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Abstract—In this paper we introduce a framework that utilizes
an architecture based on the Tsetlin Machine to output explain-
able rules for the prediction of political violence. The framework
includes a data processing pipeline, modeling architecture, and
visualization tools for early warning about notable events. We
conducted an experimental study to explain and predict a one of
the most notable events, - a civil war. We observed that the rules
that we produced are consistent with theories that emphasize
the continuing risks that accumulate from a history of conflict
as well as the stickiness of civil war.

Index Terms—tracking political violence, explainable predic-
tion system, data streaming, data warehousing, logical inter-
pretable learning

I. INTRODUCTION

Through a qualitative understanding of conflict dynamics,
human rights violations and protections, and ethnic poli-
tics and relations, policy analysts and conflict researchers
build theoretical and qualitative models of the underlying
grievances and alliances that structure war and peace [1].
For example, the violence in Yemen over the last several
decades is explained by experts as emerging from the treatment
of Zaydis, who are part of the Shia branch of Islam, by
the Sunni government (see “Government of Yemen (North
Yemen) - Ansarallah” Uppsala Conflict Data Program, 2023,
https://ucdp.uu.se/statebased/10855). However, to date, there
has been no system that directly allowed policy makers and
researchers to both inform their qualitative perspectives of
these grievances and policies with quantitative data at a high
spatial and conceptual resolution, as well as share the resulting
maps of these crucial patterns that guide decision-making,
theorizing, and predictions with others.'

IThe closest system is supplied by the Ethnic Power Relations (EPR)
https://icr.ethz.ch/data/epr/ project which, when compared to the pipeline
described below, does not operate on groups of allegations of human rights
violations or reports of protections.
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In our prior work, we developed a Human Rights Violation
Exploration, Analytics, and Warning system (HR-VEAW) [2]
that allows users to visualize the rich spatial and conceptual
information relevant to making sense of both the escalation
of instability, as well as to how negotiators might wind down
tensions, and with whom. We process textual data from human
rights reports and other social media that communicates both
historical and contemporaneous information on who is alleged
to have violated or protected a broad array of rights and
behaviors for specific groups. This enables us to not only
look at changes in patterns of violations and protections
in aggregate over time or across both space and time, but
fundamentally explore which groups are being targeted or
privileged by the government and other actors and on what
specific dimensions.

HR-VEAW implements a scalable information processing
pipeline combining traditional database technologies with data
streaming, NLP and sentiment-aspect representations, and
data visualization (Figure 1). Because of the sensitive and
important context of the political information flowing through
HR-VEAW, it is crucial that policy makers and researchers
understand why the system produces predictions that signal
warnings (or not). Additionally, it is crucial to maximize
both the usefulness of the warning signals as well as the
explainability of the system as either a lower performing
system or an un-trusted black-box will undercut the potential
positive impact of this system.

In this paper we report on extending HR-VEAW with in-
terpretable and explainable ML based on the Tseitlin Machine
[31, [4], which helps users to explain social instability and con-
flicts and guides decision-making, theorizing, and predictions.
In general, the literature has some ambiguity in definitions
of interpretability and explainability. For example, a model is
considered “interpretable” in the sense of we understand why
the model fit the parameters it did, or “explainable” in the
sense of we understand why the model created the predictions
it did. From this point of view, the Tsetlin Machine is both
interpretable and explainable (as we further discuss in Section
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IV). In this paper we will be using those terms interchangeably.

The paper is organized as follows. After presenting the
overall architecture of HR-VEAW system in the next section,
we elaborate on the TM logical interpretable learning in
Section III. Section V explains the data transformations in the
data streaming pipeline to binarize the source data for further
data interpretation with Tsetlin Machine. Section VI provide
an experimental study and Section VII concludes.

II. SYSTEM OVERVIEW

An overview of the data flow of the HR-VEAW system is
illustrated in Figure 1. As it can be seen, there are two phases
in the pipeline. The first phase is Data Acquisition, in which
data from different sources are continuously transformed by
the ETL (Extract, Transform, Load) processes and stored into a
data warehouse. The second phase is Data Analysis, in which
data visualization and interpretation are used to explore the
data and to discover patterns of social instability for early
warnings.

