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Abstract

Brain functional connectivity or connectome, a unique measure for brain functional
organization, provides a great potential to explain the neurobiological underpinning of
behavioral profiles. Existing connectome-based analyses highly concentrate on brain
activities under a single cognitive state, and fail to consider heterogeneity when at-
tempting to characterize brain-to-behavior relationships. In this work, we study the
complex impact of multi-state functional connectivity on behaviors by analyzing the
data from a recent landmark brain development and child health study. We pro-
pose a nonparametric, Bayesian supervised heterogeneity analysis to uncover neurode-
velopmental subtypes with distinct effect mechanisms. We impose stochastic block
structures to identify network-based functional phenotypes and develop a variational
expectation—maximization algorithm to facilitate an efficient posterior computation.
Through integrating resting-state and task-related functional connectomes, we dissect
heterogeneous effect mechanisms on children’s fluid intelligence from the functional
network phenotypes including Fronto-parietal Network and Default Mode Network
under different cognitive states. Meanwhile, our method improves the prediction of
children’s fluid intelligence compared with existing alternatives and single state anal-
yses. Based on extensive simulations, we further confirm the superior performance of
our method on uncovering brain-to-behavior relationships.
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1 Introduction

Functional magnetic resonance imaging (fMRI), a non-invasive neuroimaging technique, has
rapidly developed over the past decades and evolved into a powerful tool to study brain
functions during cognitive states (Blakemore, 2012; Morita et al., 2016). FMRI-based func-
tional connectivity (functional connectome), defined as the dependency of neuronal activity
patterns among spatially-distinct brain regions (Friston et al., 1993), reflects the brain func-
tional synchronization, and provides a great potential to reveal how the brain develops,
learns, and ages, and how it is affected by diseases.

Though the canonical functional connectome is defined under resting-state, recent stud-
ies show that task-based fMRI also provides crucial information to understand cognitive
behaviors (Greene et al., 2018; Gonzalez-Castillo and Bandettini, 2018). Specifically, un-
der resting-state, brain functional connectivity exhibits intrinsic network structures, where
regions with strong connections form sub-networks (Fox and Raichle, 2007). Under tasks,
functional connectivity reflects brain synchronous responses to tasks and has been shown to
amplify trait-relevant individual differences (Greene et al., 2018). To a certain extent, resting-
and task-state connectivity provide complementary information on the brain functional or-
ganizations. Thus, it is potentially useful to integrate multi-state functional connectivity to
study the neurobiological underpinning of behavioral profiles. We investigate this point by
analyzing the data from the Adolescent Brain Cognitive Development study (ABCD) study.

Launched in 2015, the ABCD study is the largest prospective study to investigate brain
development and adolescent health by following more than 10,000 children aged 9 to 10 years
from 21 sites across the United States (Garavan et al., 2018). The study collects a wealth of
measures of youths, including neuroimaging, cognitive, behavioral, and youth and parent self-
report metrics (Karcher and Barch, 2021). It provides a unique opportunity to investigate

how the functional organizations of brain impact cognitive behaviors in adolescence, a critical



and sensitive period of brain development.

We focus on the baseline ABCD data (Released 3.0.1) and fMRI data available through
Fast Track option as of April 2018 with data released for 5,772 participants. Detailed imaging
acquisition and processing across different sites are described in Hagler Jr et al. (2019) and
Casey et al. (2018). Briefly, for the neuroimaging processes, each participant went through
a scan session on a fixed order beginning with a localizer, acquisition of 3D T1-weighted im-
ages, 2 runs of resting-state fMRI, diffusion weighted images, T2-weighted images, 1-2 runs
of resting-state fMRI and task-based fMRI. The task-based fMRI consists of three tasks:
an emotional version of the n-back task (EN-back), the Monetary Incentive Delay (MID)
task, and the Stop Signal task (SST). These tasks measure six domains of function: working
memory, emotion regulation, reward processing, motivation, impulsivity, and impulse con-
trol. Our goal here is to investigate how brain functional organizations, particularly the ones
reflected through connectivity under different cognitive states, impact children’s behaviors
(e.g., fluid intelligence, mental ability).

There has been a great interest to build connectome-based predictive models by linking
functional connectivity with behavioral traits. The unique network structure of connectomes
led to the development of various analytical solutions. One approach is to summarize connec-
tome measures by scalar metrics (Van Den Heuvel et al., 2009; Cohen and D’Esposito, 2016;
Vriend et al., 2020) or unique edges (Shen et al., 2017; Gao et al., 2019), and model their
impact on an outcome trait under regression models. However, existing methods tend to
ignore the topographic relationships among brain regions and destroy the network structure.
As an alternative, tensor regressions (Zhou et al., 2013; Li et al., 2018) have been proposed
and extended to brain connectome application (Xu, 2020) under a symmetric constraint. Re-
gardless of their potential for preserving the network topology, the biological interpretation
of tensor-based methods is arguably not straightforward.

Beyond the challenges of analyzing the connectome data noted above, the heterogeneity



in the connectivity-to-behavior relationships across a population is generally understudied.
Particularly, we expect such heterogeneity analysis is supervised to reflect the complex effect
mechanism from brain functional organizations to behavioral traits. Supervised heterogene-
ity analysis has already been incorporated in cancer studies and other complex traits (Im
et al., 2021; Shen and He, 2015) to investigate subtypes with different responses to treatment
patterns, but has rarely been considered in cognitive studies and neuroscience. In our appli-
cation, we focus on children in their adolescence. Existing literature has revealed that both
the brain organization and cognitive abilities remain in an active alternating state during
adolescence (Arain et al., 2013). Therefore, we expect different children may employ distinct
brain-to-behavior effect paradigms, leading to different neurodevelopmental subtypes. As-
sessing the heterogeneity will provide useful information in understanding human cognition
and developing future personalized interventions. From an analytical perspective, both fre-
quentist and Bayesian approaches have been proposed for supervised heterogeneity analyses,
including tree-based methods (Zhang and Singer, 2010) and mixture models (Shen and He,
2015; Berger et al., 2014; Fruhwirth-Schnatter et al., 2019). However, these existing methods
are not applicable to our problem involving multi-state connectome predictors.

