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Abstract

The traffic fundamental diagram (FD) describes the relationships among fundamental
traffic variables of flow, density, and speed. FD represents fundamental properties of
traffic streams, giving insights into traffic performance. This paper presents a
theoretical investigation of dynamic FD properties, derived directly from vehicle car-
following (control) models to model traffic hysteresis. Analytical derivation of
dynamic FD is enabled by (i) frequency-domain representation of vehicle kinematics
(acceleration, speed, and position) to derive vehicle trajectories based on transfer
function and (ii) continuum approximation of density and flow, measured along the
derived trajectories using Edie’s generalized definitions. The formulation is generic:
the derivation of dynamic FD is possible with any analytical car-following (control)
laws for human-driven vehicles or automated vehicles (AVs). Numerical experiments
shed light on the effects of the density-flow measurement region and car-following
parameters on the dynamic FD properties for an AV platoon.
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1 Introduction

The traffic fundamental diagram (FD) is a representation of the relationships among fundamental
traffic variables of flow, density, and speed. FD describes the fundamental properties of traffic
streams, giving insights into traffic performance. Since its inception by the seminal Greenshields
model(Greenshields et al., 1935), numerous studies have ensued to confirm its existence(e.g., Ahn
etal., 2004; Cassidy, 1998) and determine the shape, giving rise to various families of models(e.g.,
Newell, 1993; Smulders, 1986; Wu, 2002). FD has been widely used as an important basis for
planning and operational analysis (e.g., level of service determination(HCM, 2016), and dynamic
traffic management such as ramp metering(e.g., Papageorgiou & Kotsialos, 2002; Papamichail et
al., 2010) and variable speed limit (VSL) control(Carlson et al., 2010; Chen et al., 2014a; Chen &
Ahn, 2015; Hegyi et al., 2005; Knoop et al., 2010).

The FD, in the traditional sense, describes steady traffic properties and is often referred to as
a ‘static’ traffic model. However, in their seminal empirical study, Treiterer & Myers, (1974)
discovered ‘traffic hysteresis’ - an elliptical evolution of flow-density relationship as vehicles
decelerate and accelerate during a major traffic disturbance. Since then, presence of traffic
hysteresis has been confirmed and theorized by many studies(Chen et al., 2012; Zhang, 1999),
though some studies suggest that the hysteresis magnitude, attributed to car-following, has been
exaggerated in earlier studies(e.g., Ahn & Vadlamani, 2010; Coifman et al., 2018; Laval, 2011).
Generally, there are two types of hysteresis discussed. The first type stems from traffic oscillations
around an equilibrium traffic state in congested traffic. For this type, the initial equilibrium state
is restored after the passage of disturbance(Treiterer & Myers, 1974). The other type involves a
change in equilibrium state, particularly from uncongested to congested states. A three-phase car
following theory by Zhang (1999) and Zhang & Kim (2005) describes this type of traffic
hysteresis, where 'capacity drop' phenomenon (i.e., lower throughput after transitioning to a
congested state) is emphasized. The present paper focuses on the first type.

In addition, automated vehicles (AVs), with their increasing adoption rate, will likely bring
systematic changes to traffic properties, both static and dynamic. Notably, (T. Li et al., 2022)
provided a thorough empirical analysis of FD using experimental data from 17 adaptive cruise
control (ACC) vehicles using the measurement method developed by Shi & Li (2021). They found
that the ACC vehicles exhibit linear FDs (in the congested branch), though the magnitudes of FD
parameters can be significantly different from those for human-driven vehicles, depending on the
input setting. Further, the experimental study using four different commercial AVs with ACC has
verified the existence of traffic hysteresis in AV platoons(Makridis et al., 2021). While insightful,
major shortcomings of these experimental studies are that (i) the investigations are limited to static
properties, or (i1) the ACC algorithms are proprietary and unknown to the public, thus the
underlying mechanisms remain unknown. Notably, some theoretical investigations of FD with
AVs exist in the literature(Shi & Li, 2021; Yao et al., 2022; J. Zhou & Zhu, 2020); however, the
scope remains largely limited to static properties. Thus, we have a limited understanding of how
the control formulation and parameter setting impact dynamic FD features.

Dynamic properties of FD, particularly traffic hysteresis, have important implications for
dynamic traffic control. For example, some well-known VSL control methods are based on the
first-order kinematic wave (KW) theory(Chen et al., 2014b; Han et al., 2017; Hegyi et al., 2005),
in which traffic evolution is described by solving a system of static FD equation and a first-order
partial differential equation for flow conservation. These methods determine appropriate speed
limits in a dynamic fashion by predicting the traffic states the imposed speed limits will induce.
However, the first order KW models assume infinite acceleration/deceleration, thereby failing to
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capture complex features such as capacity drop, stop-and-go oscillations, and hysteresis observed
in real traffic(Logghe & Immers, 2008; Nagel & Nelson, 2005). Higher order KW models
introduce an additional partial differential equation to capture finite vehicle
acceleration/deceleration (while still working with a static FD)(Aw & Rascle, 2000; Lebacque et
al., 2007; H. Payne, 1971; H. J. Payne, 1971; Van Wageningen-Kessels et al., 2015; Zhang, 1999).
Owing to this treatment, some of these higher-order KW models can successfully reproduce the
above traffic features, including traffic hysteresis. While these models provide a more accurate
description of dynamic traffic, their applications for dynamic traffic control have been limited (
exception: Carlson et al., 2010) due to their complexity in interpretation, calibration and validation,
numerical approximation, and computation.

