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Abstract

Brain functional connectivity or connectome, a unique measure for brain functional
organization, provides a great potential to explain the neurobiological underpinning of
behavioral profiles. Existing connectome-based analyses highly concentrate on brain
activities under a single cognitive state, and fail to consider heterogeneity when at-
tempting to characterize brain-to-behavior relationships. In this work, we study the
complex impact of multi-state functional connectivity on behaviors by analyzing the
data from a recent landmark brain development and child health study. We pro-
pose a nonparametric, Bayesian supervised heterogeneity analysis to uncover neurode-
velopmental subtypes with distinct effect mechanisms. We impose stochastic block
structures to identify network-based functional phenotypes and develop a variational
expectation–maximization algorithm to facilitate an efficient posterior computation.
Through integrating resting-state and task-related functional connectomes, we dissect
heterogeneous effect mechanisms on children’s fluid intelligence from the functional
network phenotypes including Fronto-parietal Network and Default Mode Network
under different cognitive states. Meanwhile, our method improves the prediction of
children’s fluid intelligence compared with existing alternatives and single state anal-
yses. Based on extensive simulations, we further confirm the superior performance of
our method on uncovering brain-to-behavior relationships.
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1 Introduction

Functional magnetic resonance imaging (fMRI), a non-invasive neuroimaging technique, has

rapidly developed over the past decades and evolved into a powerful tool to study brain

functions during cognitive states (Blakemore, 2012; Morita et al., 2016). FMRI-based func-

tional connectivity (functional connectome), defined as the dependency of neuronal activity

patterns among spatially-distinct brain regions (Friston et al., 1993), reflects the brain func-

tional synchronization, and provides a great potential to reveal how the brain develops,

learns, and ages, and how it is affected by diseases.

Though the canonical functional connectome is defined under resting-state, recent stud-

ies show that task-based fMRI also provides crucial information to understand cognitive

behaviors (Greene et al., 2018; Gonzalez-Castillo and Bandettini, 2018). Specifically, un-

der resting-state, brain functional connectivity exhibits intrinsic network structures, where

regions with strong connections form sub-networks (Fox and Raichle, 2007). Under tasks,

functional connectivity reflects brain synchronous responses to tasks and has been shown to

amplify trait-relevant individual differences (Greene et al., 2018). To a certain extent, resting-

and task-state connectivity provide complementary information on the brain functional or-

ganizations. Thus, it is potentially useful to integrate multi-state functional connectivity to

study the neurobiological underpinning of behavioral profiles. We investigate this point by

analyzing the data from the Adolescent Brain Cognitive Development study (ABCD) study.

Launched in 2015, the ABCD study is the largest prospective study to investigate brain

development and adolescent health by following more than 10,000 children aged 9 to 10 years

from 21 sites across the United States (Garavan et al., 2018). The study collects a wealth of

measures of youths, including neuroimaging, cognitive, behavioral, and youth and parent self-

report metrics (Karcher and Barch, 2021). It provides a unique opportunity to investigate

how the functional organizations of brain impact cognitive behaviors in adolescence, a critical

2



and sensitive period of brain development.

We focus on the baseline ABCD data (Released 3.0.1) and fMRI data available through

Fast Track option as of April 2018 with data released for 5,772 participants. Detailed imaging

acquisition and processing across different sites are described in Hagler Jr et al. (2019) and

Casey et al. (2018). Briefly, for the neuroimaging processes, each participant went through

a scan session on a fixed order beginning with a localizer, acquisition of 3D T1-weighted im-

ages, 2 runs of resting-state fMRI, diffusion weighted images, T2-weighted images, 1-2 runs

of resting-state fMRI and task-based fMRI. The task-based fMRI consists of three tasks:

an emotional version of the n-back task (EN-back), the Monetary Incentive Delay (MID)

task, and the Stop Signal task (SST). These tasks measure six domains of function: working

memory, emotion regulation, reward processing, motivation, impulsivity, and impulse con-

trol. Our goal here is to investigate how brain functional organizations, particularly the ones

reflected through connectivity under different cognitive states, impact children’s behaviors

(e.g., fluid intelligence, mental ability).

There has been a great interest to build connectome-based predictive models by linking

functional connectivity with behavioral traits. The unique network structure of connectomes

led to the development of various analytical solutions. One approach is to summarize connec-

tome measures by scalar metrics (Van Den Heuvel et al., 2009; Cohen and D’Esposito, 2016;

Vriend et al., 2020) or unique edges (Shen et al., 2017; Gao et al., 2019), and model their

impact on an outcome trait under regression models. However, existing methods tend to

ignore the topographic relationships among brain regions and destroy the network structure.

As an alternative, tensor regressions (Zhou et al., 2013; Li et al., 2018) have been proposed

and extended to brain connectome application (Xu, 2020) under a symmetric constraint. Re-

gardless of their potential for preserving the network topology, the biological interpretation

of tensor-based methods is arguably not straightforward.

Beyond the challenges of analyzing the connectome data noted above, the heterogeneity
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in the connectivity-to-behavior relationships across a population is generally understudied.

Particularly, we expect such heterogeneity analysis is supervised to reflect the complex effect

mechanism from brain functional organizations to behavioral traits. Supervised heterogene-

ity analysis has already been incorporated in cancer studies and other complex traits (Im

et al., 2021; Shen and He, 2015) to investigate subtypes with different responses to treatment

patterns, but has rarely been considered in cognitive studies and neuroscience. In our appli-

cation, we focus on children in their adolescence. Existing literature has revealed that both

the brain organization and cognitive abilities remain in an active alternating state during

adolescence (Arain et al., 2013). Therefore, we expect different children may employ distinct

brain-to-behavior effect paradigms, leading to different neurodevelopmental subtypes. As-

sessing the heterogeneity will provide useful information in understanding human cognition

and developing future personalized interventions. From an analytical perspective, both fre-

quentist and Bayesian approaches have been proposed for supervised heterogeneity analyses,

including tree-based methods (Zhang and Singer, 2010) and mixture models (Shen and He,

2015; Berger et al., 2014; Fruhwirth-Schnatter et al., 2019). However, these existing methods

are not applicable to our problem involving multi-state connectome predictors.

In this study, we develop a Bayesian supervised heterogeneity analysis to associate multi-

state brain functional connectivity with a behavior outcome. Specifically, we develop a

hierarchical model to jointly dissect the modular configuration of each state-specific func-

tional connectivity via stochastic block structures, and model the outcome trait under latent

sub-network level connectivity strength from different cognitive states. To characterize het-

erogeneity, we assume subjects belongs to an unknown number of subtypes, and propose a

nonparametric supervised clustering to uncover different effect mechanisms within the popu-

lation. To further identify functional network phenotypes to define each subtype, we impose

shrinkage to select informative cluster-specific and state-specific sub-network features. We fi-

nally develop a variational expectation–maximization (VEM) algorithm to achieve posterior
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computation under an efficient computation.

The remainder of this article is organized as follows. We describe our Bayesian model

and posterior algorithm in Section 2. We present the ABCD data analysis on multi-state

brain functional connectivity in Section 3, followed by extensive simulation studies in Section

4. We finally conclude with a brief discussion in Section 5.

2 Methods

2.1 Model Formulation with Connectome Predictors

Assume for subject i (i = 1, . . . , n), the brain functional activities are measured under T

cognitive states. For state t (t = 1, . . . , T ), the functional connectome can be summarized

by a graph Git = (Vit, Eit) specifying a set of nodes Vit for the brain regions of interest

(ROIs), and a set of edges Eit for connections. Under one single brain atlas, all the subjects

and states share the same set of ROIs V with a dimension V . Each functional graph can

then be represented by a symmetric connectivity matrix Ait = (ait,kl) with its (k, l)th entry

ait,kl characterizing the state-specific connectivity between regions k and l. Stacking all the T

connectivity matrices, we denote Ai ∈ RV×V×T the multi-state functional connectome tensor.