In this study, we develop a Bayesian supervised heterogeneity analysis to associate multi-
state brain functional connectivity with a behavior outcome. Specifically, we develop a
hierarchical model to jointly dissect the modular configuration of each state-specific func-
tional connectivity via stochastic block structures, and model the outcome trait under latent
sub-network level connectivity strength from different cognitive states. To characterize het-
erogeneity, we assume subjects belongs to an unknown number of subtypes, and propose a
nonparametric supervised clustering to uncover different effect mechanisms within the popu-
lation. To further identify functional network phenotypes to define each subtype, we impose
shrinkage to select informative cluster-specific and state-specific sub-network features. We fi-

nally develop a variational expectation—maximization (VEM) algorithm to achieve posterior
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computation under an efficient computation.

The remainder of this article is organized as follows. We describe our Bayesian model
and posterior algorithm in Section 2. We present the ABCD data analysis on multi-state
brain functional connectivity in Section 3, followed by extensive simulation studies in Section

4. We finally conclude with a brief discussion in Section 5.

2 Methods

2.1 Model Formulation with Connectome Predictors

Assume for subject i (i = 1,...,n), the brain functional activities are measured under T
cognitive states. For state t (¢t = 1,...,T), the functional connectome can be summarized
by a graph Gy = (Vi, &) specifying a set of nodes V;; for the brain regions of interest
(ROIs), and a set of edges &; for connections. Under one single brain atlas, all the subjects
and states share the same set of ROIs V with a dimension V. Each functional graph can
then be represented by a symmetric connectivity matrix A;; = (a;x) with its (k,[)th entry
a1 characterizing the state-specific connectivity between regions k and [. Stacking all the T
connectivity matrices, we denote 4; € RV*V*T the multi-state functional connectome tensor.
To associate these brain functional organizations revealed under different cognitive states to
a behavior outcome y;, we propose the following general connectome-based regression model

with individualized effects

Yi = CB;TF’)’ + f(Ai, Bs) + €. (1)

Here, B; € RV*V*T is the connectome effect tensor for each subject, which compared with an
overall effect summarized over all the subjects, captures personalized relationships between
functional connectome over different states and behavior; f(-,-) is a function to be specified

to characterize the association between A; and y;, and we also assume heteroscedasticity for



model (1) with €;; ~ N(0,0%,). Finally, in practice, besides imaging features, we also adjust
for () non-image covariates, e.g., age and gender, as denoted by @; with the first element to
be 1 corresponding to the intercept with their effect characterized by coefficients .

There are different options to specify f(-,-) in model (1) in order to parametrize the con-
nectome effect. For instance, the most widely used operation, as it is adopted in the existing
connectome-based predictive models (CPMs) (Greene et al., 2018) is to set f(-,:) = (-,")r
with (-,-)r denoting the Frobenius inner product. Such an operation essentially imposes
an additive effect among all elements, i.c., (A;, Bi)r = S S 27 @i uBi(k, 1, t), which is
essentially vectorizing the original matrix or tensor with limited consideration on its brain
network configuration. As an alternative, in light of the recent discovery that brain func-
tional organization encompasses the cognitive processes through sub-networks (Wig, 2017),
we assume the connectome at each state can be partitioned into smaller co-functioning mod-
ules through a stochastic block mechanism. Here, instead of directly using the established
canonical brain sub-networks (Yeo et al., 2011) which were constructed purely from correla-
tion among fMRI time series, we assume the network parcellations are unknown and will be
estimated by our supervised learning procedure to reflect the brain network configuration
alternation on behaviors. We also allow the network parcellation to be state-specific in line
with the latest discovery in neuroscience that the functional architecture of brain varies by
cognitive states (Mennes et al., 2013).

Specifically, let all the brain regions be allocated into M sub-networks at state t. For
each node v € V, we characterize its community membership by a random vector z,; =
(Zot1s Zot2,+ > Zoiar) T with element 2,4, being 1 if node v belongs to sub-network m, and 0
otherwise. Conditional on the community membership, we construct a weighted stochastic

block model (SBM) for each functional connectivity Aj, i.e., the frontal slice of A;, with



individual connectivity element following a conditional normal distribution

At ki ’ Zktm — 17 Zltm! = 1~ N(Sit,mm’> 62)7 (2)

with mean parameter s,/ indicating the expected subject- and state-specific connectivity
strength between sub-network m and m/, and 62 characterizing the variance. We choose a
normal distribution given the continuous scale of brain functional connectivity is commonly
obtained by applying the Fisher z-transformation on the pairwise Pearson’s correlations from
the corresponding fMRI time series. It is worth noting that M can be considered as the upper
bound of the number of sub-networks across the states. Given different states could have
different numbers of sub-networks, when fewer sub-networks are needed to characterize the
topological structure under a certain state, not all the pre-booked blocks would be filled in.

Through model (2), we extract the biological topology information of connectomes cap-
tured by the community membership tensor 2 € RM*V*T with its frontal slice Z.., =
(214, - - -, 2vt), along with the connectivity strength. After dissecting this topological orga-
nization information, we summarize the latent sub-network level connectivity strength for
subject i by a tensor §; € RM*MXT with each element S;(m,m/,t) = i mm. Through this
latent tensor, when assuming f(-, ) to be a Frobenius inner product, the general connectome-

based regression model (1) can be re-formulated as
yi = x; ¥+ (S, Wi)r + €, (3)

where W; € RM*M*T g the corresponding heterogeneous coefficient tensor with element
Wi(m,m/,t) = Wit mm, and € ~ (0,02). Different from model (1), the Frobenius inner
product is applied plausibly here with the network topology information extracted aside.

In Section 1.1 of the Supplementary Material, we show the representation of ¢ and that



Wit mpy i1 model (3) is equivalent to ZX Zlv Bi(k,1,t) if zpm = 1, 23y = 1. This indicates
that wi mm aggregates the effects from all the connections between sub-networks m and m/

given the unknown community allocations.