In this paper, we conduct a theoretical investigation of dynamic FD, a kind that can depict
key higher-order, nonlinear traffic features such as traffic hysteresis. It is derived directly from
car-following control models for AV to provide direct insight into how vehicle behavior scales up
to dynamic traffic behavior, which is currently missing in the literature. We focus on dynamic FD
(rather than the KW model), in light of contemporary traffic control strategies, such as
reinforcement learning(Han et al., 2022; Li et al., 2017) and control theory(Zhou et al., 2020) based
control, that do not necessarily adhere to the KW theory. For these strategies, incorporation of
dynamic FD presents a classic and elegant approach to maintain physical validity. We also
emphasize the direct connection between vehicle and traffic behavior because connected AVs
(CAVs) will likely serve as control actuators in future traffic control. Thus, the linkage provides
direct insight into how CAVs should be controlled to achieve a specific traffic performance (e.g.,
beyond string stability). Further, it can provide a simpler platform for control: desirable vehicle
control can be achieved through adjusting control parameter settings, rather than prescribing a
precise form of vehicle trajectory. Our framework directly maps the car following law to the
dynamic fundamental diagram to provide insight into the mechanisms, which can be harnessed for
dynamic traffic management (e.g., ramp metering, and variable speed limit) together with vehicle
control.

In this study, analytical derivation of dynamic FD is enabled by (i) frequency-domain
representation of vehicle kinematics (acceleration, speed, and position) and (ii) continuum
approximation of flow and density measured along the derived trajectory using Edie’s generalized
definitions(Edie, 1963). The formulation is generic in the sense that derivation of dynamic FD is
possible with any analytical car-following (control) laws for human-driven vehicles or AVs. To
verify our derivations and identify potential factors affecting dynamic FDs, a series of numerical
experiments were conducted. The results show the presence of hysteresis within the AV traffic
flow when facing oscillations. The shape and orientation on hysteresis in the dynamic FD are
influenced by the frequency characteristics of oscillations (single-frequency or multi-frequency),
flow-density measurement region, and the car-following control parameter setting. Particularly,
we show that the control gains, total delay in sensing and control actuation, desired time gap, and
equilibrium speed all have unique effects on the properties of dynamic FD.

The remainder of this paper is organized as follows. Section 2 presents the trajectory
expressions for a CAV platoon in frequency domain. Section 3 then analytically derives
fundamental variables in dynamic FD. Simulation experiments and their results to illustrate the
efficacy of our dynamic FD are provided in Section 4. Finally, Section 5 contains our conclusions
and limitations.
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2 Frequency-domain CAYV Trajectory

In this section, we mathematically derive the trajectory of CAV based on a transfer function in the
frequency domain. The frequency-domain representation can better describe the evolution of
oscillations in a platoon, compared to traditional time-domain expressions(Zhou et al., 2023).
Further, using a transfer function can unveil the input-output relationship for a time-invariant
dynamic system such as the longitudinal control of CAVs.

First, we consider a platoon of N homogenous CAVs, indexed by [ € {0,1, ..., N — 1}, where
0 indicates the leading vehicle. All CAVs are assumed to follow the same deterministic car-
following law, f,

a,(t) = f(Ax,(t — 0),v,(t — 6),v,_,(t — 6)), (1)
where a;(+), v;(+), and Ax;(-) respectively denote vehicle I’s acceleration, speed, and spacing with
its predecessor over time. In addition, 8 denotes the total time delay caused by CAV’s sensing and
control actuation (i.e., system’s latency), we treat it as constant for simplicity. By the physical
kinematics law, Ax;(t) = fot[vl(qi) —v;_1(@)]lde + Ax;(0). To describe car-following under
traffic oscillations, we decompose vehicle trajectories into the nominal and the oscillatory
components. The former represents an equilibrium state, described by a unique relationship
between the equilibrium speed, v,, and spacing, Ax,, where v, varies from 0 to the free flow speed.
Both Ax, and v, are constants. In this state, a;(t) = f(Ax,, V., v,) = 0. In the following context,
we assume the equilibrium state will not change throughout the oscillations. Traffic hysteresis
resulting from an equilibrium state change falls beyond the scope of this discussion. The oscillatory
component describes the deviation from the equilibrium state, characterized by AX;(t):=
Ax;(t) — Ax, and D;(t): = v;(t) — v,. For convenience, here we linearize the system over the
equilibrium point (Ax,, v,,v,) to analyze the first-order residual impacts of
(A%,(6), ,(£),D,_1(t)) on acceleration a;(t) by letting f(Aa?l(t), 9,(6),9_4(8)) =
f(Ax;(£),v,(t), v,_1(£)). f is a shifted function of f via shifting A%, (t), D,(t), D, (t) by Ax,,
V,, Ve, respectively. Then the equilibrium state is £(0,0,0) = 0.

We also assume the initial conditions of all following CAVs are at equilibrium, i.e., Ax;(0) =
Ax,, V0l =1,2,..,N — 1. Without loss of generality, let x,(0) = 0. Then, by the kinematics law,
the oscillatory position can be written as:

A%, (6) = [ (@) — [ 911 (@)dop. @

Further, for derivation convenience, we conduct linearization on f. Through a Taylor series
expansion near the origin (0,0,0) and ignoring higher order terms as they are very close to zero, f
can be linearized as:

f=a(t)=fi'A%(t = 6) + £,'0,(t — 6) + f3'0,_1(t — 6), 3)
where £, f,', and f;' are gradients, obtained via the first-order partial derivative corresponding to
each term; i.e., fi = a—fA, A ,and f4 = 27 Note that f is the linear approximation of

AR, o7, 01—

general nonlinear CF law f.