A. Data Acquisition

This phase consists of a variety of ETL processes for
different data sources. Human rights reports, news, and tweets,
etc. go through the human rights text parser PULSAR [5]
so that structured information such as victims and human
rights aspects can be extracted. Social and economic statistics
data from the VIEWS project [6] is extracted by specialized
queries. Geographic information for the regions appearing
in the human rights reports are retrieved from the online
geographic database OpenStreetMap (OSM) [7]. All extracted
and transformed data are then stored in a data warehouse.

The whole data acquisition phase is structured along the
producer/consumer paradigm and topic channels, powered
by Apache Kafka [8]. There are two major advantages of
using Kafka in HR-VEAW. First, Kafka can process high
throughput data streams from different sources and can be
easily integrated with the ETL processes as an event driven
message bus. Furthermore, it is also highly durable. While the
data warehouse only stores the structured data after the ETL
processes commits it, Kafka can persist data/messages during
the whole data acquisition phase, so that messages are never
lost and can be retrieved at a later time as needed.

B. Data Analysis

In this phase, different types of data from the data ware-
house could be generated at different aggregation levels and
forms suitable for the data interpretation and data visualization
modules.

The data visualization module is designed to help the data
analyst explore and understand the data. It allows the user to
visualize human right conditions across different dimensions
such as region, time, victim and human rights aspect. The
interactive visualization can help the user discover interesting
patterns in the data, such as inequalities across dimensions.

The data interpretation module aims to find the logical
relationship between different features in the data. The fi-
nal module of HR-VEAW provides early warning of future

conflicts based on the data analysis results from the data
interpretation and data visualization modules.

In this paper we focus on the data interpretation module.
One way to find the logical relationship within the data is to
booleanize some of the aggregated information from the data
warehouse to get the corresponding binary indicators. These
binary indicators can serve as learning features in machine
learning methods, in particular in the Tsetlin Machine (TM)
[3], [4]. to conduct logical interpretable learning to discover
relationship, pattern, and rules in the data. Next, we elaborate
on the process of the logical interpretable learning with TM.

III. INTERPRETABLE LEARNING WITH THE TSETLIN
MACHINE

The TM implements advanced logical interpretable learning
that aims at discovering (learning) logical clauses from an
arbitrary truth table. We assume that rows of the truth table
are produced one by one from an incoming data stream. As
a new row arrives, the learner tries to guess the clauses by
deciding on whether to include certain literals in a clause.
Intuitively, the more incoming rows the learner explores, the
more accurate its guesses should be.

The TM decomposes problems into self-contained patterns
that are expressed in propositional logic. The patterns are
based on disjunctive normal form. Thus, the patterns that
the TM builds are interpretable, similar to the branches of a
decision tree [9]. In our explorations below, we work with
domain experts to probe the usefulness of the discovered
patterns.

More formally, a basic TM takes a vector X = (x1,...,%,)
of binary features as input, to be classified into one of two
classes, y = 0 or y = 1. Together with their negated
counterparts, T = —xry = 1—xy, the features form a literal set
L={z1,...,20,%1,...,%0}. A TM pattern is formulated as
a conjunctive clause C;, formed by ANDing a subset L; C L
of the literal set.

The number of clauses is a parameter. Half of the clauses are
assigned positive polarity, half are of negative polarity. During
the classification the positive clauses vote for a positive output
(y = 1) and the negative clauses vote for a negative output
(y = 0). The classification decision is based on a majority
vote. In case of a tie, the decision can be randomized, default,
or based on prior knowledge of the contexts.

Each literal in a clause is associated with a Tsetlin Automa-
ton (TA) [10], which decides whether to exclude or include
that literal in the clause. A state number of TA impacts the
probability of inclusion or exclusion of the literal in a clause:
the higher the state number, the higher the probability of
the literal inclusion. The TA performs state transitions under
different conditions and a feedback mechanism is designed
to decide which literals to include/exclude. Figure 2 shows
the feedback matrix, explaining how the states (i.e., inclusion
counters) are updated for each literal in a clause of positive
and negative polarity. For example, it may suggest including
a literal in a positive clause by incrementing its state if the
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Fig. 1. Overall System Overview

value of the literal is 1 and the output is also 1 (i.e., the
literal “agrees” with a positive output). Type I feedback is
designed to produce frequent patterns, while Type II feedback
increases the discrimination power of the patterns, combating
false positives. At the end of the input data stream, the final
conjunctive clause will likely to include literals with the largest
state numbers of their corresponding TAs.

Thus, the process of TM learning accumulates pieces of
evidence from the incoming data stream in order to generate
most likely clauses explaining the process behind the data
stream. See [3] for further details.

