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As the next-generation battery substitute for IoT system, energy harvesting (EH) technology revolutionizes

the IoT industry with environmental friendliness, ubiquitous accessibility, and sustainability, which enables

various self-sustaining IoT applications. However, due to the weak and intermittent nature of EH power,

the performance of EH-powered IoT systems as well as its collaborative routing mechanism can severely

deteriorate, rendering unpleasant data package loss during each power failure. Such a phenomenon makes

conventional routing policies and energy allocation strategies impractical. Given the complexity of the prob-

lem, reinforcement learning (RL) appears to be one of the most promising and applicable methods to address

this challenge. Nevertheless, although the energy allocation and routing policy are jointly optimized by the

RLmethod, due to the energy restriction of EH devices, the inappropriate configuration of multi-hop network

topology severely degrades the data collection performance. Therefore, this article first conducts a thorough

mathematical discussion and develops the topology design and validation algorithm under energy harvesting

scenarios. Then, this article develops DeepIoTRouting, a distributed and scalable deep reinforcement learning

(DRL)-based approach, to address the routing and energy allocation jointly for the energy harvesting pow-

ered distributed IoT system. The experimental results show that with topology optimization, DeepIoTRouting

achieves at least 38.71% improvement on the amount of data delivery to sink in a 20-device IoT network,

which significantly outperforms state-of-the-art methods.

CCS Concepts: • Networks → Network algorithms;

Additional Key Words and Phrases: Internet of Things (IoT), energy harvesting, deep reinforcement learning

ACM Reference Format:

Wen Zhang, Chen Pan, Tao Liu, Jeff (Jun) Zhang, Mehdi Sookhak, and Mimi Xie. 2024. Intelligent Network-

ing for Energy Harvesting Powered IoT Systems. ACM Trans. Sensor Netw. 20, 2, Article 45 (February 2024),

31 pages. https://doi.org/10.1145/3638765

This research is supported by National Science Foundation under Grants No.2153524.

Authors’ addresses: W. Zhang, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435; e-mail: wen.zhang@

wright.edu; C. Pan (Corresponding author) and M. Xie, University of Texas at San Antonio, 1 UTSA Circle, San Antonio,

TX 78249; emails: chen.pan@utsa.edu, mimi.xie@utsa.edu; T. Liu, Lawrence Technological University, 21000W 10 Mile Rd,

Southfield, MI 48075; e-mail: tliu3@ltu.edu; J. (J.) Zhang, Arizona State University, 1151 S. Forest Ave, Tempe, AZ 85287;

e-mail: jeffzhang@asu.edu; M. Sookhak, Texas A&M University Corpus Christi, 6300 Ocean Dr, Corpus Christi, TX 78412;

e-mail: mehdi.sookhak@tamucc.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1550-4859/2024/02-ART45

https://doi.org/10.1145/3638765

ACM Trans. Sensor Netw., Vol. 20, No. 2, Article 45. Publication date: February 2024.

https://orcid.org/0000-0001-6087-5202
https://orcid.org/0000-0002-7375-7608
https://orcid.org/0000-0002-7535-444x
https://orcid.org/0000-0001-7411-8923
https://orcid.org/0000-0001-5822-3432
https://orcid.org/0000-0003-1973-2909
https://doi.org/10.1145/3638765
mailto:permissions@acm.org
https://doi.org/10.1145/3638765
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638765&domain=pdf&date_stamp=2024-02-16


45:2 W. Zhang et al.

1 INTRODUCTION

The last 20 years have witnessed the rapid expansion of IoT devices in a wide variety of appli-
cations, such as smart farming, home automation, wearable devices, and so on. Since most IoT
devices are currently powered by batteries, they suffer from the limited lifetime and high cost
of maintenance on recharging and replacement. Instead of powering by batteries, energy har-

vesting (EH) technology [14] powers IoT devices through harvesting energy from the ambient
surrounding environments such as electromagnetic radiation, thermal conduction, kinetics, and
the like [9, 47, 48]. Due to the property of environment-friendly, ubiquitous access, and sustain-
ability, energy harvesting is a promising solution to eliminate the dependency on batteries and
realize a self-powered IoT system.
Underneath such a prosperous future, the intrinsically weak and unstable power supply of en-

ergy harvesting can, however, lead to frequent and unpredictable interruptions to the EH IoT de-
vices [36, 37]. Such intermittent work patterns of EH IoT devices pose imminent challenges to the
data routing in the multi-hop EH IoT network. Specifically, unlike battery-powered IoT devices, an
EH-powered IoT receiver won’t respond to the corresponding transmitter’s request if a power out-
age happens. Thus, in the multi-hop network, the synchronization of energy availability between
the transmitter and the receiver is needed for routing. Moreover, with the limited on-board power
budget [38, 56], unbalanced energy allocation for runtime operations such as sensing, transmitting,
receiving, and forwarding can lead to either energy starvation or squandering. This is because, if
the EH IoT device senses too much data, it may not have sufficient energy for routing. Conversely,
if the EH IoT device reserve too much energy for routing, it may squander harvested energy for
nothing after routing for all the data. To this end, joint optimization of energy allocation and rout-
ing selection is needed.
Nevertheless, the aforementioned joint-optimization can be extremely challenging due to the

inappropriate configurations of the network topology which determines the performance upper
bound of the aforementioned joint-optimization. Specifically, if a large number of EH devices are
placed far away from the sink, yet only a few closer-to-sink EH devices (white device in Figure 1)
are available for the relay, those relay devices will exhaust their limited stored energy quickly and
frequently due to the large relay requests. Such energy exhaustion of relay devices can lead to
the infamous network overflow problem which inevitably downgrades the overall performance for
data delivery regardless of any sort of joint optimization applied. Therefore, before conducting
joint optimization of the energy allocation and routing selection, a reasonable topology design for
EH IoT devices is expected to foster joint optimization. However, even with an optimized topology,
achieving synergy between energy allocation and routing selection for all EH IoT devices together
is still full of complexity due to the spatiotemporal dependencies under power-intermittent sce-
narios. Temporally, for a single device, the current optimal energy allocation that maximizes the
data transmission might result in insufficient energy for future data transmission, hence, lowering
the overall performance. Spatially, every single device’s energy allocation affects its neighbors’
decision-making. For example, a device budgets more energy for transmission and also consumes
more energy from its next-hop neighbors for the relay.
As EH IoT devices can not obtain global network information, the aforementioned joint opti-

mization needs to be conducted under a partially observable environment. To address the chal-
lenges and the complexity in the partial observable environment, Deep Reinforcement Learn-

ing (DRL) [27, 28, 31] has been considered as one of the most promising optimization tools. DRL
trains an agent that directly learns a policy from rewards by interacting with the environment.
The policy is a mapping from the agent’s current observed state to its best next action. The en-
vironment changes the state and generates a reward corresponding to the agent’s current action.
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DRL is able to make a sequence of decisions under uncertainty with an outstanding performance
from a long-term perspective. By formulating energy allocation and routing selection as partially
observable Markov Decision Processes, in this article, we design a distributed and highly scalable
DRL-based approach known as DeepIoTRouting, to maximize the energy efficiency and the packet
delivery for sensing and transmitting data in the EH IoT systems.
This article first conducts a thorough mathematical discussion and builds a corresponding theo-

retical foundation regarding the influence of topology on the network performance under energy
harvesting scenarios. Then, based on the foundation, an optimized topology design flow is given
to help place the EH devices in a way that can facilitate the following joint optimization. Next, to
optimize the energy allocation strategy and routing selection jointly whilst addressing the chal-
lenges and the complexity in the partial observable environment, a distributed and highly scalable
DRL-based approach, known as DeepIoTRouting, is proposed. The key idea of DeepIoTRouting is
to train and deploy a unique DRL agent on each IoT device in the network. Each unique agent
controls the local energy allocation on sensing and transmission and determines the data routing
destination. With the goal of maximizing the amount of data delivery to the sink, DeepIoTRout-
ing dynamically fine-tunes its energy allocation policy in response to the real-time behavior of
sensing and transmission activities. By controlling the relaying destination, DeepIoTRouting finds
the near-optimal routing path for EH IoT devices. More important, each agent shares the same
neural network architecture (except for the input/output layers) but has its own set of optimized
weights. During inference, each device only requires its neighbors’ information and thus has a sig-
nificantly smaller state space than centralized DRL for large-scale IoT systems. In a nutshell, the
major contributions of this article are as follows:

(1) A comprehensive multi-hop routing system is developed for the EH IoT system that incorpo-
rates EH IoT device topology, multi-hop routing, and energy-harvesting models (as shown
in Figure 8);

(2) Spatial dependency among self-powered IoT network devices is analyzed mathematically.
Based on the analysis, the topology design requirement of the self-powered IoT system is
given in Theorem 1 and Corollary 1.1;

(3) A distributed DRL-based approach, DeepIoTRouting, is designed to address the coupled en-
ergy allocation and routing selection problem for large-scale EH IoT networks;

(4) A set of comprehensive experiments is conducted to evaluate the proposed DeepIoTRout-

ing from five perspectives, including topology influence exploration, parameter discussion,
overall comparison, network performance evaluation, and design space exploration.

The remainder of this article is organized as follows: Section 2 discusses related work.
Section 3 gives the example to illustrate the motivation of this article Section 4 introduces the sys-
temmodel, analyzes the topology requirements of the self-powered IoT system, and formulates the
joint-optimization problem. In Section 5, based on the topology requirement analysis in Section 4
we explore the topology design strategy of the self-powered IoT system. Also, our reinforcement-
based multi-hop routing and energy allocation learning algorithms are proposed in this sec-
tion. Evaluations and experiments are demonstrated in Section 6. Finally, Section 7 concludes
this work.