Combining Egs. (2) and (3), we have

o, 0) = £’ ([} 0updde — f;° 0,1 (@)do) + f30i(t = 0) + f3'D,y (£ — 6).
4
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For simplification, we further assume 7;(0) = 0. As Eq. (4) is still highly non-linear, we take
the Laplace transform for further derivation of CAV trajectory in the frequency domain. The
transformation provides a convenient platform to study a linear dynamic system by substituting
integration with division and differentiation with multiplication. Then, Eq. (4) is converted as
follows in the frequency domain:

~ ,\,—65,\ PPN _ ,\,—65,\ PPN _
V() = A = V() = fo'Vi()e ™™ = —fi' =01 (s) + f5' Vs (e ™, ®)

where s = jw, j denotes the imaginary unit, and w is the frequency. V;(s) and V,_;(s) are
respectively the oscillatory speeds of vehicles [ and [ — 1 in the frequency domain. Then the
xtransfer function, G (s), can be defined using the oscillatory components of speed:

G(s) = 2O SN _ Vi) _fier®fise™™ (6)
R1-1()  SVi-a()  Viea(s)  sP-flew95-f,se70s

We write G (jw) = |G (jw)|e/ *U®) with its norm |G(jw)| and angle 4 G (jw). The transfer
function implies how output (i.e. V;(s)) responds to the input ((i.e. V;_;(s))). It can be used to
describe oscillation propagation along a platoon, which is a crucial element to describe dynamic
traffic.
Remark 1 The transfer function described above is intricately linked to the norm |G (jw)| and the
phase shift 4 G (jw). The transfer function defined above is intricately linked to the norm |G (jw)]|
and the phase shift 4 G (jw) (Zhou et al., 2023). It is noteworthy that the framework established
herein remains applicable even in the presence of alternative nonlinear or unidentified car-
following laws, where we can replace the transfer function with a describing function(Li et al.,
2012, 2014; Li & Ouyang, 2011; Wang et al., 2020) or a data-driven transfer function(Y. Zhou et
al., 2023) to approximate the behavior.

Based on the above work, we are ready to derive the position for vehicle [ in CAV platoon.
Without loss of generality, we assume the position of leading vehicle 0 as follows:

xo(t) = %o (t) + %o (2), (7)

Where

'fO (t) = Vet, (8)
C )

2,0) = Y A sin(w,t + b,,),

where X, (t) is the nominal component and X,(t) the oscillation component. Note that we
decompose the oscillation into the sum of sinusoidal waves through its Fourier transform; see Eq.
(6b). m is the index of oscillatory waves, and A(()m) is the amplitude of oscillatory wave with
frequency w,, and phase shift ¢,,. Sinusoidal functions are selected for their advantageous
attributes of boundedness and periodicity. We employ the mathematical framework of sinusoidal
functions, Xy(t) = Ym=1 Agm) sin(w,,t + ¢,,,) , to represent the oscillatory components. We
employ multiple sinusoidal waves to model oscillations with compound frequencies to be more

realistic. This approach is widely adopted in analytical modeling of waves, as exemplified by Li
etal. (2014).
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We can also derive the speed and acceleration of the leading vehicle composed of the nominal
and oscillatory components:

- 4)
Vo (t) = To(£) + Do (1) = vo + A w, Z cos(wnt + ¢,),
m=1
ao(t) = @o(t) + a4y (t) = —AlM w2, Y sin(wpt + Pp),
m=1 (5)

By Eq. (6), we can further find X;(s) = X;_,(s)G(s). Therefore, given the platoon satisfying the
aforementioned initial condition, vehicle I's position has the following nominal and oscillatory
components:

X, (t) = vt — lAx,, (12)
X () =L7" ()?z(S)) = L7H(Xo()G'(5)) = L7H(Xp()IG(s)|'e/#¢ )
M
= lim Z AS™1G w1 sin(@mt + o + 1EG (o). (13)
m=1

Correspondingly, for vehicle [, the speed and acceleration are:

i 14

v,(t) = v, + Agm)IG(jwm)Ilwm Z cos(wpt + P + 1AG(jwp,)) (9
m=1

() = A7V 1G(jwm)'0f Tiney sin(@nt + G + 186 (j0pn)) (15)

It is noteworthy that the negative sign within the oscillatory component of acceleration (Eq.
15) bears limited consequences, owing to the periodic nature of the sinusoidal function. Then for
a platoon consisting of N homogenous CAVs, the length of the platoon can be derived as (after
some simplification):

xo(t) = 2y (t) = NAX, + Ty RAS™ [sin(wmt + b — b)), (6)
where R = \[ 1—2|G(w)IN cos(NAG(jwp)) +1G (w,,) 2N and ¢ =

1G(wm)|N sin(N4G(jwm))
1-16(Jwm)|N cos(N3G(jwm))

refer to Appendix A.

3 Analytical Model of Dynamic FD

arctan are two constant values. For a comprehensive derivation, please

Here we derive the fundamental traffic variables using the position derived in Section 2 and then
FD. This approach allows us scale up to dynamic FD while retaining dynamic vehicle
characteristics. The discussion of FD pertains to traffic hysteresis within the congested regime. To
this end, we first apply Edie’s generalized definitions for traffic density and flow (Edie, 1963)
since they are flexible for different measurement methods. (In Edie's definition, density is denoted
as the total time spent by all N vehicles divided by the area of a measurement time-space region.

6



212 Flow is denoted as the total distance travelled by all N vehicles divided by the area of time-space

213 region.) Specifically, the generalized definitions give density and flow as follows:
NAt (7)
At,N) = ———
k(t, A N) W(t, At,NY
06t Ny = ZhaCalt +80) — x(0) ®
T W (t,At,N) ’

214 where k and Q are density and flow, respectively. W is the area of a predefined time-space region.
215 Instead of a traditional rectangular window, we define a customized time-space window W at time
216  t along the trajectories covering all N CAVs with a width At. This window, depicted in Fig. 1, can

217  bereferred to as vertical window!. Hence, we have the area as:

t+At

W(t, At N) = [, [xo(t) — xy(©)]dt
M m) 99)
RA;
= NAx At + 5 [cos(wmt + Py — D) — cos(wy, (t + At) + Py — D).
m=1 m
Position vehicle 0
vehicle N
e ,
y ,
i
: Time
0 t t+ At
218
219 Figure 1: Illustration of vertical time-space window.
220 This customized window, referred to as the "vertical window," is recognized for its

