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Abstract

Chemical reaction networks (CRNs) are an important tool for molecular programming. This field is
rapidly expanding our ability to deploy computer programs into biological systems for various appli-
cations. However, CRNs are also difficult to work with due to their massively parallel nature, leading
to the need for higher-level languages that allow for more straightforward computation with CRNs.
Recently, research has been conducted into various higher-level languages for deterministic CRNs but
modeling CRN parallelism, managing error accumulation, and finding natural CRN representations
are ongoing challenges. We introduce REACTAMOLE, a higher-level language for deterministic CRNs
that utilizes the functional reactive programming (FRP) paradigm to represent CRNs as a reactive
dataflow network. REACTAMOLE equates a CRN with a functional reactive program, implementing the
key primitives of the FRP paradigm directly as CRNs. The functional nature of REACTAMOLE makes
reasoning about molecular programs easier, and its strong static typing allows us to ensure that a CRN
is well-formed by virtue of being well-typed. In this paper, we describe the design of REACTAMOLE and
how we use CRNs to represent the common datatypes and operations found in FRP. We demonstrate
the potential of this functional reactive approach to molecular programming by giving an extended
example where a CRN is constructed using FRP to modulate and demodulate an amplitude-modulated
signal. We also show how REACTAMOLE can be used to specify abstract CRNs whose structure depends
on the reactions and species of its input, allowing users to specify more general CRN behaviors.

Keywords: Molecular programming, functional reactive programming, chemical reaction networks,
general-purpose analog computing, type systems, functional programming

MSC Classification: 68N15 , 68N18 , 92C99

1 Introduction

Molecular programming harnesses computer sci-
ence toward designing programmable structures at
the nanoscale, unlocking the potential to execute
programs in biological systems. This emerging
arena holds significant potential for innovations in
medicine, nanofabrication, and synthetic biology.

One prominent molecular programming language
is chemical reaction networks (CRNs), abstrac-
tions of chemical reactions [9, 16, 19]. CRNs
are Turing-complete and act as an unstructured
assembly language for molecular programming,
which can then be assembled into DNA to per-
form computation at the nanoscale [3, 17]. CRNs



are also closely related to other models of comput-
ing such as population protocols [1, 12] and the
general purpose analog computer [5, 37].

However, the characteristics of CRNs create
substantial challenges for general programmabil-
ity. Due to the nature of chemical reactions, CRNs
are massively parallel, with all reactions active
simultaneously depending on the availability of
the reactants. This creates race conditions that
can make coding in this framework more difficult
and error-prone [40]. CRNs are also unstructured
and not easily composed; adding a single reaction
can radically change its behavior. These chal-
lenges motivate creating a high-level programming
language to abstract away these barriers.

Consequently, recent research has been con-
ducted into high-level languages for molecu-
lar programming, such as CRN-++ [40] and
Kaemika [8]. The Biochemical Abstract Machine
(BIOCHAM) [7, 18] also implements several lan-
guages to support modeling, analyzing, and veri-
fying CRNs. CRN++ enables programming in a
familiar, imperative style that compiles to deter-
ministic CRNs (DCRNs), marking a significant
advancement in this realm but also leaving room
for continued improvement. Vasic et al. say that
CRN++ could be improved by addressing ineffi-
ciencies caused by careful avoidance of the inher-
ent parallelism of CRNs, as well as reducing errors
accumulated over time [40]. Kaemika supports
specifying CRNs in a functional style, including
support for high-order functions and recursion [8].
Both CRN-++ and Kaemika allow side effects,
with Kaemika depending on these side effects to
generate new species within functions. BIOCHAM
provides an array of tools for modeling CRNs,
including a language for analyzing, simulating,
and verifying biochemical models and another for
using temporal logic to formally specify biolog-
ical processes gleaned from experimentation [7].
BIOCHAM also supports robustness optimiza-
tions [18] and synthesis of CRNs from GPAC
circuits and polynomial differential e quation sys-
tems, among other features. However, BIOCHAM
does not focus on providing linguistic tools for
designing, composing, and performing computa-
tion with CRNs, which is our aim. Additionally,
these implementations leave room to improve
the synchronicity between language structure and
CRN behavior.

We address these challenges by exploring the
use of functional reactive programming (FRP) for
developing CRNs. Functional reactive program-
ming is a paradigm primarily characterized by
its reactive nature, responding to stimuli through
continuous and discrete time-dependent inputs [4].
In FRP, systems are modeled as graphs where
nodes are operations, and edges indicate how
data flows between these operations, focusing on
how change is propagated through this graph.
We observe a close correspondence between CRNs
and functional reactive programs. The chemical
concentrations of a CRN react to changes in
their environment similarly. Thus, they can be
thought of as signals, time-varying data streams,
in a functional reactive program. Consequently,
CRNs themselves transform these concentrations
and can, therefore, be thought of as functions
over signals, i.e., signal functions. These corre-
spondences make FRP a natural choice to express
computation within a CRN.

We use this correspondence to design a func-
tional reactive molecular programming (FRMP)
language for deterministic CRNs. The heart of
this language is the expression of the core con-
structs of FRP directly in terms of CRNs, gaining
the benefits of program composability afforded by
the functional reactive paradigm. We explore this
approach to molecular programming with REAC-
TAMOLE, an embedded domain-specific language
(eDSL) for FRMP modeled after Yampa, a promi-
nent functional reactive programming DSL [23].
Furthermore, by combining FRP and CRNs, we
open the door for applying recent advancements in
programming language theory to the development
of CRNs. For example, in this FRMP paradigm,
we can now consider integrating type systems that
verify the safety properties of functional reac-
tive programs [26] or program synthesizers for
functional reactive programs [20].

REACTAMOLE can also be used to specify
behaviors that cannot be represented by a single
CRN. For example, suppose we want a CRN that
is given a signal z(t) as input and produces an
output signal y(t) that satisfies y(t) = 2z(t) for
all time ¢ € R>¢. It is easy to show that no single
CRN can compute the signal y(¢) for all possi-
ble inputs z(t) because it requires foreknowledge
of the input signal. In fact, simply ensuring that
y(0) = 22(0) requires knowing the initial value of



X prior to initializing Y. Nevertheless, REACTA-
MOLE is capable of expressing behaviors akin to
y(t) = 2z(t) by using a higher-order encoding of
the CRN and instantiating its reactions and initial
conditions only after it is combined with a CRN
that produces its input signal z(¢). This makes
REACTAMOLE more expressive and efficient, since
this translation process can eliminate unnecessary
intermediate species and reactions, reducing the
overall size of the final CRN program.

We organize the paper as follows. In section 2,
we review the basic definitions o f ¢ hemical reac-
tion networks as well as introduce the necessary
components of the Haskell programming language
and functional reactive programming needed to

understand REACTAMOLE. We introduce REAC-
TAMOLE by way of example in section 3 and
describe the design and implementation of REAC-
TAMOLE in section 4. In section 5, we demonstrate

the potential of REACTAMOLE by way of a case
study—implementing amplitude modulation over

real-valued signals. We showcase the ability of

REACTAMOLE to specify abstract families of CRNs

in section 6 and how REACTAMOLE optimizes the
number of species and reactions of a CRN. Finally,

in section 7 and section 8 we review related work
and conclude with final remarks.

2 Background

In this section, we review the two main top-
ics that we combine in REACTAMOLE: chemical
reactions networks (subsection 2.1) and functional
reactive programming (subsection 2.2). Through-
out the remaining sections, we assume familiarity
with the basic syntax and semantics of the Haskell
programming language.

2.1 Chemical Reaction Networks

Scientists and researchers often utilize models to
describe the complex interactions of molecules and
matter. These models simplify molecular interac-
tions to allow algorithms and software to simulate
the outcomes of chemical systems. Even though
these models make simplifying assumptions, they
are still a powerful tool for designing and test-
ing these systems. A chemical reaction network
(CRN) is one such model that is often used to
model molecule interactions in a well-mixed solu-
tion. Even though assumptions are made in each

of the many variants of the CRN model, almost
all of them retain the power to facilitate general
computing.

We adopt much of the notation used by Klinge,
Lathrop, and Lutz [28] to formalize the CRN
model used here. A CRN is a pair N = (5, R),
where S is a set of species (molecules) and R is
a set of reactions that operate over those species.
A reaction is a triple p = (r,p, k), where r € N°
is the reactant vector, p € N° is the product vec-
tor, and k € (0, c0) is the rate constant. Note that
N9 is the set of functions mapping species to non-
negative integers, and we do not allow r = p. In
this paper, we usually represent CRNs simply as
a set of reactions that implicitly define a set of
species. For example, the reaction

X+U-259x

can be interpreted as the CRN N = (S,R)
with S={X,U} and R={(r,p,k)}, where
r(X)=rU)=1,pX)=2,p(U)=0,and k = 5.