To associate these brain functional organizations revealed under different cognitive states to

a behavior outcome yi, we propose the following general connectome-based regression model

with individualized effects

yi = x
T
i γ + f(Ai,Bi) + ε1i. (1)

Here, Bi ∈ RV×V×T is the connectome effect tensor for each subject, which compared with an

overall effect summarized over all the subjects, captures personalized relationships between

functional connectome over different states and behavior; f(·, ·) is a function to be specified

to characterize the association between Ai and yi, and we also assume heteroscedasticity for
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model (1) with ε1i ∼ N(0, σ2
1i). Finally, in practice, besides imaging features, we also adjust

for Q non-image covariates, e.g., age and gender, as denoted by xi with the first element to

be 1 corresponding to the intercept with their effect characterized by coefficients γ.

There are different options to specify f(·, ·) in model (1) in order to parametrize the con-

nectome effect. For instance, the most widely used operation, as it is adopted in the existing

connectome-based predictive models (CPMs) (Greene et al., 2018) is to set f(·, ·) = 〈·, ·〉F
with 〈·, ·〉F denoting the Frobenius inner product. Such an operation essentially imposes

an additive effect among all elements, i.e., 〈Ai,Bi〉F =
∑V

k

∑V
l

∑T
t ait,klBi(k, l, t), which is

essentially vectorizing the original matrix or tensor with limited consideration on its brain

network configuration. As an alternative, in light of the recent discovery that brain func-

tional organization encompasses the cognitive processes through sub-networks (Wig, 2017),

we assume the connectome at each state can be partitioned into smaller co-functioning mod-

ules through a stochastic block mechanism. Here, instead of directly using the established

canonical brain sub-networks (Yeo et al., 2011) which were constructed purely from correla-

tion among fMRI time series, we assume the network parcellations are unknown and will be

estimated by our supervised learning procedure to reflect the brain network configuration

alternation on behaviors. We also allow the network parcellation to be state-specific in line

with the latest discovery in neuroscience that the functional architecture of brain varies by

cognitive states (Mennes et al., 2013).

Specifically, let all the brain regions be allocated into M sub-networks at state t. For

each node v ∈ V , we characterize its community membership by a random vector zvt =

(zvt1, zvt2, · · · , zvtM )T with element zvtm being 1 if node v belongs to sub-network m, and 0

otherwise. Conditional on the community membership, we construct a weighted stochastic

block model (SBM) for each functional connectivity Ait, i.e., the frontal slice of Ai, with
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individual connectivity element following a conditional normal distribution

ait,kl | zktm = 1, zltm′ = 1 ∼ N(sit,mm′ , δ2), (2)

with mean parameter sit,mm′ indicating the expected subject- and state-specific connectivity

strength between sub-network m and m′, and δ2 characterizing the variance. We choose a

normal distribution given the continuous scale of brain functional connectivity is commonly

obtained by applying the Fisher z-transformation on the pairwise Pearson’s correlations from

the corresponding fMRI time series. It is worth noting that M can be considered as the upper

bound of the number of sub-networks across the states. Given different states could have

different numbers of sub-networks, when fewer sub-networks are needed to characterize the

topological structure under a certain state, not all the pre-booked blocks would be filled in.

Through model (2), we extract the biological topology information of connectomes cap-

tured by the community membership tensor Z ∈ RM×V×T with its frontal slice Z:,:,t =

(z1t, . . . , zV t), along with the connectivity strength. After dissecting this topological orga-

nization information, we summarize the latent sub-network level connectivity strength for

subject i by a tensor Si ∈ RM×M×T with each element Si(m,m
′, t) = sit,mm′ . Through this

latent tensor, when assuming f(·, ·) to be a Frobenius inner product, the general connectome-

based regression model (1) can be re-formulated as

yi = x
T
i γ + 〈Si,Wi〉F + εi, (3)

where Wi ∈ RM×M×T is the corresponding heterogeneous coefficient tensor with element

Wi(m,m
′, t) = wit,mm′ , and εi ∼ (0, σ2

i ). Different from model (1), the Frobenius inner

product is applied plausibly here with the network topology information extracted aside.

In Section 1.1 of the Supplementary Material, we show the representation of σ2
i and that
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wit,mm′ in model (3) is equivalent to
∑V

k

∑V
l Bi(k, l, t) if zktm = 1, zltm′ = 1. This indicates

that wit,mm′ aggregates the effects from all the connections between sub-networks m and m′

given the unknown community allocations.

2.2 Supervised Heterogeneity Analysis with Feature Selection

Through the individualized parameters in model (3), we hope to facilitate a supervised het-

erogeneity analysis to group the subjects by brain-to-behavior relationships, and characterize

the connectome-based effect mechanism for each subtype. To achieve this, we first denote

θi = {Wi, σi} = {(wit,mm′)t=1,··· ,T, 0<m≤m′≤M , σi} the personalized parameter set for subject

i, and we assume θi ∼ G which is a joint probability distribution. Specifically, we assume

that G is distributed according to a Dirichlet process, denoted by DP(G0, α), with G0 the

base measure for the expectation of the random probability and α the scale parameter to

describe the variance. To specify the Dirichlet process, we further apply a stick-breaking

representation based on a weighted sum of infinite point masses (Sethuraman, 1994) as

G =
∞∑
h=1

ϑhδ(ηh), with ϑh = νh

h−1∏
d=1

(1− νd)

ηh
i.i.d∼G0; νh | α i.i.d∼ Beta(1, α),

(4)

where δ(ηh) represents a probability measure concentrated at ηh. Model (4) indicates that

G is almost surely discrete; and its realizations for θi are sampled from the component set

{ηh}∞h=1 under weights {ϑh}∞h=1 with each of the components independently sampled from

base measure G0. Given that the sampling weights decrease exponentially in expectation with

h increasing, the sampling items will concentrate on a few initial components of {ηh}∞h=1.

Eventually, the subjects will be grouped into the same subtype when their realizations for the

subject-specific parameters θi take the identical value; and the number of subtypes will be
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automatically reflected. In each subtype, subjects share the same influence of connectivity

strength on the outcome, and thus different subtypes vary in effect mechanisms.

Here, the choice of base measure will directly impact the realization for θi. Particularly,

each wit,mm′ characterizes the influence on the outcome by connections between sub-networks

m and m′ under cognitive state t. Given the neural circuits that relate to certain behavior

trait tend to concentrate on specific functional organizations, we anticipate the predictive

signals across brain network architecture are sparse with only a few sub-networks under each

state associated with the outcome. To distinguish the signal from noise network features,

we assign the base measure

G0 =
T∏
t=1

M−1∏
m=1

M∏
m′=m

Lap(2σ
2

λ
)IG(a1, b1), (5)

with Lap(·) and IG(·, ·) representing the Laplace distribution for coefficient wit,mm′ and

Inverse Gamma distributions for variance σi, and λ controlling the degree of shrinkage.

The above distribution will induce a simultaneous shrinkage joint with the sub-network

construction and subtype establishment, allowing us to define each brain-to-behavior subtype

through their unique functional network phenotypes.

Furthermore, we impose priors for the rest of the parameters. For each of the latent

connectivity strength and variance, we assign sit,mm′ ∼ N(0, τ 2); and assume δ2 ∼ IG(a2, b2).

We also impose a noninformative multivariate normal prior for the nuisance parameters

γ ∼ N(0, Iσ2
0) where we can set a large value for σ2

0 in practice. For the random commu-

nity membership Z to represent sub-network parcellations, we assign each zvt to follow a

multinomial distribution (MN) with M categories and a state-specific probability weight

vector ψt = (ψt1, . . . , ψtM), for v = 1, · · · , V, t = 1, · · · , T . Rather than pre-specifying

the allocation weights ψt at each state, we choose to assign them a Dirichlet distribution

hyper-prior with parameters g = (g1, . . . , gM). For the scalar parameter α in the DP , we
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choose a noninformative Gamma hyper-prior G(1, 1) to allow enough flexibility for concen-

tration of grouping subjects to subtypes. The whole modeling framework, named Bayesian

Connectome-based Heterogeneity Analysis (BCHA), works in an integrative way to charac-

terize the heterogeneous relationship between multi-state connectome predictors and a scale

outcome, dissect the brain network topological architecture by constructing sub-networks

parcellation, and define each subtype by identifying effective sub-network features.