IV. RELATED WORK

Methods of eXplainable Al (XAI) may differ based on
methodology and usage [11], [12]. From the methodology
point of view, explanation can be either backpropagation-based
or perturbation-based [13]. Backpropagation-based methods
utilize partial derivatives of the activations (backpropagat-
ing gradients) to explain the obtained learning results [14].
Perturbation-based methods explore various combinations
(perturbations) of input features, providing explanation in one
(forward) pass without the backpropagating gradients [12].

From the usage perspective, an explainable method can be
either embedded in the model itself (model-intrinsic expla-
nation) or applied as an external algorithm for explanation
(model-agnostic post-hoc explanation), e.g., where the predic-
tions of an already existing well-performing neural network
model can be explained by an external algorithm [11].

The TM naturally implements an efficient perturbation-
based and model-intrinsic explainable learning. Note, that tak-
ing the perspective of the policy-maker, explainability also has
several distinct and at time opaque meanings. For example, in
the domain of conflict forecasting, foreign affairs officers want
to know why a specific unit, which could be a country, other
administrative region, or a precise “grid-cell” of space defined
within a lattice following lines of latitude and longitude, is
predicted to be a higher risk than either that same unit in the

past, or another unit at a similar point in the future. The answer
to this question takes the form of propositions that identify
which input features moving in a particular way (eg lower
GDP growth, higher protest values, or an election occurring
in the presence of previous ethnic grievances), dependent on
the computed parameters/weights/rules and their composition,
produce that difference. The complexity of these functions,
from the point of view of human understanding, can make
the accurate identification of these propositions difficult or
impossible [15].

Another related but distinct question asked by those making
decisions about the distribution of aid or peacekeepers is
what process led the specific forecasting system or pipeline
to make the predictions that were produced. The set of
answers to this question do not condition on the computed
model representation, but instead ask what led to this specific
computed model (eg that had a high weight for lower GDP
growth, etc) as compared to a different representation of the
problem, in the first place. Here we largely follow [15] in
looking at the explainability of predictions for units within
given systems. For systems with this level of explainability, we
can also compare their inferences across model representations
as a second step.”

In a useful review, Marcinkevics and Vogt [16] provide
several reasons when and why explainable’ models can be
useful, even if they sacrifice some quantitative performance as
measured by a specific score or loss. In particular, they cite
Doshi-Velez and Kim [17] who argue that interpretable models
are the most useful in settings where the true underlying
model has not yet been discovered. This is clearly the case
in most or all social science problem areas, and particularly
in the case of predicting and forecasting political violence.

2 Another way of putting this is that if a model itself is not explainable in
terms of why predictions differ across cases, either real or synthetic, it will be
difficult or impossible to explain how it produced those specific predictions
versus a different — perhaps even less explainable — system.

3The authors discuss both interpretable and explainable models but the
discussion below applies across multiple definitions of these concepts.
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polarity output clause literal FEEDBACK
+ 0 0 0
+ 0 0 1
+ 0 1 0 +1 Type |l
-+ 0 1 1
+ 1 0 0 -1 Type |p,
+ 1 0 1 -1 Type I,
+ 1 1 0 -1 Type b,
+ 1 1 1 +1 Type |3,
- 0 0 0 -1 Type |,
0 0 1 -1 Type |b.
- 0 1 0 -1 Type b,
- 0 1 1 +1 Type |a,
- 1 0 0
- 1 0 1
- 1 1 0 +1 Type Il
- 1 1 1
Objectives: Encourage memorizing literal if literal is 1 and clause is 1 and output matches polarity
Discourage memorizing literal if either literal or clause is 0 and output matches polarity
Encourage memorizing literal if literal is 0 and clause is 1 and output does not match polarity
Positive Type lg; if output=1 & clause=1 & lit =1, then state increment (+1)
Type Ib; if output=1 & clause=0 or lit =0, then state decrement (-1)
Type ll:  if output=0 & clause=1 & lit=0, then state increment (+1)
Negative: Typela: if output=0 & clause=1 & lit =1, then state increment (+1)
Type |b; if output=0 & clause=0 or lit =0, then state decrement (-1)
Type ll: if output=1 & clause=1 & lit=0, then state increment (+1)

Fig. 2. Explanation of the TM feedback in the process of logical interpretable learning.