In this paper, we focus on the deterministic
mass-action model of chemical reaction networks,
where species are represented by concentrations
of molecules. This is in contrast to the stochas-
tic mass-action model, which uses the number
of molecules for this purpose. The determinis-
tic mass-action model describes interactions with
molecules using polynomial autonomous differen-
tial equations, and its semantics relate concentra-
tions of species through the reactants, products,
and rate constants of all reactions in the system.
The single reaction above yields the set of ordinary
differential equations (ODEs)

dr _
dt

dxu, ditt = —bHzu.
Intuitively, since an X and a U react together to
produce an additional X in the system, the instan-
taneous rate of X gained is proportional to the
product of the instantaneous amounts of the reac-
tants and the rate constant. Simultaneously, the
loss of U occurs at the same rate. Note that we
use z(t) or simply = to denote the concentration
of species X at the time t.

Similar to Klinge, Lathrop, and Lutz [28], we
define an input/output CRN (I/O CRN) as a tuple
N = (S,R,1,0), where S is a set of species, R
is a set of reactions, I C S is the set of input



species, and O C S is the set of output species. I/O
CRNs require that the input species are only used
as catalysts in any reaction, which prevents the
I/O CRN from inducing unwanted side affects on
its input signal. This is a property we leverage in
REACTAMOLE to implement composition of CRNs.
We also use the fact that a CRN N = (S, R) is
equivalent to the I/O CRN N = (S, R, 0, S) with
no input species.

We also note that deterministic CRNs are
closely related to Shannon’s general purpose ana-
log computer (GPAC) [5, 6, 37], which can also be
regarded as a system of polynomial ODEs. In fact,
deterministic CRNs effectively express a subset of
the GPAC, since they are only capable of inducing
ODEs of the following form:

dx
“_p_
7 zQ,

where P and () are polynomials with positive
coefficients over the species in the CRN. The
x(t) factor in the negative component of the
ODE is necessary, because CRNs can only destroy
molecules if they participate in the reaction as
a reactant. However, the GPAC and determinis-
tic CRNs are now known to be exactly equivalent
models [17] if a GPAC variable z(t) is represented
with two species X+, X~ where at all times ¢ we
maintain the invariant x(t) = 1 (t) — 2~ (¢). This
is often called a dual-rail encoding of the variable
x(t). We leverage this equivalence in REACTA-
MOLE to optimize the number of reactions and
species in CRNs by encoding CRNs as GPAC ini-
tial value problems and only translating them into
a CRN when necessary using the method of [17].

2.2 Functional Reactive
Programming

Many classes of computation can be expressed as
programs that propagate change in response to
external stimuli. For example, with:

e Graphical user interfaces (GUIs), interface ele-
ments update in response to user input, e.g.,
mouse movement.

e Spreadsheets, cells that are related via (poten-
tial cyclic) references update whenever the user
modifies their contents.

e (ircuits, input signals propagate through inter-
connected electrical components.

We could model these phenomena with mutable
state. The resulting program would then bear the
responsibility of orchestrating how the different
pieces of state change in response to the out-
side world. However, by doing so, we would lose
the benefits of composability, a hallmark of the
functional style of programming [25].

Functional Reactive Programming (FRP) [14]
purifies this stateful situation by modeling values
that react with the outside world as signals:

type Signal a = Time -> a

That is, a signal of some arbitrary type a is a
time-varying value, i.e., a function from time to
a. For example, an electrical pulse that we might
measure using two states, on and off, could be rep-
resented as a Bool. In an FRP setting, this pulse
would be represented as a type, Signal Bool, a
function describing how the pulse changes over
time.

Within FRP, there are a multitude of
approaches and variations to address implemen-
tation concerns such as space efficiency or design
constraints such as modeling discrete versus con-
tinuous time and static versus dynamic dependen-
cies between components. In this work, we focus
on arrowized FRP, which uses the arrow abstrac-
tion of Hughes [24], a generalization of composable
computation. These arrows take the form of sig-
nal functions in arrowized FRP, i.e., transformers
over signals:

type SF a b = Signal a -> Signal b

For example, a function not that inverts an elec-
trical pulse would have the type SF Bool Bool,
a signal function that takes a Boolean signal as
input and produces a Boolean signal as output.

Some of these signal functions, like not, trans-
form our time-varying values directly. Other signal
functions are higher-order signal functions which
take other signal functions as input and produce
them as output. These signal function combinators
allow us to build up more complex signal functions
from simpler ones. The most common of these is
function composition, traditionally written in the
arrow style as the binary operator (>>>):

(>>>) :: SFab->SF bc ->SF ac

f >>> g is the composition of signal functions £
and g where the output of £ (of type b) is fed into
g as input. The resulting signal function takes an



input for £ (of type a) and produces an output
from g (of type c) as its result. Other common
signal function combinators that we will use in the
subsequent sections include the following.

(xxx) :: SFab->S cd ->SF (a, c) (b, d)
(&&&) :: SF ab ->SFac ->SF a (b, c)
loop :: SF (a, ¢) (b, ¢) ->SF ab

The split operator, written £ *** g, combines
two input signal functions £ and g and creates a
signal function whose inputs and outputs are pairs
drawn from £ and g, as shown in Figure 1.

The fanout operator, written f &&& g, takes
two input signal functions £ and g that take a com-
mon input type a and creates a new signal function
that pipes its input independently through both
f and g and produces their outputs as a pair, as
shown in Figure 1.

The loop operator, written loop f, creates a
feedback loop where the second component of the
output of the signal function is given to itself
as input, as shown in Figure 1. In traditional
FRP, the loop combinator is a fixed p oint opera-
tor, allowing recursive signal function definitions.
For CRNs, the loop combinator enables output
species to depend on themselves. Without it, reac-

tions like X +Y —— X where Y is an output
species would not be expressible, since the concen-
tration of Y depends on itself. In particular, the
output Y is consumed at a rate proportional to its
own concentration.

3 Introducing Reactamole

In this section, we give a brief summary of REAC-
TAMOLE and its uses. Note that many of the
REACTAMOLE primitives discussed in this section
are further explained later in the paper.

Recall that an input/output chemical reaction
network (I/O CRN) is a CRN with some species
reserved as “inputs” that can only be used cat-
alytically and some species labeled “outputs.” As
a result, I/O CRNs are literally signal functions in
the functional reactive programming sense, trans-
forming an input signal into an output signal.
Although later we will see that REACTAMOLE’s
signal functions are more abstract than I/O CRNs,
it is helpful to regard a signal function as literally
an I/O CRN. We now explore the expressive power
of arrowized I/O CRNs through several examples.

> (a, c)

(b, d) >

f *xxx g :: SF (a, c) (b, d)

(b, c) »

: SF (a, c)
(b, <)

J

loop £ :: SF ab

Fig. 1: Arrow combinator visualizations.

We begin with I/O CRNs that produce real
numbers. Since species concentrations are non-
negative, we encode a real number as the difference
between two species using the dual-rail encod-
ing of [17]. Thus, a real-valued signal z(t) is
encoded as 27 (¢) — 27 (t) where X+ and X~ are
two species.

One of the simplest I/O CRN operations is
the integrator. An integrator takes a real-valued
signal z(t) and produces the real-valued output
signal y(t) = fot z(s)ds + yo. In REACTAMOLE, we
provide an integrator as a primitive:

integrateSF :: Double -> SF Double Double

integrateSF is a function that takes a real-valued
parameter yO and returns a signal function that
performs integration. The parameter y0 corre-
sponds to the constant y(0) in the solution to y(t).
Intuitively, integrateSF y0 can be regarded as an
I/O CRN consisting of the three reactions:

xt L xtayt
X X4y
Yt4y —59¢
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Fig. 2: Visual representation of the arrowized sin
implementation.

Output

The third reaction has no effect on the encoded
value of y(¢) but helps bound the concentrations
of YT and Y~. The induced ODEs according to
the law of mass action are:

dy+ + + - dy_ — 4+ -

Since the species are dual-railed, we know that
a(t) =at(t) -2~ (t) and y(t) =y (t) -y (¢).
Thus, we can rewrite the above ODEs in terms of
x and y directly:

dy _dy*t dym

dt — dt dt

By integrating both sides, we observe the solution
is indeed y(t) = fot z(s)ds + yo.

Other primitives we provide in REACTAMOLE
are shown in Figure 6, but we highlight a few
particularly relevant ones here.

® negateSF performs numerical negation by
reversing the roles of X+ and X~. As a result,
it does not generate additional reactions as it
simply reinterprets the output species of the
CRN.

® idsF is the identity signal function and produces
its inputs as outputs, unmodified.

® projiSF and proj2SF take pairs of signals as
inputs and project out the individual compo-
nents of those pairs as output.

® JdupSF produces a pair where each component is
a “copy” of the input. However, in reality, we
don’t make a copy of the input species. Multiple
consuming CRNs can use the components of the
resulting pair because I/O CRNs are catalytic
in their inputs.

Using these primitives, it is already possible to
specify complex signals such as sine and cosine.
We can define sin in the following way which is
also illustrated in Figure 2:

sin :: SF a Double
sin = loop (proj2SF >>> negateSF >>>
integrateSF 1 >>> integrateSF 0 >>> dupSF)

This definition exploits the fact that the sine func-
tion satisfies the second-order differential equation
a2 (t) = —x(¢). Since the output of sin does not
depend on its input, the type signature of sin
has an abstract input type a, meaning that it can
receive any input. We will see later that leaving
the input type generic makes sin easier to combine
with other signal functions rather than explicitly
requiring that the input signal be empty.