221 straightforward interpretability and mathematical convenience. Then, combined with Eq. (99), Egs.
222 (7) and (8) can be rewritten as:

k(t,At,N) = - NAt , (20

NAx At+¥M_ 1R2(7Jn [cos(wmt+@Pm—de)—cos(wm(t+A)+Pm—d)]

U'In Laval (2011), the window is slanted according to the maximum congestion wave speed to maximize the chance of having a
homogenous traffic state. This paper uses vertical windows instead for mathematical elegance and due to the fact that the wave speed
can be nonlinear along the vehicle platoon (considering the disturbance dampening) and potentially time-varying (Shi et al. 2023).
This property renders analytical derivation based on slanted windows mathematically prohibitive.
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Nvgat+ T SM L 4™ 6w, |'[sin( e (e+86)+ 6, + 186 o) ) =sin( 6, 186 Go) ) | (©2))

(m)
RA
Nz A+ Y=

Q(t,At,N) =

[cos(wmt+¢m—<j)c)—cos (wm (t+At)+¢m—¢C)]

m

3.1 Continuum approximation

To make sure that the derived density and flow are physically meaningful and continuous in the
time domain, we take the limit, At — 0 of Egs. (20) and (21):

k(t,N) = il (22)

NAxe+Z%=1 RA(()m) sin(wmt+dm —qbc)’

0(t,N) = Nve+2?’=12%=1Agm)|a(jwm)|lwm cos(wmt+Pm+156(Jwm)) (23)
' NAxe+¥M_, RAE)m) sin(wmt+pm—dc) '

The result shows that k and Q are cyclic functions, whose periods are the least common
multiple of =, for 1 <m < M.
m

Remark 2 From Egs. (22) and (23), Q and k are both functions of v, (typically Ax, is also a

function of v,), oscillation components Agm), W, and ¢,,, as well as AV CF control G. Thus, Q
and k together can describe the dynamics of FD directly.

Next, we will further discuss two special scenarios based on the continuum approximation
(CA). The first scenario pertains to deriving k and Q for a short oscillating platoon, where an
oscillation comprises a single dominant sinusoidal wave. In practice scenarios, even when
oscillations involve a combination of waves with varying frequencies, there tends to be one
‘dominant wave’ where its frequency component has the highest magnitude or power. Identifying
the dominant wave can be done through techniques such as Fourier analysis, where an oscillation
wave is decomposed into its frequency components using the Fourier transform. The second
scenario explores k and Q when the single-wave oscillation evolves along a long string stable
platoon. Note that in a string stable platoon system, the system’s CF behavior remains controllable
even when faced with various disturbances in the environment. String stability is an important and
desired property from a safety perspective. Hereafter, we guarantee string stability via constraining
the norm of the transfer function.

Scenario I (Short Oscillating Platoon). In the case of a single dominant wave (i.e., M = 1) with
p as the principal frequency component, we have

k(t,N) = N (24)

®) N ’
Naxe+RAP [G(jwp)| sin(wpt+p—dc)

Nve+va=1Agp)|G(jwp)|lwp cos(wpt+¢p+lz$G(jwp)) (25)

Qt,N) =

Ole(im ) < _
NAx+RA,|G(jwp)| sin(wpt+dp—dc)

In this case, k and Q are both cyclic functions over t with the same oscillation period of
21/ w,. Within one deceleration-acceleration cycle, we can further compute the expectation of k

and Q, respectively. For simplicity, let ¢, ¢. = 0 as we can adjust the upper bound and lower
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M , where A stands for the

bound of integral during integration. We further define, A =
average magnitude of oscillation through the platoon.

1

Proposition 1 (density expectation): The expectation of k, E (k), follows E (k) = AL

Proof:
2E 2n
w w w © N
E(k) =22 [ k(t, N) dt = 22 [*7 — _ dt =
NAxe+RA0p |6(jwp)| sin(wpt)
2m
o : dt
2w 0 A ) . N ] )
xe+| RAy |G(jwp)| /N |sin(wpt)
o
N 2 _
Lettin M:A_ we haVeE(k) :ﬂpr;:ﬁ\/m _ 1
s N ’ 2m 70 Axe+Asin(wpt) 27 wp [(bxg)2— (A2

Therefore, we obtain Proposition 1.

Q.E.D.

Note: when |G(jwp)| < 1land N is large (e.g., N = 5), A < Ax,, therefore, E (k) =~ i.

Ve

Proposition 2 (flow expectation): The expectation of Q, E(Q) = N

Proof:

Y ;
N+, AP [6(jwp)| wp cos(wpt+1aG (jwp))

dt

2_1'[
_ Y r@p
E@ =3 Naxe+RAD|6(jwp)| i
e o jwp)| sin(wpt)
2T
_ Y

dt

2T ®) 2T _ N . l .
@, pr 1 di + wp Ay wp pr Ti=11G(wp)| Cos(wp”lz‘*G(J“’p))
= A — —
2m 0 Axe+Asin(wpt) 2t N Y0 Axe+Asin(wpt)
21 ¢ 2m
Wp 1 A()p 14

. wp wp Wp <N . | o cos(wpt+lz$6(jwp))
- ;Ue fO Axp+Asin(wpt) dt +; N Zl=1|G(]wp)| fO

Axe+Asin(wpt)

dt

. l
_ op 2n wp A l6Gep) @y

= on Ve oy Ty | o N

cos(wpt+lz$G(jwp))
Axe+Asin(wpt)

Ve
V(Bxe)2=(A)?’

cos(wpt+lz$G(jwp))
Axe+Asin(wpt)

2T 2T
where F = [*" de. As [ dt =0(l€[1,N],l€Z), F=0.

Hence, E(Q) = we have Proposition 3.

