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Abstract 17 

The traffic fundamental diagram (FD) describes the relationships among fundamental 18 
traffic variables of flow, density, and speed. FD represents fundamental properties of 19 
traffic streams, giving insights into traffic performance. This paper presents a 20 
theoretical investigation of dynamic FD properties, derived directly from vehicle car-21 
following (control) models to model traffic hysteresis. Analytical derivation of 22 
dynamic FD is enabled by (i) frequency-domain representation of vehicle kinematics 23 
(acceleration, speed, and position) to derive vehicle trajectories based on transfer 24 
function and (ii) continuum approximation of density and flow, measured along the 25 
derived trajectories using Edie’s generalized definitions. The formulation is generic: 26 
the derivation of dynamic FD is possible with any analytical car-following (control) 27 
laws for human-driven vehicles or automated vehicles (AVs). Numerical experiments 28 
shed light on the effects of the density-flow measurement region and car-following 29 
parameters on the dynamic FD properties for an AV platoon. 30 
 31 
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1 Introduction 35 
The traffic fundamental diagram (FD) is a representation of the relationships among fundamental 36 
traffic variables of flow, density, and speed. FD describes the fundamental properties of traffic 37 
streams, giving insights into traffic performance. Since its inception by the seminal Greenshields 38 
model(Greenshields et al., 1935), numerous studies have ensued to confirm its existence(e.g., Ahn 39 
et al., 2004; Cassidy, 1998) and determine the shape, giving rise to various families of models(e.g.,  40 
Newell, 1993; Smulders, 1986; Wu, 2002). FD has been widely used as an important basis for 41 
planning and operational analysis (e.g., level of service determination(HCM, 2016), and dynamic 42 
traffic management such as ramp metering(e.g., Papageorgiou & Kotsialos, 2002; Papamichail et 43 
al., 2010) and variable speed limit (VSL) control(Carlson et al., 2010; Chen et al., 2014a; Chen & 44 
Ahn, 2015; Hegyi et al., 2005; Knoop et al., 2010). 45 

The FD, in the traditional sense, describes steady traffic properties and is often referred to as 46 
a ‘static’ traffic model. However, in their seminal empirical study, Treiterer & Myers, (1974) 47 
discovered ‘traffic hysteresis’ - an elliptical evolution of flow-density relationship as vehicles 48 
decelerate and accelerate during a major traffic disturbance. Since then, presence of traffic 49 
hysteresis has been confirmed and theorized by many studies(Chen et al., 2012; Zhang, 1999), 50 
though some studies suggest that the hysteresis magnitude, attributed to car-following, has been 51 
exaggerated in earlier studies(e.g., Ahn & Vadlamani, 2010; Coifman et al., 2018; Laval, 2011). 52 
Generally, there are two types of hysteresis discussed. The first type stems from traffic oscillations 53 
around an equilibrium traffic state in congested traffic. For this type, the initial equilibrium state 54 
is restored after the passage of disturbance(Treiterer & Myers, 1974). The other type involves a 55 
change in equilibrium state, particularly from uncongested to congested states. A three-phase car 56 
following theory by Zhang (1999) and Zhang & Kim (2005) describes this type of traffic 57 
hysteresis, where 'capacity drop' phenomenon (i.e., lower throughput after transitioning to a 58 
congested state) is emphasized. The present paper focuses on the first type. 59 

In addition, automated vehicles (AVs), with their increasing adoption rate, will likely bring 60 
systematic changes to traffic properties, both static and dynamic. Notably, (T. Li et al., 2022) 61 
provided a thorough empirical analysis of FD using experimental data from 17 adaptive cruise 62 
control (ACC) vehicles using the measurement method developed by Shi & Li (2021). They found 63 
that the ACC vehicles exhibit linear FDs (in the congested branch), though the magnitudes of FD 64 
parameters can be significantly different from those for human-driven vehicles, depending on the 65 
input setting. Further, the experimental study using four different commercial AVs with ACC has 66 
verified the existence of traffic hysteresis in AV platoons(Makridis et al., 2021). While insightful, 67 
major shortcomings of these experimental studies are that (i) the investigations are limited to static 68 
properties, or (ii) the ACC algorithms are proprietary and unknown to the public, thus the 69 
underlying mechanisms remain unknown. Notably, some theoretical investigations of FD with 70 
AVs exist in the literature(Shi & Li, 2021; Yao et al., 2022; J. Zhou & Zhu, 2020); however, the 71 
scope remains largely limited to static properties. Thus, we have a limited understanding of how 72 
the control formulation and parameter setting impact dynamic FD features. 73 

Dynamic properties of FD, particularly traffic hysteresis, have important implications for 74 
dynamic traffic control. For example, some well-known VSL control methods are based on the 75 
first-order kinematic wave (KW) theory(Chen et al., 2014b; Han et al., 2017; Hegyi et al., 2005), 76 
in which traffic evolution is described by solving a system of static FD equation and a first-order 77 
partial differential equation for flow conservation. These methods determine appropriate speed 78 
limits in a dynamic fashion by predicting the traffic states the imposed speed limits will induce. 79 
However, the first order KW models assume infinite acceleration/deceleration, thereby failing to 80 
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capture complex features such as capacity drop, stop-and-go oscillations, and hysteresis observed 81 
in real traffic(Logghe & Immers, 2008; Nagel & Nelson, 2005). Higher order KW models 82 
introduce an additional partial differential equation to capture finite vehicle 83 
acceleration/deceleration (while still working with a static FD)(Aw & Rascle, 2000; Lebacque et 84 
al., 2007; H. Payne, 1971; H. J. Payne, 1971; Van Wageningen-Kessels et al., 2015; Zhang, 1999). 85 
Owing to this treatment, some of these higher-order KW models can successfully reproduce the 86 
above traffic features, including traffic hysteresis. While these models provide a more accurate 87 
description of dynamic traffic, their applications for dynamic traffic control have been limited ( 88 
exception: Carlson et al., 2010) due to their complexity in interpretation, calibration and validation, 89 
numerical approximation, and computation.   90 

In this paper, we conduct a theoretical investigation of dynamic FD, a kind that can depict 91 
key higher-order, nonlinear traffic features such as traffic hysteresis. It is derived directly from 92 
car-following control models for AV to provide direct insight into how vehicle behavior scales up 93 
to dynamic traffic behavior, which is currently missing in the literature. We focus on dynamic FD 94 
(rather than the KW model), in light of contemporary traffic control strategies, such as 95 
reinforcement learning(Han et al., 2022; Li et al., 2017) and control theory(Zhou et al., 2020) based 96 
control, that do not necessarily adhere to the KW theory. For these strategies, incorporation of 97 
dynamic FD presents a classic and elegant approach to maintain physical validity. We also 98 
emphasize the direct connection between vehicle and traffic behavior because connected AVs 99 
(CAVs) will likely serve as control actuators in future traffic control. Thus, the linkage provides 100 
direct insight into how CAVs should be controlled to achieve a specific traffic performance (e.g., 101 
beyond string stability). Further, it can provide a simpler platform for control: desirable vehicle 102 
control can be achieved through adjusting control parameter settings, rather than prescribing a 103 
precise form of vehicle trajectory. Our framework directly maps the car following law to the 104 
dynamic fundamental diagram to provide insight into the mechanisms, which can be harnessed for 105 
dynamic traffic management (e.g., ramp metering, and variable speed limit) together with vehicle 106 
control. 107 

In this study, analytical derivation of dynamic FD is enabled by (i) frequency-domain 108 
representation of vehicle kinematics (acceleration, speed, and position) and (ii) continuum 109 
approximation of flow and density measured along the derived trajectory using Edie’s generalized 110 
definitions(Edie, 1963). The formulation is generic in the sense that derivation of dynamic FD is 111 
possible with any analytical car-following (control) laws for human-driven vehicles or AVs. To 112 
verify our derivations and identify potential factors affecting dynamic FDs, a series of numerical 113 
experiments were conducted. The results show the presence of hysteresis within the AV traffic 114 
flow when facing oscillations. The shape and orientation on hysteresis in the dynamic FD are 115 
influenced by the frequency characteristics of oscillations (single-frequency or multi-frequency), 116 
flow-density measurement region, and the car-following control parameter setting. Particularly, 117 
we show that the control gains, total delay in sensing and control actuation, desired time gap, and 118 
equilibrium speed all have unique effects on the properties of dynamic FD.  119 

The remainder of this paper is organized as follows. Section 2 presents the trajectory 120 
expressions for a CAV platoon in frequency domain. Section 3 then analytically derives 121 
fundamental variables in dynamic FD. Simulation experiments and their results to illustrate the 122 
efficacy of our dynamic FD are provided in Section 4. Finally, Section 5 contains our conclusions 123 
and limitations. 124 

 125 
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2 Frequency-domain CAV Trajectory  126 

In this section, we mathematically derive the trajectory of CAV based on a transfer function in the 127 
frequency domain. The frequency-domain representation can better describe the evolution of 128 
oscillations in a platoon, compared to traditional time-domain expressions(Zhou et al., 2023). 129 
Further, using a transfer function can unveil the input-output relationship for a time-invariant 130 
dynamic system such as the longitudinal control of CAVs. 131 

First, we consider a platoon of 𝑁 homogenous CAVs, indexed by 𝑙 ∈ {0,1,… , 𝑁 − 1}, where 132 
0 indicates the leading vehicle. All CAVs are assumed to follow the same deterministic car-133 
following law, 𝑓, 134 

𝑎𝑙(𝑡) = 𝑓(Δ𝑥𝑙(𝑡 − 𝜃), 𝑣𝑙(𝑡 − 𝜃), 𝑣𝑙−1(𝑡 − 𝜃)), (1) 
where 𝑎𝑙(⋅), 𝑣𝑙(⋅), and Δ𝑥𝑙(⋅) respectively denote vehicle 𝑙’s acceleration, speed, and spacing with 135 
its predecessor over time. In addition, 𝜃 denotes the total time delay caused by CAV’s sensing and 136 
control actuation (i.e., system’s latency), we treat it as constant for simplicity. By the physical 137 
kinematics law, Δ𝑥𝑙(𝑡) = ∫ [𝑣𝑙(𝜑) − 𝑣𝑙−1(𝜑)]𝑑𝜑𝑡