2.3 Variational Expectation Maximization

We conduct posterior computation for the proposed BCHA. Based on the truncated represen-

tation of DP (Ishwaran and Zarepour, 2000), we choose a conservative value H to cover the

upper limit of the number of subtypes, and introduce a latent subtype membership matrix

U = (u1, . . . ,un) with H dimensional vector ui for the membership of subject i following

a MN distribution under weights (ϑ1, . . . , ϑH), where the weights are fully determined by

ν = (ν1, . . . , νH) as shown in (4). The modeling framework of BCHA can be demonstrated

by Figure 1. Although it is feasible to develop Markov Chain Monte Carlo (MCMC) algo-

rithms directly from the posterior likelihood, MCMC tends to suffer from poor mixing and

prohibitive computation with a large number of unknown parameters. As an alternative, we

resort to the variational inference approach, which formulates a variational distribution to

approximate the actual posterior distribution. We first consider a variational distribution

from the canonical mean-field approximation (Ghahramani and Beal, 2001) and assume that

the variational distribution can be partitioned into independent components. However, the

Laplace distributions in (5) is elaborated and required additional involvement for the mean-

field approximation. Therefore, we develop a variational expectation maximization (VEM)

algorithm to employ a more tractable optimization.

Specifically, we denote all the parameters in BCHA as Θ = {γ,Z,ψ,U ,ν, δ, (Wi)
n
i=1,
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Figure 1: A demonstration of the Bayesian connectome-based heterogeneity analysis (BCHA)
modeling framework.

(σi)
n
i=1, (Si)

n
i=1}. The set can be divided into the primary parameters in the regression model

ΘM = {(Wi)
n
i=1, (σi)

n
i=1,γ}, and the remaining latent parameters ΘL = {Z,ψ,U ,ν, δ, (Si)

n
i=1}.

We pursue the maximum a posteriori probability (MAP) estimates for ΘM by

Θ̂M = argmax
ΘM

log π(ΘM | •) = argmax
ΘM

{L(ΘM) + log π(ΘM)} , (6)

with • denoting the observed data, L(ΘM) the log-likelihood of observations. For a given

distribution q(ΘL) for the latent variables, we represent L(ΘM) as (Neal and Hinton, 1998)

L(ΘM) =

∫
ΘL

q(ΘL) log π(•|ΘM)dΘL

=

∫
ΘL

q(ΘL) log

(
π(•,ΘL|ΘM)

q(ΘL)

)
dΘL +

[
−
∫
ΘL

q(ΘL) log

(
π(ΘL|•,ΘM)

q(ΘL)

)
dΘL

]
.

(7)

The second term on the right hand side of (7) is the Kullback-Leibler (KL) divergence be-

tween distributions π(ΘL|•,ΘM) and q(ΘL). Since KL divergence is non-negative, the first
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term, known as the evidence lower bound (ELBO), provides the lower bound for L(ΘM).

Leveraging the ELBO which is denoted as F (q,ΘM), we reconstruct the optimization prob-

lem (6) as Θ̂M = argmaxΘM
{F (q,ΘM) + log π(ΘM)}. This motivates an EM procedure

by iteratively applying the E-step and M-step until convergence. In the following, we briefly

explain each step, and relegate more technical details in the Section 1.2 of the Supplementary

Materials.

E-step embedded with variational approximation. The E-step is designed to find

a distribution q(ΘL) that minimizes the KL divergence between q(ΘL) and π(ΘL|•,ΘM).

Specifically, the posterior distribution can be represented by

π(ΘL | •,ΘM) ∝ π {y | Θ,x, (Ai)
n
i=1}

n∏
i=1

π(Ai | Θ)π(Z|ψ)π(ψ)π(U |ν)π(ν)π(δ)
n∏

i=1

π(Si),

based on which, we can write down the analytical form of π(ΘL|•,ΘM). Given the complex

dependency among the large number of parameters, it is anticipated that a direct posterior

sampling will lead to intensive computation and poor mixing. To mitigate this problem, we

propose a variational distribution to approximate the above posterior distribution via the

mean-field approximation method (Ghahramani and Beal, 2001). To this end, we assume

the variational measure q(ΘL) can be expressed as a product of independent measures on

individual latent variables

q(ΘL) = q(Z)q(ψ)q(δ)q(U )q(ν)q {(Si)
n
i=1} . (8)

Under variational measure q(·), we consider the realization on Z, ψ, δ, U , ν, and (Si)
n
i=1
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coming from an exponential family as

zvt ∼ MN(ψ̃vt), ψ̃vt = (ψ̃vt1, · · · , ψ̃vtM ), t = 1, . . . , T, v = 1, · · · , V,

ψt ∼ Dir(φt), φt = (φt1, · · · , φtM), t = 1, · · · , T,

sit,mm′ ∼ N(µit,mm′ , ρit,mm′), i = 1, . . . , n, t = 1, . . . , T, m,m′ = 1, · · · ,M,

ui ∼ MN(
exp(bi1)∑H
h=1 exp(bih)

, · · · , exp(biH)∑H
h=1 exp(bih)

), i = 1, · · · , n,

νh ∼ Beta(fh, Oh), h = 1, · · · , H; with q(νH = 1) = 1; δ2 ∼ IG(aδ, bδ).

The parameters {(ψ̃vt)v=1,··· ,V, t=1,··· ,T , (φt)t=1,··· ,T , (aδ, bδ), (µit,mm′ , ρit,mm′)t=1,··· ,T, 0<m≤m′≤M ,

(bih)i=1,··· ,n, h=1,··· ,H , (fh, Oh)} introduced in the distributions above are the variational pa-

rameters. Within the E-step, they can be updated according to a minimization of the KL

divergence. For any single parameter within ΘL, if we generally denote it as κ, then the opti-

mization problem can be achieved by computing log q(κ) = EΘL\κ{log π(•,ΘL|ΘM)}+con-

stant (Tzikas et al., 2008), where EΘL\κ{log π(•,ΘL|ΘM)} is the expectation of the loga-

rithm of the joint probability of the data and latent parameters given ΘM taken over all

variables except κ,which can be simplified into a function of the fixed parameter ΘM and

the expectation of remaining parameter set (ΘL \ κ). This creates circular dependencies be-

tween the variational parameters from ΘL and the expectation of the other latent variables,

facilitating a sequential update for the variational parameters. Detailed derivations for vari-

ational parameter updating schemes are provided in the Section 1.2 of the Supplementary

Materials.

M-step. In M-step, we maximize F (q,ΘM) + log π(ΘM) with respect to ΘM . Given

the variational parameters, we have F (q,ΘM) = Eq{log π(•,ΘL|ΘM)} − Eq{log q(ΘL)}.

The optimization procedure then becomes to solve the maximization objective function by

updating (Wi)
n
i=1, (σ2

i )
n
i=1 and γ, respectively. We briefly describe the optimization setup for
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each parameter, and provide the detailed algorithms in the Section 1.2 of the Supplementary

Materials.

Assume subject i has been assigned into subtype h at the current iteration with subtype

coefficient tensor denoted as Wh and random error variance denoted as σh. For each subtype

h, we use a coordinate descent algorithm to update each element of Wh, and solve the

objective function to update σh by the close form as

Wh =argmin

[
n∑
i

Eq(uih)Eq

{
(yi − xT

i γ − 〈Si,Wh〉F )2
}
+ λ

T∑
t

M−1∑
m=1

M∑
m′=m

|wht,mm′ |

]
.