Q.E.D.
Note: Similarly, when |G(ja)p)| < 1land N is large (e.g., N =15), A < Ax,. Therefore,
E(Q) = AUTE, which is consistent with the fundamental definition, E(Q) = v, E (k).

Scenario II (Long String Stable Platoon). Considering a long platoon (i.e., N — o) that is string
stable (i.e., |G(ja)p)| < 1, we have



265
266

267

268
269
270
271
272

273
274

275
276

277
278

279

280

281
282

283
284

Jlim E(k(N)) =

1
Ax,
lim E(Q(V) =35,

which suggests a traditional FD for steady traffic flow. This is intuitive because if the platoon is
long enough and string stable, oscillations would be dampened eventually to the equilibrium point.

3.2 Hysteresis orientation

Here we analytically determine the orientation of hysteresis that can arise during an oscillation.
Specifically, a random point on the hysteresis loop, referred as p,, is selected, as depicted in Fig.2.
Accordingly, its density and flow at time point t are denoted as k(t) and Q(t). Then, after a small
time interval At, the corresponding point on the loop is denoted as p,, characterized by density
k(t + At) and flow Q(t + At). The equilibrium point is expressed as Eq(k,, Q.), where k, and

Q, are respectively the equilibrium density and flow. Then, we can define two vectors d@ and b to
describe the directional segments towards p; and p,, respectively, from the equilibrium point:

@: (ke (t) — ke, Q(t) — Q) b: (e (t + At) — ke, Q(t + At) — Q).

Flow Flow
N Counterclockwise Clockwise

4

(k(t + At), Q(t + At))

> Density Density
(a) (b)
Figure 2: Example of traffic hysteresis orientation (a) counter-clockwise and (b) clockwise

Then to find the hysteresis direction, we take the cross product of @ and b and then apply the
right-hand rule. @ X b can be expressed as determinant:

o7 | k@) -k Q(t) — Qe (26)
aXb_k(t+At)—ke Q(t +At) — Q,I

Eq. (20) can be further written as @x b = (Q(t + At) — Q) (k(t) — k,) — (Q(¢) —
Q.)(k(t + At) — k,). After reorganizing, we obtain,

dxb=Q(t+At)(k(t) — k) — k(t + At )(QE) — Q) + Q(O)k, — k(£)Q, (27)
10
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From Scenario II, k, = i and Q, = AVTQ. And by combining Eq. (26) and Eq. (27) from

Scenario I, we obtain (after some simplification)

Agp)wp Z?’:ﬂG(jwp)|lcos(wpt+¢p+146(jwp)) B Zr:1|6(jwp)|lcos(wp(t+At)+¢p+lz$G(jwp)) (28)
NAx, Axp+Asin(wpt+dp—odc) Axp+Asin(wy (t+AL)+dp— ()

axhb=

Proposition 3 (hysteresis orientation identification). The hysteresis loop evolves clockwise on
a dynamic FD if Z?':llG(jwp)ll cos(lAG(ja)p) + (],')C) <0 and -counter-clockwise if

Z§V=1|G(ja)p)|l Cos(lziG(jwp) +¢.)>0 . Obviously, there is no hysteresis if
N 16Gw,)| cos(186(jw,) + ¢b.) = 0.
Proof:
N . l .
Consider f(t) = Zisal6U )| COS(%H%HM(]%)), thendx b = 47wy [f() — f(t+ AD)].

Axe+Asin(wpt+dp—dc) NAx,

To investigate the orientation, it is necessary to examine the positivity of @ X b. Consider in one
®,,
. AJ
cycle, i.e., t € [O,(j ] since >—=X Nix. £ is always positive definite, and f(t + At) = f(t) + f'(t) *

1
At when At — 0 (first order approximation), we can rewrite @ X b= A(;A_wp [—f'(t) = At], where
f'(t) represents the first order derivative of f(t). Thus, d@ X b > 0 when f'(t) < 0, otherwise,
@ x b < 0 when f'(t) > 0. According to the quotient rule,

f'@®= (29)

—Z?]=1|G(jwp)|la)p sin(a)pt+¢vp+lAG(jwp))*(Axe+A51n(wpt+¢p ¢c)) Z, 1|G(]a)p)| Cos(a)pt+¢p+lAG(ja)p)) (Aa)p)cos(a)pt+¢p ¢'c)

(Axe+Asin(wpt+dp— ¢c)’

In Eq. (23), since the denominator of f'(t) > 0 always holds, we will only focus on the
numerator. Let @ = wpt + ¢, + lzﬁG(jwp) and B = wpt + ¢, — P.. Then the numerator of Eq.
(23) can be written as:

- Z{V:1|G(jwp)|lwp sina * (Ax, + Asin ) — Z{V:1|G(jwp)|l cos a x (Aw,,) cos B

= —wylx, Z?':l|G(jwp)|l sin (wpt + (/)p + lzﬁG(jwp)) - a)p71 Z?’zllG(ij)r cos (lziG(ja)p) + (pc) (30)
Regarding the first term in Eq. (23), it should be noted that for each vehicle [ within one cycle,
E (|G(jwp)|l sin (a)pt + ¢, + léG(jwp))) = 0. This result arises from the cyclic property of a

sinusoidal function. Therefore E (Z’,V=1|G(jwp)|l sin (wpt + ¢, + lziG(jwp))) = 0. As a result,
the sign of Eq (24) will only be determined by the second term

a)pAZ 1|G(]a)p)| cos(lziG(]wp) + d)c) According to the right-hand rule, @ X b>0
corresponds to CCW (Fig. 2(a)), while @ x b<0 corresponds to CW (Fig. 2(b)).

Q.E.D.