2 RELATEDWORK

Existing works related to this article can be mainly summarized into two categories including
topology design and routing policy. The routing policy can be further grouped into two categories:
traditional routing policy and energy-harvesting-aware routing policy.
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2.1 Topology Design

Great efforts have been devoted to the topologies of the wireless network. The classical topology
architectures include point-to-point, ring, tree, star, and grid network topologies. There are several
summative surveys as well as studies on specific exploration. [6, 24] provided a comprehensive
survey on the topology design of wireless sensor networks. [30] concluded the network topologies
adopted inwater wireless sensor networks. A trunk-and-branch tree network design on the surface
of the earth was proposed [51]. Based on the designed tree topology, [51] studied the path planning
of submarine cables. In [10], a topology with optimal synchronization is explored, where the ring
network is discussed in detail. [53] compared the spectrum utilization for the flexible grid topology
and the fixed grid topology. There are also a set of studies that researched topology tomaximize the
sensor coverage [11, 29], extend the network lifetime [24], or optimize the sensor connectivity [25].
However, existing studies on topology design mainly focus on the communication performance
and the scalability of topology [23]. None of them considered the energy availability of devices
and explored the topology design requirements for energy harvesting devices.

2.2 Routing Design

2.2.1 Traditional Routing. Given that the router can work continuously in the traditional net-
work where the devices are connected to the wall outlet, existing works [3, 58] mainly investigated
the shortest path (reducing latency) and minimum energy consumption in data transmission [17].
Also, geographic routing [13, 46, 57] is proposed, where a set of sensors were available to obtain
the GPS location and determine the next hop for a transmitted packet based on the location infor-
mation. In [26], a geographic routing with unreliable link (GRUL) protocol was proposed to route
the collected data along energy-efficient paths. However, those traditional routing policies adapted
well in the stable power environment are impractical for the EH environment due to unpleasant
data packet loss caused by power interruptions.

2.2.2 Energy-harvesting-aware Routing. Non-Learning: To address the above issues, develop-
ing an energy-harvesting-aware routing policy that maximizes the transmission rate under limited
energy consumption is essential for the emerging intelligent EH system [12, 17, 43, 44, 50]. Nguyen
et al. [33] proposed an energy-harvesting-aware routing algorithm for multi-hop heterogeneous
IoT networks, where the energy prediction model and the energy back-off parameters are inte-
grated into the proposed routing algorithm. [4] jointly optimized the power allocation and rout-
ing selection for the EH Multi-hop Cognitive Radio Networks. However, these solutions are not
designed for long-term optimization, resulting in throttled system performance. [26] developed
an algorithm, named ESDSRAA, to explore multi-hop routing for EH IoT systems with energy-
harvesting-aware geographic routing and different energy allocation strategies. However, it did
not consider the uncertainty of the power source which is the core for EH devices.
Learning: Recently, DRL is increasingly adopted in EH IoT system design to improve performance.
DRL shows outstanding performance in decision making in an uncertain environment consider-
ing the long-term influence of its actions [18, 34, 49]. [49] proposed a multi-layer Markov fluid
queue model to optimize the transmission by maximizing the reward for individual IoT devices
rather than the multi-hop communication system. [34] employed a typical DRL algorithm to opti-
mize the power allocation for two-hop EH communications. Q-table was created in [18] to find the
optimal routing path for EH multi-hop cognitive radio network. Several existing approaches have
been introduced in the literature that exploits intelligent methods in order to support the EH in IoT
environments, such as [8, 45] by introducing low complexity solutions in contrast to the DRL ap-
proaches that are characterized by high computational complexity. However, these solutions only
target small-scale communication environments (i.e., at most 6 devices [18]), far away from the
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realistic IoT system setting that consists of a large number of interconnected devices. Besides, few
works consider how to synergistically perform energy allocation and routing for EH IoT systems.

2.3 Novelty Analysis

Different from the previous studies that design topology without consideration of energy avail-
ability or only focus on routing policy for EH IoT network with the centralized method, this paper
mathematically discusses the influence of the topology in EH IoT system for the first time. Based
on our findings, we provide detailed requirements on topology design for the multi-hop EH IoT
system. Moreover, we also propose DeepIoTRouting that jointly optimizes the energy allocation
and routing policy in a distributed manner. The current existing works target small-scale commu-
nication environments (i.e., at most 6 devices [18]), far away from the realistic IoT system setting
that consists of a large number of interconnected devices. Besides, few works consider how to
synergistically perform energy allocation and routing for EH IoT systems. Thus, in the simulation,
we first compare the data collection performance of the topology qualified by the proposed valida-
tion algorithm, typical tree, and grid topology on the energy harvesting aware distributed system.
After that, given the qualified topology, the proposed DeepIoTRouting is compared with GRUL [26],
ESDSRAA [26], andQ-table, which represent traditional routing, energy-harvesting-aware routing,
and energy-harvesting-aware routing with DRL, respectively.

3 MOTIVATION EXAMPLE

This section presents two examples to illustrate themotivations for the reasonable topology design
and the extreme challenges of the routing and energy allocation joint optimization for the multi-
hop self-powered IoT system.

3.1 Why Reasonable Topology Design Matters

Figure 1 shows an 8-device self-powered IoT edge network organized in a tree topology. Each IoT
device performs environmental sensing sustainably in the deployment area. The sensed data will
be delivered to the sink (Star). Due to the limited transmission distance, only the devices (White)
have direct access to the sink. Therefore, white devices need to forward data coming from the
rest of devices (Purple). However, while fulfilling the continuous forwarding request from the
six purple devices, due to insufficient harvesting power and limited data storage capacity, two
White devices can neither satisfy the continuous forwarding request nor support their own data
gathering. Thus, the sensed data get stuck on devices resulting in data overflow of the network. To
clarify the example, we assume Esense = 0.1J ,Etrans = 1J , and Er ecev = 0.5J as the energy cost
of the individual device for sensing, receiving, and transmitting 2KB data as one data unit. Each
device is required to sense Ndata = 10 unit data and transmit them to the sink. Therefore, the total
energy consumption of devices 3-8 is Esense ∗ Ndata + Etrans ∗ Ndata = 11J . Because devices 1
and 2 need to receive all data packets from six devices and relay those received data packets to the
sink, the average individual energy consumption of devices 1 and 2 is Esense ∗ Ndata + 4Etrans ∗
Ndata +3Etrans ∗Ndata = 56J , which implies the insufficient power supply for device 1 and 2. This
situation will get worse when the network scales up since each one-hop device (White) of the sink
needs to forward data for more EH IoT devices.
To address this issue, if we adapt the old topology to a new topology with more devices

closer to the sink as shown in Figure 2, the aforementioned problem can be significantly allevi-
ated. This is because right now four white devices will not only be able to support their own
data sensing/transmission but also can help forward data for the rest of the four purple devices
to the sink. Thus, it is vital to reasonably deploy self-powered IoT devices considering limited
energy harvesting power. To provide clear guidance on topology design, we first conduct the
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Fig. 1. Example 1 on topology of EH IoT system. Fig. 2. Example 2 on topology of EH IoT system.

mathematical analysis regarding the influence of topology on the performance of self-powered
IoT systems in Section 4.1, and then illustrate the topology design strategy in Section 5.1.

3.2 The Challenge of Routing under Energy Harvesting Scenarios

Even with a reasonable topology, a poor routing policy can significantly degrade the network per-
formance. However, due to the weak and intermittent nature of energy harvesting power, develop-
ing an appropriate routing policy becomes extremely challenging. Specifically, routing consists of
multiple point-to-point communications which require sufficient energy from both the transmit-
ter and the receiver. Hence, the amount of energy allocated for communication will heavily affect
the network performance. However, due to the limited onboard energy of each single device, the
amount of energy allocated for communication temporally depends on the amount of energy al-
located for previous local tasks. Moreover, if the receiver’s energy is inappropriately allocated or
the receiver encounters unstable harvesting power, point-to-point communication may not have
sufficient energy to support the data receiving from the spatially dependent transmitters. In the
following, we will use two examples to illustrate the routing challenges from temporal and spatial
perspectives.
Temporal Dependency. Figure 3 shows an example of the real-time energy status of an individual

device without any optimization. Here, Em,t ,Em,r ,Em,s represent the minimum energy threshold
to start the transmission, receiving, and sensing operations where Esleep means the device will be
put into sleep mode for charging if the energy depletes to below Esleep . As we can observe, right
after the harvested energymeets the threshold requirements, the device immediately starts the cor-
responding sensing, receiving, and transmission based on its task queue. In this way, even if charg-
ing power is large enough to support constant receiving and sensing, it is still unable to support the
transmission continuously. As a result, the energy reservoir will be quickly drained as the storage
energy at threshold Em,t can barely support such short t1 − t0 for completing the transmission.
Alternatively, if we slow down the sensing and receiving to reserve energy for transmission,

the device will experience a long period of recharge time and fails to perform the task reactively
(the first blue region of Figure 4). Most importantly, while the device is reserving the energy for
transmission by slowing down the sensing and receiving, it might cause that there is not enough
data for transmission during the high power supply period (the second blue region in Figure 4).
This situation will further result in the device missing the opportunity to utilize energy during the
high power supply period. As the energy storage of the device is limited, if the device reservesmore
energy in the storage, the available space for energy storage is less. If the device only performs
sensing operation during a high power supply period (no data for transmission), it implies that the
device misses the opportunity to harvest and utilize energy from natural sources, because of the
availability of energy storage.
Spatial Dependency. Given an optimized topology in Figure 2, the goal of the IoT edge network

is for each IoT device to deliver enough data to the sink for comprehensive analysis. Since an
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Fig. 3. Example 1 on individual EH device execution. Fig. 4. Example 2 on individual EH device execution.