2.2 Supervised Heterogeneity Analysis with Feature Selection

Through the individualized parameters in model (3), we hope to facilitate a supervised het-
erogeneity analysis to group the subjects by brain-to-behavior relationships, and characterize
the connectome-based effect mechanism for each subtype. To achieve this, we first denote
0, = {Wi,0:} = {(Witsmm )t=1.- T, 0<m<m’<M, i} the personalized parameter set for subject
1, and we assume 0; ~ G which is a joint probability distribution. Specifically, we assume
that G is distributed according to a Dirichlet process, denoted by DP(Gy, ), with Gy the
base measure for the expectation of the random probability and « the scale parameter to
describe the variance. To specify the Dirichlet process, we further apply a stick-breaking

representation based on a weighted sum of infinite point masses (Sethuraman, 1994) as

00 h—1
g = Zﬁh(s(’flh), with ﬁh = Vp H(l — Vd)
h=1 d—1 (4)
iid iid
1, ~ Go; vp | @ =~ Beta(l, a),

where d(n,,) represents a probability measure concentrated at 77,. Model (4) indicates that
G is almost surely discrete; and its realizations for 8; are sampled from the component set
{m,}52; under weights {9, }7°, with each of the components independently sampled from
base measure Gy. Given that the sampling weights decrease exponentially in expectation with
h increasing, the sampling items will concentrate on a few initial components of {n;,}72;.
Eventually, the subjects will be grouped into the same subtype when their realizations for the

subject-specific parameters 0; take the identical value; and the number of subtypes will be



automatically reflected. In each subtype, subjects share the same influence of connectivity
strength on the outcome, and thus different subtypes vary in effect mechanisms.

Here, the choice of base measure will directly impact the realization for 8;. Particularly,
each wj; ymm characterizes the influence on the outcome by connections between sub-networks
m and m’ under cognitive state . Given the neural circuits that relate to certain behavior
trait tend to concentrate on specific functional organizations, we anticipate the predictive
signals across brain network architecture are sparse with only a few sub-networks under each
state associated with the outcome. To distinguish the signal from noise network features,

we assign the base measure

M-1 9

T M

= H H ap( 2 )IG(al,bl) (5)
t=1 m=1 m’'=m

with Lap(-) and IG(-,-) representing the Laplace distribution for coefficient wjtny and

Inverse Gamma distributions for variance o;, and A controlling the degree of shrinkage.

The above distribution will induce a simultaneous shrinkage joint with the sub-network

construction and subtype establishment, allowing us to define each brain-to-behavior subtype

through their unique functional network phenotypes.

Furthermore, we impose priors for the rest of the parameters. For each of the latent
connectivity strength and variance, we assign sy mm: ~ N(0,7%); and assume 6% ~ 1G(az, by).
We also impose a noninformative multivariate normal prior for the nuisance parameters
~ ~ N(0,Io3) where we can set a large value for o2 in practice. For the random commu-
nity membership Z to represent sub-network parcellations, we assign each z,; to follow a
multinomial distribution (MN) with M categories and a state-specific probability weight
vector ¥, = (Vy,...,Uwn), for v = 1,--- V, t = 1,--- T. Rather than pre-specifying
the allocation weights 1, at each state, we choose to assign them a Dirichlet distribution

hyper-prior with parameters g = (g1,...,gn). For the scalar parameter « in the DP, we



choose a noninformative Gamma hyper-prior G(1,1) to allow enough flexibility for concen-
tration of grouping subjects to subtypes. The whole modeling framework, named Bayesian
Connectome-based Heterogeneity Analysis (BCHA), works in an integrative way to charac-
terize the heterogeneous relationship between multi-state connectome predictors and a scale
outcome, dissect the brain network topological architecture by constructing sub-networks

parcellation, and define each subtype by identifying effective sub-network features.

2.3 Variational Expectation Maximization

We conduct posterior computation for the proposed BCHA. Based on the truncated represen-
tation of DP (Ishwaran and Zarepour, 2000), we choose a conservative value H to cover the
upper limit of the number of subtypes, and introduce a latent subtype membership matrix
U = (uq,...,u,) with H dimensional vector u; for the membership of subject i following
a MN distribution under weights (¥4, ...,7y), where the weights are fully determined by
v = (v1,...,vy) as shown in (4). The modeling framework of BCHA can be demonstrated
by Figure 1. Although it is feasible to develop Markov Chain Monte Carlo (MCMC) algo-
rithms directly from the posterior likelihood, MCMC tends to suffer from poor mixing and
prohibitive computation with a large number of unknown parameters. As an alternative, we
resort to the variational inference approach, which formulates a variational distribution to
approximate the actual posterior distribution. We first consider a variational distribution
from the canonical mean-field approximation (Ghahramani and Beal, 2001) and assume that
the variational distribution can be partitioned into independent components. However, the
Laplace distributions in (5) is elaborated and required additional involvement for the mean-
field approximation. Therefore, we develop a variational expectation maximization (VEM)
algorithm to employ a more tractable optimization.

Specifically, we denote all the parameters in BCHA as © = {~, Z,¢, U, v, s, W,

=1
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Figure 1: A demonstration of the Bayesian connectome-based heterogeneity analysis (BCHA)
modeling framework.

(0:) 1, (Si),}. The set can be divided into the primary parameters in the regression model
O = {Wi)iy, (0:)"1, v}, and the remaining latent parameters @, = {Z,9,U, v, J, (S;)", }.
We pursue the maximum a posteriori probability (MAP) estimates for ®,; by

O, = argmaxlog 7(©,, | ®) = arg max {£(O ) + log 7(O)}, (6)

(")M @M
with e denoting the observed data, £(©,,) the log-likelihood of observations. For a given
distribution ¢(@®y) for the latent variables, we represent £(®,s) as (Neal and Hinton, 1998)

E(@M) = /@ q(@L) logﬂ'(.’@M)d@L

- [ oo (200 ) e,

1) [ @u1or (kO @L]' ™

CI(@L)

The second term on the right hand side of (7) is the Kullback-Leibler (KL) divergence be-

tween distributions 7(©y|e, ©,/) and ¢(O). Since KL divergence is non-negative, the first
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term, known as the evidence lower bound (ELBO), provides the lower bound for £(®).
Leveraging the ELBO which is denoted as F(q, ®,/), we reconstruct the optimization prob-
lem (6) as ©y = arg maxg  {F'(q,On) +log m(Oy)}. This motivates an EM procedure
by iteratively applying the E-step and M-step until convergence. In the following, we briefly
explain each step, and relegate more technical details in the Section 1.2 of the Supplementary
Materials.