Note that as A(()p), wy, and N are all positive, and the orientation of hysteresis loop is only
determined by |G(ja)p)| and AG(ja)p).
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4 Numerical Experiments

This section presents a series of numerical experiments to demonstrate how the derived analytical
model of dynamic FD works. We start with the experiment setup and demonstrate how CA for FD
can effectively represent traffic hysteresis. We further examine the individual and joint effects of
key model parameters on the properties of dynamic FD. Through these experiments, we gain a
deeper understanding of how the CAV behavior during an oscillation manifests itself in the
hysteresis pattern. In addition, to show the generality of our framework, we put the derivation
process of an HDV model and provide a comparison with AVs in Appendix B.

4.1 Numerical experiment setup

For the experiments, we adopt the second-order linear feedback controller by Van Arem et al.
(2006) for the AV car-following law, as an example. This controller marks the pioneering car-
following logic specifically designed for CAV. It is simple yet effective, finding wide adoption in
the literature.

The control system state at time t is defined as [Ax,(t) — Ax;(t), v,_,(t) — v;(¢)]", where
the first term is the deviation from equilibrium (desired) spacing and the second term is speed
difference, T denotes transpose. Here, we incorporate two gains: spacing feedback gain kg and
speed deviation gain k,,. These gains are time-invariant and utilized to regulate the deviation from
equilibrium spacing and the speed difference, respectively. Thus, the acceleration is given by:

a,(t) = kg - (Ax(£) — Axy (£)) — ky - v, (8) + Ky - 01 (1), G

Note that the acceleration gain is not considered here as AV lacks access to feedforward
information from the preceding vehicle. Nevertheless, the proposed analytical model is general
and can be extended to the application of CAV. The equilibrium spacing uses the widely adopted
constant time gap policy: Ax, (t) = v,(t) X T + s, where T and s, represent constant desired
time gap and standstill spacing, respectively.

Based on Eq. (3) and Eq. (31), we can further derive f; = aaAa;((tt)) = aksé(A;Aftl)(t)) =—kg, f) =
l l

dai(t) _ 9(-ks(O)xT+so)—kpvi(8)) _ , pr_ Oaqy(t) _ 9(kpvi—1 (1) _
avy(t) - a9;(6) = kv ksTa f3 = 991_1(0) = 99,_1(0) = kv . Note that the

partial derivatives are only related to the oscillatory parts (AX;(t), D;(t), ;—1(t)) instead of the
nominal parts (Ax;(t), 7;(t), ;1 (t).

Then, the corresponding transfer function is given as:

V(jw) koe 70 + jk, we =/ (32)
V1(w)  —w? +kse 0 + j(k, + kyT)we =07’

G(jw) =

As an example, we set kg =1 (s72), k, =1(s71), 1=0.8s, v, = 10m/s, 8 = 0.5sec.
See Table 1 for details. Section 4.3 provides an in-depth exploration of the implications of
parameter settings on dynamic FDs, where the parameters are set based on previous empirical
studies(Gunter et al., 2020, 2021). The total study period is 40 sec and the platoon size, N, is 20.
Note that this setting serves as the default configuration for all subsequent experiments unless
otherwise specified (i.e., Single oscillation case in Table 1).
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Table 1: Default settings

Parameters Values

Spacing deviation gain kg 1(s72)

Speed difference gain k,, 1(s™H

Desired time gap 0.8(s)
Equilibrium speed v, 10(m/s)

Equilibrium spacing x, 13(m)

Standstill spacing s, 5(m)

Vehicle number in the platoon N 20

Total study period T 40(s)

Single oscillation case Compound oscillation case
Total time delay 6, 0.5(s) 0,0, 0.5(s),0.3(s)
Frequency w, 0.1m(Hz) w1, W, 0.1m(Hz),
Phase shift ¢, m/2(°) b1, P, m/2(°),0(°)

Amplitude AS" 10m A0, 4D 10m, 3m

4.2 Effects of measurement region

Here we investigate the effects of various parameters on the features of dynamic FD. We first
examine the effects of the measurement region, in terms of the width of time window and the
platoon size, on the traffic hysteresis under single-frequency and compound (i.e., multi-frequency)
oscillations.

Width of time window

We first analyze a case with a single-frequency oscillation. As an example, we set w; =
0.1mHz, ¢p; = g, and oscillation magnitude Agl) = 10m. Then, we have |G(ja)p)| = 0.9917 and

z&G(jwp) = —0.2429 sec. To examine the effectiveness of CA, we vary the width of time
window, At = {5,2,1,0.1,0} sec, where At = 0 sec representing CA. The results are shown
in Fig. 3. Notably, all FDs evolve clockwise over time, displaying evident hysteresis around the
equilibrium point. Further, we observe a noticeable transformation in the shape of the
hysteresis as At decreases, transitioning from a polygon to an ellipse. This indicates that
reducing the window width allows for a more precise measurement of the hysteresis and
that the proposed CA method for measurement is highly desired. A large At (e.g., At = 55)
evidently underestimates the hysteresis.
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Figure 3: Dynamic FD of different At and continuum approximation: Single-frequency oscillation

We further extend our investigation to compound oscillations. This is accomplished by adding
another oscillation component with w, = 0.37 Hz, Agz) = 3m, and ¢, = 0. Moreover, we set
6 = 0.3sec. The window width is also varied at At = {5,2,1,0.1,0} sec. The results are given
in Fig. 4. Compared with the single-frequency oscillation case, the shapes of hysteresis loops with
compound oscillations are less regular, albeit still cyclic. Furthermore, under the compound
oscillations, the underestimation of hysteresis is more pronounced with greater At (e.g., 60.45%
underestimation of the loop area for At = 5sec, as opposed to 48.47% in the single-frequency
case). The CA-based measurement remains effective in capturing the comprehensive hysteresis
phenomenon. As per the finding, subsequent experiments are conducted based on the CA method.