In these “open-M” settings, interpretability allows others to
build on the partial insights of the given model, rather than
taking the predictions as is. Similarly, in these “complicated”
settings — where the state of technology does not allow for
the optimization of benefits and the minimization of harms to
be simultaneously internalized by the model in a valid way
— explainability allows qualitative knowledge outside of the
model to guide ethical and safe decisions that are partially,
but not deterministically based on the model’s inferences.

Therefore, despite the definitional imprecision in the litera-
ture, the computed output of the Tsetlin Machine can be ap-
preciated as explainable in the most basic sense — whereby the
model outputs parameters that are themselves explanations/sets
of rules for why units of interest have distinct predictions over
time and/or why two cases have distinct predictions in a given
period. Further, the Tsetlin Machine outputs rules that describe
predictions both for positive and negative classes.

V. EXPLAINABLE DATA STREAMING

As we mentioned in Section II the data interpretation
module of HR-VEAW explores logical relationship between
different features in the data. The data stream is continuous

and the process of data interpretation is also continuously
providing early warning of future conflicts. Before entering
the data interpretation module, the data stream undergoes
several notable transformations, starting from a non structured
and often textual data representation. Next, HR-VEAW per-
forms application-driven data aggregation followed by various
boolinizations of the aggregated information to get important
binary indicators. These binary indicators are used as input
and output variables in the Tsetlin Machine learning.

More specifically, we base our analysis of multiple features
(variables) that we obtain from the HR-VEAW stream (e.g.,
number of prior civil wars for countries at different years in
different regions, duration of those wars, etc.). For each of
those variables we compute summary statistics at the level of
the cohort (e.g., mean, median, min, max, etc.) The cohort
is formed by the historic data that has already been streamed
through HR-VEAW. The expectation is that different countries
from different regions and at different time periods behave
differently with respect to those features.

We are binarizing the data features/variables for each coun-
try/year by comparing the statistics for the country/year with
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CivilWar Year Country prior_ war duration region global mean duration_mean WLastYear Bmean Dmean
1 2006 Afghanistan 1 1 Neast 0.651852 4.383459 1 1 0
1 2007 Afghanistan 2 2 Neast 0.742647 4.383459 1 1 0
1 2008 Afghanistan 3 3  Neast 0.838235 4.383459 1 1
1 2009 Afghanistan 4 4 Neast 0.933824 4.383459 1 1 0
1 2010 Afghanistan 5 5 Neast 1.022059 4.383459 1 1 1

Fig. 3. Explaining data preparation

the statistics for the cohort, and use those binarized features
to train the Tsetlin Machine. The positive (e.g., in favor of a
civil war) and negative (e.g., against civil war) rules produced
by the TM are further used for assessing incoming data stream
(raising an early warning flag).

Studies of political violence have identified a number of
other variables which may influence civil war risk, which
we monitor and utilize in a similar way. These include per
capita income, population, percent mountainous terrain, ex-
port revenue from oil, new state, whether a state is contiguous,
democracy index, ethnic fractionalization, religious fraction-
alization, number of human rights violations conducted by
various perpetrators toward certain ethnic groups, etc. In the
next section we consider an experimental study illustrating this
approach.

VI. EXPERIMENTS
A. Data Sources

The following experiments draw on [18]’s article on civil
war prediction, which is of particular interest because it was
part of a lively debate in The Journal of Conflict Resolution
on the role of theory versus big data and machine learning in
predicting civil war onset (see also [19], [20]. [20] argue that
a model which focuses on procedural factors, such as state
response to protest demands, outperforms models involving
more predictors, including structural factors such as inequality
and resource endowment. Thus, this model and data set
offer an ideal benchmark for evaluating alternate modeling
approaches.

This data is global and covers the period between January
2001 and December 2015. The output variable, civil war,
is drawn from the expanded version of the [21] article on
defining and measuring civil war based on eleven criteria. The
authors argue that this data offers advantages over currently
used alternatives because conflicts are coded as continuous
from onset to termination, even if the state is below a certain
threshold of battle-related deaths for a given year. For instance,
in the UCDP-PRIO dataset, Myanmar is coded as experienc-
ing seven different civil wars between 2000-2015 where in
Sambanis (2004), this would be coded as a single conflict. As
a result, civil war onset is less common in this dataset than in

alternatives, whereas incidence may be higher. The onset year
is coded as the year in which the conflict causes at least 500
to 1,000 deaths, unless cumulative deaths over the next three
years reach 1,000, in which case the year may also be coded
as the onset year.*

B. Data Preparation

We base our analysis on the number and duration of civil
wars at the country level globally during 2001-2015 We
computed the following summary statistics at the level of
the cohort: mean number of civil wars, and mean duration
of a civil war. The expectation is that different countries
from different regions and at different time periods behave
differently with respect to those features. Thus, the input data
we use comprise those features (civil war statistics) for each
country and year in our data warehouse.