0 + Δ𝑥𝑙(0) . To describe car-following under 138 
traffic oscillations, we decompose vehicle trajectories into the nominal and the oscillatory 139 
components. The former represents an equilibrium state, described by a unique relationship 140 
between the equilibrium speed, 𝑣𝑒, and spacing, Δ𝑥𝑒, where 𝑣𝑒 varies from 0 to the free flow speed. 141 
Both  Δ𝑥𝑒 and 𝑣𝑒 are constants. In this state, 𝑎𝑙(𝑡) = 𝑓(Δ𝑥𝑒, 𝑣𝑒, 𝑣𝑒) = 0. In the following context, 142 
we assume the equilibrium state will not change throughout the oscillations. Traffic hysteresis 143 
resulting from an equilibrium state change falls beyond the scope of this discussion. The oscillatory 144 
component describes the deviation from the equilibrium state, characterized by Δ𝑥̂𝑙(𝑡):=145 
 Δ𝑥𝑙(𝑡) − Δ𝑥𝑒 and 𝑣̂𝑙(𝑡):= 𝑣𝑙(𝑡) − 𝑣𝑒 . For convenience, here we linearize the system over the 146 
equilibrium point (Δ𝑥𝑒, 𝑣𝑒, 𝑣𝑒)  to analyze the first-order residual impacts of 147 
(Δ𝑥̂𝑙(𝑡), 𝑣̂𝑙(𝑡), 𝑣̂𝑙−1(𝑡))  on acceleration 𝑎𝑙(𝑡)  by letting 𝑓(Δ𝑥̂𝑙(𝑡), 𝑣̂𝑙(𝑡), 𝑣̂𝑙−1(𝑡)) =148 
𝑓(Δ𝑥𝑙(𝑡), 𝑣𝑙(𝑡), 𝑣𝑙−1(𝑡)). 𝑓 is a shifted function of 𝑓  via shifting Δ𝑥̂𝑙(𝑡), 𝑣̂𝑙(𝑡), 𝑣̂𝑙−1(𝑡) by Δ𝑥𝑒,149 
𝑣𝑒, 𝑣𝑒, respectively. Then the equilibrium state is 𝑓(0,0,0) = 0. 150 

We also assume the initial conditions of all following CAVs are at equilibrium, i.e., Δ𝑥𝑙(0) =151 
Δ𝑥𝑒 , ∀𝑙 = 1,2,… , 𝑁 − 1. Without loss of generality, let 𝑥0(0) = 0. Then, by the kinematics law, 152 
the oscillatory position can be written as: 153 

Δ𝑥̂𝑙(𝑡) = ∫ 𝑣̂𝑙(𝜑)𝑑𝜑𝑡
0 − ∫ 𝑣̂𝑙−1(𝜑)𝑑𝜑𝑡

0 .  (2) 

Further, for derivation convenience, we conduct linearization on 𝑓. Through a Taylor series 154 
expansion near the origin (0,0,0) and ignoring higher order terms as they are very close to zero, 𝑓 155 
can be linearized as: 156 

𝑓 = 𝑎𝑙(𝑡) = 𝑓1′Δ𝑥̂𝑙(𝑡 − 𝜃) + 𝑓2′𝑣̂𝑙(𝑡 − 𝜃) + 𝑓3′𝑣̂𝑙−1(𝑡 − 𝜃),  (3) 

where 𝑓1
′, 𝑓2′, and 𝑓3′ are gradients, obtained via the first-order partial derivative corresponding to 157 

each term; i.e.,  𝑓1′ = 𝜕𝑓̂
𝜕Δ𝑥̂𝑙

, 𝑓2′ = 𝜕𝑓̂
𝜕𝑣̂𝑙

 , and 𝑓3′ = 𝜕𝑓̂
𝜕𝑣̂𝑙−1

 . Note that 𝑓 is the linear approximation of 158 

general nonlinear CF law 𝑓.  159 

Combining Eqs. (2) and (3), we have 160 

𝑣̇𝑙(𝑡) = 𝑓1′ (∫ 𝑣̂𝑙(𝜑)𝑑𝜑 − ∫ 𝑣̂𝑙−1(𝜑)𝑑𝜑𝑡−𝜃
0

𝑡−𝜃
0 ) + 𝑓2′𝑣̂𝑙(𝑡 − 𝜃) + 𝑓3′𝑣̂𝑙−1(𝑡 − 𝜃).  

(4) 
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For simplification, we further assume 𝑣̂𝑙(0) = 0. As Eq. (4) is still highly non-linear, we take 161 
the Laplace transform for further derivation of CAV trajectory in the frequency domain. The 162 
transformation provides a convenient platform to study a linear dynamic system by substituting 163 
integration with division and differentiation with multiplication. Then, Eq. (4) is converted as 164 
follows in the frequency domain: 165 

𝑠𝑉̂𝑙(𝑠) − 𝑓1′
𝑒−𝜃𝑠

𝑆
𝑉̂𝑙(𝑠) − 𝑓2′𝑉̂𝑙(𝑠)𝑒−𝜃𝑠 = −𝑓1′

𝑒−𝜃𝑠

𝑆
𝑉̂𝑙−1(𝑠) + 𝑓3′𝑉̂𝑙−1(𝑠)𝑒−𝜃𝑠,   (5) 

where 𝑠 = 𝑗𝜔 , 𝑗  denotes the imaginary unit, and 𝜔  is the frequency.  𝑉̂𝑙(𝑠)  and 𝑉̂𝑙−1(𝑠)  are 166 
respectively the oscillatory speeds of vehicles 𝑙  and 𝑙 − 1 in the frequency domain. Then the 167 
xtransfer function, 𝐺(𝑠), can be defined using the oscillatory components of speed: 168 

𝐺(𝑠) = 𝑥̂𝑙(𝑠)
𝑥̂𝑙−1(𝑠)

= 𝑠𝑉̂𝑙(𝑠)
𝑠𝑉̂𝑙−1(𝑠)

= 𝑉̂𝑙(𝑠)
𝑉̂𝑙−1(𝑠)

= −𝑓̂1′𝑒−𝜃𝑠+𝑓̂3′𝑠𝑒−𝜃𝑠

𝑠2−𝑓̂1
′𝑒−𝜃𝑠−𝑓̂2

′𝑠𝑒−𝜃𝑠.  
(6) 

We write 𝐺(𝑗𝜔) = |𝐺(𝑗𝜔)|𝑒𝑗 ∡𝐺(𝑗𝜔) with its norm |𝐺(𝑗𝜔)| and angle ∡𝐺(𝑗𝜔). The transfer 169 
function implies how output (i.e. 𝑉̂𝑙(𝑠)) responds to the input ((i.e. 𝑉̂𝑙−1(𝑠))). It can be used to 170 
describe oscillation propagation along a platoon, which is a crucial element to describe dynamic 171 
traffic.  172 
Remark 1 The transfer function described above is intricately linked to the norm |𝐺(𝑗𝜔)| and the 173 
phase shift ∡𝐺(𝑗𝜔). The transfer function defined above is intricately linked to the norm |𝐺(𝑗𝜔)| 174 
and the phase shift ∡𝐺(𝑗𝜔) (Zhou et al., 2023). It is noteworthy that the framework established 175 
herein remains applicable even in the presence of alternative nonlinear or unidentified car-176 
following laws, where we can replace the transfer function with a describing function(Li et al., 177 
2012, 2014; Li & Ouyang, 2011; Wang et al., 2020) or a data-driven transfer function(Y. Zhou et 178 
al., 2023) to approximate the behavior. 179 

Based on the above work, we are ready to derive the position for vehicle 𝑙 in CAV platoon. 180 
Without loss of generality, we assume the position of leading vehicle 0 as follows: 181 

𝑥0(𝑡) = 𝑥̅0(𝑡) + 𝑥̂0(𝑡), (7) 

Where  

𝑥̅0(𝑡) = 𝑣𝑒𝑡, (8) 

𝑥̂0(𝑡) = ∑ 𝐴0
(𝑚) sin(𝜔𝑚𝑡 + 𝜙𝑚),

∞

𝑚=1

 
(9) 

where 𝑥̅0(𝑡)  is the nominal component and 𝑥̂0(𝑡)  the oscillation component. Note that we 182 
decompose the oscillation into the sum of sinusoidal waves through its Fourier transform; see Eq. 183 
(6b). 𝑚 is the index of oscillatory waves, and 𝐴0

(𝑚)  is the amplitude of oscillatory wave with 184 
frequency 𝜔𝑚  and phase shift 𝜙𝑚 . Sinusoidal functions are selected for their advantageous 185 
attributes of boundedness and periodicity. We employ the mathematical framework of sinusoidal 186 
functions, 𝑥̂0(𝑡) = ∑ 𝐴0

(𝑚) sin(𝜔𝑚𝑡 + 𝜙𝑚)∞
𝑚=1 , to represent the oscillatory components. We 187 

employ multiple sinusoidal waves to model oscillations with compound frequencies to be more 188 
realistic. This approach is widely adopted in analytical modeling of waves, as exemplified by Li 189 
et al. (2014).   190 

 191 
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We can also derive the speed and acceleration of the leading vehicle composed of the nominal 192 
and oscillatory components: 193 

𝑣0(𝑡) = 𝑣̅0(𝑡) + 𝑣̂0(𝑡) = 𝑣𝑒 + 𝐴0
(𝑚)𝜔𝑚 ∑ cos(𝜔𝑚𝑡 + 𝜙𝑚),

∞

𝑚=1

 
(4) 

𝑎0(𝑡) = 𝑎̅0(𝑡) + 𝑎̂0(𝑡) = −𝐴0
(𝑚)𝜔𝑚

2 ∑ sin(𝜔𝑚𝑡 + 𝜙𝑚),
∞

𝑚=1

 
 

 (5)  

By Eq. (6), we can further find  𝑋̂𝑙(𝑠) = 𝑋̂𝑙−1(𝑠)𝐺(𝑠). Therefore, given the platoon satisfying the 194 
aforementioned initial condition, vehicle 𝑙's position has the following nominal and oscillatory 195 
components: 196 

𝑥̅𝑙(𝑡) = 𝑣𝑒𝑡 − 𝑙∆𝑥𝑒, (12) 

𝑥̂𝑙(𝑡) = ℒ−1 (𝑋̂𝑙(𝑠)) = ℒ−1(𝑋̂0(𝑠)𝐺𝑙(𝑠)) = ℒ−1(𝑋̂0(𝑠)|𝐺(𝑠)|𝑙𝑒𝑗𝑙∡𝐺(𝑠))

= lim
𝑀→∞

∑ 𝐴0
(𝑚)|𝐺(𝑗𝜔𝑚)|𝑙 sin(𝜔𝑚𝑡 + 𝜙𝑚 + 𝑙∡𝐺(𝑗𝜔𝑚)).