2900

2850
E2800
§
=>.2750
% —At = 5sec
= ——At = 2sec
IS RO At = 1sec

—At=0.1sec
2650 -Continuum Approximation
Equilibrium Point
2600 - ' - . -
72 74 76 78 80 82

Density(veh/km)

Figure 4: Dynamic FD of different At and continuum approximation: Compound oscillations

Platoon size

Here we investigate the effect of the platoon size (N) on the dynamic FD (based on CA). Fig.
5(a) and 5(b) illustrate the effect for string stable and string unstable platoons, respectively. For
the former, we use the default setting. For the string unstable platoons, however, we modify both
ks and k,, to 0.5, which gives |G(jwp)| = 1.0847 > 1 and z&G(ja)p) = —0.2818sec. In Fig. 5(a)
and 5(b), we see that each FD evolves clockwise as an ellipse over time. The regularity in shape
(perfect ellipse) is attributed to the single-frequency oscillation and the assumption of time-
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invariant and deterministic CF behavior. It is worth noting that the loop areas for the string unstable
platoons are generally much larger than the string stable ones. Further, from Fig. 5(a), the
movement area, in terms of both ellipsoidal length and width, decreases as N increases because
|G(ja)p)| < 1, causing the oscillation to be dampened over space. Conversely, in Fig. 5(b), the
hysteresis loop area expands as N increases, suggesting the oscillation being amplified through the
platoon.
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= 3000
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]
Z

Flow(veh/hr)

//\7
/ |
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Fl
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: \
9 2500

2000 2000
50 60 70 80 90 100 110 120 50 60 70 80 90 100 110 120
Density(veh/km) Density(veh/km)
(a) (b)

Figure 5: CA Dynamic FD with different N: (a) string stable (|G (jwp)| = 0.9917) and (b) string
unstable (|G(ja)p)| = 1.0847)

4.3 Effects of car-following (control) parameters

This subsection aims to unveil the impact of the car-following control parameter setting on the
dynamic FD. Specifically, the control gains, total time delay in sensing and control actuation,
desired time gap, and equilibrium speed are explored.

Control gains

To analyze the impact of the control gain setting on the dynamic FD, we conduct a twofold
investigation: (i) the effect of each control gain and (ii) the joint effect of two control gains. we
vary the values of kg and k,, based on the feasible regions identified in Kontar et al. (2021).
Specifically, we vary them from 1 to 2 with an increment of 0.5. (The units for kg and k,, are
respectively sec™? and sec™1.)The result for kg is shown in Fig. 6(a). Notably, an increase in
spacing feedback gain leads to a reduction of the hysteresis loop. This can be attributed to the fact
that a larger kg results in a stronger response to a deviation from the equilibrium spacing, leading
to less fluctuations and a smaller hysteresis loop.

The impact of k,, is shown in Fig. 6(b). Interestingly, unlike kg, k,, mainly affects the slope
(congested wave speed), with a higher value of k, indicating a higher wave speed. Since k,, is
responsible for regulating the speed difference, a higher sensitivity to the speed difference (i.e., a
higher k,,) leads to a quicker response, leading to a higher observed wave speed. This is consistent
with the finding in Kontar et al. (2021).

To quantify the features of hysteresis loops in Fig. 6, other than the ranges of density and flow
(i.e., Krange = Kmax — Kmin» Qrange = Q@max — @min)> We further define the width, length, and the

area of each loop as illustrated in Fig. 7. Besides, the average wave speed in the congested branch
(ie,w = M) is also reported. The results presented in Table 2 show that changing k

kmax—Kmin

affects both width and length of the ellipsoidal loop, while changing k,, mainly affects the length
15
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of hysteresis. Note that the area initially decreases and then increases as k,, increases. This
phenomenon is primarily attributed to a change in the orientation of hysteresis loop from clockwise
to counter-clockwise. Theoretically, the area would become zero (reducing to a traditional linear
relationship) where this change in orientation occurs. We will put more emphasis on the orientation
later in the joint influence.

The above findings underscore the difference between the traditional zero-order (static) FD
and our dynamic FD, which possesses the capability to capture higher-order traffic flow features.

2900 2900 T
—ks = ‘I(sec‘2) —I;(\f = 1(sec'1)
=
2850 —k, = 1.5(sec’?) 2850 \ —k, = 1.5(sec™)
- -2 - -
EZBOO ks = 2(sec’™) J E‘ZBOO L kv =2(sec’’)
= Equilibrium Paoint = - Equilibrium Point
Lors0 o750
= =
o o
i 2700 i 2700 \ -
=
2650 2650
2600 2600 !
73 74 75 76 77 78 79 80 81 73 74 75 76 17 78 79 80 81
Density(veh/km) Density(veh/km)
(a) (b)

Figure 6: Dynamic FD with different control parameters (a) kg and (b) k,, (t = 0.8s,v, =
10m/s, 8 = 5sec, kg = 1s71)
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N .
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Figure 7: Illustration of hysteresis loop length, width, area, and range
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Table 2: Traffic hysteresis measures with respect to (kg, k,,)

kg (sec™?) k,(sec™)
1 1.5 2 1 1.5 2
k., = 76.92(veh/km), Q. = 2769.23(veh/hr)

Krange (veh/km) 7.12 6.84 6.67 7.12 6.96 7.10
Qrange (veh/hr) 170.79 163.44 158.75 170.79 190.05 238.00
Maximum flow 2854.03 2848.79 2845.69 2854.03 2863.84 2884.13

(Qmax,veh/hr)
Width(veh/km) 14.28 13.64 13.30 14.28 14.25 14.29
Length(veh/hr) 177.27 166.02 159.36 177.27 197.96 240.11
Area(veh?/(km - hr)) 213.91 125.77 82.61 213.91 117.33 473.86
w(km/hr) —23.97 —23.91 —23.83 —23.97 —27.32 —33.51

We are further interested in the joint influence of control gains over the dynamic FD as they
are designed to work together. To explore this systematically, we expand the range of both k. and
k, to[0.5,3.0] with a step size of 0.1. Fig. 8 provides a heatmap of the hysteresis orientation with
respect to kg and k,,. From the figure, two distinct boundaries are notable where the orientation
switches from clockwise (noted as CW in the figure) to counter-clockwise (CCW) and vice versa.
A significant majority (approximately 70%) of these loops exhibit a counter-clockwise pattern.
This finding diverges from the conclusion drawn in the empirical study by Ahn et al. (2013) for
human-driven vehicles, where clockwise loops are predominantly observed.