Fig. 5. Example 1 on routing selection of EH IoT system.

Fig. 6. Example 2 on routing selection of EH IoT system.

individual’s routing choice is unknown to others, without any optimization, devices 3 and 4 may
select device 1 for relaying, and devices 6 and 8 may select device 7 for relaying. As a result, if
devices 1 and 7 fulfill all the relay requests, based on the aforementioned discussion (temporal
dependency), less energy will be allocated for sensing, which results in the data distribution in
Figure 5(b) extremely uneven on the sink. As we can observe, even if devices 1 and 7 devote the
majority of their harvested energy for transmission and receiving as shown in Figure 5(a), the data
originating from devices 1 and 7 are far less than the data originating from others. To address this
issue, if devices 1 and 7 are allocated less energy for relay by properly reducing the relay queue,
corresponding relay requests can be evenly distributed among all the white devices (1, 5, 2, 7) as
shown in Figure 6(a). As a result, more energy can be allocated for sensing and delivery of their
own data for devices 1 and 7 while at the same the originality of the data can become more evenly
distributed n Figure 6(b)).

Therefore, the routing optimization under energy harvesting scenarios is tightly coupled with
each individual’s local energy allocation. Hence, it is crucial to conduct a joint optimization of
energy allocation and routing selection. Nevertheless, such a joint optimization is extremely chal-
lenging. First, the future harvesting power magnitude is hard to predict in advance making energy
allocation extremely difficult. Second, each IoT device only has knowledge of its neighbors in close
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Table 1. List of Notations

Symbol Description Symbol Description

i id of device (Subscript i indicates transmitter) j id of device (Subscript j indicates receiver)

n the total number of EH devices D the set of EH devices

S the sink (the edge server) ξ the transmission range

Ni the set includes i ’s neighbors Δ the capacity of queue

Λ a threshold to inactivate sensing to prevent

overflow

Ai, j the size of data packet transmitting from i to

j

ωi, j the transmission rate k the kth data packet in queue

D the set to include the forwarding devices’ la-

bel of the data packet

Γ the number of forwarding hops of the data

packet (the cardinality of D)

Φ the budget of forwarding hops Ei,cost the energy cost of i

Ei,current the residual energy of i Ei,ini the initial energy of i

Ei,hav the harvested energy of i Ei,max the i ’s capacity of energy

Hi the layer id of i H the maximum geo-graphical layer id

h the hth geo-graphical layer Mh the number of devices in the hth layer

Et energy cost for transmitting one bit Er the energy cost for receiving one bit

Es energy cost for sensing one bit vs the average sensing rate

h′ the h’th hop layer Mh′ the number of devices that is H ′ −h′ + 1 hops

away from the sink

di,hop the average hop distance when i delivers data

packets to the sink

Na,i the set that contains the next-hop neighbors

of i ; the layer id of devices in Na,i is no

smaller than Hi

M
exp

h′
the minimum expected number of devices in

the h’th layer

st the state of environment at t time step

at the DRL agent action at t time step rt the returned reward at t time step

γ the discounted factor Q Q value of DRL agent

θ , θ ′ the weights of the local neural network and

the target neural network of DeepIoTRouting

Ei the energy status of i ’s neighbors

Qi the available queue size of i ’s neighbors Ii the data packet heading in the queuei is gen-

erated by Ii
Ti the energy threshold of i Ni the destination of current data packet

proximity and thus can not select optimized routing paths from a global perspective. To address the
above challenges with the complexity of joint optimization for energy allocation and routing se-
lection in a partially observable environment, we will employ powerful DRL as optimization tools.
The details of the proposed design are in Section 5.2. Table 1 lists the notations used in this article.

4 SYSTEMMODELS AND ANALYSIS

In this section, we first introduce the systemmodels of the multi-hop routing EH IoT system. Then,
based on the models, we conduct mathematical analysis regarding topology design. In the end, we
formulate the problem and specify the optimization objectives for the EH IoT system.
We consider a classical data transmission scenario [35, 59, 60], where a set of EH IoT devices

are deployed in an open space such as in a wild forest or farmland. Each device in Figure 7 is
equipped with environmental sensors, a transmission module, and an energy harvesting module,
which enable the devices to conduct sensing, transmitting/relaying, and receiving continuously
with harvested ambient energy. Since the edge server (the sink) collects data from all devices
including those at a long distance, each device also serves as a router for relaying incoming packets
towards the sink S (the edge server). Figure 8 shows the overview of the whole system.

Deployment. Assume the systemhasn EH IoT devices and each device switches between runtime
status “awake” and “sleep” according to its energy level. Let i denote the ith EH IoT device, where
i ∈ D = {1, 2, · · · ,n}. Device i and device j are neighbors if the distance between them is within
the transmission range ξ . The device only can communicate with its neighbors. Specifically, all one-
hop neighbors of device i are grouped into a set Ni . In addition, the deployment area is divided
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Fig. 7. Operations of an EH IoT device. Fig. 8. Systemmodel of multi-hop routing for EH IoT system.

into H layers based on the distance to the sink (S) as shown in Figure 9. The width of each layer
is equal to the transmission range ξ .
Sensing. Each EH IoT device i has a transmission queue queuei for buffering the local sensing

data or received data for the relay. The size of each queuei is Δ. Without loss of generality, Each
EH IoT device will follow a preset schedule to start its sensing. If the stored energy is enough, it
keeps sensing (“awake”) at a preset rate v until the energy has been drained. By then, the system
will go to low-power “sleep” mode. To prevent the queue overflow, a threshold Λ (Λ ≤ Δ) is set
to inactivate sensing. When the queue is above the threshold, the remaining space in the queue
will only be used for routing. In practice, Λ can be chosen by profiling the data traffic of each
device.
Communication. We define the size of each data packet transmitting from i to j as Ai, j , where

i = j means the data packet from local sensing. The transmission time ti, j,send can be obtained
from

ti, j,send =
Ai, j

ωi, j
, i ∈ D, j ∈ Ni ∪ S, (1)

where ωi, j is the transmission rate, which can be calculated from Shannon theorem [5, 7, 42, 54].
Since the EH IoT device works intermittently, the device enters sleep mode frequently. Thus,

the time cost of the kth data packet on device i is equal to the transmission time of the past k − 1
data packets plus the device sleeping time (ti, j,sleep ), given by (2).

tki =
k∑
l=1

t li, j,send +
k∑
l=1

t li, j,sleep , i ∈ D, j ∈ Ni ∪ S. (2)

In the multi-hop network, the data packets might be trapped in the network for several routing
rounds. If the data packets get trapped and are routed repeatedly among EH IoT devices, it wastes
the energy of EH IoT devices. Therefore, those data packets got trapped for too many routing
rounds are considered as expired. To drop the data packets that get trapped in the network all the
time, the budget on routing path hops Γ is assigned to the data packet.When the number of routing
path hops Φ becomes greater than Γ, the data packet expires and will be dropped. Furthermore, the
data packet is routed with ids of its relaying devices labeled as set D to prevent the routing loop.
If the data packet is transmitted back to the same device (j ∈ D), the data packet will be dropped.
Moreover, to prevent collision during transmitting, this paper employs the well-known CSMA/CA
protocol [19, 21, 40]. Specifically, during the connection setup phase, the transmitter sends a “Hello”
message, and the receiver capable of decoding the message reply with an “ACK” that includes its
ID and current energy information, facilitating the connection establishment. Once the connection
is established, the transmitter can send data to the receiver.
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Energy Harvesting. The total energy cost of device i includes energy consumption of sensing,
transmitting, receiving, and sleeping, and thus defined as,

Ei,cost =

∫
Pi,sense dt +

∫
Pi,send dt +

∫
Pi,r ecev dt +

∫
Pi,sleep dt , i ∈ D . (3)∫

Pi,send dt and
∫
Pi,r ecev dt represent the energy costs on transmitting and receiving data pack-

ets, respectively. In particular,
∫
Pi,send dt and

∫
Pi,r ecev dt include the energy costs on building

the connection between the transmitter and the receiver (such as energy costs on handshaken
mechanism).
The real-time residual energy of device i is,

Ei,current = Ei,ini + Ei,hav − Ei,cost , i ∈ D, (4)

where Ei,ini is the initial energy and Ei,hav is energy harvested from ambient energy sources. At
any given time, Ei,current of device i should not exceed the Ei,max , which is the energy capacity
of the device.

4.1 Topology Analysis

To ensure the system has a reasonable topology, motivated by Section 3.1, we provide the mathe-
matical discussion in terms of the energy constraint, device number, and network topology. The
mathematical analysis provides the constraints on the deployment of EH IoT devices.
As shown in Figure 9, the deployment area is divided into H layers based on the distance to the

sink (S). The width of each layer is equal to the transmission range ξ . Thus, each EH IoT device
also has a layer id attribute based on their geo-locations, denoted as Hi ,Hi ∈ [1,H ]. The layer id
attribute of the EH IoT device implies the minimum number of routing hops, i.e., it at least needs
H−h+1 times of relayingwhen the data packet is delivered from the hth layer to the sink.Moreover,
the devices located at (h− 1)th layer will finally transmit their data packet to the hth layer devices.
This means the data from the hth layer include the sensed data from the devices within the hth
layer and all the relay data from devices with lower layer id (Hi < h,∀i ∈ D). Therefore, given
the operation timeT and energy consumption for sensing, transmission, and receiving as Es ,Et ,Er
per bit, respectively, we have (5). Here, Mh represents the number of devices located in hth layer,
ET is defined as the maximum energy that can be utilized by an individual device, and vs is the
average sensing rate of the self-power IoT system. This inequality represents that the total energy
of Mh devices should be greater than the energy cost of sensing, transmission, and receiving of
devices located at hth layer.