σ2
h =argmin

[
1

2

n∑
i

Eq(uih)Eq

{
(yi − xT

i γ − 〈Si,Wh〉F )2/σ2
h + log σ2

h

}
+

1

2

T∑
t

M−1∑
m=1

M∑
m′=m

(λ|wht,mm′ |/σ2
h + log σ2

h) + (a1 + 1) log σ2
h + b1/σ

2
h

]
.

Similarly, γ can also be updated by its close form under the objective function γ follows

γ =argmin

[
n∑

i=1

H∑
h=1

Eq(uih)Eq

{
(yi − xT

i γ − 〈Si,Wh〉F )2/σ2
h

}
+

Q∑
q

(γ2q/σ
2
0)

]
. (9)

2.4 Numerical characteristics

To guarantee the robustness of the proposed model, the hyper-parameters that needed to be

prespecified are assigned values to facilitate noninformative prior supports. The two tuning

parameters to be specified are λ to control the sparsity of the selected network features, and

M to determine the number of community parcellated across brain regions. There are vari-

ous strategies one can adopt to select tuning parameters including cross-validation or model

selection criteria. Here, to choose the values of (λ,M), we use variational Bayes Information

Criteria (vBIC) (You et al., 2014), a variational Bayes based analogue of Bayesian informa-
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tion criterion defined as vBIC = −2Eq log π(•|Θ) + 2Eq log q(Θ) with detailed derivations

provided in Section 1.2 of the Supplementary Materials. It has been shown that vBIC shares

consistent model selection results and first-order asymptotic properties with BIC, and works

fine under complex models (You et al., 2014). In our simulations provided in both the main

text and Supplementary Materials, we also confirm that it is applicable as an information

criterion for our model.

After fitting the model under the current subjects (training set), we can obtain a series of

results including the sub-network partition under each cognitive state, constructed subtypes

among subjects, and the informative imaging network features along with their effect for

each subtype. On the test set, we need to classify each new subject to one of the constructed

subtypes. Given our subtypes of interest are defined by the relationship between functional

connectome tensor and outcome, the assignment of the subtype for a new observation re-

quires the information on this relationship available from the observed data. Denote the

observation for the new subject by (ynew,xnew,Anew). To assign its subtype membership, we

compute the sub-network level connectivity strength Snew based on Anew and the estimated

Z; and calculate the log-likelihood by grouping this new observation to each of the subtypes

leveraging the estimate for Wh and σ2
h from the training set by

Lh = −1

2

{
(ynew − xT

newγ − 〈Snew,Wh〉F )2/σ2
h + log σ2

h

}
, h = 1, · · · , H. (10)

We then assign this subject to the subtype hnew ∈ {1, . . . , H} with the largest likelihood

on (10).
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3 Analysis of the ABCD study

We apply our BCHA model to the ABCD data to study the heterogeneous impact of func-

tional connectome on Cognition Fluid Composite Uncorrected Standard Score (FCS), a

composite score derived from five measures of fluid abilities (the Dimensional Change Card

Sort Test, the Flanker Inhibitory Control and Attention Test, the Picture Sequence Memory

Test, the List Sorting Working Memory Test, and the Pattern Comparison Processing Speed

Test) (Heaton et al., 2014).

We construct functional connectivity under both resting-state and three cognitive tasks

for each participant from raw DICOM image data. The pre-processing is performed in

BioImage Suite (Joshi et al., 2011) following the standard steps described in detail elsewhere

(Greene et al., 2018; Horien et al., 2019; Rapuano et al., 2020). All fMRI images are realigned

to correct for motion, registered to MNI space, and anatomically parcellated using a 268-node

whole-brain atlas (Shen et al., 2013). Covariates of no interest are regressed from the data,

including linear, quadratic, and cubic drifts, 24-motion parameters (Satterthwaite et al.,

2013), mean cerebral-spinal fluid signal, mean white matter signal, and overall global signal.

Data are temporally smoothed with a Gaussian filter, σ=1.95 (approximate cut-off frequency

of 0.12 Hz). Pearson correlation coefficients between time courses for every pair of nodes are

computed and Fisher z-transformed, resulting in a 268×268 functional connectivity matrix

for each state and each participant. For task-based fMRI, we include participants with mean

framewise displacement (FD) under a motion threshold of 0.1 mm (Greene et al., 2018; Stark

et al., 2021). For resting-state fMRI, we include one resting-state run for each participant in

the analyses. To maximize sample size, participants with at least one resting-state scan with

mean FD under the 0.1 mm threshold are included. For participants who have more than

one run with mean FD under the 0.1 mm threshold, we select the run with the lowest mean

FD for use in the analyses. After additionally excluding those with low quality anatomical
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images by FreeSurfer (ABCD NDA name: fsqc_qc), the number of remaining participants

under each state is 2,581 for the resting-state; 1,543 for the MID task; 1,553 for the SST;

and 1,465 for the EN-back task.

To guarantee a reasonable sample size and accommodate the complementary information

among states, we consider integrating functional connectome under two states at a time, i.e.

Resting & MID, Resting & EN-back, and MID & EN-back. To avoid introducing unneces-

sary noise, we exclude SST from the current analysis given that it results in relevantly low

predictive accuracy compared with the other states in our preliminary analysis (please refer

to the Section 2.1 of the Supplementary Materials for more details). For each set of analyses,

we adjust for age, sex, and race (white vs. others); and remove siblings to avoid confounders

associated with family relatedness. These result in 1,208, 1,126 and 944 participants in-

cluded in the above three sets of functional connectivity combinations, respectively; and

their demographic information is shown in the Section 2.2 of the Supplementary Materials.

To implement BCHA, we set hyper-parameters ak = bk = 10 (k = 1, 2), σ2
0 = 10, τ = 1, and

gm = 1,m = 1, . . . ,M to induce noninformation priors. We examine λ = (10−3, 10−4, 10−5)

and the upper limit of number of sub-networks M = (2, 3, 4, 5, 6, 7). We select the best value

of (λ,M) using vBIC as described in Section 2.4. To account for potential demographic

and socio-economic selection bias in the national sampling and recruitment, we incorpo-

rate a propensity score (Heeringa and Berglund, 2020) for each child in the ABCD study

as weights in our regression models. Finally, we summarize the computational cost in the

Section 2.3 of the Supplementary Materials to show our computational efficiency.

3.1 Subtype and sub-network construction

To determine the sub-networks developed at each state and eventual supervised subtypes, we

combine training and testing sets and reapply BCHA to the three sets of state combinations.
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Figure 2: Sub-network partition under (A) Resting-state and (B) Monetary incentive delay
(MID) task.

Here, we only present the results from integrating functional connectomes under Resting &

MID, and refer to the Section 2.5 of the Supplementary Materials for the remaining results.