E-step embedded with variational approximation. The E-step is designed to find
a distribution ¢(©®p) that minimizes the KL divergence between ¢(©®,) and 7(Op|e, Oy).

Specifically, the posterior distribution can be represented by
(O | ,0u) x7{y | ©,z, (A)L )} [[ (A | @)x(Z|$)r(¢)n(Uw)r(v)x(6) [ [ x(S),
i=1 ‘

based on which, we can write down the analytical form of 7(©/|e, ®,/). Given the complex
dependency among the large number of parameters, it is anticipated that a direct posterior
sampling will lead to intensive computation and poor mixing. To mitigate this problem, we
propose a variational distribution to approximate the above posterior distribution via the
mean-field approximation method (Ghahramani and Beal, 2001). To this end, we assume
the variational measure ¢(®y) can be expressed as a product of independent measures on

individual latent variables

9(©1) = 4(2)q(¥)q(0)q(U)q(v)g{(Si)iz1} - (8)

Under variational measure ¢(-), we consider the realization on Z, 4, 6, U, v, and (S;)I,
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coming from an exponential family as

zyt ~ MN(9,,), ;bvt = (@thly"' aJvtM)? t=1,....T\v=1,---.,V,

Y, ~Dir(e,), &= (du, -, bm), t=1,---,T,

Sitmm' ~ N(Witmm?s Pitamme), ©=1,...,n, t=1,...;T, mym' =1,--- M,
exp(b;) exp(biy)

Ciepbn) L exp(ba)”

vh ~ Beta(fy,Op), h=1,--- H; withqvg=1)=1; 6 ~IG(as,bs).

w; ~ MN( i=1,--,m,

The parameters {(’;Lyt)fuzl,m WV, t=1,- T (¢t)t:1,..- T (CL57 bd), (Nit,mm’; pit,mm’)tzl,m T, 0<m<m/<M
(bin)iz1,- m, h=1, i, (fn, Op)} introduced in the distributions above are the variational pa-
rameters. Within the E-step, they can be updated according to a minimization of the KL
divergence. For any single parameter within @, if we generally denote it as x, then the opti-
mization problem can be achieved by computing log ¢(x) = Ee,\.{log (e, ©®1|O,)}+con-
stant (Tzikas et al., 2008), where Eg,\.{log 7(e,©.|®))} is the expectation of the loga-
rithm of the joint probability of the data and latent parameters given ©,, taken over all
variables except k,which can be simplified into a function of the fixed parameter ®,; and
the expectation of remaining parameter set (@, \ ). This creates circular dependencies be-
tween the variational parameters from ©; and the expectation of the other latent variables,
facilitating a sequential update for the variational parameters. Detailed derivations for vari-
ational parameter updating schemes are provided in the Section 1.2 of the Supplementary
Materials.

M-step. In M-step, we maximize F(q,®)s) + log 7(©,;) with respect to ©,,. Given
the variational parameters, we have F(q,®)) = E {log 7(e,0.|0,)} — E,{log ¢(O.)}.
The optimization procedure then becomes to solve the maximization objective function by

updating (W;)™,, (02)"_, and -, respectively. We briefly describe the optimization setup for
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each parameter, and provide the detailed algorithms in the Section 1.2 of the Supplementary
Materials.

Assume subject ¢ has been assigned into subtype h at the current iteration with subtype
coefficient tensor denoted as W), and random error variance denoted as o},. For each subtype
h, we use a coordinate descent algorithm to update each element of W}, and solve the

objective function to update o by the close form as

o T M-1 M
W, =arg min ZEq(uzh)E {(y; — =] Ty — (S Wh) e >+ )\Z Z Z |wht,mm/]] .
) =1m/=m
o
o} =argmin 5 Z]Eq(uih)Eq {(yi — [~ — (Si, Wh)r)*/o} + log o} }

M
1
£ 520 D Nntgnm| /07 + 10g 07) + (a1 + 1) log o7 + by /Ug] |

Similarly, v can also be updated by its close form under the objective function - follows

H

7 =arg min Z ZEq(uih)Eq {(yz (SZ, Wh /Uh} + Z /00 ] (9)

1=1 h=1
2.4 Numerical characteristics

To guarantee the robustness of the proposed model, the hyper-parameters that needed to be
prespecified are assigned values to facilitate noninformative prior supports. The two tuning
parameters to be specified are A\ to control the sparsity of the selected network features, and
M to determine the number of community parcellated across brain regions. There are vari-
ous strategies one can adopt to select tuning parameters including cross-validation or model
selection criteria. Here, to choose the values of (A, M), we use variational Bayes Information

Criteria (vBIC) (You et al., 2014), a variational Bayes based analogue of Bayesian informa-
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tion criterion defined as vBIC = —2E,log w(e|®) + 2E, log ¢(®) with detailed derivations
provided in Section 1.2 of the Supplementary Materials. It has been shown that vBIC shares
consistent model selection results and first-order asymptotic properties with BIC, and works
fine under complex models (You et al., 2014). In our simulations provided in both the main
text and Supplementary Materials, we also confirm that it is applicable as an information
criterion for our model.