Since sin uses two applications of integrateSF,
the resulting CRN would consist of six reactions:

Xi o X+ X, X —— XS+ X

Xr s X7+ X5 Xy s Xy + Xp
X+ Xy —— 0 X+ Xy ——0
The loop combinator creates a feedback loop that
allows the signal z(t) to depend on itself. If you
regard each wire in Figure 2 as a variable that
consists of two species, then the loop combines
two wires, reducing the number of species by two
by reusing the same species names. Without it,
the CRN would have three pairs of species instead
of two—one for each wire before, in-between, and
after the integrators.

We can verify the correctness of the sin defini-
tion by observing that the ODEs associated with
the reactions satisfy

dey  dwf  dxy

=Ty — Ty = T2

At odt ot
dey  dwy  dzy  _ L
R A

and therefore x1(t) =sin(t) and x5(t) = cos(t).
Note that the initial conditions of z; and x5 are
implicitly provided via parameters to integrateSF.

We now turn our attention to I/O CRNs
that produce Booleans. Similar to real num-
bers, we encode a Boolean signal using a pair
of species (X, X) while maintaining the invariant
that z(t) + Z(t) = 1. When species X is high, the
Boolean is interpreted as true. Similarly, when X
is high, the Boolean is interpreted as false.

The elementary Boolean signal functions in
REACTAMOLE are notSF :: SF Bool Bool and



2y+y — 3y
X1 —— y+2y > 3y
x1+x2+y > x1+x2+§ |—y
X2 —— X+ —> xl+y
X2+7—>x2+y

Fig. 3: REACTAMOLE nandSF implementation.
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Fig. 4: Traditional srLatch circuit.

nandSF :: SF (Bool, Bool) Bool. Similar to the
negateSF signal function for real numbers, notSF
“crosses the wires” of X and X without adding
any additional species or reactions. The nandSF
signal function consists of five reactions, using
the implementation provided by Ellis, Klinge, and
Lathrop [15] and visualized in Figure 3.

Using these primitives, we can define the
other elementary gates, which all have the type
SF (Bool, Bool) Bool.

orSF = (notSF *** notSF) >>> nandSF
andSF = nandSF >>> notSF
norSF = orSF >>> notSF

xorSF = (nandSF &&& orSF) >>> andSF
xnorSF = xorSF >>> notSF

Note that notSF does not introduce additional
overhead, so the signal functions orSF, andSF and
norSF are no more complex than nandSF.

We can also use the loop combinator to cre-
ate sequential logic gates such as a set-reset latch
which is visualized in Figure 4.

srLatch :: SF (Bool, Bool) (Bool, Bool)
srLatch = loop (crossWires >>>
(nandSF *** nandSF) >>> dupSF)

Here, crossWires is a simple signal function that
“rearranges the wires” so that the outputs are
looped back into the appropriate NAND gates.
This is implemented similarly to notSF, making

it a zero-overhead signal function that simply
reinterprets the species.

Since srLatch has two Boolean inputs and is
implemented with two nandSF gates, the resulting
I/O CRN consists of eight species and nine reac-
tions. The final CRN has nine reactions instead of
ten because REACTAMOLE generates a GPAC ini-
tial value problem before creating the final CRN
and combines identical ODE terms into a sin-
gle reaction. Intuitively, this means that reactions
that share the same left-hand-side species (i.e.,
reactants) will be automatically combined.

Finally, we can create signal functions that
employ both real-valued signals and Boolean
signals. For example, we include a primitive
isPosSF :: SF Double Bool that tests if a real-
valued input is positive. Note that isPosSF is a
continuous approximation of a discontinuous func-
tion, so its Boolean output is meaningless if the
input signal is close to zero. Intuitively, it is imple-
mented in a similar fashion to the NAND gate by
creating two new species for the Boolean output
and the following four reactions:

2V +Y —— 3Y
2V +Y 37
Xt4+Y L Xxt4y
X 4Y 45X +7

Using isPosSF and the previously defined sin
signal, we can easily create a clock signal that
could be employed in clocked sequential circuits.

clock :: SF a Bool
clock = sin >>> isPosSF

The solution of selected species in the I/O CRN
specified by clock is visualized in Figure 5.

Then clock could be combined with srLatch to
create chemical flip flops, memory units, or multi-
stage molecular programs.

4 Functional Reactive
Molecular Programming

We now describe the heart of the functional reac-
tive molecular programming (FRMP) paradigm
and our implementation of it in REACTAMOLE.
Recall that a signal in functional reactive pro-
gramming is a time-varying value of some type.
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Fig. 5: Plot of selected species of the clock sig-
nal. The top shows the solutions of X; and X,
i.e., the real-valued encoding of the sin(t) func-
tion. The bottom shows the solutions of Y and
Y, i.e., the Boolean encoding of the output of the
isPosSF signal function, given sin(¢) as input.

In FRMP, a Signal a encapsulates a collection of
time-varying species’ concentrations, along with
an interpretation of those concentrations as a
value of type a. Intuitively, a Signal a is a single
chemical reaction network with a fixed initial con-
dition and no external input. According to the law
of mass action, such a CRN induces an initial value
problem (IVP) of ordinary differential equations
(ODEs) with a unique solution—the real valued
signal. Later, we will see that REACTAMOLE imple-
ments a Signal a directly as a system of ODEs
with an initial condition, and employs the equiv-
alence of the GPAC and CRNs to convert it to a
CRN when needed using the method of [17].

A signal function SF a b in FRMP trans-
forms a signal of type a into a signal of
type b. Intuitively, an SF a b can be thought
of as an abstract input/output chemical reac-
tion network (I/O CRN) that converts an input
signal encoding values of type a into a sig-
nal encoding values of type b. For example,
the nandSF :: SF (Bool, Bool) Bool represents
an I/O CRN that receives two Boolean input
signals and produces an output signal repre-
senting the NAND of its inputs. In general,
REACTAMOLE implements an SF a b as a func-
tion Signal a -> Signal b, allowing the existence
of signal functions like notSF, which changes the
interpretation of the species concentrations with-
out introducing new species or reactions.

A combinator is a higher-order signal func-
tion, i.e., a signal function that takes other signal
functions as input. In FRMP, combinators are
essentially I/O CRN transformers which produce

new I/O CRNs from old ones. Furthermore, we
take inspiration from the arrowized FRP approach
of Hughes, specifying the constructs of FRMP as a
collection of combinators to build larger molecular
programs from smaller ones.

The heart of FRMP is a compilation pass that
transforms these FRP combinators into an 1/0
CRN that realizes the computation in (abstract)
chemistry. We augment the I/O CRN with species
tags, additional static information necessary for
interpreting the relevant species of the CRN as
inputs and outputs to the computation. We call
the combination of an I/O CRN with its species
tags a typed input/output chemical reaction net-
work, formally, a tuple of the I/O CRN N and
species tags describing how to interpret its inputs
and outputs, written (N,p™,p°"t). We represent
the compilation process as an interpretation func-
tion over signal functions [f] = (NN, p™", p°'t) which
denotes that signal function f compiles to typed
CRN (N, pin7pout).

We describe this translation for our core com-
binators, organizing them by the types that they
operate over. Figure 6 gives an overview of these
combinators by category. We provide one tag for
each possible type that we can represent in our
implementation. The tags identify the type of sig-
nal that the CRN outputs, and the relevant species
that encode that signal.

The unit signal tag, (), represents a signal
that generates the unit value. This is an arbitrary,
unique value of that type (written as () in Haskell)
that acts effectively as a constant that carries no
information. Because of this, a Signal () can be
regarded as the “empty signal,” and therefore the
signal function SF () a can be regarded as an I/O
CRN with no input.

A Boolean signal tag, (X,X), denotes a
Boolean value represented by a pair of species
X and X in a dual-rail representation based on
Ellis et al.’s method [15]. These species exhibit an
inverse relationship maintained as an invariant—
when one species has a high concentration, the
other has a low concentration. The two species
in this dual-rail construction represent True and
False, respectively.

A real number tag, (X*,X ™), denotes a real
value represented by a pair of molecules X+ and
X, where we take the value of the real to be the



-- Algebraic structures
(>>>) :: SFab->Sbc->8Fac

(xx*x) :: SFab->8 cd ->SF (a, c) (b, d)
(&&&) :: SFab ->SFac ->SF a (b, c)
first :: SFab ->SF (a, ¢c) (b, c)
second :: SF a b -> SF (c, a) (c, b)
-- Switching
(+++4) :: SFab->SFcd ->

SF (Either a c) (Either b d)
i :: SFac ->SFbc ->8F (Either a b) ¢
left :: SF ab -> SF (Either a c) (Either b c)
right :: SF a b -> SF (Either ¢ a) (Either c b)

entangle :: SF (Bool, (a,b)) (Either a b)
split :: SF a Bool -> SF a (Either a a)

-- Booleans

notSF :: SF Bool Bool

nandSF :: SF (Bool, Bool) Bool

arriBl :: (Bool -> Bool) -> SF Bool Bool
-- Reals

integrateSF :: Double -> SF Double Double
negateSF :: SF Double Double

addSF :: SF (Double, Double) Double
multSF :: SF (Double, Double) Double
isPosSF :: SF Double Bool

Fig. 6: Functional reactive molecular programming core combinators. Note that REACTAMOLE approxi-
mates real values using finite-sized Haskell Double values.

difference between the concentrations of X+ and
X, respectively.

