained in
[—1,1] have ¢(G) = 2.

A regular graph G that is neither complete nor empty is strongly reqular if there exist
constants a and ¢ so that any two adjacent vertices in G have a common neighbors, and
any two non-adjacent vertices have ¢ common neighbors. The definition implies that the
diameter of a connected strongly regular graph is at most 2. If G is a connected regular
graph, then A(G) has three distinct eigenvalues if and only if G is a strongly regular
graph (see, e.g., Lemma 10.2.1 in [11]). So ¢(G) € {2, 3} for a strongly regular graph G.
In [10], Furst and Grotts show that L(K,,), the line graph of K, has ¢(L(K,)) = 2 for
all n > 3 (note that L(K,) is a strongly regular graph for all n > 3).

A connected graph G is distance regular if there are integers b; and ¢; for all ¢ > 0 so
that for any two vertices v and v at distance i in G,
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N1 (v) " Nip1(uw)] =b; and  |Ny(v) N N;—1(u)| = ¢;.

(See [9] for an extensive treatment of distance-regular graphs.) Distance-regular graphs
with diameter 2 are strongly regular. Since Corollary 2.2 and Theorem 2.4 give a complete
characterization of the r-regular graphs that admit two distinct eigenvalues for r < 4,
they also determine the distance-regular graphs of valency at most 4 that admit two
distinct eigenvalues. Excluding the complete graphs and complete multipartite graphs in
the list, these are 3, R10,4, R14,1, and Q4. Note that these graphs all have diameter at
least 3, and thus are not strongly regular. The closed candles H3 and Hy are complete
multipartite graphs, and all Hy for k > 5 are not distance regular.

Problem 6.4. Determine the distance-regular graphs G with ¢(G) = 2.

We finish with two observations about the 4-regular graphs G with ¢(G) = 2, and
problems they raise. With the exception of K5 and Ry 1, all of the 4-regular graphs that
appear in Theorem 2.4 have even order. In particular, if |V(G)| > 8, then G must have
even order.

Problem 6.5. Determine whether for every integer k, there is some value ny so that every
k-regular graph G with |[V(G)| > ny and ¢(G) = 2 has even order.

The graphs Hj are all circulant graphs, as are some of the sporadic graphs listed
in Theorem 2.4. More broadly, many of the graphs in our characterization are vertex
transitive. It would be interesting to investigate the highly symmetric graphs that admit
a matrix with two distinct eigenvalues.

Problem 6.6. Determine the circulant graphs G that have ¢(G) = 2. What can be said
about the automorphism groups of regular graphs with ¢(G) = 27

Declaration of competing interest
None declared.
Data availability
No data was used for the research described in the article.
Acknowledgements
Shaun M. Fallat was supported in part by an NSERC Discovery Research Grant, Ap-
plication No.: RGPIN-2019-03934. Veronika Furst was supported in part by a Fort Lewis

College Faculty Development Grant and NSF grant DMS-2331072. Shahla Nasserasr was
supported in part by a Rochester Institute of Technology COS Dean’s Research Initiation



W. Barrett et al. / Linear Algebra and its Applications 679 (2023) 127-164 163

Grant. Brendan Rooney was supported in part by an Rochester Institute of Technology
COS Dean’s Research Initiation Grant. Michael Tait was supported in part by NSF grant
DMS-2011553 and a Villanova University Summer Grant.

This project began as part of the “Inverse Eigenvalue Problems for Graphs and Zero
Forcing” Research Community sponsored by the American Institute of Mathematics
(AIM). We thank AIM for their support, and we thank the organizers and participants
for contributing to this stimulating research experience.

We thank Tracy Hall for the matrix associated with the graph R7; and Bryan Shader
for the matrices used in the proof of Lemma 2.3.

References

[1] Mohammad Adm, Shaun Fallat, Karen Meagher, Shahla Nasserasr, Sarah Plosker, Boting Yang,
Achievable multiplicity partitions in the inverse eigenvalue problem of a graph, Spec. Matrices 7
(2019) 276—290.