After fitting the model under the current subjects (training set), we can obtain a series of
results including the sub-network partition under each cognitive state, constructed subtypes
among subjects, and the informative imaging network features along with their effect for
each subtype. On the test set, we need to classify each new subject to one of the constructed
subtypes. Given our subtypes of interest are defined by the relationship between functional
connectome tensor and outcome, the assignment of the subtype for a new observation re-
quires the information on this relationship available from the observed data. Denote the
observation for the new subject by (Ynew, Tnew, Anew). L0 assign its subtype membership, we
compute the sub-network level connectivity strength S, based on A, and the estimated
Z; and calculate the log-likelihood by grouping this new observation to each of the subtypes

leveraging the estimate for W, and o7 from the training set by
1
‘Ch = _5{(ynew _wgevv’y_ <SH€W7Wh>F>2/O-f2L+lOgo-fZL}7 h = 17 7H- (1())

We then assign this subject to the subtype hney € {1,..., H} with the largest likelihood
on (10).
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3 Analysis of the ABCD study

We apply our BCHA model to the ABCD data to study the heterogeneous impact of func-
tional connectome on Cognition Fluid Composite Uncorrected Standard Score (FCS), a
composite score derived from five measures of fluid abilities (the Dimensional Change Card
Sort Test, the Flanker Inhibitory Control and Attention Test, the Picture Sequence Memory
Test, the List Sorting Working Memory Test, and the Pattern Comparison Processing Speed
Test) (Heaton et al., 2014).

We construct functional connectivity under both resting-state and three cognitive tasks
for each participant from raw DICOM image data. The pre-processing is performed in
Biolmage Suite (Joshi et al., 2011) following the standard steps described in detail elsewhere
(Greene et al., 2018; Horien et al., 2019; Rapuano et al., 2020). All fMRI images are realigned
to correct for motion, registered to MNI space, and anatomically parcellated using a 268-node
whole-brain atlas (Shen et al., 2013). Covariates of no interest are regressed from the data,
including linear, quadratic, and cubic drifts, 24-motion parameters (Satterthwaite et al.,
2013), mean cerebral-spinal fluid signal, mean white matter signal, and overall global signal.
Data are temporally smoothed with a Gaussian filter, 0=1.95 (approximate cut-off frequency
of 0.12 Hz). Pearson correlation coefficients between time courses for every pair of nodes are
computed and Fisher z-transformed, resulting in a 268 x268 functional connectivity matrix
for each state and each participant. For task-based fMRI, we include participants with mean
framewise displacement (FD) under a motion threshold of 0.1 mm (Greene et al., 2018; Stark
et al., 2021). For resting-state fMRI, we include one resting-state run for each participant in
the analyses. To maximize sample size, participants with at least one resting-state scan with
mean FD under the 0.1 mm threshold are included. For participants who have more than
one run with mean FD under the 0.1 mm threshold, we select the run with the lowest mean

FD for use in the analyses. After additionally excluding those with low quality anatomical
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images by FreeSurfer (ABCD NDA name: fsqc_qc), the number of remaining participants
under each state is 2,581 for the resting-state; 1,543 for the MID task; 1,553 for the SST;
and 1,465 for the EN-back task.

To guarantee a reasonable sample size and accommodate the complementary information
among states, we consider integrating functional connectome under two states at a time, i.e.
Resting & MID, Resting & EN-back, and MID & EN-back. To avoid introducing unneces-
sary noise, we exclude SST from the current analysis given that it results in relevantly low
predictive accuracy compared with the other states in our preliminary analysis (please refer
to the Section 2.1 of the Supplementary Materials for more details). For each set of analyses,
we adjust for age, sex, and race (white vs. others); and remove siblings to avoid confounders
associated with family relatedness. These result in 1,208, 1,126 and 944 participants in-
cluded in the above three sets of functional connectivity combinations, respectively; and
their demographic information is shown in the Section 2.2 of the Supplementary Materials.
To implement BCHA, we set hyper-parameters aj, = by, = 10 (k = 1,2), 02 = 10, 7 = 1, and
gm = 1,m =1,..., M to induce noninformation priors. We examine A = (1072,107%,107°)
and the upper limit of number of sub-networks M = (2,3,4,5,6,7). We select the best value
of (A, M) using vBIC as described in Section 2.4. To account for potential demographic
and socio-economic selection bias in the national sampling and recruitment, we incorpo-
rate a propensity score (Heeringa and Berglund, 2020) for each child in the ABCD study
as weights in our regression models. Finally, we summarize the computational cost in the

Section 2.3 of the Supplementary Materials to show our computational efficiency.

3.1 Subtype and sub-network construction

To determine the sub-networks developed at each state and eventual supervised subtypes, we

combine training and testing sets and reapply BCHA to the three sets of state combinations.
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@ Sub-network 1
@ Sub-network 2

Sub-network 3

Figure 2: Sub-network partition under (A) Resting-state and (B) Monetary incentive delay
(MID) task.

Here, we only present the results from integrating functional connectomes under Resting &
MID, and refer to the Section 2.5 of the Supplementary Materials for the remaining results.

After determining the tuning parameters by vBIC, we partition the ROIs under each state
into three sub-networks.The sub-networks consist of 101, 93, and 74 regions under resting-
state, and 131, 87, and 50 regions under MID. Figure 2 shows the sub-networks under two
states. Based on the figure, the sub-network allocation is highly symmetric between the
left and right hemispheres, which is biologically plausible given the similar neuronal activity
patterns. Under different states, the sub-network partitions are distinct, which is consistent
with previous studies that functional architectures are not identical during different cognitive
states (Mennes et al., 2013). Of note, there are also three sub-networks determined under
resting-& EN-back-state (Section 2.5.3 of the Supplementary Materials); and we observe a
highly consistent resting-state partition, indicating the robustness of our analyses. Finally,
we compare our constructed sub-networks with the canonical sub-networks defined under

resting-state, and summarize the result in the Section 2.5.2 of the Supplementary Materials.
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In terms of subtypes, our analyses define seven unique subtypes to reflect heterogeneous
predictive mechanisms. Table 1 shows the demographic information and FCS for each sub-
type by ordering the subtype index by the average FCS. Based on the results, we conclude
that participants from different subtypes significantly differ in race, age, and FCS; and sub-
types composed of younger children have higher FCS, and those with the lowest or highest
FCS have a lower percentage of white compared to the rest. We then compare the connec-
tivity strength among subtypes. In general, we observe the overall connectivity is positive

within sub-networks and negative between them. As for the impact of sub-network connec-

Table 1: Demographic information and fluid composite uncorrected standard score (FCS)
for seven subtypes