We binarize the input variables for each country/year obser-
vation by comparing the mean for the country/year with the
mean for the cohort, computed from the training set. Every
variable is set to 1 if it is above the respective population
mean, and to O otherwise. This way, for each country/year
pair we obtain two input binary variables (mean number of
prior civil wars Bmean and mean duration of of those wars
Dmean. Additionally, we introduced another binary variable
for recent history of civil war WLastYear, which is set to
1 if there was a war last year in that country, 0 otherwise.
Below we will denote negation of those variables with a
preceding N character (e.g., NBmean for not Bmean, NDmean
for not Dmean, NWLastYear for not WLastYear. The only
output variable is CivilWar, which is set to 1 if there is a
civil war that year, 0 otherwise. We set up the learning for
TM to produce for single positive rule (in favor of a civil
war). Figure 3 illustrates this process for five observations for
Afganistan for years 2006-2010.

4We utilize this coding because it was the target of previous research.
However, in the future, the forecasting of fatalities in distinct time-steps,
instead of the use of retrospective coding that takes 3-years (two years past
the focus year’s time-stamp) to be reliably recorded, are likely more useful
to policy-makers [22].
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C. Data Use

In the first experiment, we use the data of all countries
for 5 years (2001-2005) for training (2450 observations), and
5 years (2006-2010) for testing (2455 observations). In the
second experiment, we use the data of all countries for 10
years (2001-2010) for training (2905 observations), and 5
years (2011-2015) for testing (2460 observations). We conduct
those experiments for four different regions: Africa, Asia, the
Middle East and Latin America.
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Fig. 4. Distribution of duration of civil wars in years per regions

D. Experimental Results

Figure 4 displays a plot of civil war duration, with the
duration of the war (as of the end of the data) on the x axis
and the frequency of each duration on the y axis, grouped by
region. This describes the spells of sequential 1’s (observations
of civil war) in our data. The Africa region experiences the
greatest frequency of civil wars during the study period, but
these civil wars tend to be shorter in duration than in Latin
America ("Latam” in the figure), the Middle East ("Neast”)
or Asia (“Easia”). In contrast, the Latin America region
experiences one very long civil war. During this period, the
European region experiences the least civil war overall, with
two short conflicts.

Next we analyze the output of the interpretable learning sys-
tem trained on two windows of the available data. We utilize
confusion matrices and two types of accuracy, precision and
recall measures. The interpretable learning system produces
three outputs, predictions of positive (civil war), negative (no
civil war) and uncertain conditions. These predictions are
arrayed on the rows of the confusion matrix. The actual values
are represented in the columns, hence the 3x2 structure. We
can calculate accuracy, precision and recall when we ignore
the uncertain predictions or include them as predicting civil
war given the asymmetric cost of missing war versus peace.

Figure 5 shows the Africa results for 2005-
=2010. The interpretable learning rules are
BMean&W LastY ear& NDMean, which in  words

means that the model predicts a civil war when the previous

number of civil war observations is larger than the previously
observed regional mean and when there was a war in the last
year and when the duration of the current spell is less than the
mean of previous durations. In addition, for this region, the
rules of a negative prediction are N BMean& NW LastY ear
— the number of previous civil war observations is less than
the mean for the region and the last observations was peace.
These rules are consistent with theories that emphasize a
history of conflict (BMean) as well the stickiness of civil
war (W LastYear). The addition of NDMeans in Africa
suggests that while conflict is likely to continue year to year,
this effect is potentially strongest in the earlier years of the
conflict, relative to previously observed civil war durations.
As we will see below, duration seems to operate distinctly
across regions. The safest countries, fitting the negative rule,
also conform to qualitative intuition whereby the absence
of a history of conflict (NBMean) and current conflict
(NW LastY ear) lead to predictions of the absence of civil
war.