A pair signal tag, (p1,p2), represents two paral-
lel interpretations of the concentrations of a signal.
he components of the tag pair are the tags of the
individual signals.

An either signal tag, (X, X, p1,p2), represents
a time-varying discriminated union used in FRMP
to achieve dynamic switching. Such a signal is
made up of a Boolean signal indicated by species
X and X as well as two component signals with
tags p; and ps. The Boolean indicates which of
the two interpretations is currently active.

4.1 Algebraic Structures

The core of FRP is composing signal functions
together. Suppose that we compose together two
signal functions, written f£1 >>> f2. In FRMP,
this amounts to composing the two I/O CRNs
representing f1 and £2, call them N; and N,
respectively, by feeding the outputs of N; as
inputs to Na. Because the input species of 1/0
CRNSs are catalytic—i.e., the net rate of the input
species to N1 and N, is zero—we achieve composi-
tion by simply taking the union of the species and
reactions of each CRN (LJ). We then substitute the
input species of fo with all the output species of
f1 in the resulting CRN, written [pSUt — pil].

Hfl >>> f2]] = ([ptl)Ut Hpg]](Nl U NQ)vpilnapgm)

[[fl]] = (thiln,p({ut)
W 1] = (No, b5 p3")
This is provably safe because N5 has no observable
effect on the outputs of Vy.

The only caveat we must consider is that the
species of the two CRNs are disjoint. Otherwise,
unioning their reactions might cause unintended
side-effects to their behavior. We guarantee this by
ensuring that species names are disjoint between
CRNSs via renaming whenever combining CRNs in
this fashion. This is analogous to the notion of a-
equivalence in programming languages, where pro-
grams are considered equivalent up to renaming
of their bound variables.

As a simple example of composition, con-
sider fi= (N, (XT,X7), (YT, V7)) and
fa = (N2, (AT, A7), (BT, B™)) where N consists
of the reactions:

Xt Lo xtayt
XX 4y
Yt4y ——,

and N, consists of the reactions:
At L5 At 4+ Bt
A~ — 5 A+ B
Bt+B 1.0



Note that N7 and Ny each perform integration
on their input signals. The composition of these
two CRNs fi >>> fo = (N3, (X, X7),(B*,B7))
where N3 consists of the reactions:

xtloxtyeyt vyt loytypt

XX +Y Y 5V +B
Yteys 0 B+ B~ —— 0.
N3 is precisely the union of the reactions of Nj
and N, but with the input species of Ny, AT and
A~ replaced by the output species of Ny, Y+ and
Y ~. Observe that, by virtue of composing two
integration functions together, N3 performs two
integrations on its input.

Aggregate data types are represented in
FRMP through product types, i.e., tuples. The ele-
ments of tuples are, by definition, independent
values. Because we maintain the disjointedness of
species names between CRNs, we form tuples by
taking the union of these CRNs directly.

The split operator between two CRNs, written
f1 »xx £2 takes two I/O CRNs, f1 :: SF a b and
£2 :: SF ¢ d and creates a CRN that takes a pair
as input and a pair as output. The components
of the input pair are drawn from the inputs of £1
and £2, and the components of the output pair are
drawn from the outputs of £1 and £2. We accom-
plish this behavior, by taking the union of the
species and reactions of the two input CRNs and
creating a new output species tag that identifies
the output of the CRN as a tuple.

[fl *kok f2]] = (N1 U Ny, (pi1n7pi2) (p?Ut7ngt))

[[fl]] = (N17p1 7p(fL|t)

where ou
[f2] = (N2, pif', ™).

For our example,

(X, X7), (A+ A7),
(YY), (BT, B7)))

where Ny is simply the union of the unmodified
reactions from N; and Ns.

In contrast, the fanout operator between two
I/O CRNs, written £1 &&& £2, transforms two
I/O CRNs that expect the same input type into
a single I/O CRN that sends a single input
to the two CRNs separately. The operator has

[f1xx fo] = (Na

type (&&&) :: SF a b -> SF a c -> SF a (b, ¢).
We can implement the fanout operator in terms
of composition, split, and a dupSF combinator that
produces a signal pair where each component is
simply the input species.

(N pin ( out,pout))
(N, p", p°).

We can then define fanout directly as
f &&& g = dupSF >>> (f **x g). Again, this prov-
ably yields the desired behavior because of the
catalytic restriction of I/O CRNs on their inputs.
Thus, the duplication of the input signal will not
lead to interfering behavior between f and g.

In addition to split and fanout, the operator
first f takes an I/O CRN performing a compu-
tation £ from a to b (of type SF a b) as input and
produces an I/O CRN that takes a pair as input
(of type (a, ¢)) and produces a pair as output (of
type (b, o).

[aupsF f] =
where [f] =

e The first component of the input/output pairs
carries the computation from a to b.

e The second component of the input/output
pairs carries a third value of type ¢ unmodified
in the computation.

[£irst f] = (N, (p ‘",pic”),(p°”t7p2“t))

where [f] = (N, p", p™*").

Analogously, second f performs the same transfor-
mation but carries the computation of £ through
the second component of the pair, leaving the first
unmodified.

Finally, we can also create I/O CRNs that
involve feedback, i.e., the CRN depends on its out-
put, with the loop combinator. To understand how
loop works, it is useful to first analyze its type:

loop :: SF (a, ¢) (b, c) ->SFab

loop takes in a CRN that expects a pair signal and
produces a pair signal. The result is a new CRN
where the second component of the input pair is
“patched” by the second component of the output
pair, both of type c. This leaves behind a CRN
that expects an a as input and produces a b as
output.

[roop f] = ([p2*" = DN, Py, D)
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where [f] = (N, (pI", p"), (p3", p2*))

The loop operator is what allows FRMP to
perform non-trivial computations by introducing
species whose concentration depends on itself.
This feedback mechanism has the same behavior
as general purpose analog computing (GPAC) flow
diagrams such as shown in Figure 2

4.2 Booleans

Booleans in FRMP are represented by a dual-
rail encoding, where one species indicates the True
value and the other False. These species exhibit
a strictly inverse relationship (i.e., when one has
a low concentration, the other has a high concen-
tration), and the value of the Boolean is given
by the high species. This dual-rail construction is
based on Ellis et al.’s method [15] and allows the
result to be measurable by reporter molecules in a
biological system since it is difficult to detect the
absence of a species.

Boolean Negation

FRMP supports negation through a reinterpre-
tation of this Boolean encoding. Negation is
achieved by swapping the Boolean value that each
dual-rail chemical species represents. This allows
for efficient negation in a manner that does not
require creating an additional CRN.

[notsF b] = (N, p", (X, X))
where [b] = (N, p", (X, X))

NAND and Other Logic Gates

The foundation for FRMP’s support of Boolean
circuits and functions is the robust NAND gate
introduced by Ellis et al. [15], as shown in Figure 3.
This gate is included as the signal function
nandSF :: SF (Bool, Bool) Bool. All other basic
logic gates are implemented using nandSF along
with notSF as described in section 3.

4.3 Real Numbers

We have already demonstrated our ability to com-
pute over real numbers with CRNs in section 3.
For example, the integrateSF signal function has
a simple CRN representation. Similarly, negateSF
is a simple reinterpretation of the input CRN’s

species tag because X —Y = —(V — X):

[[negateSF f]] = (N,pin, (X77X+))
where [£] = (N, p", (X T, X7))

What about other operations, for example,
adding together two real signals? It turns out that
we cannot craft a single, concrete CRN that cap-
tures the addition of two abstract real signals.
To see why, suppose we have two real-valued sig-
nals z(t) and y(t), and we wish to produce a new
signal z(t) that satisfies z(t) = z(t) + y(t) for all
times t. To achieve this, z must satisfy the ini-
tial condition z(0) = z(0) + y(0) and conform to
the ODE 2/(t) = 2/(t) + v/ (¢). Thus, if x and y are
not known in advance, then z cannot be produced
exactly. However, if their initial conditions and
ODEs are known, then producing z is as simple
as adding their initial conditions and ODEs.

REACTAMOLE supports operations such as
addition, but only by virtue of represent-
ing a signal function SF a b as literally a
function Signal a -> Signal b. This represen-
tation allows us to implement the primitive
addSF :: SF (Double, Double) Double by creating
the ODE of the output variable as a function of
the ODEs of the two input variables, maintaining
that 2/(t) = 2'(t) + ¢/(t). As a result, addSF can
be regarded as an abstract 1/O CRN, whose reac-
tions are only instantiated when it is combined
with another CRN. This is in contrast to prim-
itives such as nandSF that are implemented in a
way that is agnostic to its input signal and can be
regarded as a concrete I/O CRN.