Characteristics Subtype 1 Subtype 2  Subtype 3 Subtype 4  Subtype 5
(N=92) (N=132) (N=137) (N=336) (N=171)
Female, No. (%) 49 (53.2) 68 (51.5) 66 (48.2) 178 (52.9) 104 (60.8)
White, No. (%) 54 (58.6) 102 (77.3) 101 (73.7) 257 (76.5)  129(75.5)
Age, mean (sd), months 1224 (6.9) 122.6 (7.1) 120.7 (7.7) 1204 (7.0) 120.19 (7.2)
FCS, mean (sd) 788 (6.1) 859 (4.1) 88.9 (4.6) 93.9(45) 98.8 (4.4)
Subtype 6  Subtype 7 Statistics P value
(N=173) (N=167)
Female, No. (%) 91 (52.6) 77 (46.1) x> =8.6 0.19
White, No. (%) 120 (69.4) 110 (65.8) x? =18.2 0.005
Age, mean (sd), months 119.1 (7.1) 118.2 (6.6) F =6.8 3.5e-7
FCS, mean (sd) 101.8 (5.4) 107.31 (5.3) F =529.3 <2.2e-16

tivity on FCS, we conclude that different subtypes are defined by different network features,
and we visualize these informative connections for each subtype in Figure 3 after prun-
ing weak connectivity. More details are described in the Section 2.4 of the Supplementary
Materials.

Under resting state, connectivity within three sub-networks are selected by the majority
of subtypes, indicating that all the sub-networks have a joint influence on the FCS. In

particular, Sub-network 3 is selected by all subtypes, suggesting its importance for FCS
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Figure 3: Brian nodes and connectivity edges in selected sub-networks for seven subtypes
under (A) Resting-state and (B) Monetary incentive delay (MID) task. Brain nodes within
each sub-network are indicated by color. Edges for within-network connectivity are in the
same color as brain nodes, and edges for between-network connectivity are in gray color.
Edges with weak connectivity strength are pruned for better visualization.
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prediction. The between-network connectivity of Sub-networks 1 and 2, and Sub-networks
1 and 3 are selected by several subtypes. The interaction between these sub-networks may
contribute to the difference among subtypes. Under MID, connectivity within Sub-network
3 is selected by six subtypes; and connectivity between Sub-networks 3 and 1, and Sub-
networks 3 and 2 is also selected by five subtypes, implying Sub-network 3 is a hub sub-
network to impact FCS.

Under MID, Sub-network 3 mainly overlaps with the Fronto-parietal Network (FPN,
54%), Medial Frontal Network (16%), and Default Mode Network (DMN, 19%). Notably, it
covers 27 (79.4%) brain regions out of all the 34 regions belonging to the FPN (Section 2.5.2
of the Supplementary Materials). The FPN, also known as the central executive network
(CEN), is a large-scale brain network involved in a variety of cognitive functions such as
working memory, attention, shifting, and reasoning (Niendam et al., 2012). Evidence has
shown that FPN serves as a flexible hub of cognitive control (Marek and Dosenbach, 2018).
Fluid intelligence is reported to be correlated with across-network connectivity of FPN (Cole
et al., 2015) including the functional connectivity between the FPN and DMN (Hearne et al.,
2016), which is consistent with our current results. The within-network connectivity of Sub-
network 3 defined in the current study reflects the between-network connectivity of the DMN
and FPN given that those canonical sub-networks are grouped into the single Sub-network 3
due to their relatively coherent effects on the FCS. When dealing with high cognitive control,
the functional connectivity in the FPN increases and provides an indication of complex task
performance (Cole et al., 2012). This may explain why the FPN shows a greater impact on
fluid intelligence under MID rather than resting-state in our study.

Sub-network 3 under resting-state mainly overlaps with the Motor Network (50%), Basal
Ganglia (16.2%), and Limbic Network (14.8%). Studies have shown that basal ganglia is
involved in motor control and multiple cognitive functions, such as executive functions and

motivation (Leisman and Melillo, 2013). Basal Ganglia also closely interacts with the Limbic
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Network (Aoki et al., 2019) and frontal cortex where most of the regions within the Motor
Network are located (Alexander et al., 1986). These findings show a strong consistency
with existing neuroscience literature and pave a way to reveal neurobiological mechanisms

underlying cognition processes for children in the early adolescence.

4 Simulation studies

To confirm the superior performance of the BCHA, we conduct a series of simulations to
support the application in Section 3. We utilize multi-state functional connectivity directly
from the ABCD study by randomly sampling 1,000 subjects for their Resting & EN-back
functional connectome data. This results in V' = 268 and 7" = 2. We assume the number
of sub-networks under each state M = 3 with the community allocation directly imported
from our data analysis results for Resting & EN-back as presented in the Section 2.5.3
of the Supplementary Materials. This leads to sub-networks consisting of 102, 91, and
75 regions under resting-state, and those consisting of 127, 62, and 79 regions under EN-
back. We simulate the outcome y in various scenarios considering both homogeneous and
heterogeneous brain-to-behavior relationships. In the homogeneous scenario, all the subjects
belong to one subtype; and in the heterogeneous scenario, we consider two subtypes and
randomly assign subjects to one of them with an equal probability. Then, we assign subtype-
specific effect size Wi, = (Whtsmm )t=1.. 1. 0<m<m’<m t0 each sub-network under each state.
We set By (k,l,t) = Whtmm giVen zggm = 1, zpm = 1. For each subject i, the outcome y;
is generated based on (1) under its corresponding coefficient tensor with a Frobenius inner
product.
We then consider the following three signal settings for the effects:

 Signal 1 (homogeneous): We assume the connections within two of the sub-networks

under each state impact the outcome with wi; 11 = 0.005, w192 = 0.01, wig2 =
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0.01, w233 = 0.01, and the rest elements equal to zero. We set oy = 1.5.

» Signal 2 (heterogeneous): On the basis of Signal 1, two subtypes vary by effect
directions and variance with w13 = 0.005, w9111 = —0.005, wigs3 = 0.01, w33 =
—0.01, wi1922 = wa192 = 0.01, w2920 = Wa 22 = 0.01, and the rest elements equal to

zero. We set 01 = 2,05 = 1.5.