𝑀

𝑚=1

 

 

 
(13)  

Correspondingly, for vehicle 𝑙, the speed and acceleration are: 197 

𝑣𝑙(𝑡) = 𝑣𝑒 + 𝐴0
(𝑚)|𝐺(𝑗𝜔𝑚)|𝑙𝜔𝑚 ∑ cos(𝜔𝑚𝑡 + 𝜙𝑚 + 𝑙∡𝐺(𝑗𝜔𝑚))

∞

𝑚=1

 
(14) 

𝑎𝑙(𝑡) = −𝐴0
(𝑚)|𝐺(𝑗𝜔𝑚)|𝑙𝜔𝑚

2 ∑ sin(𝜔𝑚𝑡 + 𝜙𝑚 + 𝑙∡𝐺(𝑗𝜔𝑚))∞
𝑚=1   (15)  

It is noteworthy that the negative sign within the oscillatory component of acceleration (Eq. 198 
15) bears limited consequences, owing to the periodic nature of the sinusoidal function. Then for 199 
a platoon consisting of 𝑁 homogenous CAVs, the length of the platoon can be derived as (after 200 
some simplification): 201 

𝑥0(𝑡) − 𝑥𝑁(𝑡) = 𝑁∆𝑥𝑒 + ∑ 𝑅𝐴0
(𝑚)[sin(𝜔𝑚𝑡 + 𝜙𝑚 − 𝜙𝑐)]𝑀

𝑚=1 ,   (6) 

where 𝑅 = √1 − 2|𝐺(𝑗𝜔𝑚)|𝑁 cos(𝑁∡𝐺(𝑗𝜔𝑚))+|𝐺(𝑗𝜔𝑚)|2𝑁  and 𝜙𝑐 =202 

arctan |𝐺(𝑗𝜔𝑚)|𝑁 sin(𝑁∡𝐺(𝑗𝜔𝑚))
1−|𝐺(𝑗𝜔𝑚)|𝑁 cos(𝑁∡𝐺(𝑗𝜔𝑚))

  are two constant values. For a comprehensive derivation, please 203 

refer to Appendix A. 204 

3 Analytical Model of Dynamic FD 205 

Here we derive the fundamental traffic variables using the position derived in Section 2 and then 206 
FD. This approach allows us scale up to dynamic FD while retaining dynamic vehicle 207 
characteristics. The discussion of FD pertains to traffic hysteresis within the congested regime. To 208 
this end, we first apply Edie’s generalized definitions for traffic density and flow (Edie, 1963) 209 
since they are flexible for different measurement methods. (In Edie's definition, density is denoted 210 
as the total time spent by all 𝑁 vehicles divided by the area of a measurement time-space region. 211 
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Flow is denoted as the total distance travelled by all 𝑁 vehicles divided by the area of time-space 212 
region.) Specifically, the generalized definitions give density and flow as follows: 213 

𝑘(𝑡, Δ𝑡, 𝑁) =
𝑁Δ𝑡

𝑊(𝑡, Δ𝑡, 𝑁), 
(7) 

𝑄(𝑡, Δ𝑡, 𝑁) =
∑ (𝑥𝑙(𝑡 + Δ𝑡) − 𝑥𝑙(𝑡))𝑁

𝑙=1

𝑊(𝑡, Δ𝑡, 𝑁) , 
(8) 

where 𝑘 and 𝑄 are density and flow, respectively. 𝑊 is the area of a predefined time-space region. 214 
Instead of a traditional rectangular window, we define a customized time-space window 𝑊 at time 215 
𝑡 along the trajectories covering all 𝑁 CAVs with a width Δ𝑡. This window, depicted in Fig. 1, can 216 
be referred to as vertical window1.  Hence, we have the area as: 217 

𝑊(𝑡, Δ𝑡, 𝑁) = ∫ [𝑥0(𝑡) − 𝑥𝑁(𝑡)]d𝑡𝑡+Δ𝑡
𝑡   

= 𝑁∆𝑥𝑒𝛥𝑡 + ∑
𝑅𝐴0

(𝑚)

𝜔𝑚

𝑀

𝑚=1

[cos(𝜔𝑚𝑡 + 𝜙𝑚 − 𝜙𝑐) − cos(𝜔𝑚(𝑡 + 𝛥𝑡) + 𝜙𝑚 − 𝜙𝑐)].  

 
(99) 

 218 

Figure 1: Illustration of vertical time-space window. 219 

This customized window, referred to as the "vertical window," is recognized for its 220 
straightforward interpretability and mathematical convenience. Then, combined with Eq. (99), Eqs. 221 
(7) and (8) can be rewritten as:  222 

𝑘(𝑡, 𝛥𝑡, 𝑁) = 𝑁Δ𝑡

𝑁∆𝑥𝑒Δ𝑡+∑
𝑅𝐴0

(𝑚)

𝜔𝑚
𝑀
𝑚=1 [cos(𝜔𝑚𝑡+𝜙𝑚−𝜙𝑐)−cos(𝜔𝑚(𝑡+Δ𝑡)+𝜙𝑚−𝜙𝑐)]

,  (20) 

 
1 In Laval (2011), the window is slanted according to the maximum congestion wave speed to maximize the chance of having a 
homogenous traffic state. This paper uses vertical windows instead for mathematical elegance and due to the fact that the wave speed 
can be nonlinear along the vehicle platoon (considering the disturbance dampening) and potentially time-varying (Shi et al. 2023). 
This property renders analytical derivation based on slanted windows mathematically prohibitive.   
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𝑄(𝑡, 𝛥𝑡, 𝑁) =
𝑁𝑣𝑒Δ𝑡+ ∑ ∑ 𝐴0

(𝑚)|𝐺(𝑗𝜔𝑚)|𝑙[sin(𝜔𝑚(𝑡+Δ𝑡)+𝜙𝑚+𝑙∡𝐺(𝑗𝜔𝑚))−sin(𝜔𝑚𝑡+𝜙𝑚+𝑙∡𝐺(𝑗𝜔𝑚))]𝑀
𝑚=1

𝑁
𝑙=1

𝑁∆𝑥𝑒Δ𝑡+∑
𝑅𝐴0

(𝑚)

𝜔𝑚
𝑀
𝑚=1 [cos(𝜔𝑚𝑡+𝜙𝑚−𝜙𝑐)−cos(𝜔𝑚(𝑡+Δ𝑡)+𝜙𝑚−𝜙𝑐)]

.   
(21) 

3.1 Continuum approximation 223 

To make sure that the derived density and flow are physically meaningful and continuous in the 224 
time domain, we take the limit, 𝚫𝒕 → 𝟎 of Eqs. (20) and (21):  225 

𝑘(𝑡, 𝑁) = 𝑁

𝑁∆𝑥𝑒+∑ 𝑅𝐴0
(𝑚) sin(𝜔𝑚𝑡+𝜙𝑚−𝜙𝑐)𝑀

𝑚=1
,   (22)  

𝑄(𝑡, 𝑁) = 𝑁𝑣𝑒+∑ ∑ 𝐴0
(𝑚)|𝐺(𝑗𝜔𝑚)|𝑙𝜔𝑚 cos(𝜔𝑚𝑡+𝜙𝑚+𝑙∡𝐺(𝑗𝜔𝑚))𝑀

𝑚=1
𝑁
𝑙=1

𝑁∆𝑥𝑒+∑ 𝑅𝐴0
(𝑚) sin(𝜔𝑚𝑡+𝜙𝑚−𝜙𝑐)𝑀

𝑚=1
.     (23)  

The result shows that 𝑘 and 𝑄 are cyclic functions, whose periods are the least common 226 
multiple of 2𝜋

𝜔𝑚
, for 1 ≤ 𝑚 ≤ 𝑀.  227 

Remark 2 From Eqs. (22) and (23), 𝑄 and 𝑘 are both functions of 𝑣𝑒  (typically ∆𝑥𝑒  is also a 228 
function of 𝑣𝑒), oscillation components 𝐴0

(𝑚), 𝜔𝑚 and  𝜙𝑚,  as well as AV CF control 𝐺. Thus, 𝑄 229 
and 𝑘 together can describe the dynamics of FD directly.  230 

Next, we will further discuss two special scenarios based on the continuum approximation 231 
(CA). The first scenario pertains to deriving 𝑘 and 𝑄 for a short oscillating platoon, where an 232 
oscillation comprises a single dominant sinusoidal wave. In practice scenarios, even when 233 
oscillations involve a combination of waves with varying frequencies, there tends to be one 234 
‘dominant wave’ where its frequency component has the highest magnitude or power. Identifying 235 
the dominant wave can be done through techniques such as Fourier analysis, where an oscillation 236 
wave is decomposed into its frequency components using the Fourier transform. The second 237 
scenario explores 𝑘 and 𝑄 when the single-wave oscillation evolves along a long string stable 238 
platoon. Note that in a string stable platoon system, the system’s CF behavior remains controllable 239 
even when faced with various disturbances in the environment. String stability is an important and 240 
desired property from a safety perspective. Hereafter, we guarantee string stability via constraining 241 
the norm of the transfer function. 242 

Scenario I (Short Oscillating Platoon). In the case of a single dominant wave (i.e., 𝑀 = 1) with 243 
𝑝 as the principal frequency component, we have 244 

𝑘(𝑡, 𝑁) = 𝑁

𝑁∆𝑥𝑒+𝑅𝐴0
(𝑝)|𝐺(𝑗𝜔𝑝)|

𝑁
sin(𝜔𝑝𝑡+𝜙𝑝−𝜙𝑐)

, (24) 

  

𝑄(𝑡, 𝑁) =
𝑁𝑣𝑒+∑ 𝐴0

(𝑝)|𝐺(𝑗𝜔𝑝)|𝑙𝜔𝑝 cos(𝜔𝑝𝑡+𝜙𝑝+𝑙∡𝐺(𝑗𝜔𝑝))𝑁
𝑙=1

𝑁∆𝑥𝑒+𝑅𝐴0
(𝑝)|𝐺(𝑗𝜔𝑝)|

𝑁
sin(𝜔𝑝𝑡+𝜙𝑝−𝜙𝑐)

. 
(25) 

  

In this case, 𝑘 and 𝑄 are both cyclic functions over 𝑡 with the same oscillation period of 245 
2𝜋/𝜔𝑝. Within one deceleration-acceleration cycle, we can further compute the expectation of 𝑘 246 
and 𝑄, respectively. For simplicity, let 𝜙𝑝, 𝜙𝑐 = 0 as we can adjust the upper bound and lower 247 
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bound of integral during integration. We further define, 𝐴̅ = 𝑅𝐴0
(𝑝)|𝐺(𝑗𝜔𝑝)|

𝑁

𝑁 , where  𝐴̅ stands for the 248 
average magnitude of oscillation through the platoon.  249 

Proposition 1 (density expectation): The expectation of 𝑘, 𝐸(𝑘), follows 𝐸(𝑘) = 1
√(∆𝑥𝑒)2−(𝐴̅)2

.  250 

Proof: 251 

𝐸(𝑘) = 𝜔𝑝

2𝜋 ∫ 𝑘(𝑡, 𝑁)
2𝜋
𝜔𝑝
0 d𝑡 = 𝜔𝑝

2𝜋 ∫ 𝑁

𝑁∆𝑥𝑒+𝑅𝐴0
(𝑝)|𝐺(𝑗𝜔𝑝)|

𝑁
sin(𝜔𝑝𝑡)

2𝜋
𝜔𝑝
0 d𝑡 =

𝜔𝑝

2𝜋 ∫ 1

∆𝑥𝑒+(𝑅𝐴0
(𝑝)|𝐺(𝑗𝜔𝑝)|

𝑁
/𝑁)sin(𝜔𝑝𝑡)

2𝜋
𝜔𝑝
0 d𝑡,   

  

 

 

Letting 𝑅𝐴0
(𝑝)|𝐺(𝑗𝜔𝑝)|

𝑁

𝑁
= 𝐴̅, we have 𝐸(𝑘) = 𝜔𝑝

2𝜋 ∫ 1
∆𝑥𝑒+𝐴̅∙sin(𝜔𝑝𝑡)