[2] Bahman Ahmadi, Fatemeh Alinaghipour, Michael S. Cavers, Shaun Fallat, Karen Meagher, Shahla
Nasserasr, Minimum number of distinct eigenvalues of graphs, Electron. J. Linear Algebra 26 (2013)
673-691; Erratum available at https://journals.uwyo.edu/index.php/ela/article/view/1293/5765.

[3] John Ahn, Christine Alar, Beth Bjorkman, Steve Butler, Joshua Carlson, Audrey Goodnight, Haley
Knox, Casandra Monroe, Michael Wigal, Ordered multiplicity inverse eigenvalue problem for graphs
on six vertices, Electron. J. Linear Algebra 37 (2021) 316-358.

[4] R.F. Bailey, R. Craigen, On orthogonal matrices with zero diagonal, Electron. J. Linear Algebra 35
(2019) 307-318.

[5] Wayne Barrett, Steve Butler, Shaun M. Fallat, H. Tracy Hall, Leslie Hogben, Jephian C.-H. Lin,
Bryan L. Shader, Michael Young, The inverse eigenvalue problem of a graph: multiplicities and
minors, J. Comb. Theory, Ser. B 142 (2020) 276-306.

[6] Wayne Barrett, Shaun Fallat, Veronika Furst, Franklin Kenter, Shahla Nasserasr, Brendan Rooney,
Michael Tait, Hein van der Holst, Sparsity of graphs that allow two distinct eigenvalues, https://
doi.org/10.48550/arXiv.2206.08360, 2022.

[7] Wayne Barrett, Shaun Fallat, H. Tracy Hall, Leslie Hogben, Jephian C.-H. Lin, Bryan L. Shader,
Generalizations of the strong Arnold property and the minimum number of distinct eigenvalues of
a graph, Electron. J. Comb. 24 (2) (2017) 2.40.

[8] Beth Bjorkman, Leslie Hogben, Scarlitte Ponce, Carolyn Reinhart, Theodore Tranel, Applications
of analysis to the determination of the minimum number of distinct eigenvalues of a graph, Pure
Appl. Funct. Anal. 3 (4) (2018) 537-563.

[9] Andries E. Brouwer, Arjeh M. Cohen, Arnold Neumaier, Distance-Regular Graphs, Springer-Verlag,
Berlin, 1989.

[10] V. Furst, H. Grotts, Tight frame graphs arising as line graphs, PUMP J. Undergrad. Res. 4 (2021)
1-19.

[11] Chris Godsil, Gordon Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, vol. 207,
Springer-Verlag, New York, 2001.

[12] Gary Greaves, Cyclotomic matrices over real quadratic integer rings, Linear Algebra Appl. 437 (9)
(2012) 2252 2261.

[13] Gary Greaves, Cyclotomic matrices over the Eisenstein and Gaussian integers, J. Algebra 372 (2012)
560-583.

[14] Leslie Hogben, Jephian C.-H. Lin, Bryan L. Shader, Inverse Problems and Zero Forcing for Graphs,
Mathematical Surveys and Monographs, vol. 270, American Mathematical Society, Providence, RI,
2022.

[15] Anténio Leal-Duarte, Charles R. Johnson, On the minimum number of distinct eigenvalues for a
symmetric matrix whose graph is a given tree, Math. Inequal. Appl. 5 (2) (2002) 175-180.

[16] Rupert H. Levene, Polona Oblak, Helena Smigoc, A Nordhaus-Gaddum conjecture for the minimum
number of distinct eigenvalues of a graph, Linear Algebra Appl. 564 (2019) 236-263.