« Signal 3 (heterogeneous): On the basis of Signal 2, we consider more complex
signals by including the effects of between-network connectivity. We add w131 = 0.005,
war g1 = 0.01, and w232 = w32 = —0.05 to Signal 2. The value of remaining effect

and variance are kept the same as the Signal 2.

We compare BCHA with competing alternatives. For each simulated dataset, we split it
into a training and testing set with an equal size, and replicate this simulation process 100
times. Besides BCHA, we implement a) two classical high dimensional predictive models—
LASSO (Tibshirani, 1996) and Bayesian variable selection with Horseshoe prior (BVSH)
(Carvalho et al., 2010) by directly vectorizing the connectivity matrices; b) sparse tensor
regression (STR) (Zhou et al., 2013), which directly uses connectivity matrices as predictors;
and c¢) ridge CPM (rCPM) (Gao et al., 2019), a widely used connectome-based predictive
model in neuroscience. The LASSO and BVSH are implemented using R packages glmnet
and horseshoe; and the STR and rCPM are implemented using Matlab toolboxes TensorReg
(https://hua-zhou.github.io/TensorReg/) and CPM (https://github.com/YaleMRRC/CPM),
respectively.

There are also tuning parameters involved in the above models that can substantially
impact the result, and we have tried to maintain a fair comparison by carefully choosing their
values. Specifically, in BCHA, we fix the number of sub-networks M = 3 and use vBIC to
select A from (1073,1074,107°). In both LASSO and rCPM, one tuning parameter is involved

to control sparsity; and to be consistent with our approach, we select its best value by BIC.

23



For STR, there are two tuning parameters: r specifying the rank for tensor decomposition
and A controlling the sparsity. Similarly, under grids r = (1,2, 3) and A = (0.1, 1,10, 100), we
search the best values that lead to the smallest BIC. Here, STR is not directly applicable to
our connectome data with a symmetric constraint. Therefore, we summarize its estimation
for each coefficient matrix at state ¢ by {B(:,:,t)+B'(:,:,t)}/2 based on its coeflicient tensor
B. The posterior inference for BVSH is based on 5,000 iterations of MCMC sampling with the
first 2,000 as burn-in. Furthermore, we also include two variations of BCHA by first assuming
a homogeneous brain-to-behavior impact without the supervised grouping (BCHAq,); and
keeping the same training process as BCHA but randomly assigning the subtype membership
for subjects on the testing set without using the log-likelihood criterion described in Section
2.4 (BCHAanq)-

We first evaluate the performance of BCHA and its two variations BCHAme and
BCHA .4 in terms of the sub-network partition and subtype identification accuracy. These
are unique features of our proposed methods. We measure the sub-network partition under
each state using adjusted rank index (ARI) (Hubert and Arabie, 1985), which quantifies the
similarity between two clustering results. When characterizing the performance of subtype
identification, we compute the percentage agreement (PA) as the percentage of subjects with
their subtypes correctly aligned.

We compare the accuracy in the parameter estimation and feature selection among all
methods. In terms of the parameter estimation, the estimation for LASSO, BVSH, rCPM,
and STR are based on individual edge, while that for BCHA is based on sub-networks.
To facilitate a fair comparison, given witmm = > Bi(k,l,t) with 2km = 1, 2ipy = 1 as
shown in Section 2.1, we accommodate the edge-based methods by mapping the sub-network
level parameters estimated under BCHA to its associated edges enforcing each edge with
an identical contribution within a sub-network unit to prediction. Then the estimation is

assessed by the mean square error (MSE) across all the edges, and can be directly obtained
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from the competing edge-based methods. Finally, the feature selection accuracy is assessed
by receiver operating characteristic (ROC). To ensure the consistency of the process for all
the methods, we calculate the sensitivity and specificity by comparing a re-scaled edge-wise
absolute effect size |B;(k, [, t)|/max|B;(k,[,t)| with a gradually increased cutoff to determine
the signal and noise edges. The average sensitivity and specificity at each cutoff across 100
replications are used to draw the ROC curve.

We first present the sub-network partition under two states and subtype identification
results in Table 2. BCHA,,,q and BCHA differ in the subtype assignment on the testing
set only, so they share the sub-network partition. Thus, the ARIs for BCHA,,,q are not
presented in Table 2. BCHA outperforms BCHA},,,,,, or achieves the same partition accuracy
in both homogeneous and heterogeneous scenarios. Although BCHA’s performance shows
slight deterioration in Signal 3 in which both the within- and between-network connectivity
influence the outcome compared with Signal 2, BCHA manages to dissect the underlying
brain sub-network structure with high accuracy.

With respect to subtype identification, since BCHA} oo assumes all the subjects belong
to one group (PA=1 in Signal 1 and PA~0.5 in Signals 2 and 3), we only compare the results
for BCHA and BCHA,,,.q. Specifically, BCHA exhibits better performance than BCHA .4
in all signal settings, especially in the heterogeneous scenario. This is expected given BCHA
groups subjects to one subtype in the homogeneous scenario and divides them into different
subtypes in the heterogeneous scenario. Thus, BCHA,,,q has similar performance to BCHA
in the homogeneous scenario and PA around 0.5 in the heterogeneous scenario. These results
demonstrate that BCHA can detect the homogeneous or heterogeneous brain-to-behavior
relationship in all signal settings and accurately determine the subtype allocation for subjects
on the testing set based on the log-likelihood criterion in (10).

Figure 4 illustrates the performance of parameter estimation and feature selection for

all methods. Overall, the proposed BCHA outperforms alternative methods in all signal
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Table 2: Adjusted rank index (ARI) of sub-network partition and percentage agreement (AP)

of subtype identification over 100 times replication. Q1: 1st quantile; Q3: 3rd quantile.