2𝜋
𝜔𝑝
0 = 𝜔𝑝

2𝜋

2𝜋

√(∆𝑥𝑒)2−(𝐴̅)2

𝜔𝑝
= 1

√(∆𝑥𝑒)2−(𝐴̅)2
. 252 

Therefore, we obtain Proposition 1. 253 

𝑄. 𝐸.𝐷. 254 

 Note: when |𝐺(𝑗𝜔𝑝)| < 1 and 𝑁 is large (e.g., 𝑁 = 5),  𝐴̅ ≪ Δ𝑥𝑒, therefore, 𝐸(𝑘) ≈ 1
Δ𝑥𝑒

. 255 

Proposition 2 (flow expectation): The expectation of 𝑄, 𝐸(𝑄) = 𝑣𝑒

√(∆𝑥𝑒)2−(𝐴̅)2
. 256 

Proof: 257 

𝐸(𝑄) = 𝜔𝑝

2𝜋 ∫
𝑁𝑣𝑒+∑ 𝐴0

(𝑝)|𝐺(𝑗𝜔𝑝)|𝑙𝜔𝑝 cos(𝜔𝑝𝑡+𝑙∡𝐺(𝑗𝜔𝑝))𝑁
𝑙=1

𝑁∆𝑥𝑒+𝑅𝐴0
(1)|𝐺(𝑗𝜔𝑝)|

𝑁
sin(𝜔𝑝𝑡)

2𝜋
𝜔𝑝
0 d𝑡   

= 𝜔𝑝

2𝜋
𝑣𝑒 ∫ 1

∆𝑥𝑒+𝐴̅ sin(𝜔𝑝𝑡)

2𝜋
𝜔𝑝
0 d𝑡 + 𝜔𝑝

2𝜋
𝐴0

(𝑝)𝜔𝑝

𝑁 ∫
∑ |𝐺(𝑗𝜔𝑝)|𝑙cos(𝜔𝑝𝑡+𝑙∡𝐺(𝑗𝜔𝑝))𝑁

𝑙=1

∆𝑥𝑒+𝐴̅ sin(𝜔𝑝𝑡)

2𝜋
𝜔𝑝
0 d𝑡  

= 𝜔𝑝

2𝜋
𝑣𝑒 ∫ 1

∆𝑥𝑒+𝐴̅ sin(𝜔𝑝𝑡)

2𝜋
𝜔𝑝
0 d𝑡 + 𝜔𝑝

2𝜋
𝐴0

(𝑝)𝜔𝑝

𝑁
∑ |𝐺(𝑗𝜔𝑝)|

𝑙𝑁
𝑙=1 ∫

cos(𝜔𝑝𝑡+𝑙∡𝐺(𝑗𝜔𝑝))

∆𝑥𝑒+𝐴̅ sin(𝜔𝑝𝑡)

2𝜋
𝜔𝑝
0 d𝑡  

= 𝜔𝑝

2𝜋
𝑣𝑒

2𝜋
𝜔𝑝√(∆𝑥𝑒)2−(𝐴̅)2

+ 𝜔𝑝

2𝜋
𝐴0

(𝑝)|𝐺(𝑗𝜔𝑝)|𝑙𝜔𝑝

𝑁
∙ 𝐹  

 

where 𝐹 = ∫
cos(𝜔𝑝𝑡+𝑙∡𝐺(𝑗𝜔𝑝))

∆𝑥𝑒+𝐴̅ sin(𝜔𝑝𝑡)

2𝜋
𝜔𝑝
0 d𝑡. As  ∫

cos(𝜔𝑝𝑡+𝑙∡𝐺(𝑗𝜔𝑝))

∆𝑥𝑒+𝐴̅ sin(𝜔𝑝𝑡)

2𝜋
𝜔𝑝
0 d𝑡 = 0(𝑙 ∈ [1,𝑁], 𝑙 ∈ 𝑍),  𝐹 = 0. 258 

Hence, 𝐸(𝑄) = 𝑣𝑒

√(∆𝑥𝑒)2−(𝐴̅)2
, we have Proposition 3. 259 

𝑄. 𝐸.𝐷. 260 

Note: Similarly, when |𝐺(𝑗𝜔𝑝)| < 1 and 𝑁  is large (e.g., 𝑁 = 5),  𝐴̅ ≪ Δ𝑥𝑒 . Therefore, 261 
𝐸(𝑄) ≈ 𝑣𝑒

Δ𝑥𝑒
, which is consistent with the fundamental definition, 𝐸(𝑄) = 𝑣𝑒𝐸(𝑘). 262 

Scenario II (Long String Stable Platoon). Considering a long platoon (i.e., 𝑁 → ∞) that is string 263 
stable (i.e., |𝐺(𝑗𝜔𝑝)| < 1, we have 264 
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lim
𝑁→∞

𝐸(𝑘(𝑁)) = 1
Δ𝑥𝑒

,  

lim
𝑁→∞

𝐸(𝑄(𝑁)) = 𝑣𝑒
Δ𝑥𝑒

,   

which suggests a traditional FD for steady traffic flow. This is intuitive because if the platoon is 265 
long enough and string stable, oscillations would be dampened eventually to the equilibrium point. 266 

3.2 Hysteresis orientation 267 

Here we analytically determine the orientation of hysteresis that can arise during an oscillation. 268 
Specifically, a random point on the hysteresis loop, referred as 𝑝1, is selected, as depicted in Fig.2. 269 
Accordingly, its density and flow at time point 𝑡 are denoted as 𝑘(𝑡) and 𝑄(𝑡). Then, after a small 270 
time interval Δ𝑡, the corresponding point on the loop is denoted as 𝑝2, characterized by density 271 
𝑘(𝑡 + Δ𝑡) and flow 𝑄(𝑡 + Δ𝑡). The equilibrium point is expressed as 𝐸𝑞(𝑘𝑒, 𝑄𝑒), where 𝑘𝑒 and 272 
 𝑄𝑒 are respectively the equilibrium density and flow. Then, we can define two vectors 𝒂⃗⃗  and 𝒃⃗⃗  to 273 
describe the directional segments towards 𝑝1  and 𝑝2 , respectively, from the equilibrium point: 274 
𝒂⃗⃗ : (𝑘(𝑡) − 𝑘𝑒, 𝑄(𝑡) − 𝑄𝑒), 𝒃⃗⃗ : (𝑘(𝑡 + Δ𝑡) − 𝑘𝑒, 𝑄(𝑡 + Δ𝑡) − 𝑄𝑒). 275 

 276 

 277 
 278 

                                        (a)                                                                     (b) 279 

Figure 2: Example of traffic hysteresis orientation (a) counter-clockwise and (b) clockwise 280 

Then to find the hysteresis direction, we take the cross product of 𝒂⃗⃗  and 𝒃⃗⃗  and then apply the 281 
right-hand rule. 𝒂⃗⃗ × 𝒃⃗⃗  can be expressed as determinant: 282 

𝒂⃗⃗ × 𝒃⃗⃗ = | 𝑘(𝑡) − 𝑘𝑒 𝑄(𝑡) − 𝑄𝑒
𝑘(𝑡 + Δ𝑡) − 𝑘𝑒 𝑄(𝑡 + Δ𝑡) − 𝑄𝑒

|. (26) 

Eq. (20) can be further written as 𝒂⃗⃗ × 𝒃⃗⃗ = (𝑄(𝑡 + Δ𝑡) − 𝑄𝑒)(𝑘(𝑡) − 𝑘𝑒) − (𝑄(𝑡) −283 
𝑄𝑒)(𝑘(𝑡 + Δ𝑡) − 𝑘𝑒). After reorganizing, we obtain, 284 

𝒂⃗⃗ × 𝒃⃗⃗ = 𝑄(𝑡 + Δ𝑡)(𝑘(𝑡) − 𝑘𝑒) − 𝑘(𝑡 + Δ𝑡 )(𝑄(𝑡) − 𝑄𝑒) + 𝑄(𝑡)𝑘𝑒 − 𝑘(𝑡)𝑄𝑒. (27) 
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From Scenario II, 𝑘𝑒 = 1
∆𝑥𝑒

  and 𝑄𝑒 = 𝑣𝑒
∆𝑥𝑒

 . And by combining Eq. (26) and Eq. (27) from 285 

Scenario I, we obtain (after some simplification)  286 

𝒂⃗⃗ × 𝒃⃗⃗ = 𝐴0
(𝑝)𝜔𝑝

𝑁∆𝑥𝑒
[
∑ |𝐺(𝑗𝜔𝑝)|𝑙𝑵

𝒍=𝟏 cos(𝜔𝑝𝑡+𝜙𝑝+𝑙∡𝐺(𝑗𝜔𝑝))

∆𝑥𝑒+𝐴̅ sin(𝜔𝑝𝑡+𝜙𝑝−𝜙𝑐)
−

∑ |𝐺(𝑗𝜔𝑝)|𝑙𝑵
𝒍=𝟏 cos(𝜔𝑝(𝑡+Δ𝑡)+𝜙𝑝+𝑙∡𝐺(𝑗𝜔𝑝))

∆𝑥𝑒+𝐴̅ sin(𝜔𝑝(𝑡+Δ𝑡)+𝜙𝑝−𝜙𝑐)
].  