[17] Rupert H. Levene, Polona Oblak, Helena Smigoc, Orthogonal symmetric matrices and joins of
graphs, 2020.


http://refhub.elsevier.com/S0024-3795(23)00348-8/bibE0ECDC50AE79D49DFA3FD50FBF9DBB6Bs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bibE0ECDC50AE79D49DFA3FD50FBF9DBB6Bs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bibE0ECDC50AE79D49DFA3FD50FBF9DBB6Bs1
https://journals.uwyo.edu/index.php/ela/article/view/1293/5765
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib98C131F9FB31F732B136F87E64FF686As1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib98C131F9FB31F732B136F87E64FF686As1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib98C131F9FB31F732B136F87E64FF686As1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib3CAEEF2BDDB173AC3D894F64163C0FAFs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib3CAEEF2BDDB173AC3D894F64163C0FAFs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib3F9DCD7B6289B621931450C15729F6ABs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib3F9DCD7B6289B621931450C15729F6ABs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib3F9DCD7B6289B621931450C15729F6ABs1
https://doi.org/10.48550/arXiv.2206.08860
https://doi.org/10.48550/arXiv.2206.08860
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib6B7D94711EFEA3A181A40D9936B87ABDs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib6B7D94711EFEA3A181A40D9936B87ABDs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib6B7D94711EFEA3A181A40D9936B87ABDs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib2468575451B3A4AB0F2980E16C6A8B12s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib2468575451B3A4AB0F2980E16C6A8B12s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib2468575451B3A4AB0F2980E16C6A8B12s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib25FD445D014869E78A9746A0D13355FDs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib25FD445D014869E78A9746A0D13355FDs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bibC1209ED9A8DB7561AC4A8926AC8E5F3Fs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bibC1209ED9A8DB7561AC4A8926AC8E5F3Fs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bibB22D18EC3761951503A0C8E6573384B5s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bibB22D18EC3761951503A0C8E6573384B5s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib37039AB500C9710552E4491DC68A0294s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib37039AB500C9710552E4491DC68A0294s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bibAE334AADD0FE55A713331E6C8716F989s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bibAE334AADD0FE55A713331E6C8716F989s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bibA10BB22248BC8FCFF41B2F491D80FBC9s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bibA10BB22248BC8FCFF41B2F491D80FBC9s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bibA10BB22248BC8FCFF41B2F491D80FBC9s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib11C39DC14FD3F3F2CADBF45443E45D37s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib11C39DC14FD3F3F2CADBF45443E45D37s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bibC25B44104670D66E5FDD5FFE202FBB39s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bibC25B44104670D66E5FDD5FFE202FBB39s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib4910F56913350A6BDD38E5C5A975CAE4s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib4910F56913350A6BDD38E5C5A975CAE4s1

164 W. Barrett et al. / Linear Algebra and its Applications 679 (2023) 127-164

[18] Brendan D. McKay, Adolfo Piperno, Practical graph isomorphism, II, J. Symb. Comput. 60 (2014)
94-112.

[19] James McKee, Chris Smyth, Integer symmetric matrices having all their eigenvalues in the interval
[—2,2], J. Algebra 317 (1) (2007) 260-290.

[20] OEIS Foundation Inc. Entry A006820 in The Online Encyclopedia of Integer Sequences. Published
electronically at https://oeis.org/A006820, 2023.

[21] Graeme Taylor, Cyclotomic matrices and graphs over the ring of integers of some imaginary
quadratic fields, J. Algebra 331 (2011) 523-545.


http://refhub.elsevier.com/S0024-3795(23)00348-8/bib26105360FD36D60237C9160AF766CABAs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib26105360FD36D60237C9160AF766CABAs1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib06704E8A0DD1B09A297D40C9989FC66As1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib06704E8A0DD1B09A297D40C9989FC66As1
https://oeis.org/A006820
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib9276DFD02A72A4A40CA134BD897AA449s1
http://refhub.elsevier.com/S0024-3795(23)00348-8/bib9276DFD02A72A4A40CA134BD897AA449s1

	Regular graphs of degree at most four that allow two distinct eigenvalues
	1 Introduction
	1.1 Preliminaries

	2 Certain regular graphs that allow two distinct eigenvalues
	3 Proof of Theorem 2.4 for 4-regular graphs with small diameter
	4 Sporadic 4-regular graphs and Theorem 2.4
	5 Proof of Theorem 2.4 for 4-regular graphs with large diameter
	6 Further observations and related problems
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