MhET ≥ vsTEsMh +vsTEt

h∑
l=1

Ml +vsTEr

h−1∑
l=1

Ml (5)

Based on (5), wewill further have (6) which provide a constraint regarding to the number of devices
Mh in the the hth layer.

Mh ≥
(Et + Er )vsT

ET + (Er − Es )vsT

h∑
l=1

Ml . (6)

To better guide the topology design, based upon Equation (6), we further propose Theorem 1
which gives the relationship between Mh and M1. Hence, the number of devices in any layer can
have a clear constraint ifM1 is given.
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Fig. 9. Deployment EH IoT devices: Geo-graphical layer. Fig. 10. Deployment EH IoT devices: Hop layer.

Theorem 1. Given M1 as the number of devices located at 1st layer, the number of devices in hth

layer must satisfy (7).

Mh ≥
vsT (Et + Er )(ET + (Er − Es )vsT )

h−2

(ET − EsvsT − EtvsT )h−1
M1 (7)

The proof of Theorem 1 is illustrated in Appendix A.
Notice that, in (5), (6), and (7), only the across layer transmission and receiving are considered

(inter-layer communication). However, there are communications among devices that are within
the same layer (intra-layer communication). For instance, in Figure 9, the red device (i) hasmultiple
choices to select its next-hop neighbors (blue and green devices) located in the shadow area. If a
blue device (j) is selected for relay, both i and j are within the same layer (Hi = Hj ). As the intra-
layer communication consumption has not been considered in (5), the inequality is incomplete. To
formulate the constraints regarding to the number of devices in each layer more precisely, instead
of distinguishing layers based on the distance to the sink, we employ the number of “hops” to the
sink as the metric to determine the layerid . To formulate the constraints regarding to the number
of devices in each layer more precisely, instead of distinguishing layers based on the distance to
the sink, we employ the number of “hops” to the sink as the metric to determine the layerid, as
shown in Figure 10. Specifically, we defineMh′ as the number of devices that is H ′ −h′ + 1 “hops”
away from the sink. In this new setting, the devices that are H ′ − h′ + 1 hops from the sink will
send all the sensed data from the devices within the h′th layer and all the relay data from devices
with lower layer id (Hi < h′,∀i ∈ D).

Since a device might have multiple paths to the sink, the number of hops to the sink is uncertain,
which makes it difficult to determineMh′ . To address this issue, we assume that device i will select
its next-hop neighbors for data relay with the same probability. Under such context, if i selects its
neighbor j for relay, the hop counts from i to the sink is determined by the hop counts from j to
the sink, hence, di,hop = dj,hop + 1. Since every neighbor has the same chance to be selected, the
hop counts from i to Sink can be calculated as (8), which represents the mathematical expectation
of hop counts for device i

di,hop = Round
���

∑
∀j ∈Na,i

dj,hop
1

|Na,i |

�	
 + 1,Na,i ∈ Ni . (8)

Here, Na,i is a set containing all possible next-hop neighbors of device i , |Na,i | represents the
number of neighbors in Na,i ,

1
|Na,i |

represents the probability to select j for the next-hop relay,
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dj,hop is the mathematical expectation of j’s hop counts to sink, and Round(x) always rounds x to
the nearest integer. Since the data should flow towards the sink, Na,i only contains neighbors that
has smaller Euclidean distance to the sink compared with i .
As we can observe that if we categorize the devices with the same hop count into the same layer,

there will be no intra-layer communication. Under such context, the conditions of Equations (5)–
(7) become valid. HenceMh′ represents the number of devices whose di,hop is equal to H ′ −h′ + 1.
Based on Equation (6), Corollary 1.1 further provides the constraint ofMh′ .

Corollary 1.1. Given the maximum energy that can be utilized by EH IoT devices and the hard-

ware parameters of EH IoT devices (Es ,Et ,Er , and vs ), the number of devices Mh′ in layer h′ should

satisfy

Mh′ ≥
(Et + Er )vsT

ET + (Er − Es )vsT

h′∑
l=1

Ml . (9)

Corollary 1.1 will further be used in Section 5. Equation (9) highlights that, as we move from the
outermost layer to the sink layer, the number of sensors increases exponentially. This relationship
can be readily demonstrated using Taylor Series, as shown in Appendix A. It is interesting to note
that even though the outer layer has a larger area, it requires fewer sensors. This implies a higher
sensor density as we approach the sink layer. Considering this observation, it becomes evident
that in real-world scenarios, additional communication sensors should be deployed. This would
account for the increasing density of sensors as we move closer to the sink layer, ensuring robust
and efficient communication within the network.

4.2 Problem Formulation

The main goal of this article is to maximize the total amount of received data by the sink (S) in EH
IoT systems under the energy harvesting setting. Formally, given the EH IoT devices with limited
onboard battery capacity, buffer queue size and the system operation time T , a dynamic multi-
hop routing topology (varies according to each device’s status), and an external power source, our
optimization problem is described as:

maximize
∑

i∈Nj, j=S

t=T∑
t=0

Ai, j

subject to 0 ≤ Ei,current ≤ Ei,max , ∀i ∈ D

k∑
l=1

Al
i, j ≤ Δ, ∀i ∈ D, j ∈ Ni

j � Di , ∀i ∈ D, j ∈ Ni

Φ ≤ Γ, ∀i ∈ D, j ∈ Ni

Unlike traditional cellular network that targets real-time communication, in this article, we ex-
plore energy harvesting powered embedded IoT devices for sensing applications without time
constraint.

5 ALGORITHM DESIGN

In this section, we will first provide the device deployment strategy along with the detailed topol-
ogy validation procedures. Based on the optimized topology, we will provide the detailed design
flow for DeepIoTRouting.
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5.1 Topology Design and Validation

Based on the analysis from Section 4.1, in this subsection, we will first provide the device deploy-
ment strategy in Algorithm 1. Then, we will provide detailed topology validation procedures in
Algorithm 2. Since at the very beginning we will not know the hop-count without given topology,
the devices will (1) based on Theorem 1 for fast deployment with distance-based metric. After de-
ployment, we will (2) use Corollary 1.1 to conduct accurate validation with the hop-count metric.

5.1.1 Topology Design. In the first phase, given the boundary of the deployment area and esti-
mation ofM1, we first estimate the approximate minimum number of devices in each geographical
layer through (7) of Theorem 1. Following this requirement on the number of devices in each geo-
graphical layer (Algorithm 1), the topology will be initialized based on the specific service requests.

ALGORITHM 1: Topology Design

Input: Delta, ξ ,M1 ; /* Delta: The maximum width of deployment area; */
/* ξ: The transmission range; */

/* M1:The approximate number of devices at the 1th layer */

Output: 〈Mid1〉 ; /* The initial requirement of topology from geo-graphical perspective
*/

1 H ← Delta/ξ ;

2 for id1← 2 to H do

3 CalculateMid1 based on (7);

4 end

5 return 〈Mid1〉

5.1.2 Topology Validation. After the initial topology is established, in the second phase, based
on the provided topology, we will validate the topology based on Corollary 1.1 for effective de-
ployment. First, we will calculate di,hop based on (8) to assign hop IDs for all devices starting from
the inner circle of the sink to the outer rim of the network. Then, we can categorize the devices
with the same hop count into the same layer to calculate the number of devices on each hop-based
layer and record in set 〈Mh′ 〉 (Line 1-6, Algorithm 2). Finally, the provided topology is validated by
Corollary 1.1 (Line 8-14, Algorithm 2). In particular, for each layer h′, we also calculate the lower

bound of Mh′ as M
exp

h′ based on (9), which represents the minimum number of devices required

in each hop layer. If every layer satisfies Mh′ ≤ M
exp

h′ , the topology is qualified for deployment.

Otherwise, the topology can be fine-tuned based on 〈Mh′〉 and 〈M
exp

h′ 〉.
Heterogeneity Discussion. While it is true that real-world sensor networks often exhibit device

heterogeneity, including variations in transmission range, such heterogeneity does not signifi-
cantly affect the performance of our proposed approach and can be simplified to the homogeneous
network (our current experimental setup) without compromising the validity and performance of
our work. We found that these variations in transmission range did not result in significant per-
formance differences compared to the homogeneous case. The reason behind this is that we can
correctly identify the corresponding neighbors of the sensor, even that the transmission range
among sensors are different. As long as the neighbors of each sensor are correctly identified, the
exact topology of the network is determined and becomes less important in our context. Our work
primarily focuses on optimizing energy allocation and routing policies, which primarily depend
on local interactions among neighboring sensors. Therefore, after figuring out the location of all
sensors, even that sensors have different transmission ranges, we can identify the neighbors of
all sensors. We then can simplify and model them using our current experimental setup without
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compromising the validity and performance of our work. Our current approach captures the es-
sential dynamics and behaviors of the system, enabling us to evaluate and validate our proposed
algorithms effectively.

ALGORITHM 2: Topology Validation.