(28) 

Proposition 3 (hysteresis orientation identification). The hysteresis loop evolves clockwise on 287 
a dynamic FD if ∑ |𝐺(𝑗𝜔𝑝)|

𝑙𝑵
𝒍=𝟏 cos(𝑙∡𝐺(𝑗𝜔𝑝) + 𝜙𝑐) < 0  and counter-clockwise  if 288 

∑ |𝐺(𝑗𝜔𝑝)|
𝑙𝑵

𝒍=𝟏 cos(𝑙∡𝐺(𝑗𝜔𝑝) + 𝜙𝑐) > 0 . Obviously, there is no hysteresis if 289 
∑ |𝐺(𝑗𝜔𝑝)|

𝑙𝑵
𝒍=𝟏 cos(𝑙∡𝐺(𝑗𝜔𝑝) + 𝜙𝑐) = 0. 290 

Proof: 291 

Consider 𝑓(𝑡) =
∑ |𝐺(𝑗𝜔𝑝)|𝑙𝑁

𝑙=1 cos(𝜔𝑝𝑡+𝜙𝑝+𝑙∡𝐺(𝑗𝜔𝑝))

∆𝑥𝑒+𝐴̅ sin(𝜔𝑝𝑡+𝜙𝑝−𝜙𝑐)
 , then 𝒂⃗⃗ × 𝒃⃗⃗ = 𝐴0

(𝑝)𝜔𝑝

𝑁∆𝑥𝑒
[𝑓(𝑡) − 𝑓(𝑡 + Δ𝑡)] . 292 

To investigate the orientation, it is necessary to examine the positivity of 𝒂⃗⃗ × 𝒃⃗⃗ . Consider in one 293 

cycle, 𝑖. 𝑒. , 𝑡 ∈ [0, 2𝜋
𝜔𝑚 

], since 𝐴0
(𝑝)𝜔𝑝

𝑁∆𝑥𝑒
 is always positive definite, and 𝑓(𝑡 + Δ𝑡) = 𝑓(𝑡) + 𝑓′(𝑡) ∗294 

Δ𝑡 when Δ𝑡 → 0 (first order approximation), we can rewrite 𝒂⃗⃗ × 𝒃⃗⃗ = 𝐴0
(𝑝)𝜔𝑝

𝑁∆𝑥𝑒
[−𝑓′(𝑡) ∗ Δ𝑡], where 295 

𝑓′(𝑡) represents the first order derivative of 𝑓(𝑡). Thus, 𝒂⃗⃗ × 𝒃⃗⃗ > 0 when 𝑓′(𝑡) < 0, otherwise, 296 
𝒂⃗⃗ × 𝒃⃗⃗ < 0 when 𝑓′(𝑡) > 0. According to the quotient rule, 297 

𝑓′(𝑡) =
−∑ |𝐺(𝑗𝜔𝑝)|𝑙𝜔𝑝 sin(𝜔𝑝𝑡+𝜙𝑝+𝑙∡𝐺(𝑗𝜔𝑝))𝑵

𝒍=𝟏 ∗(∆𝑥𝑒+𝐴̅ sin(𝜔𝑝𝑡+𝜙𝑝−𝜙𝑐))−∑ |𝐺(𝑗𝜔𝑝)|𝑙𝑵
𝒍=𝟏 cos(𝜔𝑝𝑡+𝜙𝑝+𝑙∡𝐺(𝑗𝜔𝑝))∗(𝐴̅𝜔𝑝)cos(𝜔𝑝𝑡+𝜙𝑝−𝜙𝑐)

(∆𝑥𝑒+𝐴̅ sin(𝜔𝑝𝑡+𝜙𝑝−𝜙𝑐))
2 .  

(29) 

In Eq. (23), since the denominator of 𝑓′(𝑡) > 0 always holds, we will only focus on the 298 
numerator. Let 𝛼 = 𝜔𝑝𝑡 + 𝜙𝑝 + 𝑙∡𝐺(𝑗𝜔𝑝) and 𝛽 = 𝜔𝑝𝑡 + 𝜙𝑝 − 𝜙𝑐. Then the numerator of Eq. 299 
(23) can be written as: 300 

−∑ |𝐺(𝑗𝜔𝑝)|
𝑙𝜔𝑝 sin 𝛼𝑁

𝑙=1 ∗ (∆𝑥𝑒 + 𝐴̅ sin 𝛽) − ∑ |𝐺(𝑗𝜔𝑝)|
𝑙𝑁

𝑙=1 cos 𝛼 ∗ (𝐴̅𝜔𝑝) cos 𝛽   

= −𝜔𝑝∆𝑥𝑒 ∑ |𝐺(𝑗𝜔𝑝)|
𝑙
sin (𝜔𝑝𝑡 + 𝜙𝑝 + 𝑙∡𝐺(𝑗𝜔𝑝))𝑵

𝒍=𝟏 − 𝜔𝑝𝐴̅ ∑ |𝐺(𝑗𝜔𝑝)|
𝑙𝑵

𝒍=𝟏 cos (𝑙∡𝐺(𝑗𝜔𝑝) + 𝜙𝑐)  (30) 

Regarding the first term in Eq. (23), it should be noted that for each vehicle 𝑙 within one cycle, 301 
𝐸 (|𝐺(𝑗𝜔𝑝)|

𝑙 sin (𝜔𝑝𝑡 + 𝜙𝑝 + 𝑙∡𝐺(𝑗𝜔𝑝))) = 0. This result arises from the cyclic property of a 302 

sinusoidal function. Therefore 𝐸 (∑ |𝐺(𝑗𝜔𝑝)|
𝑙 sin (𝜔𝑝𝑡 + 𝜙𝑝 + 𝑙∡𝐺(𝑗𝜔𝑝))𝑵

𝒍=𝟏 ) = 𝟎. As a result, 303 
the sign of Eq. (24) will only be determined by the second term 304 
−𝜔𝑝𝐴̅∑ |𝐺(𝑗𝜔𝑝)|

𝑙𝑵
𝒍=𝟏 cos(𝑙∡𝐺(𝑗𝜔𝑝) + 𝜙𝑐) . According to the right-hand rule, 𝒂⃗⃗ × 𝒃⃗⃗ > 0 305 

corresponds to CCW (Fig. 2(a)), while 𝒂⃗⃗ × 𝒃⃗⃗ < 0 corresponds to CW (Fig. 2(b)). 306 

𝑄. 𝐸.𝐷. 307 

Note that as 𝐴0
(𝑝), 𝜔𝑝, and 𝑁 are all positive, and the orientation of hysteresis loop is only 308 

determined by |𝐺(𝑗𝜔𝑝)| and ∡𝐺(𝑗𝜔𝑝). 309 
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4 Numerical Experiments 310 

This section presents a series of numerical experiments to demonstrate how the derived analytical 311 
model of dynamic FD works. We start with the experiment setup and demonstrate how CA for FD 312 
can effectively represent traffic hysteresis. We further examine the individual and joint effects of 313 
key model parameters on the properties of dynamic FD. Through these experiments, we gain a 314 
deeper understanding of how the CAV behavior during an oscillation manifests itself in the 315 
hysteresis pattern. In addition, to show the generality of our framework, we put the derivation 316 
process of an HDV model and provide a comparison with AVs in Appendix B. 317 

4.1 Numerical experiment setup 318 

For the experiments, we adopt the second-order linear feedback controller by Van Arem et al. 319 
(2006) for the AV car-following law, as an example. This controller marks the pioneering car-320 
following logic specifically designed for CAV. It is simple yet effective, finding wide adoption in 321 
the literature.  322 

The control system state at time 𝑡 is defined as [Δ𝑥𝑒(𝑡) − Δ𝑥𝑙(𝑡), 𝑣𝑙−1(𝑡) − 𝑣𝑙(𝑡)]𝑇,  where 323 
the first term is the deviation from equilibrium (desired) spacing and the second term is speed 324 
difference, 𝑇 denotes transpose. Here, we incorporate two gains: spacing feedback gain 𝑘𝑠  and 325 
speed deviation gain 𝑘𝑣 . These gains are time-invariant and utilized to regulate the deviation from 326 
equilibrium spacing and the speed difference, respectively. Thus, the acceleration is given by: 327 

𝑎𝑙(𝑡) = 𝑘𝑠 ∙ (Δ𝑥𝑒(𝑡) − Δ𝑥𝑙(𝑡)) − 𝑘𝑣 ∙ 𝑣𝑙(𝑡) + 𝑘𝑣 ∙ 𝑣𝑙−1(𝑡). (31) 

Note that the acceleration gain is not considered here as AV lacks access to feedforward 328 
information from the preceding vehicle. Nevertheless, the proposed analytical model is general 329 
and can be extended to the application of CAV. The equilibrium spacing uses the widely adopted 330 
constant time gap policy: Δ𝑥𝑒 (𝑡) = 𝑣𝑒(𝑡) × 𝜏 + 𝑠0 , where 𝜏  and 𝑠0  represent constant desired 331 
time gap and standstill spacing, respectively.  332 

Based on Eq. (3) and Eq. (31), we can further derive 𝑓1′ = 𝜕𝑎𝑙(𝑡)
𝜕Δ𝑥̂𝑙(𝑡)

= 𝜕𝑘𝑠∙(−Δ𝑥̂𝑙(𝑡))
𝜕Δ𝑥̂𝑙(𝑡)

= −𝑘𝑠, 𝑓2′ =333 
𝜕𝑎𝑙(𝑡)
𝜕𝑣̂𝑙(𝑡)

= 𝜕(−𝑘𝑠(𝑣𝑙(𝑡)×𝜏+𝑠0)−𝑘𝑣∙𝑣𝑙(𝑡))
𝜕𝑣̂𝑙(𝑡)

= −𝑘𝑣 − 𝑘𝑠𝜏 , 𝑓3′ = 𝜕𝑎𝑙(𝑡)
𝜕𝑣̂𝑙−1(𝑡)

= 𝜕(𝑘𝑣∙𝑣𝑙−1(𝑡))
𝜕𝑣̂𝑙−1(𝑡)

= 𝑘𝑣 . Note that the 334 

partial derivatives are only related to the oscillatory parts (Δ𝑥̂𝑙(𝑡), 𝑣̂𝑙(𝑡), 𝑣̂𝑙−1(𝑡)) instead of the 335 
nominal parts (Δ𝑥̅𝑙(𝑡), 𝑣̅𝑙(𝑡), 𝑣̅𝑙−1(𝑡). 336 

 Then, the corresponding transfer function is given as: 337 

𝐺(𝑗𝜔) =
𝑉̂𝑙(𝑗𝜔)

𝑉̂𝑙−1(𝑗𝜔)
=

𝑘𝑠𝑒−𝑗𝜃𝜔 + 𝑗𝑘𝑣𝜔𝑒−𝑗𝜃𝜔

−𝜔2 + 𝑘𝑠𝑒−𝑗𝜃𝜔 + 𝑗(𝑘𝑣 + 𝑘𝑠𝜏)𝜔𝑒−𝜃𝑗𝜔. 
(32) 

As an example, we set 𝑘𝑠 = 1 (𝑠−2 ), 𝑘𝑣 = 1(𝑠−1), 𝜏 = 0.8 𝑠, 𝑣𝑒 = 10𝑚/𝑠, 𝜃 = 0.5𝑠𝑒𝑐. 338 
See Table 1 for details. Section 4.3 provides an in-depth exploration of the implications of 339 
parameter settings on dynamic FDs, where the parameters are set based on previous empirical 340 
studies(Gunter et al., 2020, 2021). The total study period is 40 𝑠𝑒𝑐 and the platoon size, 𝑁, is 20. 341 
Note that this setting serves as the default configuration for all subsequent experiments unless 342 
otherwise specified (i.e., Single oscillation case in Table 1).  343 
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Table 1: Default settings 344 
Parameters Values 

Spacing deviation gain 𝑘𝑠 1(𝑠−2) 
Speed difference gain 𝑘𝑣 1(𝑠−1) 

Desired time gap 𝜏 0.8(𝑠) 
Equilibrium speed 𝑣𝑒 10(𝑚/𝑠) 

Equilibrium spacing 𝑥𝑒 13(𝑚) 
Standstill spacing 𝑠0 5(𝑚) 

Vehicle number in the platoon 𝑁 20 
Total study period 𝑇 40(𝑠) 

Single oscillation case Compound oscillation case 
Total time delay 𝜃1 0.5(𝑠) 𝜃1, 𝜃2 0.5(𝑠), 0.3(𝑠) 