After determining the tuning parameters by vBIC, we partition the ROIs under each state

into three sub-networks.The sub-networks consist of 101, 93, and 74 regions under resting-

state, and 131, 87, and 50 regions under MID. Figure 2 shows the sub-networks under two

states. Based on the figure, the sub-network allocation is highly symmetric between the

left and right hemispheres, which is biologically plausible given the similar neuronal activity

patterns. Under different states, the sub-network partitions are distinct, which is consistent

with previous studies that functional architectures are not identical during different cognitive

states (Mennes et al., 2013). Of note, there are also three sub-networks determined under

resting-& EN-back-state (Section 2.5.3 of the Supplementary Materials); and we observe a

highly consistent resting-state partition, indicating the robustness of our analyses. Finally,

we compare our constructed sub-networks with the canonical sub-networks defined under

resting-state, and summarize the result in the Section 2.5.2 of the Supplementary Materials.
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In terms of subtypes, our analyses define seven unique subtypes to reflect heterogeneous

predictive mechanisms. Table 1 shows the demographic information and FCS for each sub-

type by ordering the subtype index by the average FCS. Based on the results, we conclude

that participants from different subtypes significantly differ in race, age, and FCS; and sub-

types composed of younger children have higher FCS, and those with the lowest or highest

FCS have a lower percentage of white compared to the rest. We then compare the connec-

tivity strength among subtypes. In general, we observe the overall connectivity is positive

within sub-networks and negative between them. As for the impact of sub-network connec-

Table 1: Demographic information and fluid composite uncorrected standard score (FCS)
for seven subtypes

Characteristics Subtype 1 Subtype 2 Subtype 3 Subtype 4 Subtype 5
(N=92) (N=132) (N=137) (N=336) (N=171)

Female, No. (%) 49 (53.2) 68 (51.5) 66 (48.2) 178 (52.9) 104 (60.8)
White, No. (%) 54 (58.6) 102 (77.3) 101 (73.7) 257 (76.5) 129(75.5)
Age, mean (sd), months 122.4 (6.9) 122.6 (7.1) 120.7 (7.7) 120.4 (7.0) 120.19 (7.2)
FCS, mean (sd) 78.8 (6.1) 85.9 (4.1) 88.9 (4.6) 93.9 (4.5) 98.8 (4.4)

Subtype 6 Subtype 7 Statistics P value
(N=173) (N=167)

Female, No. (%) 91 (52.6) 77 (46.1) χ2 =8.6 0.19
White, No. (%) 120 (69.4) 110 (65.8) χ2 =18.2 0.005
Age, mean (sd), months 119.1 (7.1) 118.2 (6.6) F =6.8 3.5e-7
FCS, mean (sd) 101.8 (5.4) 107.31 (5.3) F =529.3 <2.2e-16

tivity on FCS, we conclude that different subtypes are defined by different network features,

and we visualize these informative connections for each subtype in Figure 3 after prun-

ing weak connectivity. More details are described in the Section 2.4 of the Supplementary

Materials.

Under resting state, connectivity within three sub-networks are selected by the majority

of subtypes, indicating that all the sub-networks have a joint influence on the FCS. In

particular, Sub-network 3 is selected by all subtypes, suggesting its importance for FCS
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Figure 3: Brian nodes and connectivity edges in selected sub-networks for seven subtypes
under (A) Resting-state and (B) Monetary incentive delay (MID) task. Brain nodes within
each sub-network are indicated by color. Edges for within-network connectivity are in the
same color as brain nodes, and edges for between-network connectivity are in gray color.
Edges with weak connectivity strength are pruned for better visualization.
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prediction. The between-network connectivity of Sub-networks 1 and 2, and Sub-networks

1 and 3 are selected by several subtypes. The interaction between these sub-networks may

contribute to the difference among subtypes. Under MID, connectivity within Sub-network

3 is selected by six subtypes; and connectivity between Sub-networks 3 and 1, and Sub-

networks 3 and 2 is also selected by five subtypes, implying Sub-network 3 is a hub sub-

network to impact FCS.

Under MID, Sub-network 3 mainly overlaps with the Fronto-parietal Network (FPN,

54%), Medial Frontal Network (16%), and Default Mode Network (DMN, 19%). Notably, it

covers 27 (79.4%) brain regions out of all the 34 regions belonging to the FPN (Section 2.5.2

of the Supplementary Materials). The FPN, also known as the central executive network

(CEN), is a large-scale brain network involved in a variety of cognitive functions such as

working memory, attention, shifting, and reasoning (Niendam et al., 2012). Evidence has

shown that FPN serves as a flexible hub of cognitive control (Marek and Dosenbach, 2018).

Fluid intelligence is reported to be correlated with across-network connectivity of FPN (Cole

et al., 2015) including the functional connectivity between the FPN and DMN (Hearne et al.,

2016), which is consistent with our current results. The within-network connectivity of Sub-

network 3 defined in the current study reflects the between-network connectivity of the DMN

and FPN given that those canonical sub-networks are grouped into the single Sub-network 3

due to their relatively coherent effects on the FCS. When dealing with high cognitive control,

the functional connectivity in the FPN increases and provides an indication of complex task

performance (Cole et al., 2012). This may explain why the FPN shows a greater impact on

fluid intelligence under MID rather than resting-state in our study.

Sub-network 3 under resting-state mainly overlaps with the Motor Network (50%), Basal

Ganglia (16.2%), and Limbic Network (14.8%). Studies have shown that basal ganglia is

involved in motor control and multiple cognitive functions, such as executive functions and

motivation (Leisman and Melillo, 2013). Basal Ganglia also closely interacts with the Limbic
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Network (Aoki et al., 2019) and frontal cortex where most of the regions within the Motor

Network are located (Alexander et al., 1986). These findings show a strong consistency

with existing neuroscience literature and pave a way to reveal neurobiological mechanisms

underlying cognition processes for children in the early adolescence.

4 Simulation studies

To confirm the superior performance of the BCHA, we conduct a series of simulations to

support the application in Section 3. We utilize multi-state functional connectivity directly

from the ABCD study by randomly sampling 1,000 subjects for their Resting & EN-back

functional connectome data. This results in V = 268 and T = 2. We assume the number

of sub-networks under each state M = 3 with the community allocation directly imported

from our data analysis results for Resting & EN-back as presented in the Section 2.5.3

of the Supplementary Materials. This leads to sub-networks consisting of 102, 91, and

75 regions under resting-state, and those consisting of 127, 62, and 79 regions under EN-

back. We simulate the outcome y in various scenarios considering both homogeneous and

heterogeneous brain-to-behavior relationships. In the homogeneous scenario, all the subjects

belong to one subtype; and in the heterogeneous scenario, we consider two subtypes and

randomly assign subjects to one of them with an equal probability. Then, we assign subtype-

specific effect size Wh = (wht,mm′)t=1,··· ,T, 0<m≤m′≤M to each sub-network under each state.

We set Bh(k, l, t) = wht,mm′ given zktm = 1, zltm′ = 1. For each subject i, the outcome yi

is generated based on (1) under its corresponding coefficient tensor with a Frobenius inner

product.

We then consider the following three signal settings for the effects:

• Signal 1 (homogeneous): We assume the connections within two of the sub-networks

under each state impact the outcome with w11,11 = 0.005, w11,22 = 0.01, w12,22 =
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0.01, w12,33 = 0.01, and the rest elements equal to zero. We set σ1 = 1.5.

• Signal 2 (heterogeneous): On the basis of Signal 1, two subtypes vary by effect

directions and variance with w11,11 = 0.005, w21,11 = −0.005, w12,33 = 0.01, w22,33 =

−0.01, w11,22 = w21,22 = 0.01, w12,22 = w22,22 = 0.01, and the rest elements equal to

zero. We set σ1 = 2, σ2 = 1.5.

• Signal 3 (heterogeneous): On the basis of Signal 2, we consider more complex

signals by including the effects of between-network connectivity. We add w11,31 = 0.005,

w21,31 = 0.01, and w12,32 = w22,32 = −0.05 to Signal 2. The value of remaining effect

and variance are kept the same as the Signal 2.

We compare BCHA with competing alternatives. For each simulated dataset, we split it

into a training and testing set with an equal size, and replicate this simulation process 100

times. Besides BCHA, we implement a) two classical high dimensional predictive models–

LASSO (Tibshirani, 1996) and Bayesian variable selection with Horseshoe prior (BVSH)

(Carvalho et al., 2010) by directly vectorizing the connectivity matrices; b) sparse tensor

regression (STR) (Zhou et al., 2013), which directly uses connectivity matrices as predictors;

and c) ridge CPM (rCPM) (Gao et al., 2019), a widely used connectome-based predictive

model in neuroscience. The LASSO and BVSH are implemented using R packages glmnet

and horseshoe; and the STR and rCPM are implemented using Matlab toolboxes TensorReg

(https://hua-zhou.github.io/TensorReg/) and CPM (https://github.com/YaleMRRC/CPM),

respectively.