4.4 Switching

An important capability of a functional reac-
tive program is changing the topology of its
components at runtime, i.e., dynamically switch-
ing between different signals. A simple way to
encode the behavior is through a conditional,
if ¢t then s; else s5, where s; and sy are arbitrary
signals and t is a Boolean signal. As t transi-
tions between truth values, the overall conditional
signal transitions between s; and so. From subsec-
tion 4.1, we know that we can carry ¢, si, and sg
as a triple of signals. We give this aggregate signal
the type Either a b, where a and b are the types of
s1 and so, respectively. This choice of type comes
from the Either type in Haskell, which encodes



a discriminated union—a pair of potential values
with a tag that says which of the two values is
present.

However, because the reactions of a CRN are
fixed at compilation t ime, we d on’t h ave a built-
in mechanism by which a consuming signal can
“change” its reactions to go from consuming s;
to consuming so during runtime. To solve this
problem, we then entangle the components of the
Either signal, ¢, s;, and so, to produce a sin-
gle signal with our desired conditional semantics.
The entangle :: SF (Bool, (a,b)) (Either a b)
signal function creates these entanglements via
a simple reinterpretation of the species tag and
does not induce additional overhead. Thus, a
Signal (Either a b) is simply a CRN that simul-
taneously produces three sub-signals—one for the
Bool switching signal, one for the a signal, and one
for the b signal. Semantically, downstream compu-
tations should regard a as the output if the Bool
is true, otherwise consider b as the output.

An important switching operator is the branch
combinator which has type signature

(+++) :: SFab ->SFcd
-> SF (Either a b) (Either c d)

Similar to the *** combinator, the I/O CRN
f +++ g simply joins the I/O CRNs f and g so
their computations happen simultaneously. How-
ever, the semantic meaning of £ +++ g differs from
f #%* g in that the inputs and outputs of the for-
mer should be regarded as dynamically switching
between the behavior of £ and g and the inputs
and outputs of the latter should be regarded as £
and g performing parallel computations.

The primary complexity of switching in FRMP
comes from the fanin operator, which creates a
signal function that merges two entangled values
into one. The fanin operator has the following type
signature:

([]]) :: SFac ->SF Db c ->SF (Either a b) ¢

Fanin takes two signal functions that take arbi-
trary types a and b as input and produce a
common output type c. Fanin will join the signal
functions into an Either signal and then merge
their outputs to produce a unified signal of type
c. The Boolean component t of the Either signal
then controls whether the output signal is gener-
ated from the first or second function. In fact, the
fanin operator is implemented in REACTAMOLE as:

f ||| g = (£ +++ g) >>> mergeSF

Here, mergeSF :: (Either a a) a encapsulates
merging two entangled values of type a—which
exist in parallel—into a single value of type a.

Merging signals is necessarily a type-directed
process, since how we combine two signals depends
on their encodings and thus their types. For exam-
ple, consider the case of merging two Boolean
signals, letting ¢, s1, and sy be the conditional,
the consequent, and the alternative signals of
the Either Bool Bool, respectively. Then we can
merge these signals into one by observing:

if t then sy else s3 = (t A s1) V (EA s2).

Thus, REACTAMOLE implements mergeSF on Bools
using Boolean primitives, which induces an over-
head of three uses of nandSF I/O CRNs.

To merge two real signals, REACTAMOLE
employs the GPAC switching function designed
by Bournez, Graga, and Pouly (Section 5.3 of [6]),
which approximates the switch with controllable
precision. Approximation is necessary in this case
because a CRN cannot have a discontinuity in its
solution.

Aggregate signals such as pairs and eithers
are merged by recursively merging their individual
sub components.

REACTAMOLE also includes the following com-
binator for entanglement.

split :: SF a Bool -> SF a (Either a a)
split £ = f &&& (idSF &&& idSF) >>> entangle

The split combinator lifts a Bool signal into an
Either signal, which makes it simpler to employ
choices in REACTAMOLE. Consider the following
definition of rectify, a signal function that passes
through only the positive component of a signal.

rectify :: SF Double Double
rectify = split isPosSF >>> (idSF ||| comnstRl 0)

Note that split isPosSF takes a Double signal as
input and produces an entangled Double as out-
put, conditioned on whether the input signal is
positive or negative. Moreover, the sub-expression
(idSF ||| constR1 0) defines a signal function that
is either the identity function or the constant zero.
Thus, rectify is a signal function that behaves
like the identity function if the input is positive
and otherwise behaves like the constant zero.
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4.5 The Reactamole Implementation

We now discuss some implementation details

behind REACTAMOLE!. We chose to embed REAC-

TAMOLE in Haskell to employ Haskell’s existing
facilities—language constructs, the type system,

and its tooling support—in developing CRNs. To
maximize the benefits o f t his s hallow embedding
of REACTAMOLE in Haskell [21], we designed the
core datatypes to be as general as possible.
Our first g eneralization w ast o implement

a Signal a in terms of ordinary differential
equations (ODEs) rather than chemical reactions
directly:

data Signal a = Sg (Tag a) [ODE]

Here a Tag a encapsulates the static typing infor-
mation of the signal and the list of ODEs explicitly
defines a s et o f v ariables, t heir d erivatives, and
their initial conditions.

The Tag a algebraic datatype has numerous
constructors, each of which corresponds to one of
the species tags described in subsection 4.1. For
example, NullT constructs a null tag Tag () and
BoolT x x’ takes two variables as arguments that
represent the two “rails” of the dual-rail Boolean
encoding and constructs a Tag Bool.

Signal functions are represented as genuine
Haskell functions between signal values with a
type signature:

data SF a b = SF (Signal a -> Signal b)

This allows us to use Haskell’s rich higher-order
programming facilities to be able to express com-
binators more concisely. For example, consider
the composition of two I/O CRNs with the com-
position operator f1 >>> £f2. In REACTAMOLE,
because £1 and £2 are now literally Haskell func-
tions, the >>> operator is simply the composition
operator between Haskell functions, (.).

(>>) :: SFab->S bc->S8Fac
(SF £) >>> (SF g) = SF (g . £f)
-- N.B., (.) composes right-to-left

It also allows developers to implement “abstract”
I/O CRNs such as addsF, whose output ODE can
be constructed from the ODEs of the input sig-
nal. We discuss some more advanced uses of these
abstract I/O CRNs in section 6.

'REACTAMOLE is available at https://github.com/digMP/
haskell-reactamole.

REACTAMOLE also includes some other opti-
mizations to reduce the complexity of the final
CRN program, including:

1. Each variable / ODE is initially single-railed,
and only converted into its dual-rail, non-
negative encoding when translating it into
a concrete CRN. This makes REACTAMOLE
usable as a FRP language for general purpose
analog computer (GPAC) programs without
constraining the user to a dual-rail encoding. It
also reduces the complexity of CRNs by keep-
ing ODEs concise, thereby reducing the number
of reactions generated by signal functions like
addSF that depend on ODEs.

2. The RealT constructor for Tag Double takes
a polynomial of variables and is converted
into a single-rail or dual-rail representation
only when necessary. This allows real-valued
operations to combine without generating a
new variable every time. As a result, a com-
pound real-valued signal function such as
(addSF *** addSF) >>> multSF will only gener-
ate a single new variable instead of three. This
dramatically reduces the number of species and
reactions in CRN programs.

REACTAMOLE includes the functions toIVP and
toCRN to export a signal function SF a b to an
initial value problem or a CRN. For example,
toIVP (integrateSF 0) produces the single-railed
system of ODEs:

INPUT:
Real (+1.0%x0)
QUTPUT:
Real(+1.0%x1)
ODEs:
x1(0) = 0.0, dx1/dt = [+1.0%x0]

Notice that x0 is an input signal to the IVP and
therefore has no corresponding ODE.
Similarly, toCRN (integrateSF 0) produces:

INPUT:

Real(+1.0*x0 -1.0%x1)
QUTPUT:

Real (+1.0*x2 -1.0%x3)
REACTIONS:

x0 --{1.0}-> x2 + x0

x1 --{1.0}-> x3 + x1

x2 + x3 --{100.0}->
INITIAL CONDITIONS:

x2(0) = 0.0

x3(0) = 0.0


https://github.com/digMP/haskell-reactamole
https://github.com/digMP/haskell-reactamole

The CRN is produced from the initial value
problem by first c onverting i t i ntoi ts dual-rail
representation and then translating its terms into
chemical reactions. As a result, the input signal
is now represented by two species, x0 and x1, and
their difference is the true value of the input signal.

4.6 Lifting Pure Functions

While the algebraic constructs of REACTAMOLE
are sufficiently ex pressive, it is useful to be able

to express molecular computation using more con-
ventional means. In an ideal world, we could write
a regular (Haskell) function and have it “just
work” when translated to a molecular context.
Recall that in our reactive functional perspective
on molecular programming, we view molecular
computations as time-varying functions, i.e., sig-
nal functions. A regular or pure function can be
thought of as a time-varying function that simply
ignores time. In this sense, we expect the transla-
tion of pure functions to the molecular context, a
process called lifting, to be trivial.