Input: (xi ,yi ),∀i ∈ D ∪ S; /* The locations of all devices and sink */

Output: Is_qualify, 〈Mid3〉, 〈M
exp

id4
〉;

1 for id2 ← 1 to n do

2 Calculate did2,hop by (8); /* Calculate the expected hop distance of each device */

3 end

4 for id3 ← 1 to H ′ do

5 CountMid3; /* Count Mh′ for the current topology design */

6 end

7 Is_qualify← True;

8 for id4 ← 2 to H ′ do

9 CalculateM
exp

id4
based on (9); /* Count the expected minimum M

exp

h′ for each hop layer */

10 if Mid4 < M
exp

id4
then

11 Is_qualify = False ; /* Validate the current topology */

12 end

13 end

14 return Is_qualify, 〈Mid3〉, 〈M
exp

id4
〉

5.2 DeepIoTRouting Design

In this section, we present DeepIoTRouting framework to address the multi-hop routing problem.
We formulate the program in the RL setting and discuss the designs for the RL state, action, and
reward in detail.

5.2.1 RL Overview and Q-Learning. Reinforcement learning is the training of an agent to make
a sequence of decisions. The agent learns an optimal policy by interacting with a complex envi-

ronment. At time step t , the environment has a state, st ,∀st ∈ S and it changes in response to the
agent’s action at ,∀at ∈ A. After action at , environment state transits from st to st+1 and the agent
also receives an immediate reward rt+1 from the environment. The goal of the agent is to maximize
the total reward by optimizing it’s policy π (s,a) (i.e., the mapping from the state S to action A).

Q-learning [52] is a classic example of RL. In Q-learning, the cumulative discounted reward from
time step t is defined under the policy π asRπt =

∑∞
τ=t γ

τ−trτ+1, where theγ is the discounted factor
for future reward, γ ∈ (0, 1]. Then, the Q-function can be formulated as:

Q(s,a)π = E[Rπt |st = s,at = a]. (10)

Essentially, Q-learning maintains a lookup table (Q-table) and follows ϵ-greedy [52] to update its
q-value iteratively until convergence. The update rule can be described as follows:

Q(s,a) ← Q(s,a) + δ [rt + γ max
a

Q (s,at+1) −Q(s,a)] (11)

π = argmax
a

Q(s,a). (12)

5.2.2 DeepIoTRouting Framework. Q-learning can achieve optimal results for small-scale RL
problems. However, for problems with large state size (e.g., continuous variable) and action space,
theQ-tablewill grow significantly huge. Further, for large-scale RL problems, the amount of time to
explore each state of the Q-table will be unrealistic. To solve these challenges, deep-Q network [31,
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Fig. 11. DeepIoTRouting framework.

55] has been proposed to train a function approximator, i.e., neural network, to estimate the Q-
values. The proposed DeepIoTRouting adopts deep-Q-network as the underlying agent to solve the
multi-hop routing and energy allocation proglems for the EH IoT system.
Figure 11 illustrates our DeepIoTRouting framework. At bottom, DeepIoTRouting models the

multi-hop IoT system (discussed in Section 4) as the environment. For each EH IoT device in the sys-
tem, DeepIoTRouting deploys a unique DRL agent that controls the data packet destination device
and energy allocation on sensing and transmitting. Doing so makes DeepIoTRouting easily scale as
the number of devices in the system increases. Moreover, all DRL agents in DeepIoTRouting share
the same neural network architecture (except for the input/output layers), but have their own set
of learnedweights. During inference, each device only requires its neighbors’ information and thus
has a significantly smaller state space than a centralized RL agent for large-scale IoT systems.
Training. To facilitate the training process, DeepIoTRouting utilizes an experience replay buffer

to record interactions between the agent and environment as experience = (st ,at , rt+1, st+1). Dur-
ing training, instead of updating the agent network parameters (θ ) after each agent-environment
interaction, DeepIoTRouting waits until a mini-batch of training samples are available from the
replay buffer. To further stabilize the training, DeepIoTRouting also adopts a target network (θ ′)
that has the same architecture as the original (local) network but with frozen parameters for every
m iteration (hyperparameter). In other words, the weights of the target network are periodically
updated from the weights of local network. Thus, the loss function of a local agent i for a randomly
sampled mini-batch Zt is described as:

L(θ ) =
∑

si,t ,ai,t ,
ri,t+1,si,t+1∈Zt

(ri,t+1 + γ max
a

Q(si,t+1,ai,t+1;θ
′) −Q(si,t ,ai,t ;θ )).

2

(13)

ACM Trans. Sensor Netw., Vol. 20, No. 2, Article 45. Publication date: February 2024.



45:16 W. Zhang et al.

ALGORITHM 3: Training procedure for DeepIoTRouting.

Input:max_episodes, start_time, end_time,m,n_device , {γ , ϵstar t , ϵend ,δ } (for learning and
exploration)

Output: optimized n_device agents θi
1 Initialize n_device local networks, θi , with random weights, ∀i;
2 Initialize n_device target networks, θ ′i ← θi , ∀i;
3 Initialize the corresponding replay buffer, Zi , ∀i;
4 n_episode ← 0

5 while n_episode < max_episodes do

6 Reset EH IoT system environment;

7 Initialize start_time;

8 Stepi ← 0 ∀i;
9 while time < end_time do

10 for i from 0 to n_device do

11 if i request action from agent θi then
12 n_random ← random.random(),n_random ∈ [0, 1);; /* Perform decaying

epsilon-greedy policy; */

13 if n_random ≤ ϵi then
14 ai,t ← random action;

15 else

16 ai,t ← argmaxQ(s,a)

17 end

18 Perform ai,t ; Feedback ri,t+1 based on (14);; /* DRL agent interacts with the

environment; */

19 experiencei = (si,t ,ai,t , ri,t+1, si,t+1);

20 Save experience to buffer Zi ; ; /* Collect experiences of agents and save to

the replaybuffer; */

21 if replaybu f f er ≥ mini_batchsize then
22 Randomly sample mini-batch of experiences;; /* Update neural network

weights; */

23 Optimize θi with sampled experiences;

24 if Stepi%m == 0 then

25 Update target network θ ′i ;

26 end

27 end

28 Update ϵi with decaying epsilon algorithm;

29 Stepi = Stepi + 1;

30 end

31 end

32 end

33 n_episode = n_episode + 1

34 end

The training process is described in Algorithm 3. Sample data are normalized in the preprocess-
ing step. To avoid local minima, we adopt a decaying epsilon-greedy policy [15, 32] during training.
At early stages, the DRL agents take more actions to explore, and as the training progresses, our
agents make decisions based on their learning.
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Deployment & Computational Analysis. We pre-train the models on the server. Once the mod-
els are well-trained, the corresponding models will be deployed into the EH devices for runtime
decision-making. At the runtime stage, the models are optimized during the off-peak time. The
computational complexity of DeepIoTRouting during the runtime stage relies on the architecture
of the adopted neural network. For example, if the fully connected neural network is adopted, the
computation complexity is O(x2). The neural network architecture setting is given in Section 6.

5.2.3 Reinforcement Learning Settings for DeepIoTRouting. We describe our designs of the state,
action, and reward for the sensing and multi-hop routing in the DRL setting.
State. Each EH IoT device i in the system has its own state si , i ∈ D to represent its energy

level, queue size, and data packets. The state is denoted by si = {Ei ,Qi ,Ii }. Ei is a vector that
represents the current energy status of the device i and its neighbor devices Ni . Qi represents the
current queue size of the device i and its neighbor devices Ni . Ii stores the source id of the data
packet heading the queue. Data packet source id can be useful to prevent routing loop.
Action. Action ai = {Ti ,Ni } of an EH IoT device i in the system has two components. First,

Ti is a dynamic parameter that controls the device i’s real-time energy allocation policy between
sensing (energy harvesting) and transmission/receiving. We quantize the device’s residual energy
intomultiple levels. If the quantized energy is less thanTi ∗Ei,max after an action, the EH IoT device
stops its transmission/receiving and only performs low-power sensing and harvesting. When the
device recharges to sufficient energy level (≥ Ti ∗ Ei,max ), it resumes the transmission/receiving
tasks and actions related to routing is described with second component Ni ,Ni ∈ Ni . Since each
IoT device in DeepIoTRouting has its own DRL agent,Ni is the destination of the current outgoing
data packet in device i . Note that all DeepIoTRouting DRL agents (EH IoT devices) execute in a
distributed parallel fashion, but each agent’s action affects their neighbors’ energy. Thus a holistic
training scheme from DeepIoTRouting is required.
Reward. Our goal is to maximize the amount of received data at the sink. Our reward design

also explicitly considers routing loop prevention, packet dropping reduction that directly affects
the network performance. The intermediate reward ri,t ofDeepIoTRouting at time step t is designed
as:

ri,t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if Ii = i, Γ < 0,Ej,current < 0,

k∑
l=1

Al
i, j > Δ

loд(2 +Hi −Hj ) + f (j), otherwise

(14)

Equation (14) captures two scenarios. First, the transmitted packet is successfully received by
the destination device j (The second equation of (14)). If a data packet gets routed closer to the
sink (Recall thatHi is the layer id attribute of i .), the agent gets a positive reward. While the data
packets are routed toward the opposite direction of sink, ri,t ≤ 0 is satisfied. f (j) is a bonus for
the agent if the packet gets routes to the sink directly at this step, given in Equation (15).

f (j) =

{
log(n), if j = S

0, otherwise
(15)

Second, the agent gets 0 reward for the transmission failure (The first equation of (14)). DeepI-
oTRouting considers several common data transmission failure scenarios in real EH IoT systems:
(1) Routing Loop. Without careful design, data packets may get stuck in a loop (i.e., Ii ∈ Di ) and
waste the whole system’s resources and energy. Real IoT system has a mechanism to detect such
scenario and drop the problematic data packet [22]; (2) Data Expiration. Each data packet in the
system also has a limited “hop” budget Γ to ensure its routing efficiency. Data packets that have
less than 0 “hop” budget (i.e., Γ < 0) will get dropped; (3) Receiver Failure. Because of the tran-
sient nature of energy harvesting, the device at the destination might be offline (Ej,current < 0).
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Table 2. EH IoT Network Parameters

Notation Definition Value

Ai, j size of data packet 3072 bits
Δ maximum queue size 15 ∗ 3072 bits
Pi,send transmission power 0.1 w
Pi,r ecev receiving power 0.05 w
Pi,sleep sleeping power 0.0005 w
Pi,sense sensing power 0.01 w
Ei,max energy storage capacity 1 J
v sensing rate 200 bits/s
ξ transmission range 20 m
H layer number 3
Ti the energy threshold Ti ∈ {0, 0.25, 0.5, 0.75}

In this case, the sender cannot get the ACK resulting in wasted energy. (4) Device Queue Overflow.