There are also tuning parameters involved in the above models that can substantially

impact the result, and we have tried to maintain a fair comparison by carefully choosing their

values. Specifically, in BCHA, we fix the number of sub-networks M = 3 and use vBIC to

select λ from (10−3, 10−4, 10−5). In both LASSO and rCPM, one tuning parameter is involved

to control sparsity; and to be consistent with our approach, we select its best value by BIC.
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For STR, there are two tuning parameters: r specifying the rank for tensor decomposition

and λ controlling the sparsity. Similarly, under grids r = (1, 2, 3) and λ = (0.1, 1, 10, 100), we

search the best values that lead to the smallest BIC. Here, STR is not directly applicable to

our connectome data with a symmetric constraint. Therefore, we summarize its estimation

for each coefficient matrix at state t by {B(:, :, t)+B′(:, :, t)}/2 based on its coefficient tensor

B. The posterior inference for BVSH is based on 5,000 iterations of MCMC sampling with the

first 2,000 as burn-in. Furthermore, we also include two variations of BCHA by first assuming

a homogeneous brain-to-behavior impact without the supervised grouping (BCHAhomo); and

keeping the same training process as BCHA but randomly assigning the subtype membership

for subjects on the testing set without using the log-likelihood criterion described in Section

2.4 (BCHArand).

We first evaluate the performance of BCHA and its two variations BCHAhomo and

BCHArand in terms of the sub-network partition and subtype identification accuracy. These

are unique features of our proposed methods. We measure the sub-network partition under

each state using adjusted rank index (ARI) (Hubert and Arabie, 1985), which quantifies the

similarity between two clustering results. When characterizing the performance of subtype

identification, we compute the percentage agreement (PA) as the percentage of subjects with

their subtypes correctly aligned.

We compare the accuracy in the parameter estimation and feature selection among all

methods. In terms of the parameter estimation, the estimation for LASSO, BVSH, rCPM,

and STR are based on individual edge, while that for BCHA is based on sub-networks.

To facilitate a fair comparison, given wit,mm′ =
∑

Bi(k, l, t) with zktm = 1, zltm′ = 1 as

shown in Section 2.1, we accommodate the edge-based methods by mapping the sub-network

level parameters estimated under BCHA to its associated edges enforcing each edge with

an identical contribution within a sub-network unit to prediction. Then the estimation is

assessed by the mean square error (MSE) across all the edges, and can be directly obtained
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from the competing edge-based methods. Finally, the feature selection accuracy is assessed

by receiver operating characteristic (ROC). To ensure the consistency of the process for all

the methods, we calculate the sensitivity and specificity by comparing a re-scaled edge-wise

absolute effect size |Bi(k, l, t)|/max|Bi(k, l, t)| with a gradually increased cutoff to determine

the signal and noise edges. The average sensitivity and specificity at each cutoff across 100

replications are used to draw the ROC curve.

We first present the sub-network partition under two states and subtype identification

results in Table 2. BCHArand and BCHA differ in the subtype assignment on the testing

set only, so they share the sub-network partition. Thus, the ARIs for BCHArand are not

presented in Table 2. BCHA outperforms BCHAhomo or achieves the same partition accuracy

in both homogeneous and heterogeneous scenarios. Although BCHA’s performance shows

slight deterioration in Signal 3 in which both the within- and between-network connectivity

influence the outcome compared with Signal 2, BCHA manages to dissect the underlying

brain sub-network structure with high accuracy.

With respect to subtype identification, since BCHAhomo assumes all the subjects belong

to one group (PA=1 in Signal 1 and PA≈0.5 in Signals 2 and 3), we only compare the results

for BCHA and BCHArand. Specifically, BCHA exhibits better performance than BCHArand

in all signal settings, especially in the heterogeneous scenario. This is expected given BCHA

groups subjects to one subtype in the homogeneous scenario and divides them into different

subtypes in the heterogeneous scenario. Thus, BCHArand has similar performance to BCHA

in the homogeneous scenario and PA around 0.5 in the heterogeneous scenario. These results

demonstrate that BCHA can detect the homogeneous or heterogeneous brain-to-behavior

relationship in all signal settings and accurately determine the subtype allocation for subjects

on the testing set based on the log-likelihood criterion in (10).

Figure 4 illustrates the performance of parameter estimation and feature selection for

all methods. Overall, the proposed BCHA outperforms alternative methods in all signal
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Table 2: Adjusted rank index (ARI) of sub-network partition and percentage agreement (AP)
of subtype identification over 100 times replication. Q1: 1st quantile; Q3: 3rd quantile.

Signal Scenario Method State 1 ARI State 2 ARI PA
(Q1|Median|Q3) (Q1|Median|Q3) (sd)

1 Homogeneous BCHA 0.76|0.89|0.94 0.61|0.93|0.97 0.97 (0.04)
BCHAhomo 0.76|0.88|0.94 0.33|0.88|0.96 –
BCHArand – – 0.81 (0.24)

2 Heterogeneous BCHA 0.89|0.90|0.93 0.93|0.95|0.98 0.87 (0.06)
BCHAhomo 0.89|0.90|0.96 0.51|0.94|0.96 –
BCHArand – – 0.52 (0.01)

3 Heterogeneous BCHA 0.80|0.84|0.94 0.34|0.86|0.96 0.93 (0.04)
BCHAhomo 0.70|0.90|0.93 0.33|0.52|0.94 –
BCHArand – – 0.52 (0.01)

settings. Regarding parameter estimation (Figures 4A), BCHA and BCHAhomo consistently

achieve lower MSE in all signal settings. However, BVSH and STR exhibit relatively high

MSE. With respect to feature selection (Figure 4B), BVSH is slightly inferior to BCHAhomo

in the homogeneous scenario but substantially outperforms it in the heterogeneous scenario.

In Signal 3, the area under the curve (AUC) of BCHA shows deterioration, but it remains the

winner of feature selection. RCPM achieves larger AUC than LASSO, BVSH, and STR in

the homogeneous scenario, and their AUCs are all close to 0.5 in the heterogeneous scenarios.
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Figure 4: Results of Simulation Study(A) Boxplots of the mean square error (MSE) of param-
eter estimation. (B) Average ROC curves of feature selection across 100 times replication.

We also perform additional simulation studies by generating functional connectome data

with number of ROIs V = 100 under the assumption of SBM, simulating outcome values in

various signal settings, and examining the impact of sample size (n = 200, 600, 1000) and

variance level (low, high) on performance. BCHA achieves high accuracy of sub-network

partition and subtype identification and outperforms competing methods in terms of param-

eter estimation and feature selection even with small sample size and high variance level.

Furthermore, we also evaluate the performance of BCHA in simulation settings with a larger

number of subtypes, a larger number of subnetworks, and different sub-network numbers

across states as provided in the Section 3 of the Supplementary Materials. In all of these

simulations, BCHA achieves satisfactory performance in terms of sub-network partition,
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subtype identification, parameter estimation, and feature selection, which affirms its broad

feasibility.

5 Discussion

In this article, we introduce a novel Bayesian approach named BCHA to associate multi-

state brain functional connectivity with a behavior outcome. We take into consideration the

potential heterogeneity while characterizing the brain-to-behavior relationship. This allows

us to uncover subtypes with distinct effect mechanisms. Within the modeling framework, we

integrate functional connectivity under both resting-state and cognitive tasks as network pre-

dictors and facilitate the dissection of brain network topological architecture under each state.

In the application to the multi-state functional connectome in ABCD study, we identify three

distinct sub-networks under resting-state and MID, respectively, and define seven subtypes

among children in their early adolescence to reflect heterogeneous effect mechanisms. Our

results reveal the important role of sub-networks overlapping with Fronto-parietal Network,

Medial Frontal Network, and Default Mode Network under MID and sub-networks overlap-

ping with Motor Network, Basal Ganglia, and Limbic Network under resting-state to impact

fluid intelligence development, which is consistent with existing neuroscience literature. We

also confirm the superiority of BCHA through extensive simulations.