Frequency 𝜔1 0.1𝜋(𝐻𝑧) 𝜔1,𝜔2 0.1𝜋(𝐻𝑧), 
Phase shift 𝜙1 𝜋/2(°) 𝜙1,𝜙2 𝜋/2(°), 0(°) 
Amplitude 𝐴0

(1) 10𝑚 𝐴0
(1), 𝐴0

(2) 10𝑚, 3𝑚 

 345 

4.2 Effects of measurement region  346 

Here we investigate the effects of various parameters on the features of dynamic FD. We first 347 
examine the effects of the measurement region, in terms of the width of time window and the 348 
platoon size, on the traffic hysteresis under single-frequency and compound (i.e., multi-frequency) 349 
oscillations.  350 

Width of time window  351 

We first analyze a case with a single-frequency oscillation. As an example, we set 𝜔1 =352 
0.1π 𝐻𝑧, 𝜙1 = 𝜋

2
, and oscillation magnitude 𝐴0

(1) = 10𝑚. Then, we have |𝐺(𝑗𝜔𝑝)| = 0.9917 and 353 
∡𝐺(𝑗𝜔𝑝) = −0.2429 𝑠𝑒𝑐 . To examine the effectiveness of CA, we vary the width of time 354 
window, Δ𝑡 = {5, 2, 1, 0.1, 0} 𝑠𝑒𝑐, where Δ𝑡 = 0 𝑠𝑒𝑐 representing CA. The results are shown 355 
in Fig. 3. Notably, all FDs evolve clockwise over time, displaying evident hysteresis around the 356 
equilibrium point. Further, we observe a noticeable transformation in the shape of the 357 
hysteresis as Δ𝑡 decreases, transitioning from a polygon to an ellipse. This indicates that 358 
reducing the window width allows for a more precise measurement of the hysteresis and 359 
that the proposed CA method for measurement is highly desired. A large Δ𝑡 (e.g., Δ𝑡 = 5𝑠) 360 
evidently underestimates the hysteresis.  361 

 362 



14   

 363 

Figure 3: Dynamic FD of different Δ𝑡 and continuum approximation: Single-frequency oscillation 364 

We further extend our investigation to compound oscillations. This is accomplished by adding 365 
another oscillation component with 𝜔2 = 0.3𝜋 𝐻𝑧, 𝐴0

(2) = 3𝑚, and 𝜙2 = 0. Moreover, we set 366 
𝜃 = 0.3𝑠𝑒𝑐. The window width is also varied at Δ𝑡 = {5, 2, 1, 0.1, 0} 𝑠𝑒𝑐. The results are given 367 
in Fig. 4. Compared with the single-frequency oscillation case, the shapes of hysteresis loops with 368 
compound oscillations are less regular, albeit still cyclic. Furthermore, under the compound 369 
oscillations, the underestimation of hysteresis is more pronounced with greater Δ𝑡 (e.g., 60.45% 370 
underestimation of the loop area for Δ𝑡 = 5𝑠𝑒𝑐, as opposed to 48.47% in the single-frequency 371 
case). The CA-based measurement remains effective in capturing the comprehensive hysteresis 372 
phenomenon. As per the finding, subsequent experiments are conducted based on the CA method. 373 

  374 

Figure 4: Dynamic FD of different Δ𝑡 and continuum approximation: Compound oscillations 375 

Platoon size 376 

Here we investigate the effect of the platoon size (𝑁) on the dynamic FD (based on CA). Fig. 377 
5(a) and 5(b) illustrate the effect for string stable and string unstable platoons, respectively. For 378 
the former, we use the default setting. For the string unstable platoons, however, we modify both 379 
𝑘𝑠 and 𝑘𝑣  to 0.5, which gives |𝐺(𝑗𝜔𝑝)| = 1.0847 > 1 and ∡𝐺(𝑗𝜔𝑝) = −0.2818sec. In Fig. 5(a) 380 
and 5(b), we see that each FD evolves clockwise as an ellipse over time. The regularity in shape 381 
(perfect ellipse) is attributed to the single-frequency oscillation and the assumption of time-382 
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invariant and deterministic CF behavior. It is worth noting that the loop areas for the string unstable 383 
platoons are generally much larger than the string stable ones. Further, from Fig. 5(a), the 384 
movement area, in terms of both ellipsoidal length and width, decreases as 𝑁 increases because 385 
|𝐺(𝑗𝜔𝑝)| < 1, causing the oscillation to be dampened over space. Conversely, in Fig. 5(b), the 386 
hysteresis loop area expands as 𝑁 increases, suggesting the oscillation being amplified through the 387 
platoon.  388 

 389 
(a) (b) 390 

Figure 5: CA Dynamic FD with different 𝑁: (a) string stable (|𝐺(𝑗𝜔𝑝)| = 0.9917) and (b) string 391 
unstable (|𝐺(𝑗𝜔𝑝)| = 1.0847)  392 

4.3 Effects of car-following (control) parameters 393 

This subsection aims to unveil the impact of the car-following control parameter setting on the 394 
dynamic FD. Specifically, the control gains, total time delay in sensing and control actuation, 395 
desired time gap, and equilibrium speed are explored. 396 

Control gains  397 

To analyze the impact of the control gain setting on the dynamic FD, we conduct a twofold 398 
investigation: (i) the effect of each control gain and (ii) the joint effect of two control gains. we 399 
vary the values of 𝑘𝑠  and 𝑘𝑣  based on the feasible regions identified in Kontar et al. (2021). 400 
Specifically, we vary them from 1 to 2 with an increment of 0.5. (The units for 𝑘𝑠  and 𝑘𝑣  are 401 
respectively sec−2 and sec−1. )The result for 𝑘𝑠  is shown in Fig. 6(a). Notably, an increase in 402 
spacing feedback gain leads to a reduction of the hysteresis loop. This can be attributed to the fact 403 
that a larger 𝑘𝑠 results in a stronger response to a deviation from the equilibrium spacing, leading 404 
to less fluctuations and a smaller hysteresis loop.  405 

The impact of 𝑘𝑣  is shown in Fig. 6(b). Interestingly, unlike 𝑘𝑠, 𝑘𝑣  mainly affects the slope 406 
(congested wave speed), with a higher value of  𝑘𝑣  indicating a higher wave speed. Since 𝑘𝑣  is 407 
responsible for regulating the speed difference, a higher sensitivity to the speed difference (i.e., a 408 
higher 𝑘𝑣) leads to a quicker response, leading to a higher observed wave speed. This is consistent 409 
with the finding in Kontar et al. (2021). 410 

To quantify the features of hysteresis loops in Fig. 6, other than the ranges of density and flow 411 
(i.e., 𝑘𝑟𝑎𝑛𝑔𝑒 = 𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛,𝑄𝑟𝑎𝑛𝑔𝑒 = 𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛), we further define the width, length, and the 412 
area of each loop as illustrated in Fig. 7. Besides, the average wave speed in the congested branch 413 
(i.e., 𝑤 = 𝑄𝑚𝑖𝑛−𝑄𝑚𝑎𝑥

𝑘𝑚𝑎𝑥−𝑘𝑚𝑖𝑛
) is also reported. The results presented in Table 2 show that changing 𝑘𝑠 414 

affects both width and length of the ellipsoidal loop, while changing 𝑘𝑣  mainly affects the length 415 
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of hysteresis. Note that the area initially decreases and then increases as 𝑘𝑣  increases. This 416 
phenomenon is primarily attributed to a change in the orientation of hysteresis loop from clockwise 417 
to counter-clockwise. Theoretically, the area would become zero (reducing to a traditional linear 418 
relationship) where this change in orientation occurs. We will put more emphasis on the orientation 419 
later in the joint influence.  420 

The above findings underscore the difference between the traditional zero-order (static) FD 421 
and our dynamic FD, which possesses the capability to capture higher-order traffic flow features.  422 

  423 
          424 

(a)                                                                           (b) 425 

Figure 6: Dynamic FD with different control parameters (a) 𝑘𝑠  and (b) 𝑘𝑣  (𝜏 = 0.8𝑠, 𝑣𝑒 =426 
10𝑚/𝑠, 𝜃 = 5𝑠𝑒𝑐, 𝑘𝑠 = 1𝑠−1) 427 

 428 

Figure 7: Illustration of hysteresis loop length, width, area, and range 429 

430 
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Table 2: Traffic hysteresis measures with respect to (𝑘𝑠, 𝑘𝑣) 431 
 𝑘𝑠(sec−2) 𝑘𝑣(sec−1) 
 1 1.5 2 1 1.5 2 
 𝑘𝑒 = 76.92(𝑣𝑒ℎ/𝑘𝑚),  𝑄𝑒 = 2769.23(𝑣𝑒ℎ/ℎ𝑟) 

𝑘𝑟𝑎𝑛𝑔𝑒(𝑣𝑒ℎ/𝑘𝑚)  7.12 6.84 6.67 7.12 6.96 7.10 
𝑄𝑟𝑎𝑛𝑔𝑒(𝑣𝑒ℎ/ℎ𝑟) 170.79 163.44 158.75 170.79 190.05 238.00 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑙𝑜𝑤 
(𝑄𝑚𝑎𝑥,𝑣𝑒ℎ/ℎ𝑟) 

2854.03 2848.79 2845.69 2854.03 2863.84 2884.13 

𝑊𝑖𝑑𝑡ℎ(𝑣𝑒ℎ/𝑘𝑚)  14.28 13.64 13.30 14.28 14.25 14.29 
𝐿𝑒𝑛𝑔𝑡ℎ(𝑣𝑒ℎ/ℎ𝑟) 177.27 166.02 159.36 177.27 197.96 240.11 

𝐴𝑟𝑒𝑎(𝑣𝑒ℎ2/(𝑘𝑚 ∙ ℎ𝑟)) 213.91 125.77 82.61 213.91 117.33 473.86 
𝑤̅(𝑘𝑚/ℎ𝑟) −23.97 −23.91 −23.83 −23.97 −27.32 −33.51 

We are further interested in the joint influence of control gains over the dynamic FD as they 432 
are designed to work together. To explore this systematically, we expand the range of both 𝑘𝑠 and 433 
𝑘𝑣   to [0.5, 3.0] with a step size of 0.1. Fig. 8 provides a heatmap of the hysteresis orientation with 434 
respect to 𝑘𝑠 and 𝑘𝑣 . From the figure, two distinct boundaries are notable where the orientation 435 
switches from clockwise (noted as CW in the figure) to counter-clockwise (CCW) and vice versa. 436 
A significant majority (approximately 70%) of these loops exhibit a counter-clockwise pattern. 437 
This finding diverges from the conclusion drawn in the empirical study by Ahn et al. (2013) for 438 
human-driven vehicles, where clockwise loops are predominantly observed.  439 