In the case that the queuej of the destination device j reaches its capacity Δ (
∑k
l=1A

l
i, j > Δ), the

packet will be refused by the destination device but will be transmitted to the different neighbor
device. We also consider this as a failure since it costs energy waste. Our evaluation in Section 6
incorporates all these failure scenarios that are modeled by DeepIoTRouting.

6 EVALUATION

In this section,we develop an energy harvesting powered IoT network simulator to explore the
topology influence and evaluate the performance of the proposed DeepIoTRouting framework. To
demonstrate the transferability of the framework, we conduct experiments under both solar and
wind EH scenarios.

6.1 Experimental Settings

System Initialization. We simulate our EH IoT networks of the similar architecture as shown in Fig-
ure 8. The system begins operating from 8:00 AM to 18:00 PM, and the residual energy on each
device (Ei,current ) is initialized to 0.5J , half energy storage capacity (1J ) to ensure the sufficient
start-up energy. We simulated 80 episodes, and each episode represents the network behaviors on
one day in the real world. As Zigbee is a widely used wireless communication protocol known
for its low-power consumption, low data rate, and suitability for applications involving sensor
networks and IoT devices, we utilize Zigbee [16, 41] as the underlying protocol. The transmission
range has been set to 20meters. Table 2 lists the parameters used in our EH IoT network simulation.
DeepIoTRouting. We train DeepIoTRouting for 80 episodes. We set discount factor γ = 0.95 and

the learning rate δ = 5e−4. The number of device neighbors decides the neural network archi-
tecture in the DeepIoTRouting. The dimensions of the input layer and output layer are determined
based on the definition of state and action in Section 5. The structure of distributed neural network
algorithm is 256-1024-512-128. At the beginning of each day, the environment will be reset, and all
measured parameters will be re-initialized. This is for a fair comparison that prevents the system
from being influenced by residual effects such as remaining energy from the previous day.
Topology Baselines. We compare our designed topology by following Section 5.1 with the typical

(1) Grid Topology and (2) Tree Topology. As shown in Figure 12, we deploy 3, 9, and 8 devices
in M1,M2, and M3, respectively. The two baselines are (1) Grid Topology [20]. In Figure 13, we
deploy devices following the grid topology, where the devices are deployed at each vertex of the
20 × 20 grids; and (2) Tree Topology [39]. Figure 14 indicates a typical tree topology, where
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each master device has two members. Note that, instead of giving a certain network topology de-
sign, Section 5.1 aims to validate a reasonable topology for a self-sustaining IoT multi-hop routing
system. Thus, this article evaluates the proposed topology validation algorithm by comparing the
amount of data delivery to the sinkwith the same routing policy among different topologies. There-
fore, the amount of data delivery in Figures 12–14 to the sink are compared, where the topology
in Figure 12 is validated by Algorithm 2 but topologies in Figures 13 and 14 fails to be validated.

DeepIoTRouting Baseline. We compare our DeepIoTRouting algorithm with three baselines:
(1) EH-aware Routing with RL: Q-table [18]. The Q-table baseline [18] deploys one Q-table
in each EH IoT device with a decaying ϵ-greedy policy; (2) EH-aware Routing: ESDSRAA [26].
This baseline allocates energy and gives a constant sensing rate at the beginning of each hour with
TPAA. After that, it decides the destination device (GRUL) based on the delivery rate (link quality)
and geo-location information [26]; (3) Traditional Routing: GRUL [26]. This baseline makes de-
cisions on the relaying destination device based on the delivery rate and geo-location information
without considering the energy allocation [26].

6.2 Experimental Analysis on Solar Powered IoT Network

We first apply the real solar power traces from the National Renewable Energy Laboratory

(NREL) [1] to evaluate proposed EH IoT system from the follow five perspectives: (1) topology
influence exploration, (2) parameter discussion, (3) overall comparison, (4) network performance,
and (5) design space exploration. To obtain an appropriate system topology and further prove
Theorem 1 and Corollary 1.1 via experiments, we measure the amount of data delivery to sink
for three different topologies, including the topology generated based on the proposed topology
design strategy, the grid network topology, and the typical tree topology. After selecting a suitable
topology for the self-powered IoT system, the system sensing rate and the energy threshold levels
of DeepIoTRouting for energy allocation need to be configured. Thus, we investigate the influence
of the sensing rate and the action Ti . We then compare the proposed DeepIoTRouting with three
baselines. We also analyze the network performance of the self-powered IoT system through pro-
viding details on the sensing, transmission, receiving, and the action of DeepIoTRouting. Finally,
we scale up the system to explore the DeepIoTRouting performance in a large-scale system.

6.2.1 Topology Influence Exploration. To evaluate the three topologies, we separately train
DeepIoTRouting with three topologies. After DeepIoTRouting is well trained, we measure the corre-
sponding amount of data delivery to the sink in one day. As shown in Figure 15, DeepIoTRouting
achieves 28.31Mb data delivery in one day with the topology of Figure 12, while it completes
9.75Mb and 5.83Mb with the grid topology and the typical tree topology, respectively. The topol-
ogy of Figure 12 achieves ∼ 2.90× and ∼ 4.86× more delivery data than that of the grid topology
and typical tree topology. The reason is that the number of devices directly linked with the sink
(one-hop devices) in Figure 12 is far more than that in Figures 13 and 14. In Figures 13 and 14, there
are only 4 and 3 one-hop devices, which have to relay the data packets for 20 devices to the sink.
Because of the insufficient energy and limited capability of one-hop devices, the generated data
can not be delivered, as analyzed in Section 3.1. We also provide the amount of data generated by
all devices of each topology in Figure 15. However, even if the typical tree is with more sensed
data than that of the other two topologies, the sensed data of the typical tree topology cannot
be transmitted to the sink. Therefore, there is a data overflow, which further proves the analysis
in Section 3.1.

6.2.2 Parameter Discussion. Given the topology and the hardware parameters of self-powered
IoT devices, the sensing rate has to be configured. Figure 16 indicates the amount of data delivery
to the sink versus the training day for the different sensing rate settings. When the sensing rate
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Fig. 12. Topology based on Theorem 1. Fig. 13. Grid topology. Fig. 14. Typical tree topology.

Fig. 15. The sink received data of three topologies.

increases from 100bps to 200bps, the data delivery to sink is increased dramatically. However, as
the sensing rate continuous increasing, the growth of the data delivery progressively slows down.
The amount of data delivery to sink is almost the same when the sensing rate is at 300bps and
400bps. As shown in Figure 16, 400bps should be the best choice of the sensing rate. However,
the system performance can not be evaluated only via the total amount of data delivery to sink.
The fairness among all devices should also be considered; namely, the data delivery to sink should
come from all devices and the delivery amount of each device should be at the same level in general.
Therefore, we also investigate the data distribution by comparing the amount of data delivery to
sink from each device.
As shown in Figure 18, when the sensing rate is 300bps or 400bps, despite that the sink receives

more data, the distribution is severely aggregated on a set of devices. The sink barely receives any
data from devices 3, 9, 11, and 19 (Device ID is noted in Figure 12). Although in Figure 16, the
amount of data delivery at sensing rate 200bps is slightly smaller than that at sensing rate 300bps
and 400bps, the distribution of sensing rate 200 bps is uniform and the amount of data delivery at
this rate is higher than that at sensing rate 100bps. The data distribution is aggregated when the
system is with a high sensing rate. This is because the devices far away from the sink (marginal
devices) do not need to relay data for other devices and always sense at a high rate. Thus, those
marginal devices will transmit all their data to their neighbors (intermediate layer devices). Due
to the limited storage resource (limited queue size) and on-board energy, the intermediate devices
have to stop their own sensing task to assist data relay for their neighbors, which results in a low
data delivery amount of the intermediate devices. The fact that devices 3, 9, 11, and 19 all are located
at the intermediate layer between the marginal devices and the sink validates the above analysis.
To explore the appropriate setting of Ti , Figure 17 indicates the amount of data delivery to sink

for different Ti settings. Recall that Ti ,Ti ∈ [0, 1] is the action ofDeepIoTRouting to quantize energy
to multiple levels. In Figure 17, we increase the granularity of Ti from 1 to 4. Specifically, when
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Fig. 16. Sensing rate for DeepIoTRouting. Fig. 17. Energy threshold for DeepIoTRouting.

Fig. 18. Fairness: Distribution for four sensing rates.