This is the case in a general-purpose abstract
FRP framework. The arr combinator of type
(a -> b) -> SF a b takes a pure function as input
and produces a signal function as output. The
name “arr” comes from the Haskell Arrow type-
class that defines arr asitsown lifting function.
The signal function arr f£ simply behaves like the
pure function £ :: a -> b “for all time.”

Since FRMP represents a signal function as
a system of equations with a species tag, where
the tag indicates how to interpret the equations,
it is difficult to treat a pure function as a black
box. Instead, we must be aware of the types of the
inputs and outputs of the function to create an
appropriate typed CRN. For now, REACTAMOLE
only supports type-aware lifting on Boolean-to-
Boolean functions. However, a large class of real-
valued functions are known to be computable
via analog computers [6], and new techniques are
emerging for lifting various real-valued functions
to CRNs [22]. We hope to incorporate these ideas

into REACTAMOLE in future work.

Lifting Boolean Functions

Lifting (i.e., translating) arbitrary pure Boolean
functions into signal functions is possible because
any Boolean function can be represented by a

finite number of REACTAMOLE gates, derived from

the sum of products form of the function. In
REACTAMOLE, the sum of products is found by
first constructing a matrix, or truth table, of all
possible combinations of inputs to the Haskell
function and the resulting outputs. All instances
with output value False are then filtered out,
and the signal function is then constructed using
the corresponding series of AND, OR, and NOT
gates that represent the sum of products given
by the matrix. Specifically, false inputs are run
through NOT gates, then all inputs in the same
row are combined with AND gates. Finally, these
row results are ORed together to produce the out-
put Boolean value. This results in a finite number
of gates, as the matrix size is finite.

For example, consider the following Haskell
function which determines if a decision between
three parties is unanimous:

unanimous :: Bool -> Bool -> Bool -> Bool
unanimous x y z = x ==y & y == z

We can lift this function into a signal function
using the three-input lifting function arr3Bi:

unanimousSF :: SF (Bool, Bool, Bool) Bool
unanimousSF = arr3Bl unanimous

This produces a signal function that computes
unanimous. Since REACTAMOLE is incapable of
lifting general functions, we include many vari-
ants of the classical arr lifting combinator,
including arr2Bl, arr3Bl, and arr4Bl, which can
liftt 2-ary, 3-ary, and 4-ary Boolean functions
into an equivalent REACTAMOLE signal function.
The corresponding CRN can be displayed with
toCRN unanimousSF, resulting in the CRN on the
left-hand-side of Figure 7. We discuss the toCRN
function, which displays the underlying reactions
of a CRN, towards the end of this section.

For comparison, consider this hand-coded ver-
sion of unanimous as a signal function using other
REACTAMOLE primitives:

unanimousSF’> :: SF (Bool, Bool, Bool) Bool
unanimousSF’ = tup3ToPairSF >>>

(second projiSF >>> xnorSF

&&& (proj2SF >>> xnorSF) >>> andSF)

Note that tup3ToPairSF converts the input three-
tuple SF (Bool, Bool, Bool) to a nested pairs rep-
resentation SF(Bool, (Bool, Bool)) . The behav-
ior of this signal function is less apparent; never-
theless, it has comparable behavior to unanimousSF
defined above. Moreover, it mirrors the original
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x11 + x12 --{30.0}-> x1 + x11 + x13

+ x6 + x6
+ X7 + X7

+ x8 + x8
+ x9 + x9

x10 + x10
x11 + x11
x12

x12 + x12
x13 + x13
x14

x14 + x14
x15 + x15

x15

+ x10
+ x11

+ x12
+ x13

+ x14
+ x15

INPUT:

Tuple (Bool(x0, x1),
Bool(x2, x3),
Bool(x4, x5))

OUTPUT:
Bool(x14, x15)

REACTIONS:
x0 + x7 + x8 --{30.0}-> x0 + x7 + x9
x0 + x13 --{30.0}-> x0 + x12
x1 + x9 --{30.0}-> x1 + x8
x1 +
x2 + x4 + x6 --{30.0}-> x2 + x4 + x7
x2 + x11 --{30.0}-> x2 + x10
x3 + x5 + x10 --{30.0}-> x3 + x5 + x11
x3 + x7 --{30.0}-> x3 + x6
x4 + x11 --{30.0}-> x4 + x10
x5 + x7 --{30.0}-> x5 + x6
x6 + x6 + x7 --{90.0}-> x6
x6 + x7 + x7 --{90.0}-> x7
x6 + x9 --{30.0}-> x6 + x8
x8 + x8 + x9 --{90.0}-> x8
x8 + x9 + x9 --{90.0}-> x9
x8 + x12 + x14 --{30.0}-> x8 + x12 +
x9 + x15 --{30.0}-> x9 + x14
x10 + x10 + x11 --{90.0}->
x10 + x11 + x11 --{90.0}->
x10 + x13 --{30.0}-> x10 +
x12 + x12 + x13 --{90.0}->
x12 + x13 + x13 --{90.0}->
x13 + x15 --{30.0}-> x13 +
x14 + x14 + x15 --{90.0}->
x14 + x15 + x15 --{90.0}->

INITIAL CONDITIONS:
x6(0) = 0.0
x7(0) = 1.0
x8(0) = 0.0
x9(0) = 1.0
x10(0) = 0.0
x11(0) = 1.0
x12(0) = 0.0
x13(0) = 1.0
x14(0) = 0.0
x15(0) = 1.0

Fig. 7: Two CRNs compiled using REACTAMOLE. On the left, we have the result of toCRN unanimousSF,
where unanimousSF was constructed using REACTAMOLE’s Boolean lifting feature. On the right, we have
the result of toCRN unanimousSF’, where unanimousSF’ was manually constructed using REACTAMOLE’s
built-in signal function combinators. Note that the rate constants of 30 and 90 come from the NAND
gate specification of Klinge, Lathrop, and Ellis [15]. These rate constants can theoretically be tuned to

INPUT

Tuple(Bool(x0, x1),

Bool(x2, x3),
Bool (x4, x5))

QUTPUT:
Bool(x19, x18)
REACTIONS:
x0 + x2 + x6 --{30.0}-> x0 + x2 + x7
x0 + x9 --{30.0}-> x0 + x8
x1 + x3 + x8 --{30.0}-> x1 + x3 + x9
x1 + x7 --{30.0}-> x1 + x6
x2 + x4 + x12 --{30.0}-> x2 + x4 + x13
x2 + x9 --{30.0}-> x2 + x8
x2 + x15 --{30.0}-> x2 + x14
x3 + x5 + x14 --{30.0}-> x3 + x5 + x15
x3 + x7 --{30.0}-> x3 + x6
x3 + x13 --{30.0}-> x3 + x12
x4 + x15 --{30.0}-> x4 + x14
x5 + x13 --{30.0}-> x5 + x12
x6 + x6 + x7 --{90.0}-> x6 + x6 + x6
x6 + x7 + x7 --{90.0}-> x7 + x7 + x7
x6 + x8 + x10 --{30.0}-> x6 + x8 + x11
x7 + x11 --{30.0}-> x7 + x10
x8 + x8 + x9 --{90.0}-> x8 + x8 + x8
x8 + x9 + x9 --{90.0}-> x9 + x9 + x9
x9 + x11 --{30.0}-> x9 + x10
x10 + x10 + x11 --{90.0}-> x10 + x10 + x10
x10 + x11 + x11 --{90.0}-> x11 + x11 + x11
x10 + x16 + x18 --{30.0}-> x10 + x16 + x19
x11 + x19 --{30.0}-> x11 + x18
x12 + x12 + x13 --{90.0}-> x12 + x12 + x12
x12 + x13 + x13 --{90.0}-> x13 + x13 + x13
x12 + x14 + x16 --{30.0}-> x12 + x14 + x17
x13 + x17 --{30.0}-> x13 + x16
x14 + x14 + x15 --{90.0}-> x14 + x14 + x14
x14 + x15 + x15 --{90.0}-> x15 + x15 + x15
x15 + x17 --{30.0}-> x15 + x16
x16 + x16 + x17 --{90.0}-> x16 + x16 + x16
x16 + x17 + x17 --{90.0}-> x17 + x17 + x17
x17 + x19 --{30.0}-> x17 + x18
x18 + x18 + x19 --{90.0}-> x18 + x18 + x18
x18 + x19 + x19 --{90.0}-> x19 + x19 + x19
INITIAL CONDITIONS:
x6(0) = 0.0, x7(0) =1.0, x8(0) = 0.0
x9(0) = 1.0, =x10(0) = 0.0, =x11(0) = 1.0
x12(0) = 0.0, x13(0) = 1.0, x14(0) = 0.0
x15(0) = 1.0, x16(0) = 0.0, x17(0) = 1.0
x18(0) = 0.0, x19(0) = 1.0

an arbitrary precision, but we leave that for future work.



definition u sing t wo X NOR g ates t o v erify pair-
wise equality and a single AND gate, making
sure that both equalities hold true. The resulting
CRN for unanimousSF’ is shown in Figure 7 on the
right-hand-side.

As you can see, in this case, the lifted ver-
sion unanimousSF also outperforms the hand-coded
version unanimousSF’, having fewer reactions (25
versus 35) and species (16 versus 20).