Fig. 9 presents the results of a sensitivity analysis, illustrating the performances of the CAV 440 
system for different (𝑘𝑠, 𝑘𝑣) pairs within a physically reasonable range of [1.0, 3.0]. Notably, we 441 
have adjusted the lower bound for  𝑘𝑠 and 𝑘𝑣  to 1.0, as small values of  𝑘𝑠 and  𝑘𝑣 indicate an 442 
unresponsive controller, which is undesired. From Fig. 9(a), we observe that |𝐺| demonstrates a 443 
monotonically decreasing trend as 𝑘𝑣  increases. Conversely, for 𝑘𝑠 , |𝐺| initially experiences a 444 
decline until reaching a minimum value at 𝑘𝑠 = 1.1 , subsequently ascending as 𝑘𝑠  further 445 
increases. In Fig. 9(b), the z-axis is reversed to provide a visual representation of the response time 446 
(i.e., the absolute value of ∡𝐺). Notably, the system exhibits the shortest response time when 𝑘𝑠 is 447 
relatively small and 𝑘𝑣  is large. This observation suggests that the system’s damping 448 
characteristics are more pronounced when employing lower values of 𝑘𝑠  in conjunction with 449 
higher values of 𝑘𝑣 . Besides, the range of density in hysteresis is more affected by the setting of 450 
𝑘𝑠 than 𝑘𝑣  (Fig. 9(c)). The behavior of density is non-monotonic, with the combination of 𝑘𝑠 = 3 451 
and 𝑘𝑣 = 1.4 yielding the minimum density range. The same trend holds for the flow range, where 452 
the optimal combination is 𝑘𝑠 = 3 and 𝑘𝑣 = 1.1 (Fig. 9(d)). 453 
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 454 
Figure 8: Heatmap for hysteresis orientation with varying (𝑘𝑠, 𝑘𝑣) (𝜏 = 0.8𝑠, 𝑣𝑒 =455 

10𝑚/𝑠, 𝜃 = 5𝑠𝑒𝑐) 456 

 457 

  458 
                                        (a)                                                                     (b) 459 

  460 
                                        (c)                                                                     (d) 461 

Figure 9: Performances with varying (𝑘𝑠 , 𝑘𝑣) in terms of (a) norm of transfer function, (b) angle 462 
of transfer function, (c) range of density, and (d) range of flow 463 

Other parameters 464 
Next, the individual impacts of the total time delay (𝜃), desired time gap (𝜏), and equilibrium 465 

speed (𝑣𝑒) on the dynamic FD are investigated. Fig. 10(a) illustrates the effect of the time delay 466 
(0.5𝑠𝑒𝑐, 1𝑠𝑒𝑐, 1.5𝑠𝑒𝑐), revealing that an increase in delay leads to a deterioration in the platoon’s 467 
performance, accompanied by a larger hysteresis loop and higher wave speed. This is intuitive 468 
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since a larger delay in sensing and control actuation is known to make the system unstable (M. 469 
Wang, 2018). 470 

 For the desired time gap (set to 0.8𝑠𝑒𝑐, 0.9𝑠𝑒𝑐, and 1𝑠𝑒𝑐), the result in Fig. 10(b) shows that 471 
a tighter time gap (e.g., 𝜏 = 0.8𝑠𝑒𝑐) yields higher flow and density, albeit at the expense of a larger 472 
hysteresis loop. This observation is also intuitive since maintaining a tighter spacing gives a 473 
smaller room for error, leading to system instability. This also suggests that a dynamic FD is 474 
particularly useful under more aggressive settings, in which traffic hysteresis can arise.   475 

Table 3 exhibits the quantitative measures of performance obtained through varying 𝜃 and 𝜏. 476 
Notice that increasing 𝜃 also increases the wave speed. And when 𝜏 is set to 1𝑠𝑒𝑐, the hysteresis 477 
loop area is very small and approaches a linear pattern. This indicates that employing a more 478 
conservative (larger) desired time gap setting will lead to a more static traditional linear FD 479 
relationship.  480 

Fig. 10(c) shows the dynamic FD with the equilibrium speed varying from 5𝑚/𝑠 to 13𝑚/𝑠 481 
with an increase of 2 𝑚/𝑠. Notably, the slope from the origin to the equilibrium point of each 482 
hysteresis loop represents the value of 𝑣𝑒 . Since 𝑣𝑒 does not affect the hysteresis orientation (see 483 
Eq. (21)), all FDs in Fig. 10(c) are clockwise. Table 4 further provides quantitative measures of 484 
performances of different 𝑣𝑒 . It is noteworthy that the setting of 𝑣𝑒 can have a significant impact 485 
on dynamic FD, as reflected by the area change. Further, the average wave speed tends to increase 486 
with 𝑣𝑒, albeit at a smaller magnitude. 487 

 488 

 489 
                                           (a)                                                                       (b) 490 

 491 
     (c) 492 

Figure 10: Dynamic FD with different (a) time delay (𝜃)( 𝜏 = 0.8𝑠, 𝑣𝑒 = 10𝑚/𝑠), (b) desired 493 
time gap (𝜏)(𝑣𝑒 = 10𝑚/𝑠, 𝜃 = 5𝑠𝑒𝑐), and (c) equilibrium speed (𝑣𝑒) (𝜏 = 0.8𝑠, 𝜃 = 5𝑠𝑒𝑐) 494 

 495 
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 496 

Table 3: Traffic hysteresis measures with respect to 𝜃 and 𝜏 497 

 𝜃(sec) 𝜏(sec) 
 0.5 1 1.5 0.8 0.9 1 

𝑘𝑒(𝑣𝑒ℎ/𝑘𝑚) 76.92 76.92 76.92 79.62 71.43 66.67 
𝑄𝑒(𝑣𝑒ℎ/ℎ𝑟) 2769.23 2769.23 2769.23 2769.23 2571.43 2400.00 

𝑘𝑟𝑎𝑛𝑔𝑒(𝑣𝑒ℎ/𝑘𝑚) 7.12 8.60 9.78 7.12 4.07 2.64 
𝑄𝑟𝑎𝑛𝑔𝑒(𝑣𝑒ℎ/ℎ𝑟) 170.79 236.88 320.49 170.79 90.31 54.78 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑙𝑜𝑤 
(𝑄𝑚𝑎𝑥,𝑣𝑒ℎ/ℎ𝑟) 

2854.03 2885.64 2920.93 2854.03 2615.85 2427.96 

𝑊𝑖𝑑𝑡ℎ(𝑣𝑒ℎ/𝑘𝑚) 14.28 17.10 19.48 14.28 8.13 5.54 
𝐿𝑒𝑛𝑔𝑡ℎ(𝑣𝑒ℎ/ℎ𝑟) 177.27 245.76 323.06 177.27 91.16 56.90 

𝐴𝑟𝑒𝑎(𝑣𝑒ℎ2/(𝑘𝑚 ∙ ℎ𝑟)) 213.91 337.49 457.70 213.91 34.46 3.66 
𝑤̅(𝑘𝑚/ℎ𝑟) −23.97 −27.57 −32.79 −23.97 −22.17 −20.77 

Table 4: Traffic hysteresis measures with respect to 𝑣𝑒 498 

 𝑣𝑒(𝑚/𝑠) 
 5 7 9 11 13 

𝑘𝑒(𝑣𝑒ℎ/𝑘𝑚) 111.11 94.34 81.97 72.46 64.94 
𝑄𝑒(𝑣𝑒ℎ/ℎ𝑟) 2000.00 2377.36 2655.74 2869.57 3038.96 

𝑘𝑟𝑎𝑛𝑔𝑒(𝑣𝑒ℎ/𝑘𝑚) 15.04 10.83 8.17 6.38 5.12 
𝑄𝑟𝑎𝑛𝑔𝑒(𝑣𝑒ℎ/ℎ𝑟) 359.66 262.28 200.47 158.75 129.22 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑙𝑜𝑤 
(𝑄𝑚𝑎𝑥,𝑣𝑒ℎ/ℎ𝑟) 

2167.85 2501.11 2751.10 2945.54 3101.10 

𝑊𝑖𝑑𝑡ℎ(𝑣𝑒ℎ/𝑘𝑚) 29.96 21.55 16.24 12.67 10.15 
𝐿𝑒𝑛𝑔𝑡ℎ(𝑣𝑒ℎ/ℎ𝑟) 358.73 261.62 199.98 158.37 128.92 

𝐴𝑟𝑒𝑎(𝑣𝑒ℎ2/(𝑘𝑚 ∙ ℎ𝑟)) 581.91 500.56 391.37 295.13 243.26 
𝑤̅(𝑘𝑚/ℎ𝑟) −23.91 −24.22 −24.54 −24.88 −25.24 

 499 
 500 

5 Conclusions 501 

FDs have been extensively analyzed for decades, mainly for human-driven vehicles. Recently, the 502 
advent of AVs has challenged the applicability of classic static FDs as they do not fully capture 503 
the higher-order characteristics, such as traffic hysteresis, of AV car-following control. To fill this 504 
gap, this paper analytically formulated dynamic FD, based on an analytical car-following control 505 
law. The frequency domain representation of the car-following law as a transfer function simplified 506 
mathematical derivations. We further applied CA for the derived dynamic FD to provide more 507 
accurate, higher-resolution evolution of flow-density relationship over time and incorporate 508 
higher-order features. The derived dynamic FD enabled a systematic investigation into the 509 
presence of traffic hysteresis in AV platoons and potential factors that impact AV FDs. To 510 
systematically determine the orientation of traffic hysteresis, a right-hand rule based criterion was 511 
presented.  512 

We conducted a series of numerical experiments to verify the analytical results and examine 513 
the properties of the derived dynamic FD with respect to various parameters. First, we investigated 514 
the effects of the flow-density measurement region, expressed by the width of time window and 515 
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the platoon size. The results suggest that a large time window can lead to underestimation of 516 
hysteresis, underscoring the importance of using CA. The underestimation was more pronounced 517 
with compound oscillations, consisting of multiple frequency components. We also provided some 518 
quantitative insights into the impact of car-following control parameter setting on the properties of 519 
dynamic FD. Specifically, the control gains, particularly the gain that regulates speed difference, 520 
significantly impact the hysteresis magnitude, orientation, and the average wave speed. Further, 521 
the delay in sensing and control actuation, desired time gap, and equilibrium speed were all found 522 
to have unique impacts on the hysteresis properties. Understanding these effects would be crucial 523 
for optimizing the platoon behavior in various traffic scenarios and effectively managing traffic 524 
flow.  525 

Some future studies are nonetheless desirable. First, in this study, we focus on the congested 526 
regime of pure AV traffic for analytical tractability. Traffic hysteresis associated with transition 527 
between uncongested and congested states or between different equilibrium states is deferred to a 528 
future study. Second, we adopted the vertical measurement window for simplicity due to the lack 529 
of knowledge on the wave propagation in AV traffic. A better understanding of this feature may 530 
lead to a better selection of the measurement window. Third, for the purpose of analytical 531 
derivation, we made several simplifying assumptions such as homogeneous AV traffic and time-532 
invariant and deterministic car-following features (i.e., constant parameters). However, the 533 
intrinsic stochastic nature of traffic flow can significantly impact traffic properties such as stability 534 
and capacity. Therefore, the deterministic assumption should be relaxed in the future. This can be 535 
achieved, for example, by embracing stochastic and time-varying CF models (e.g., Jiang et al., 536 
2023). Further, linearization was undertaken to establish an analytical linkage between a CF law 537 
and dynamic FD. For enhanced precision, future research may address the nonlinear characteristics 538 
in CF laws by replacing the transfer function with data-derive functions, as demonstrated by prior 539 
works (e.g., Li & Ouyang, 2011; Zhou et al., 2023). Lastly, this study can also be extended to 540 
mixed traffic consisting of both AVs and human-driven vehicles to unveil how dynamic traffic 541 
features, as represented by dynamic FD, would evolve as the AV market penetration increases in 542 
the future.  543 