Ti = 0, it means there is no joint energy allocation. All devices will execute operations as long as
there is residual energy. Figure 17 indicates a jump gain of data delivery from Ti = 0 to Ti = [0, 0.5].
Without energy allocation, the devices can not dynamically fine-tune sensing and transmission
operations to balance the sensing and communication, which leads to inefficient energy utilization.
Once there is energy allocation, with the granularity ofTi increasing, the growth of data delivery to
sink gradually increases. In the following experiments, we set Ti = [0, 0.25, 0.5, 0.75] as it achieves
the best performance.

6.2.3 Overall Comparison. We compareDeepIoTRouting with three baselines, including Q-table,
ESDSRAA, and GRUL from Efficiency, Effectiveness, Fairness, and Learning Performance perspec-
tives.
Efficiency. We first evaluate the efficiency by measuring the delivery rate, the amount of sensed

data, the amount of data delivery to the sink, and the execution time (computation overhead) as
listed in Table 3. We define the delivery rate as the amount of data delivery to sink divided by the
amount of data generated by all devices. The proposed DeepIoTRouting algorithm agent achieves
the highest delivery rate (80.02%) compared with Q_table (41.31%), ESDSRAA (69.56%), and GRUL
(24.06%), respectively. However, one concern is that EH IoT devices can also “play a trick” if we
only measure the delivery rate. For example, the device can generate fewer sensed data to achieve
high data transmission and delivery rate. Therefore, we jointly evaluate the received data size,
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Table 3. The Efficiency Evaluation (Daily Average) in Solar-Powered Scenario

Algorithm Delivery

Rate (%)

Sensed

Data (Mb)

Delivery

Data (Mb)

Execution

Time (s)

DeepIoTRouting 80.02 35.38 28.31 0.12
Q_Table 41.31 30.26 12.50 0.11
ESDSRAA 69.56 29.34 20.41 0.024
GRUL 24.06 52.82 12.71 0.024

Table 4. The Efficiency Evaluation (Daily Average) in Wind-Powered Scenario

Algorithm Delivery

Rate (%)

Sensed

Data (Mb)

Delivery

Data (Mb)

Execution

Time (s)

DeepIoTRouting 93.50 189.45 177.12 0.12
Q_Table 86.98 187.60 163.18 0.11
ESDSRAA 46.52 338.59 157.50 0.024
GRUL 34.08 459.12 156.49 0.024

the sensed data size, and the delivery rate to measure the energy efficiency. As listed in Table 3,
although DeepIoTRouting maintains a similar sensed data level compared with the other three
baselines, it achieves∼ 2× the delivered data amount on the sink (∼ 28 Mb) than that of the Q_table
and GRUL. While compared with ESDSRAA, DeepIoTRouting achieves 38.71% improvement on the
amount of data delivery to the sink. Our goal is to maximize this term. In contrast, GRUL senses
the most data (52.82Mb) while the sink of GRUL only receives 12.71Mb data. When devices sense
more data, they are expected to transmit more data to the sink, but much less data than expected
are delivered to the sink of GRUL. This indicates that the agent senses more data that may not
have sufficient energy to transmit data or prevent the routing loop. Therefore, the packet may be
dropped due to the expiration caused by the routing loop or exceeding the hop budget. In addition,
ESDSRAA performs better than GRUL. The only difference between ESDSRAA and GRUL is that
the former algorithm has the energy allocation, which further proves the importance of energy
allocation. The results from Table 3 indicate that the efficiency of DeepIoTRouting outperforms the
three baselines on both energy allocation and routing selection.
The execution time in Table 3 is measured when the MCU frequency is 16MHz. The execution

time listed in Tables 3 and 4 refers to the inference time of our neural network model. These execu-
tion times reflect the computational cost of making decisions at runtime. As shown in Table 3, the
execution time of DeepIoTRouting at the inference stage, 0.12s, is the greatest among the four algo-
rithms, which is slightly longer than Q_Table but about 5× of the execution time of the ESDSRAA
and GRUL. Such an overhead is due to the execution of the DRLmodel. Nevertheless, the data deliv-
ery on EH IoT system is not expected to achieve the real-time performance due to the intermittent
nature of EH power. Therefore, the impact of such time overhead is negligible. Besides, what is
even more appealing is that compensating for the execution overhead is the significant improve-
ment of energy utility. Specifically, under the same energy harvesting scenario, DeepIoTRouting
achieves 38.71% and 122.74% more data delivery to the sink compared with ESDARAA and GRUL,
respectively.
Effectiveness. We synthetically measure the residual energy, the amount of data delivery to the

sink, and the amount of sensed data to evaluate the algorithm’s effectiveness. We measured these
data on an hourly basis in order to accurately and deeply analyze the algorithm. Figures 19 and 20
show the hourly received data and sensed data from 8:00 AM to 18:00 PM. As shown in Figures 19
and 20, DeepIoTRouting has the dominant hourly data delivery at the sink while the sensed data
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Fig. 19. Data delivery to sink in hours. Fig. 20. Sensed data in hours. Fig. 21. Residual energy in hours.

Fig. 22. Distribution of data delivery to sink (Daily).

does not maintain the top level. It is worth noting that the trend of Figure 20 and Figure 19 are
similar to the trend of harvesting power trace. From 8:00 AM to 12:00 PM, the EH IoT devices sense
more data with the increased solar power and the sink receives an increasing amount of data. After
that, the power trace curve drops as well as the curve of sensing data and data delivery at the sink.
Between 14:00 PM and 18:00 PM, all of them experience another jump and drop.
The energy level of EH IoT devices should vary with different tasks including sensing, transmit-

ting, and receiving. Figure 21 shows the energy variation of four algorithms. DeepIoTRouting can
maintain the energy at a stable level, unlike ESDSRAA which suffers from a dramatic fluctuation.
Moreover, DeepIoTRouting has a lower level of residual energy, which means that it discharges
more and performs more tasks, and thus it can make good use of the recharging opportunities.
Although ESDSRAA maintains enough energy to balance sensing and transmission, it misses the
opportunity to recharge due to the limited battery capacitance. There is no energy allocation in
the GRUL; therefore, it depletes the energy and then harvests energy for the next task. The resid-
ual energy of the Q_table also remains at a stable level as DeepIoTRouting, but due to its limited
routing capability, it reaches a local optimum early. We will analyze this issue in the evaluation of
learning performance.
Fairness. In EH IoT multi-hop system, our goal is to not only maximize the received data on

the sink but also ensure that the received data originates from all IoT devices. In this way, the
data delivery to the sink can have a balanced distribution with a promising delivery rate. Thus,
to evaluate the fairness, in Figure 22 and Figure 23, we show the amount of data delivery to the
sink of each device and the delivery rate achieved by each device, respectively. As we can observe,
for ESDSRAA and GRUL algorithms, each local agent achieves a large amount of data delivery to
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Fig. 23. Distribution of delivery rate (Daily).

the sink and a high delivery rate when devices are close to the sink. However, when the device is
located at the edge of the network, the packets are difficult to be transmitted to the sink, which
indicates poor data distribution. For DeepIoTRouting, it achieves a balanced distribution. The sink
can receive evenly distributed data from most devices when DeepIoTRouting is adopted. Notice
that, a slightly smaller amount of data are received from device 8 and device 9 than other devices
because device 8 and device 9 consume energy for forwarding packets to its neighbors and sense
fewer data, which will be proved in Figure 26. For devices having more neighbors that can not
transmit data packets to the sink in one hop, we can increase their energy capacity or storage
capacity when we deploy the sensor network. The sink can receive data from most devices in
Q_table. However, the number of data delivery to sink and delivery rate from each device with
Q_table algorithm is lower than the performance of DeepIoTRouting. Therefore, DeepIoTRouting
has an outstanding performance in both data distribution and efficiency.
It is worth noting that, in an energy-hungry scenario, sensors that are closer to the sink should

sense fewer data than sensors at the boundary, because all sensed data by sensor devices located
at the boundary are forwarded by their next-hop neighbors that are closer to the sink. Therefore,
considering the limited harvesting energy budget, devices that are closer to the sink should sac-
rifice their individual data sensing rate and allow more energy to be used for the relay in order
to achieve a global optimal data delivery. We observe that even with the reduced sensing rate,
those devices can still yield a high delivery rate with DeepIoTRouting. The results in Figure 22 and
Figure 23 show that DeepIoTRouting align with this pattern and balances network workload well.
The three baseline algorithms for comparison receive few data packets from devices 14, 15, 16,
and 17, which proves the packet drop in a set of areas. Three baseline algorithms fail to balance
network workload and fail to achieve desirable data delivery rates.
Learning Performance. As shown in Figure 24, we measure the daily obtained reward ri,t to

evaluate the learning performance of the agent. The Q_table can converge quickly on around 10th
day. Although DeepIoTRouting converges gently at 40th day, it gains a ∼ 2× rewards over Q_table,
which further shows the huge performance gap between DeepIoTRouting algorithm and Q_table
when encountering large-scale multi-hop routing. When implementing the Q-table, we have to
balance the discrete density and the number of states. Increasing the discrete density raises the
number of states in the Q-table, leading to more complicated searching for the optimal actions.
Decreasing the discrete density reduces the number of states, further making the search easier;
however, the Q-table cannot accurately capture the environment states. This article simplifies the
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Fig. 24. Daily reward. Fig. 25. Daily delivery rate.