Signal Scenario Method State 1 ARI State 2 ARI PA
(Q1|Median|Q3) (Q1|Median|Q3) (sd)
1 Homogeneous BCHA 0.76/0.89]0.94 0.61|0.93|0.97  0.97 (0.04)
BCHApomo  0.76[0.88]0.94  0.33]0.88]0.96 -
BCHA ung - - 0.81 (0.24)
2 Heterogeneous BCHA 0.89(0.90/0.93 0.93|0.95/0.98  0.87 (0.06)
BCHALomo 0.89/0.90/0.96 0.51]0.94/0.96 -
BCHA and - - 0.52 (0.01)
3 Heterogeneous BCHA 0.80]0.84/0.94 0.34]0.86]0.96  0.93 (0.04)
BCHApomo  0.70[0.900.93  0.33]0.52]0.94 -
BCHA ang — - 0.52 (0.01)

settings. Regarding parameter estimation (Figures 4A), BCHA and BCHA},on0 consistently
achieve lower MSE in all signal settings. However, BVSH and STR exhibit relatively high
MSE. With respect to feature selection (Figure 4B), BVSH is slightly inferior to BCHAomo
in the homogeneous scenario but substantially outperforms it in the heterogeneous scenario.
In Signal 3, the area under the curve (AUC) of BCHA shows deterioration, but it remains the
winner of feature selection. RCPM achieves larger AUC than LASSO, BVSH, and STR in

the homogeneous scenario, and their AUCs are all close to 0.5 in the heterogeneous scenarios.
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Figure 4: Results of Simulation Study(A) Boxplots of the mean square error (MSE) of param-
eter estimation. (B) Average ROC curves of feature selection across 100 times replication.

We also perform additional simulation studies by generating functional connectome data
with number of ROIs V' = 100 under the assumption of SBM, simulating outcome values in
various signal settings, and examining the impact of sample size (n = 200,600, 1000) and
variance level (low, high) on performance. BCHA achieves high accuracy of sub-network
partition and subtype identification and outperforms competing methods in terms of param-
eter estimation and feature selection even with small sample size and high variance level.
Furthermore, we also evaluate the performance of BCHA in simulation settings with a larger
number of subtypes, a larger number of subnetworks, and different sub-network numbers
across states as provided in the Section 3 of the Supplementary Materials. In all of these

simulations, BCHA achieves satisfactory performance in terms of sub-network partition,
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subtype identification, parameter estimation, and feature selection, which affirms its broad

feasibility.

5 Discussion

In this article, we introduce a novel Bayesian approach named BCHA to associate multi-
state brain functional connectivity with a behavior outcome. We take into consideration the
potential heterogeneity while characterizing the brain-to-behavior relationship. This allows
us to uncover subtypes with distinct effect mechanisms. Within the modeling framework, we
integrate functional connectivity under both resting-state and cognitive tasks as network pre-
dictors and facilitate the dissection of brain network topological architecture under each state.
In the application to the multi-state functional connectome in ABCD study, we identify three
distinct sub-networks under resting-state and MID, respectively, and define seven subtypes
among children in their early adolescence to reflect heterogeneous effect mechanisms. Our
results reveal the important role of sub-networks overlapping with Fronto-parietal Network,
Medial Frontal Network, and Default Mode Network under MID and sub-networks overlap-
ping with Motor Network, Basal Ganglia, and Limbic Network under resting-state to impact
fluid intelligence development, which is consistent with existing neuroscience literature. We
also confirm the superiority of BCHA through extensive simulations.

Our analysis suggests distinct sub-network structures under resting- and task-states.
Compared to canonical sub-networks defined under resting-state (Yeo et al., 2011), the state-
specific brain network topology provides great insight into brain’s organization alternating
between cognitive states. In the current application, the number of constructed sub-networks
is smaller than the canonical sub-networks because our constructed sub-networks reflect
the co-functioning of brain network components with respect to a behavior outcome like

the FCS. Meanwhile, we select predictive sub-network features for the behavioral outcome,
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which may help direct future intervention strategies. More importantly, the heterogeneity
analysis defines plausible neurodevelopmental subtypes for children in their adolescence. The
characterization of personalized brain-to-behavior effect paradigms reveals potential neuro-
biological mechanisms underlying human cognition processes during adolescence, an active
neurodevelopmental stage. Of note, the seven subtypes identified in this study among chil-
dren from ABCD study are associated with sociodemographic variables (e.g., race). Given it
remains unclear whether these defined subtypes reflect inherent biological differences across
races that are relevant to intelligence or whether they capture the effects of adverse environ-
ments on intelligence within specific racial groups, further investigation into the underlying
mechanisms linking brain functional alterations and behavior traits under different sociode-
mographic characteristics is a promising avenue for future research.

For model estimation, we develop an efficient VEM algorithm. However, the com-
putation of MAP does not enable the quantification of the uncertainty for parameters
Oy = {Wi)iy, (0:)"1,v}. To overcome this limitation of inference, we can compute boot-
strap confidence intervals by repeatedly fitting the model to multiple bootstrap samples.
In the current model, we choose Laplace distribution as a shrinkage prior for feature selec-
tion. An alternative is using a spike-and-slab prior to enable a direct selection of features,
but the corresponding algorithm may be more computationally intensive. Currently, we
consider the additive effect of connectivity strength on the outcome trait in model 3. An
interesting extension is to replace Frobenius inner product with other functions to account
for more complex non-linear relationships between connectivity and outcome. For instance,
a piecewise linear function for connectivity strength of each edge can be considered under
the assumption that the effect of connectivity on the outcome differ by strength level. In this
study, we use a stringent threshold of mean FD < 0.1 mm for motion correction following
the existing literature. Given the high movement during the scanning for young children, we

end up with excluding a large number of subjects that might lead to selection bias (Cosgrove
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et al., 2022; Nebel et al., 2022). Therefore, a potential next step is to apply the proposed
method to a larger cohort say UK Biobank. Some other extensions of our current analysis
include to integrate brain connectivity measured by different imaging techniques such as a
joint analysis for functional connectivity with structural connectivity summarized by diffu-
sion tensor imaging. We can also consider an integration of both brain connectivity and

regional features to enhance prediction from different topological aspects.

Supplementary Materials

The supplementary materials contain detailed derivation on the VEM algorithm and poste-
rior computation steps, additional results of real data analysis, computational time, addi-

tional simulations, and R codes to implement the method.
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