 544 

 Appendix A. Derivation of spacing 545 

From Eqs. (7) and (8), we obtain: 546 

𝑥0(𝑡) = 𝑣𝑒𝑡 + lim
𝑀→∞

∑ 𝐴0
(𝑚) sin(𝜔𝑚𝑡 + 𝜙𝑚),𝑀

𝑚=1    (A.1) 

𝑥𝑁(𝑡) = 𝑣𝑒𝑡 − 𝑁∆𝑥𝑒 + lim
𝑀→∞

∑ 𝐴0
(𝑚)|𝐺(𝑗𝜔𝑚)|𝑁 sin(𝜔𝑚𝑡 + 𝜙𝑚 + 𝑁∡𝐺(𝑗𝜔𝑚)).𝑀

𝑚=1    (A.2) 

Therefore, 547 

𝑥0(𝑡) − 𝑥𝑁(𝑡) = 𝑁∆𝑥𝑒 + ∑ 𝐴0
(𝑚)[sin(𝜔𝑚𝑡 + 𝜙𝑚) − |𝐺(𝑗𝜔𝑚)|𝑁 sin(𝜔𝑚𝑡 +𝑀

𝑚=1

𝜙𝑚 + 𝑁∡𝐺(𝑗𝜔𝑚))]  

= 𝑁∆𝑥𝑒 + ∑ 𝐴0
(𝑚){[(1 − |𝐺(𝑗𝜔𝑚)|𝑁 𝑐𝑜𝑠(𝑁∡𝐺(𝑗𝜔𝑚)))𝐬𝐢𝐧(𝝎𝒎𝒕 +𝑀

𝑚=1

𝝓𝒎)]−|𝐺(𝑗𝜔𝑚)|𝑁 sin(𝑁∡𝐺(𝑗𝜔𝑚)) 𝐜𝐨𝐬(𝝎𝒎𝒕 + 𝝓𝒎)}  

   

 

 (A.3) 



22   

For further simplification, assume 𝑓(𝑡) = ∑ 𝐴0
(𝑚){[(1 −𝑀

𝑚=1548 
|𝐺(𝑗𝜔𝑚)|𝑁 cos(𝑁∡𝐺(𝑗𝜔𝑚))) 𝐬𝐢𝐧(𝝎𝒎𝒕 + 𝝓𝒎)]−|𝐺(𝑗𝜔𝑚)|𝑁 sin(𝑁∡𝐺(𝑗𝜔𝑚)) 𝐜𝐨𝐬(𝝎𝒎𝒕 +549 
𝝓𝒎)} = 𝐶1 𝐬𝐢𝐧(𝝎𝒎𝒕 + 𝝓𝒎) − 𝐶2 𝐜𝐨𝐬(𝝎𝒎𝒕 + 𝝓𝒎).  550 

According to trigonometry,  551 

𝑓(𝑡) = 𝐶1 sin(𝜔𝑚𝑡 + 𝜙𝑚) − 𝐶2 cos(𝜔𝑚𝑡 + 𝜙𝑚) = 𝑅 sin(𝜔𝑚𝑡 + 𝜙𝑚 − 𝜙𝑐),    (A.4) 

where the amplitude  552 

𝑅 = √(𝐶1)2 + (𝐶2)2 =

√(1 − |𝐺(𝑗𝜔𝑚)|𝑁 cos(𝑁∡𝐺(𝑗𝜔𝑚)))2 + (|𝐺(𝑗𝜔𝑚)|𝑁 sin(𝑁∡𝐺(𝑗𝜔𝑚)))2  =

√1 − 2|𝐺(𝑗𝜔𝑚)|𝑁 𝑐𝑜𝑠(𝑁∡𝐺(𝑗𝜔𝑚))+|𝐺(𝑗𝜔𝑚)|2𝑁,   

   

    (A.5) 

𝜙𝑐 = arctan 𝐶2
𝐶1

= arctan |𝐺(𝑗𝜔𝑚)|𝑁 sin(𝑁∡𝐺(𝑗𝜔𝑚))
1−|𝐺(𝑗𝜔𝑚)|𝑁 cos(𝑁∡𝐺(𝑗𝜔𝑚))

.       (A.6) 

Therefore, we can have Equation (9). 553 

 Appendix B. Human driven vehicle vs. commercial AV 554 

To apply our framework on human driven vehicles, we select the generalized linear optimal 555 
velocity model (GL-OVM). This model, extensively employed by researchers for its capability to 556 
emulate traffic flow, adopts a car-following structure represented as follows: 557 

𝑎𝑙(𝑡) = 𝑣̇𝑙(𝑡) = 𝜅[𝑉(Δ𝑥𝑙(𝑡)) − 𝑣𝑙(𝑡)] (A.7) 

where 𝑉(Δ𝑥𝑙(𝑡)) is the optimal speed function related to the spacing Δ𝑥𝑙(𝑡), 𝜅 is the sensitivity 558 
parameter. Then, the exponential optimal speed function established by Newell (1961) is denoted 559 
as: 560 

𝑉(Δ𝑥𝑙(𝑡)) = 𝑣0 [1 − exp (−
𝛼
𝑣0

(Δ𝑥𝑙(𝑡) − 𝑠0))] 
(A.8) 

where 𝑣0  is the free-flow speed, 𝑠0  is the jam distance, and 𝛼  is the parameter related to the 561 
congested wave speed. Define 𝑣̂𝑙(𝑡):= 𝑣𝑙(𝑡) − 𝑣𝑒  and Δ𝑥̂𝑙(𝑡):=  Δ𝑥𝑙(𝑡) − Δ𝑥𝑒 , where 𝑣̂𝑙(𝑡) is 562 
speed deviation from equilibrium speed 𝑣𝑒  , Δ𝑥̂𝑙(𝑡) is the spacing deviation from equilibrium 563 
spacing Δ𝑥𝑒. 564 

Then, we linearize the CF law for human driven vehicles in Eq. (A.7) via Taylor expansion 565 
around the equilibrium state, in which 𝑎𝑙(𝑡) = 0,  566 

𝑉(Δ𝑥𝑙(𝑡)) = 𝑉(Δ𝑥𝑒) +
𝑉′(Δ𝑥𝑒)

1!
(Δ𝑥𝑙(𝑡) − Δ𝑥𝑒) 

(A.9) 

As  𝑉(Δ𝑥𝑒) is the equilibrium speed, i.e., 𝑉(Δ𝑥𝑒) = 𝑣𝑒 = 𝑣0 [1 − exp (− 𝛼
𝑣0

(Δ𝑥𝑙(𝑡) − 𝑠0))] 567 

according to Eq. (A.7). Eq. (A.9) can be further written as: 568 
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𝑉(Δ𝑥𝑙(𝑡)) = 𝑉′(Δ𝑥𝑒)(Δ𝑥𝑙(𝑡) − Δ𝑥𝑒) + 𝑣𝑒 (A.10) 

Substitute Eq. (A.10) into Eq. (A.7),            569 

𝑎𝑙(𝑡) = 𝑣̇𝑙(𝑡) = 𝜅[𝑉′(Δ𝑥𝑒)(Δ𝑥𝑙(𝑡) − Δ𝑥𝑒) + 𝑣𝑒 − 𝑣𝑙(𝑡)] (A.11) 

where 𝑉′(Δ𝑥𝑒) is the first order derivative of optimal speed function in Eq. (A.7) with respect to 570 
the equilibrium spacing. It can be computed as: 571 

𝑉′(Δ𝑥𝑒) = 𝛼 exp [−
𝛼
𝑣0

(Δ𝑥𝑒(𝑣𝑒) − 𝑠0)] 
(A.12) 

where Δ𝑥𝑒(𝑣𝑒) is the equilibrium spacing as a function of equilibrium speed 𝑣𝑒. Combining with 572 
Eq. (A.8) and solving for Δ𝑥𝑒 when 𝑣𝑙(𝑡) = 𝑣𝑒, we obtain  573 

Δ𝑥𝑒(𝑣𝑒) = 𝑠0 −
𝑣0

𝛼 ln (1 −
𝑣𝑒

𝑣0
) (A.13) 

Plugging Δ𝑥̂𝑙 and 𝑣̂𝑙(𝑡) into Eq. (A.11), we have 574 

𝑣̂𝑙̇(𝑡) = 𝜅𝑉′(Δ𝑥𝑒)Δ𝑥̂𝑙(𝑡) − 𝜅𝑣̂𝑙(𝑡) (A.14) 

Then we conduct Laplace transform to convert 𝑣̂𝑙 and Δ𝑥̂𝑙 into the frequency domain: 575 

Δ𝑥̂𝑙(𝑠) =
𝑣̂𝑙−1(𝑠) − 𝑣̂𝑙(𝑠)

𝑠  
(A.15) 

Finally, the transfer function of linearized OVM based on first order Taylor derivative 𝐺𝐼(𝑠) 576 
can be expressed as: 577 

𝐺𝐼(𝑠) =
𝜅𝑉′(Δ𝑥𝑒)

𝑠2 + 𝜅𝑠 + 𝜅𝑉′(Δ𝑥𝑒)
 

(A.16) 

We further conduct a numerical experiment to compare the features of traffic hysteresis 578 
between human driven vehicles and AVs. For the parameter setting, we adopt the calibration 579 
results of OVM by Wang et al. (2012), where 𝑣0 = 33.3𝑚/𝑠, 𝜅 = 0.700𝑠−1, 𝛼 = 0.999𝑠−1, and 580 
𝑠0 = 1.62𝑚. For the linear controller, we use the calibration results for a commercial AV by Jiang 581 
et al. (2023), where 𝑘𝑠 = 0.3790 (𝑠−2 ), 𝑘𝑣 = 0.3937(𝑠−1), 𝜏 = 0.8 𝑠, 𝑠0 = 7.3625𝑚, and 𝜃 =582 
0𝑠𝑒𝑐. Note that here 𝑣𝑒 = 25𝑚/𝑠 and 𝐴0 = 10𝑚. Figure A1 shows the dynamic FD of GL-OVM 583 
and commercial AV respectively. 584 

 585 
                                           (a)                                                                       (b) 586 

Figure A1: CA Dynamic FD with different 𝑁: (a) GL-OVM and (b) commercial AV  587 
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From the figure, we can notice that though all hysteresis loops are clockwise for both models. 588 
However, the AV exhibits higher throughput and is string stable under the given oscillation setting, 589 
whereas a platoon based on GL-OVM is string unstable.   590 
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