Fig. 26. Daily routing data distribution for DeepIoTRouting.

neighbor states in Q_table, where the status of Ei ,Qi are represented by a binary value. We also
remove Ii from Q_table since it leads to narrowed-down action space that can dramatically reduce
the complexity of Q_table optimal searching. Furthermore, in case the agent obtains a high reward
but without a high performance in the network, we also measure the daily received data amount
by the sink (see Figure 25). The trends of reward for the DeepIoTRouting are similar to the curve
trend in Figure 25, which further proves that the reward setting in Equation (14) is suitable for our
EH IoT multi-hop routing system.

6.2.4 Network Performance. We also provide details on the sensing, transmission, receiving,
and routing action of each device to indicate how DeepIoTRouting works at each device. The trans-
mitted data of each EH IoT device comes from two sources, including sensed data on its own and
received (relay) data from its neighbors. Figure 26 indicates the amount of the sensed, transmitted,
and received data on each EH IoT device. Ideally, the amount of sensed and received data together
should be equal to the amount of transmitted data on each EH IoT device. However, Figure 26 indi-
cates that the amount of sensed and received data together is slightly larger than the transmitted
data on most EH IoT devices. This means that a few data packets are dropped due to the routing
loop or packets expiration.
Besides, the sensed data of devices 9, 18, and 19 are around 1Mb in Figure 26. All of those devices

are one-hop neighbors of the sink. Since they also have many neighbors that are far away from
the sink, devices 9, 18, and 19 need to relay data to the sink for their neighbors. This reduces the
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Fig. 27. Routing actions on four agents for DeepI-

oTRouting.

Fig. 28. Design space exploration.

energy budget on its own sensing and transmitting. Although devices 0 and 5 are also one-hop
neighbors of the sink, their sensed data are slightly more than devices 3 and 12. This is because
devices 3 and 12 complete most forwarding tasks so that devices 0 and 5 can have more energy to
perform their own sensing and transmitting. For devices 2, 7, 8, 10, 14, 16, and 17, their received
data is less than ∼ 0.5Mb, since devices 8 and 16 are located at the corner of the network, so
they rarely relay for others. Because of their unique topological location, they should not receive
data. The unexpected received data on devices 2, 7, 8, 10, 14, 16, and 17 implies the dissipation
of transmission energy and receiving energy. This can also cause the potential routing loop and
deplete the hop budgets due to the wrong routing selection.
Moreover, we print out 300 consecutive actions for 4 EH IoT devices as shown in Figure 27 where

the y-axis represents the EH IoT device ID of the destination device. The results in this figure show
that the actions of the DeepIoTRouting agent can change in real-time. However, ESDSRAA makes
decisions at the beginning of each hour, which means it cannot make decisions dynamically in
real-time as the environment changes, which however can be fulfilled by DeepIoTRouting. DeepI-
oTRouting is able to dynamically fine-tune the amount of sensed data to prevent the network from
being overloaded or having unbalanced sensing and communication. Therefore, it dramatically
improves the energy efficiency and data delivery rate of the EH IoT system.

6.2.5 DeepIoTRouting Design Space Exploration. This section discusses the impacts of network
scaling on the different algorithms. Figure 28 gives a glance at the amount of received data of
the sink for four different algorithms at three different network scales. The EH IoT devices have
more neighbors when the network scale, leading to a more intensive data relaying. Given the large-
scale complicated topology and themore intensive data relaying, theDeepIoTRouting algorithm can
achieve the sink delivery rate at 71.26%. This can be reflected by the great volume of received data
88.79 Mb for the 80-device EH IoT network, as shown in Figure 28. Besides, with the scaling of the
network, the performance of DeepIoTRouting is superior compared to the other three algorithms.
Figure 28 shows that when the size of the EH IoT system increases to 80 devices, the Q-table
cannot learn the large-scale network because the number of states increases exponentially. Such
a huge number of states can significantly hinder its convergence. In contrast, DeepIoTRouting has
excellent scalability.

6.3 Experimental Analysis on Wind-Powered IoT Network

We also simulate the wind-powered IoT network under the same parameters setting, where the
wind power traces are acquired from Scada Systems [2]. Because the average wind power intensity
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Fig. 29. Data delivery to sink in hours. Fig. 30. Sensed data in hours. Fig. 31. Residual energy in hours.

utilized in this article is greater than that of solar, we increase the sensing rate from 200 bps to
400 bps to enable the intermittent work pattern of EH IoT devices. Then, we evaluate the wind
powered EH IoT network performance from the following three critical perspectives, (1) efficiency,
(2) effectiveness, and (3) fairness.

Efficiency. We evaluate the proposed algorithm efficiency by measuring the delivery rate, the
amount of sensed data, the amount of data delivery to the sink, and the execution time (compu-
tation overhead). Table 4 shows the wind-powered EH IoT network efficiency in one day after
the DeepIoTRouting being well-trained. As we can observe, the DeepIoTRouting still can achieve
the best performance ( 177.12 Mb Delivery Data) compared with all three baselines. Note that,
since the average wind power intensity utilized in this article is stronger than that of solar, the
network performance is improved under the wind power supply. Because the architecture of the
neural network remains the same, the corresponding computation overhead is unchanged.
Effectiveness. We measure the residual energy, the amount of data delivered to the sink, and

the amount of sensed data to evaluate the algorithms’ effectiveness under the wind power sce-
narios. Figures 29–31 indicate the hourly network performance on the amount of data delivery
to sink, the amount of sensed data, and the residual energy. Compared with the measurements in
solar power scenarios, the data sensing and data forwarding operation activity in wind-powered
IoT networks also follow energy fluctuation. Note that, even with a stronger wind power supply,
in Figure 29, the DeepIoTRouting can still outperform all baselines in terms of data delivery to the
sink. What’s more, in Figure 30, the amount of sensed data using ESDSRAA and GRUL are dramat-
ically more than that of the DeepIoTRouting and Q-table. This means ESDSRAA and GRUL waste
even more harvested energy on “effortless” transmission where the majority of the sensed data
packets are lost which leads to a low delivery rate. In practice, the wasted energy could be used to
support other runtime operations. Since wind power is stronger than solar, as shown in Figure 31,
after 15 : 00, the residual energy of each EH IoT device keeps at the full state because of the strong
power supply.
Fairness. To evaluate the fairness, we measure the distribution of the amount of delivered data

to sink from all EH IoT devices in Figure 32. Unlike Figure 22 with solar power, due to a stronger
wind power supply, Figure 32 shows a more even distribution. As the green and blue bars indicated
in Figure 32, the data distribution completed by Q-table is even better than the DeepIoTRouting, yet
the total amount of delivery data to the sink and the delivery rate completed by the Q-table is less
than that of DeepIoTRouting.
Together with experiments under solar power scenarios, we observe that the promising adapt-

ability of DeepIoTRouting outperforms all state-of-the-art related techniques under different prac-
tical power harvesting scenarios. In particular, when the ambient source power is weak such as
the solar power utilized in this article, DeepIoTRouting shows significant improvements over base-
line methods. When the ambient source power is good such as the wind power utilized in this
paper, DeepIoTRouting can still show a marginal advantage over baseline methods.
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Fig. 32. Distribution of data delivery to sink (Daily).

7 CONCLUSION

In this article, we first mathematically formulated the problems and analyzed the topology in-
fluence and constraints on the overall performance of the multi-hop energy harvesting powered
networks. Then, we developed a topology design and validation algorithm for better node de-
ployment. After that, we investigated a network of EH IoT devices at different scales and jointly
consider their routing and energy allocations. The experimental evaluation of the proposed dis-
tributed and scalable DRL-based approach DeepIoTRouting showed that DeepIoTRouting can sig-
nificantly surpass the existing solutions by 126.48%, 38.71%, and 122.74% compared with Q_table,
ESDSRAA, and GRUL in terms of data delivery to the sink. Besides, through the experiments,
the proposed methods also demonstrate excellent scalability for being implemented in large IoT
networks.

APPENDIX

A APPENDIX

The following is a proof of Theorem 1.

Proof. Once the hardware of self-powered devices are selected,
(Et+Er )vsT

ET +(Er−Es )vsT
is a constant. Let

Π = (Et+Er )vsT
ET +(Er−Es )vsT

,Π ∈ [0, 1]. We prove (7) as follows:

Based on (6), we have Mh∑h
l=1 Ml

≥ Π. Thus,

Mh ≥
Π

1 − Π
(M1 +M2 + · · · +Mh−1). (16)

While h = 2,M2 ≥
Π

1−ΠM1.

While h = 3,M3 ≥
Π

(1−Π) (M1 +M2).

Because we are computing the lower boundary of Mh , we can substitute M2 with its minimum
value, whereM2 =

Π
1−ΠM1.

While h = 3,M3 ≥
Π

(1−Π)2
M1 is true.

Similarly, for Mh ≥ Π
(1−Π) (M1 + M2 + · · · + Mh−1), we substitute M2 to Mh−1 with the related M1
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term. The calculation can be given by (17) and (18).

Mh ≥
Π

1 − Π

(
M1 +

Π

(1 − Π)
M1 +

Π

(1 − Π)2
M1 + · · · +

Π

(1 − Π)h−2
M1

)
(17)

Mh ≥
Π

1 − Π

(
1

(1 − Π)
M1 +

Π

(1 − Π)2
M1 + · · · +

Π

(1 − Π)h−2
M1

)
Mh ≥

Π

1 − Π

(
1

(1 − Π)2
M1 + · · · +

Π

(1 − Π)h−2
M1

)
Mh ≥

Π

(1 − Π)h−1
M1 (18)

Substitute Π = (Et+Er )vsT
ET +(Er−Es )vsT

,Π ∈ [0, 1] into (18). We can obtain (7) that approximates the number

of devices in each layer. �
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