Our analysis suggests distinct sub-network structures under resting- and task-states.

Compared to canonical sub-networks defined under resting-state (Yeo et al., 2011), the state-

specific brain network topology provides great insight into brain’s organization alternating

between cognitive states. In the current application, the number of constructed sub-networks

is smaller than the canonical sub-networks because our constructed sub-networks reflect

the co-functioning of brain network components with respect to a behavior outcome like

the FCS. Meanwhile, we select predictive sub-network features for the behavioral outcome,
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which may help direct future intervention strategies. More importantly, the heterogeneity

analysis defines plausible neurodevelopmental subtypes for children in their adolescence. The

characterization of personalized brain-to-behavior effect paradigms reveals potential neuro-

biological mechanisms underlying human cognition processes during adolescence, an active

neurodevelopmental stage. Of note, the seven subtypes identified in this study among chil-

dren from ABCD study are associated with sociodemographic variables (e.g., race). Given it

remains unclear whether these defined subtypes reflect inherent biological differences across

races that are relevant to intelligence or whether they capture the effects of adverse environ-

ments on intelligence within specific racial groups, further investigation into the underlying

mechanisms linking brain functional alterations and behavior traits under different sociode-

mographic characteristics is a promising avenue for future research.

For model estimation, we develop an efficient VEM algorithm. However, the com-

putation of MAP does not enable the quantification of the uncertainty for parameters

ΘM = {(Wi)
n
i=1, (σi)

n
i=1,γ}. To overcome this limitation of inference, we can compute boot-

strap confidence intervals by repeatedly fitting the model to multiple bootstrap samples.

In the current model, we choose Laplace distribution as a shrinkage prior for feature selec-

tion. An alternative is using a spike-and-slab prior to enable a direct selection of features,

but the corresponding algorithm may be more computationally intensive. Currently, we

consider the additive effect of connectivity strength on the outcome trait in model 3. An

interesting extension is to replace Frobenius inner product with other functions to account

for more complex non-linear relationships between connectivity and outcome. For instance,

a piecewise linear function for connectivity strength of each edge can be considered under

the assumption that the effect of connectivity on the outcome differ by strength level. In this

study, we use a stringent threshold of mean FD < 0.1 mm for motion correction following

the existing literature. Given the high movement during the scanning for young children, we

end up with excluding a large number of subjects that might lead to selection bias (Cosgrove
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et al., 2022; Nebel et al., 2022). Therefore, a potential next step is to apply the proposed

method to a larger cohort say UK Biobank. Some other extensions of our current analysis

include to integrate brain connectivity measured by different imaging techniques such as a

joint analysis for functional connectivity with structural connectivity summarized by diffu-

sion tensor imaging. We can also consider an integration of both brain connectivity and

regional features to enhance prediction from different topological aspects.

Supplementary Materials

The supplementary materials contain detailed derivation on the VEM algorithm and poste-

rior computation steps, additional results of real data analysis, computational time, addi-

tional simulations, and R codes to implement the method.

Funding

Zhang’s research is partially supported by NIH grants R01HG010171 and R01MH116527 and

NSF grant DMS-2112711. Zhao’s research is partially supported by NIH grants RF1AG081413,

R01EB034720 and RF1AG068191.

Acknowledgment

The authors would like to thank the Editor, the Associate Editor and three anonymous

Reviewers for their constructive comments and suggestions which significantly helped im-

prove this paper. Data used in the preparation of this article were obtained from the Ado-

lescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org), held in the

NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more

30



than 10,000 children age 9-10 and follow them over 10 years into early adulthood. The

ABCD Study is supported by the National Institutes of Health and additional federal part-

ners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022,

U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117,

U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025,

U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123,

U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html.

A listing of participating sites and a complete listing of the study investigators can be found

at https: //abcdstudy.org/consortium_members/. ABCD consortium investigators designed

and implemented the study and/or provided data but did not necessarily participate in the

analysis or writing of this report. This manuscript reflects the views of the authors and may

not reflect the opinions or views of the NIH or ABCD consortium investigators. We thank

the Yale Center for Research Computing for guidance and use of the research computing

infrastructure.

References
Alexander, G. E., DeLong, M. R., and Strick, P. L. (1986), “Parallel organization of function-

ally segregated circuits linking basal ganglia and cortex,” Annual review of neuroscience,
9, 357–381.

Aoki, S., Smith, J. B., Li, H., Yan, X., Igarashi, M., Coulon, P., Wickens, J. R., Ruigrok,
T. J., and Jin, X. (2019), “An open cortico-basal ganglia loop allows limbic control over
motor output via the nigrothalamic pathway,” Elife, 8, e49995.

Arain, M., Haque, M., Johal, L., Mathur, P., Nel, W., Rais, A., Sandhu, R., and Sharma, S.
(2013), “Maturation of the adolescent brain,” Neuropsychiatric disease and treatment, 9,
449.

Berger, J. O., Wang, X., and Shen, L. (2014), “A Bayesian approach to subgroup identifica-
tion,” Journal of biopharmaceutical statistics, 24, 110–129.

31



Blakemore, S.-J. (2012), “Imaging brain development: the adolescent brain,” Neuroimage,
61, 397–406.

Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010), “The horseshoe estimator for sparse
signals,” Biometrika, 97, 465–480.

Casey, B., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules,
M. E., Teslovich, T., Dellarco, D. V., Garavan, H., et al. (2018), “The adolescent brain
cognitive development (ABCD) study: imaging acquisition across 21 sites,” Developmental
cognitive neuroscience, 32, 43–54.

Cohen, J. R. and D’Esposito, M. (2016), “The segregation and integration of distinct brain
networks and their relationship to cognition,” Journal of Neuroscience, 36, 12083–12094.

Cole, M. W., Ito, T., and Braver, T. S. (2015), “Lateral prefrontal cortex contributes to fluid
intelligence through multinetwork connectivity,” Brain connectivity, 5, 497–504.

Cole, M. W., Yarkoni, T., Repovš, G., Anticevic, A., and Braver, T. S. (2012), “Global
connectivity of prefrontal cortex predicts cognitive control and intelligence,” Journal of
Neuroscience, 32, 8988–8999.

Cosgrove, K. T., McDermott, T. J., White, E. J., Mosconi, M. W., Thompson, W. K., Paulus,
M. P., Cardenas-Iniguez, C., and Aupperle, R. L. (2022), “Limits to the generalizability
of resting-state functional magnetic resonance imaging studies of youth: an examination
of ABCD Study® baseline data,” Brain imaging and behavior, 16, 1919–1925.

Fox, M. D. and Raichle, M. E. (2007), “Spontaneous fluctuations in brain activity observed
with functional magnetic resonance imaging,” Nature reviews neuroscience, 8, 700–711.

Friston, K., Frith, C., Liddle, P., and Frackowiak, R. (1993), “Functional connectivity: the
principal-component analysis of large (PET) data sets,” Journal of Cerebral Blood Flow
& Metabolism, 13, 5–14.

Fruhwirth-Schnatter, S., Celeux, G., and Robert, C. P. (2019), Handbook of mixture analysis,
CRC press.

Gao, S., Greene, A. S., Constable, R. T., and Scheinost, D. (2019), “Combining multiple
connectomes improves predictive modeling of phenotypic measures,” Neuroimage, 201,
116038.

Garavan, H., Bartsch, H., Conway, K., Decastro, A., Goldstein, R., Heeringa, S., Jernigan,
T., Potter, A., Thompson, W., and Zahs, D. (2018), “Recruiting the ABCD sample:
Design considerations and procedures,” Developmental cognitive neuroscience, 32, 16–22.

32



Ghahramani, Z. and Beal, M. J. (2001), “Propagation algorithms for variational Bayesian
learning,” Advances in neural information processing systems, 507–513.