5 Case Study: Amplitude
Modulation

We now demonstrate REACTAMOLE’s expressive-
ness via a case study: implementing chemical
reaction networks to perform amplitude mod-
ulation [27]. Amplitude modulation (AM) is a
common technique for sending multiple signals
through a shared medium. Intuitively, an AM
modulator combines a signal u(t) with a sinusoidal
carrier signal s(t) via multiplication. Many sig-
nals wy(t),us(t),... can then be simultaneously
transmitted through a shared medium m(t) by
superimposing the modulated signals. In CRNs,
modulated signals need only be added into a single
signal, represented by a pair of species (M ™+, M ™).
This is analogous to radio stations transmitting
modulated signals at specified frequencies, which
all combine in the atmosphere.

We previously saw how to specify a sine wave
in REACTAMOLE. It is not difficult to extend this
example in order to generate a carrier signal with
a given frequency. We first define a helper signal
function called constMult that multiplies a signal
by a constant.

constMult :: Double -> SF Double Double
constMult d = (constRl d &&& idSF) >>> multSF

Here, constRl d produces a signal function
SF a Double that ignores its input and emits a sig-
nal with the constant d. Using constMult, we can
now specify a signal function that generates a sine
wave with a given frequency.

carrier :: Double -> SF a Double

carrier w = loop (proj2SF >>> constMult (-w)
>>> integrateSF 1 >>> constMult w
>>> integrateSF 0 >>> dupSF)

Note that this implementation is nearly identi-
cal to that of sin, defined in section 3. However,
by adding the constant multipliers, carrier 5 will

Input
|
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o/
[
Fig. 8: Visualization of the low-pass filter in

REACTAMOLE. The boxes containing constants a
and b are constant multipliers.

produce a signal s(¢) = sin(5t). The constant w is
incorporated into the rate constants of the reac-
tions, SO toCRN (carrier w) would still consist of
four species and six reactions.

One common component used to implement
AM modulation and demodulation is the low-
pass filter. A simple first-order low-pass filter is
realized by integrating the sum of the input and
output multiplied by specific parameters a and b,
as shown in Figure 8. By choosing the appropri-
ate parameters, we can generate a low-pass filter
with a specific cut-off frequency. For example, if we
choose a to be 0.0001, then the cut-off frequency
will be 0.01 radians per second.

The low-pass filter presented in [27] can be
specified as follows:

lowPass :: Double -> Double -> SF Double Double
lowPass a b = loop (first (constMult a)

>>> second (constMult (-b))

>>> addSF >>> integrateSF 0 >>> dupSF)

The I/O CRN generated by toCRN (lowPass a b)
consists of the following five reactions:

Xty xtoyt

. vt vytiy-
X — X" +Y" .
Y- =Y +Y*
vty —1s9

where (X1, X ™) comprise the input signal. The
CRN satisfies the ODE ’;—ZZ = ax — by where
y(t) = v+ (1) =y () and a(t) = a+ () — = (¢).
Another common AM component is the band-
pass filter, which can be used to select a specific
carrier frequency from the medium species and
attenuate all other carrier signals present in the
medium species. Below is the implementation of
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Fig. 9: Visualization of the band-pass filter in
REACTAMOLE. The boxes containing constants a,
b, and c are constant multipliers.

the band-pass filter presented in [27], which is also
included visually in fig. 9.

bandPass :: Double -> Double -> Double ->
SF Double Double
bandPass a b ¢ =
loop (top *** (mid &&& bot >>> addSF) >>>
addSF >>> integrateSF 0 >>> dupSF)
where
top constMult a
mid = constMult (-c)
bot = integrateSF O >>> constMult (-b)

Note that toCRN (bandPass a b c) consists of the
reactions

Xt 2 Xt 4yt
X 25X 4+Y~

vyt L ytgzt

7zt szt 1y~
ey L T
YT =Yt +Y~
G TR A i Ve
Zt+ 727 -5 0 YT4+Yy- — 50

and satisfies the ODEs %’ =ar — bz —cy and

% = y. Note that the species (Z+,Z7) are inter-
nal species to the I/O CRN that are not commu-
nicated in its output.

We now show how to modulate and demodu-
late signals using a carrier frequency. We use the
technique in [27] that has the medium species M ™

and M~ and can be specified with:

modulate :: Double -> SF Double Double
modulate f =
loop (first (idSF &&& carrier f >>> multSF)
>>> second negateSF

>>> addSF >>> integrateSF 0 >>> dupSF)

Here, modulate f produces a pair of species
representing the medium m(t) that satisfies
‘Z—T = u(t) - sin(ft) — m(t) where u(t) is the input
signal. Klinge and Lathrop [27] also proposed a
method to superimpose multiple modulated sig-
nals through a single medium m(t), which can
be easily accomplished in REACTAMOLE with
addSF :: SF (Double, Double) Double.

Given a signal m(t) that may carry several
modulated signals, we now use the same methods
in [27] to retrieve a signal. A simple AM demod-
ulator is realized with a band-pass filter to select
the desired carrier frequency followed by a func-
tion to pass only the positive parts of the signal.
A low-pass filter may then be used to remove the
carrier frequency to recover an approximation to
the original signal.

We can use the bandPass and lowPass filters,
along with rectify defined in subsection 4.4, to
extract a signal from a desired carrier frequency.

demodulate :: Double -> Double ->
SF Double Double

demodulate w q = bandPass (w/q) (w/q) (w*w)
>>> rectify >>> lowPass w w

Here, demodulate w q generates a CRN that
demodulates a signal that has been modulated
on a carrier signal at frequency w. The parame-
ter ¢ is used to determine the bandwidth of the
band-pass filter, which determines how close two
different carriers may be in frequency. Also, note
that low-pass and band-pass filters may be cas-
caded to create higher-order filters by composing
them with the >>> combinator.

6 Abstract Signal Functions

In this section we emphasize that REACTAMOLE is
not only capable of specifying concrete I/O CRNs,
it can also specify abstract ones. For example,
given a signal wu(t), it could be useful to produce
a signal v(t) that satisfies v(t) = sin(u(t)) for all
t. By differentiating v(t), we can see that it must
satisfy the following:

d d

di; = di; ‘v, v(0) = sin(u(0))
Notice that the derivative of v necessarily depends
on the derivative of u. As a result, it is impossible



for a single CRN to compute the sine of an arbi-
trary input signal. Nevertheless, it is possible to
specify a CRN of v(t) given a specification of u(t).
Recall that REACTAMOLE’s primitives addSF
and multSF are similar because they also depend
on their input’s ODEs and initial condition.
Because their implementation defers explicit
instantiation of their output signal until their
input signals are known, they encapsulate a family
of CRNs. For example, consider the signal function
sqrPlusOne that computes x2 + 1 of its input.

sqrPlusOne :: SF Double Double
sqrPlusOne = constRl 1 &&& sqrSF >>> addSF
where sqrSF = dupSF >>> multSF

Since sqrPlusOne depends on the ODEs of its
input, the number of species and reactions gen-
erated also depends on the signal given as input.
Thus, constRl 3 >>> sqrPlusOne would produce
a CRN with a constant species whose initial
concentration is 32 4+ 1 = 10. However, employ-
ing the sin signal function from section 3 with
sin >>> sqrPlusOne would produce the following
initial value problem:

x0(0) = 0.0, dx0/dt [+1.0%x1]
x1(0) = 1.0, dx1/dt [-1.0%x0]
x2(0) = 1.0, dx2/dt = [+2.0*x0%x1]

Note that x0 and x1 correspond to sin(t) and
cos(t), respectively, and upon inspection of the
ODE and initial condition for x2, we see it indeed
has solution sin(t)? + 1. Moreover, the signal
function sin >>> sqrPlusOne >>> integrateSF 0
produces the ODEs

x0(0) = 0.0, dx0/dt [+1.0%x1]
x1(0) = 1.0, dx1/4dt [-1.0*x0]
x2(0) = 0.0, dx2/dt = [+1.0,+1.0*x0~2]

It is important to note that the intermediate
variable for sin(t)? +1 was eliminated due to
REACTAMOLE’s representation of real numbers as
polynomials until explicit instantiation is neces-
sary. Now, the variable x2 has an ODE that
consists of sin(¢)? + 1, exactly as desired.

Many signal functions that cannot be
expressed as a single CRN can still be spec-
ified in REACTAMOLE. To showcase many of
these useful features, we implemented Bournez,
Graga, and Pouly’s “zo0” of GPAC functions [6].
REACTAMOLE includes templated implemen-
tations of exponentiation (expSF), sinusoidal
functions (sinSF, cosSF, tanhSF), and many more.

The sinSF :: SF Double Double signal function
encapsulates the family of CRNs that compute
sin(u(¢)). Thus, an equivalent implementation of
the sin signal we implemented in section 3 is

sin = constRl 1 >>> integrateSF 0 >>> sinSF

because sinSF produces the sine of its input and
constRl 1 >>> integrateSF 0 simply creates a sig-
nal that is equal to t.