Notice that a country-year observation could fall outside
of both the positive and negative rules, and thus be uncer-
tain. For example, in the Africa rules, an observation with
the values BMean& NW LastY ear, BMean& DM ean, and
N Bmean&W LastY ear would lead to a value of uncertain
for the prediction, because they are cases that do not fit either
of these positive or negative rules. The confusion matrix for
Africa is illustrative. We see that out of 166 observations
where the model made positive or negative prediction 164
of them or .988 were correct. Even when we include the 14
observations with uncertain predictions as positive, 176 out
of 180 or .977 observations were correctly classified. The
precision for Africa, excluding uncertain predictions is .818
and with uncertain predictions is .76. Recall is 1.0 for this
sample. The rules for Africa in the 2011 to 2015 window
were the same as the previous window, with precision of .826
when uncertain cases are categorized as positive and a recall of
.904. These are impressive results relative to previous findings,
considering the simplicity of the rules [20], [22].

Region Africa:

Rules(2006~2010):
Positive: Bmean&WLastYear&NDmean
Negative: NBmean&NWlLastYear

Rules(2011~2015):
Positive: Bmean&WLastYear&NDmean
Negative: NBmean&NWLastYear

Africa(2006~2010) Africa(2011~2015)

2

Civil War o Civil War
CivilWar  No Civil War
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Prediction

3 1
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Actual Value

Civil War

No Civil War
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Fig. 5. Rules and prediction results for Africa
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Region Easia:

Rules(2006~2010):
Positive: Bmean&WLastYear
Negative: NBmean&NWLastYear

Rules(2011~2015):
Positive: Bmean&WLastYear&NDmean
Negative: NBmean&NWLastYear

Region Latam:

Rules(2006~2010):
Positive: Bmean&WLastYear
Negative: NBmean&NWLastYear

Rules(2011~2015):
Positive: Bmean&WLastYear
Negative: NBmean&NWLastYear

Easia(2006~2010)
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Latam(2011~2015)
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Fig. 6. Rules and prediction results for Eastern Asia

Region Neast:

Rules(2006~2010):
Positive: Bmean&WLastYear
Negative: NBmean&NWLastYear

Rules(2011~2015):
Positive: Bmean&WLastYear&Dmean
Negative: NBmean&NDmean

Neast(2006~2010) Neast(2011~2015)
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Fig. 7. Rules and prediction results for Middle East

As we look across the other regions (Figures 6,7,8), we
see similar performance but with some differences in rules
across regions. Specifically, unlike in Africa, the Middle
East included longer durations DMean in the positive rules,
meaning that when there was a history of conflict (BMean)
and proximate conflict W LastY ear, a longer duration of a
war spell DMean is part of the positive rule (for 2011-2015).
There are many reasons to expect different conflict dynamics
across space and time [22] and thus it is not surprising that
we have some variation in rules.

VII. CONCLUSION

We introduced and explored an advanced framework that
utilizes the Tsetlin Machine to produce explainable rules for
the prediction of civil war. Our framework also helps users to
explain social instability and conflicts and to guide decision-
making, theorizing, and predictions.

The framework includes a powerful data processing pipeline
that produces a continuous data stream and provides contin-
uous data interpretation for early warning of future conflicts.

Fig. 8. Rules and prediction results for Latin America

The data stream undergoes several notable transformations,
starting from a non structured and often textual data rep-
resentation followed by application-driven data aggregation.
After that we apply various booleanizations of the aggregated
information to get important binary indicators, which are used
as input and output variables in the Tsetlin Machine learning

We found out that the computed output of the Tsetlin Ma-
chine can be appreciated as explainable in the most basic sense
— whereby the model outputs parameters that are themselves
explanations/sets of rules for why units of interest have distinct
predictions over time and/or why two cases have distinct
predictions in a given period.

We reported on an experimental study to explain and predict
a most notable event, a civil war. We observed that the rules
that we produced are consistent with theories that emphasize a
history of conflict as well the stickiness of civil war. In future
research we plan to explore wider range of input features
(such as per capita income, population, percent mountainous
terrain, export revenue from oil, etc.), as well as encoding
other notable events (output features) that include more spe-
cific information, including which groups are the victims and
perpetrators of political fatalities. Our goal is to have a flexible
system that can produce warnings for both major and minor
social unrest, significant violations of human rights, spikes in
various kinds of social injustice, and inequality. We will also
analyze the benefits of utilizing region as a feature within
the interpretable learning framework, increasing the number
of clauses, as well as comparing performance on the same
tasks to other distinct algorithms.
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