Gonzalez-Castillo, J. and Bandettini, P. A. (2018), “Task-based dynamic functional connec-
tivity: Recent findings and open questions,” Neuroimage, 180, 526–533.

Greene, A. S., Gao, S., Scheinost, D., and Constable, R. T. (2018), “Task-induced brain
state manipulation improves prediction of individual traits,” Nature communications, 9,
1–13.

Hagler Jr, D. J., Hatton, S., Cornejo, M. D., Makowski, C., Fair, D. A., Dick, A. S., Suther-
land, M. T., Casey, B., Barch, D. M., Harms, M. P., et al. (2019), “Image processing and
analysis methods for the Adolescent Brain Cognitive Development Study,” Neuroimage,
202, 116091.

Hearne, L. J., Mattingley, J. B., and Cocchi, L. (2016), “Functional brain networks related
to individual differences in human intelligence at rest,” Scientific reports, 6, 1–8.

Heaton, R. K., Akshoomoff, N., Tulsky, D., Mungas, D., Weintraub, S., Dikmen, S., Beau-
mont, J., Casaletto, K. B., Conway, K., Slotkin, J., et al. (2014), “Reliability and validity
of composite scores from the NIH Toolbox Cognition Battery in adults,” Journal of the
International Neuropsychological Society, 20, 588–598.

Heeringa, S. G. and Berglund, P. A. (2020), “A guide for population-based analysis of the
Adolescent Brain Cognitive Development (ABCD) Study baseline data,” BioRxiv.

Horien, C., Shen, X., Scheinost, D., and Constable, R. T. (2019), “The individual functional
connectome is unique and stable over months to years,” Neuroimage, 189, 676–687.

Hubert, L. and Arabie, P. (1985), “Comparing partitions,” Journal of classification, 2,
193–218.

Im, Y., Huang, Y., Tan, A., and Ma, S. (2021), “Bayesian finite mixture of regression analysis
for cancer based on histopathological imaging–environment interactions,” Biostatistics.

Ishwaran, H. and Zarepour, M. (2000), “Markov chain Monte Carlo in approximate Dirichlet
and beta two-parameter process hierarchical models,” Biometrika, 87, 371–390.

Joshi, A., Scheinost, D., Okuda, H., Belhachemi, D., Murphy, I., Staib, L. H., and Pa-
pademetris, X. (2011), “Unified framework for development, deployment and robust test-
ing of neuroimaging algorithms,” Neuroinformatics, 9, 69–84.

Karcher, N. R. and Barch, D. M. (2021), “The ABCD study: understanding the development
of risk for mental and physical health outcomes,” Neuropsychopharmacology, 46, 131–142.

33



Leisman, G. and Melillo, R. (2013), “The basal ganglia: motor and cognitive relationships
in a clinical neurobehavioral context,” Reviews in the Neurosciences, 24, 9–25.

Li, X., Xu, D., Zhou, H., and Li, L. (2018), “Tucker tensor regression and neuroimaging
analysis,” Statistics in Biosciences, 10, 520–545.

Marek, S. and Dosenbach, N. U. (2018), “The frontoparietal network: function, electrophysi-
ology, and importance of individual precision mapping,” Dialogues in clinical neuroscience,
20, 133.

Mennes, M., Kelly, C., Colcombe, S., Castellanos, F. X., and Milham, M. P. (2013), “The
extrinsic and intrinsic functional architectures of the human brain are not equivalent,”
Cerebral cortex, 23, 223–229.

Morita, T., Asada, M., and Naito, E. (2016), “Contribution of neuroimaging studies to
understanding development of human cognitive brain functions,” Frontiers in human neu-
roscience, 10, 464.

Neal, R. M. and Hinton, G. E. (1998), “A view of the EM algorithm that justifies incremental,
sparse, and other variants,” in Learning in graphical models, Springer, pp. 355–368.

Nebel, M. B., Lidstone, D. E., Wang, L., Benkeser, D., Mostofsky, S. H., and Risk, B. B.
(2022), “Accounting for motion in resting-state fMRI: What part of the spectrum are we
characterizing in autism spectrum disorder?” NeuroImage, 257, 119296.

Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., and Carter, C. S.
(2012), “Meta-analytic evidence for a superordinate cognitive control network subserving
diverse executive functions,” Cognitive, Affective, & Behavioral Neuroscience, 12, 241–268.

Rapuano, K. M., Rosenberg, M. D., Maza, M. T., Dennis, N. J., Dorji, M., Greene, A. S.,
Horien, C., Scheinost, D., Constable, R. T., and Casey, B. (2020), “Behavioral and brain
signatures of substance use vulnerability in childhood,” Developmental cognitive neuro-
science, 46, 100878.

Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins,
M. E., Eickhoff, S. B., Hakonarson, H., Gur, R. C., Gur, R. E., et al. (2013), “An im-
proved framework for confound regression and filtering for control of motion artifact in
the preprocessing of resting-state functional connectivity data,” Neuroimage, 64, 240–256.

Sethuraman, J. (1994), “A constructive definition of Dirichlet priors,” Statistica sinica,
639–650.

34



Shen, J. and He, X. (2015), “Inference for subgroup analysis with a structured logistic-normal
mixture model,” Journal of the American Statistical Association, 110, 303–312.

Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., Papademetris, X.,
and Constable, R. T. (2017), “Using connectome-based predictive modeling to predict
individual behavior from brain connectivity,” nature protocols, 12, 506–518.

Shen, X., Tokoglu, F., Papademetris, X., and Constable, R. T. (2013), “Groupwise whole-
brain parcellation from resting-state fMRI data for network node identification,” Neuroim-
age, 82, 403–415.

Stark, G. F., Avery, E. W., Rosenberg, M. D., Greene, A. S., Gao, S., Scheinost, D.,
Todd Constable, R., Chun, M. M., and Yoo, K. (2021), “Using functional connectivity
models to characterize relationships between working and episodic memory,” Brain and
Behavior, 11, e02105.

Tibshirani, R. (1996), “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society: Series B (Methodological), 58, 267–288.

Tzikas, D. G., Likas, A. C., and Galatsanos, N. P. (2008), “The variational approximation
for Bayesian inference,” IEEE Signal Processing Magazine, 25, 131–146.

Van Den Heuvel, M. P., Stam, C. J., Kahn, R. S., and Pol, H. E. H. (2009), “Efficiency
of functional brain networks and intellectual performance,” Journal of Neuroscience, 29,
7619–7624.

Vriend, C., Wagenmakers, M. J., Van den Heuvel, O. A., and Van der Werf, Y. D. (2020),
“Resting-state network topology and planning ability in healthy adults,” Brain Structure
and Function, 225, 365–374.

Wig, G. S. (2017), “Segregated systems of human brain networks,” Trends in cognitive
sciences, 21, 981–996.

Xu, D. (2020), “Sparse Symmetric Tensor Regression for Functional Connectivity Analysis,”
arXiv preprint arXiv:2010.14700.

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M.,
Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., et al. (2011), “The organization
of the human cerebral cortex estimated by intrinsic functional connectivity,” Journal of
neurophysiology.

You, C., Ormerod, J. T., and Mueller, S. (2014), “On variational Bayes estimation and
variational information criteria for linear regression models,” Australian & New Zealand
Journal of Statistics, 56, 73–87.

35



Zhang, H. and Singer, B. H. (2010), Recursive partitioning and applications, Springer Science
& Business Media.

Zhou, H., Li, L., and Zhu, H. (2013), “Tensor regression with applications in neuroimaging
data analysis,” Journal of the American Statistical Association, 108, 540–552.

36


	Introduction
	Methods
	Model Formulation with Connectome Predictors
	Supervised Heterogeneity Analysis with Feature Selection
	Variational Expectation Maximization
	Numerical characteristics

	Analysis of the ABCD study
	Subtype and sub-network construction

	Simulation studies
	Discussion