We can also derive specifications for other com-
mon functions using these primitives. For exam-
ple, the hyperbolic cosine function can be defined
using the exponentiation cosh(z) = & +2€71 , which
can be implemented easily in REACTAMOLE with

coshSF :: SF Double Double
coshSF = expSF &&& (negateSF >>> expSF)
>>> addSF >>> constMult (1/2)

Bournez, Graga, and Pouly also defined
approximations of discontinuous functions such as
absolute value and sigmoid by using the hyper-
bolic tangent function. These can be defined in
REACTAMOLE with:

absSF :: Double -> SF Double Double
absSF d = constMult (1/d) >>> tanhSF &&& idSF
>>> multSF >>> constAdd d

signSF :: Double -> SF Double Double
signSF d = constMult d >>> tanhSF

Both of these signal functions are parameterized
with a double d that tunes the accuracy of the
approximation. These in turn can be used to define
signal functions maxSF, minSF, and even a rounding
function rndsF.

7 Related Work

A significant body of past research in the areas of
both functional reactive programming and chem-
ical reaction networks [2] laid the foundation for
our work. We review relevant areas of this work
below, including those that directly influenced
REACTAMOLE, as well as other efforts in CRN
languages and FRP.

7.1 Chemical Reaction Networks

There are two models of CRNs. The stochastic
model represents conditions with a small num-
ber of molecules and is probability-based [9, 38,
39]. The deterministic model represents conditions
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with substantive chemical concentrations and is
modeled by ordinary differential e quations. In
REACTAMOLE, we have identified t hat t he deter-
ministic model can be realized using functional
reactive programming. Identifying a similar frame-
work for the stochastic model remains an open
question.

Influences f or REACTAMOLE

REACTAMOLE’s support for Boolean circuits and
functions is based on Ellis et al.’s robust NAND
gate CRN [15], which is the foundation for REAC-

TAMOLE’s logical gates. Klinge et al. [28] build
upon this work by translating nondeterminis-

tic finite a utomata ( NFAs)intoI /O C RNs, an
important step towards realizing the theoretical
potential of this system. The robustness of 1/O
CRNs inspired us to use them as the basis of

REACTAMOLE’s typed CRN representation.

While REACTAMOLE uses a novel paradigm for
CRNE, it is not the first higher-level language for

deterministic CRNs. One important predecessor is
CRN++, an imperative language, which utilizes
a clock that works similarly to the bits described
by Klinge et al. [28], with molecular species of
oscillating concentrations [40].

Other Linguistical Work

Additional research in the realm of deterministic
CRN linguistical support includes CRN compila-
tion into DNA [3, 31] and simulating CRNs [7, 8].
Related linguistical research for molecular pro-
gramming includes a language for CRN-controlled
tile assembly [29], a language for formalizing
biological properties using temporal logic and
optimizing robustness [7, 18], and other domain
specific languages for biochemistry [34].

7.2 Functional Reactive
Programming

Overview

There are several helpful overviews of functional
reactive programming [41], arrowized FRP [33],
and reactive programming more broadly, includ-
ing many existing languages and approaches [4]
that provide insight into the current state of the
paradigm. Wan and Hudak also introduce formal
semantics for FRP in their paper [41].

Yampa

REACTAMOLE was influenced by several key con-
tributions to the FRP paradigm. The most
influential of these is Yampa, another Haskell-
embedded FRP DSL, which REACTAMOLE is
modeled upon. Yampa uses arrow notation, a gen-
eralization of monads, to solve the long-standing
FRP issue of preventing time- and space-leaks.
This makes it ideal for working with systems
under real-time constraints [23]. REACTAMOLE’s
language structure is inspired by this arrow and
signal function design pattern of Yampa, but cus-
tomized to the domain of CRNs. This arrow
construct was first introduced by Hughes in 2000
[24], which marked the creation of arrowized FRP.
Yampa supports a newer and more readable syn-
tax for arrows [35], a potential useful addition to
REACTAMOLE in the future. REACTAMOLE also
uses generalized algebraic data types (GADTS) to
ensure that well-typed CRNs correspond to well-
formed CRNs, a concept introduced for FRP by
Nilsson [32] that was influential both for REACTA-
MOLE and for Yampa.

Other Implementations

There are also other languages and works of note
in the FRP paradigm, with a broad range of
applications. These include robotics [36], GUIs
[10, 11], and animation [13]. One well-established
and respected language within the FRP paradigm
is Elm. Unlike other FRP languages, Elm allows
the programmer to specify when event orderings
can be violated in order to maintain the respon-
siveness of the UI and improve efficiency. It also
increases efficiency by assuming all signal changes
occur only after discrete events, and is, there-
fore, able to sample signals far less frequently [11].
While this approach is quite different from the one
we used for REACTAMOLE, it is helpful to show the
possibilities of the FRP framework, especially in
the early stages of language design. Another lan-
guage in this domain is Frappé, which predates
Elm. Frappé was the first FRP language to be
built outside of Haskell, and was implemented in
Java, opening the door to wider applications for
FRP [10]. One potential future avenue for REAC-
TAMOLE is to move away from Haskell and become
a standalone language, as we discuss in section 8.



Analysis of FRP

Beyond programming languages, other impor-
tant advancements in the FRP realm have been
explored, including potential type systems and
new strategies for tackling common FRP issues
such as time- and space-leaks. Most relevant to
REACTAMOLE is the use of Linear-time Temporal
Logic (LTL) as a basis for a richer type system
than what Haskell provides. LTL is compatible
with arrowized FRP and can provide support for
expressing temporal language properties [26]. One
future direction for REACTAMOLE would be to
incorporate LTL into its type system. Another
approach to temporal specifications f or F RP is
the use of Temporal Stream Logic, which is also
compatible with arrowized FRP and has been
implemented using the Yampa library [20].

Work has also been conducted on patching
time- and space-leaks in FRP languages. A lan-
guage called Real-Time FRP introduces methods
for statically bounding the time and space costs of
programs [42]. One method for increasing the effi-
ciency of FRP programs is the Push-Pull method,
where values are only recomputed when necessary.
This method incorporates data-driven evaluation
into the computational approach, greatly reducing
the reaction times [14].

8 Conclusion

REACTAMOLE unveils new possibilities for the
future of molecular programming through explo-

ration of a novel paradigm for the field: func-
tional reactive programming. The language uses
typed CRNs—CRNs with extra information about
how their chemical species map to Haskell
types—to enable complex computation. In partic-
ular, REACTAMOLE introduces combinators that
allow for computation over basic primitives types
as well as the safe manipulation and composition
of CRNs.

The representation of I/O CRNs as signal
functions in FRP allows for the efficient construc-
tion of a variety of CRNs using relatively few
species. For example, the NOT gate for Booleans
and negation for real values are both achieved
through “rewiring” of a signal function (reinter-
preting the species’ types) and do not require
any additional chemical species. This results in
OR and AND gates that use the same number of

species as the NAND gate they are built from.
Additionally, the use of ODEs to represent CRNs
enables real-valued operations such as addition
for CRNs. We also provide a formal construction
of the representations of various Haskell types as
CRNs, including Booleans, Reals, Pairs, and the
Either type. All of these features make REACTA-
MOLE a useful tool for safe, robust, and automated
construction and composition of CRNs.

Future Work

There are four main areas for further improvement
that we hope to pursue. First, there is potential for
expanding REACTAMOLE'’s lifting support, includ-
ing optimizing the construction of lifted Boolean
functions, enabling lift for multi-output Boolean
functions, and adding support for lifting certain
real functions using the Either type. Lifting for
reals will require some constraints, since these sig-
nals cannot be discontinuous. Indeed, the solution
of a polynomial system of ODEs is necessarily a
real analytic funcion [30].

We would also like to improve the handling
of approximations and delays. Currently, nandSF
and Either are approximations because there is
some unavoidable delay when working with chem-
ical reactions. Moreover, using Haskell’s Double
type for real values introduces some floating point
errors that can affect rate constants and initial
conditions of the final CRN. In the future, it would
be helpful to build support for tracking approx-
imation margins and specifying additional guar-
antees. Similarly, composing NAND gates propa-
gates delay, and this is currently not controllable
by the user because the rate constants are hard-
coded. Ellis et al. specify a method for converting
a 7 value to a rate constant [15] which could
be leveraged to allow the user to specify a rate
constant for the NAND gates in REACTAMOLE.

It would also be useful to expand the back-end
options for REACTAMOLE. Currently, REACTA-
MOLE is capable of explicitly generating CRNs in
a general format, but it stops short of simulating
the CRN and plotting the results. We would like to
incorporate an ODE solving library and plotting
tools for visualization, as well as allowing CRNs
to be exported to other tools such as MATLAB
SimBiology.

Finally, REACTAMOLE may be a good can-
didate for a standalone language. In particular,
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we can move beyond the limitations of Haskell
and specialize the language’s features even fur-
ther to make molecular programming more conve-
nient. With this change, we can consider adding a
strong, linear temporal logic-based type system to
REACTAMOLE to capture fine-grained correctness
properties of our CRNs [26]. Such a type system
can, in turn, enable the efficient au tomatic gen-
eration of CRNs from specification, i.e., program
synthesis [20].
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