Fig. 9 presents the results of a sensitivity analysis, illustrating the performances of the CAV
system for different (ks, k,,) pairs within a physically reasonable range of [1.0, 3.0]. Notably, we
have adjusted the lower bound for kg and k,, to 1.0, as small values of k, and k,, indicate an
unresponsive controller, which is undesired. From Fig. 9(a), we observe that |G| demonstrates a
monotonically decreasing trend as k,, increases. Conversely, for kg, |G| initially experiences a
decline until reaching a minimum value at k; = 1.1, subsequently ascending as kg further
increases. In Fig. 9(b), the z-axis is reversed to provide a visual representation of the response time
(i.e., the absolute value of £G). Notably, the system exhibits the shortest response time when k; is
relatively small and k, is large. This observation suggests that the system’s damping
characteristics are more pronounced when employing lower values of kg in conjunction with
higher values of k,,. Besides, the range of density in hysteresis is more affected by the setting of
ks than k, (Fig. 9(c)). The behavior of density is non-monotonic, with the combination of kg = 3
and k,, = 1.4 yielding the minimum density range. The same trend holds for the flow range, where
the optimal combination is kg = 3 and k,, = 1.1 (Fig. 9(d)).
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465 Next, the individual impacts of the total time delay (8), desired time gap (7), and equilibrium
466 speed (v, ) on the dynamic FD are investigated. Fig. 10(a) illustrates the effect of the time delay
467 (0.5sec, 1sec, 1.5sec), revealing that an increase in delay leads to a deterioration in the platoon’s
468 performance, accompanied by a larger hysteresis loop and higher wave speed. This is intuitive
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since a larger delay in sensing and control actuation is known to make the system unstable (M.
Wang, 2018).

For the desired time gap (set to 0.8sec, 0.9sec, and 1sec), the result in Fig. 10(b) shows that
a tighter time gap (e.g., T = 0.8sec) yields higher flow and density, albeit at the expense of a larger
hysteresis loop. This observation is also intuitive since maintaining a tighter spacing gives a
smaller room for error, leading to system instability. This also suggests that a dynamic FD is
particularly useful under more aggressive settings, in which traffic hysteresis can arise.

Table 3 exhibits the quantitative measures of performance obtained through varying 6 and 7.
Notice that increasing 8 also increases the wave speed. And when 7 is set to 1sec, the hysteresis
loop area is very small and approaches a linear pattern. This indicates that employing a more
conservative (larger) desired time gap setting will lead to a more static traditional linear FD
relationship.

Fig. 10(c) shows the dynamic FD with the equilibrium speed varying from 5m/s to 13m/s
with an increase of 2 m/s. Notably, the slope from the origin to the equilibrium point of each
hysteresis loop represents the value of v,. Since v, does not affect the hysteresis orientation (see
Eq. (21)), all FDs in Fig. 10(c) are clockwise. Table 4 further provides quantitative measures of
performances of different v,. It is noteworthy that the setting of v, can have a significant impact
on dynamic FD, as reflected by the area change. Further, the average wave speed tends to increase
with v,, albeit at a smaller magnitude.
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2900 — _z: r’;’;ec 2800 7= 0.9sec
2850 * Equilibrium Point| T 7 = 1.0seq|
= £ 2700
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2 2700 e B 950 —
i ~ [
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(a) (b)
30000 = | —ve=5mis
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Figure 10: Dynamic FD with different (a) time delay (6)( 7 = 0.8s, v, = 10m/s), (b) desired
time gap (t)(v, = 10m/s, 8 = 5sec), and (c) equilibrium speed (v,) (7 = 0.8s, 8 = 5sec)
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Table 3: Traffic hysteresis measures with respect to 8 and t

6 (sec) T(sec)
0.5 1 1.5 0.8 0.9 1
k.(veh/km) 76.92 76.92 76.92 79.62 71.43 66.67
Q.(veh/hr) 2769.23 2769.23 2769.23 2769.23 2571.43 2400.00
Ky ange (veh/km) 7.12 8.60 9.78 7.12 4.07 2.64
Qrange (veh/hr) 170.79 236.88 320.49 170.79 90.31 54.78
Maximum flow 2854.03 2885.64 2920.93 2854.03 2615.85 2427.96
(Qmax, veh/hr)
Width(veh/km) 14.28 17.10 19.48 14.28 8.13 5.54
Length(veh/hr) 177.27 245.76 323.06 177.27 91.16 56.90
Area(veh?/(km - hr)) 213.91 337.49 457.70 213.91 34.46 3.66
w(km/hr) —23.97 —-27.57 -32.79 —23.97 —22.17 —20.77
Table 4: Traffic hysteresis measures with respect to v,
ve(m/s)
5 7 9 11 13
k,(veh/km) 11111 94.34 81.97 72.46 64.94
Q.(veh/hr) 2000.00 2377.36 2655.74 2869.57 3038.96
Kyange (veh/km) 15.04 10.83 8.17 6.38 5.12
Qrange (veh/hr) 359.66 262.28 200.47 158.75 129.22
Maximum flow 2167.85 2501.11 2751.10 2945.54 3101.10
(Qmax, veh/hr)
Width(veh/km) 29.96 21.55 16.24 12.67 10.15
Length(veh/hr) 358.73 261.62 199.98 158.37 128.92
Area(veh?/(km - hr)) 581.91 500.56 391.37 295.13 243.26
w(km/hr) —2391 —24.22 —24.54 —24.88 —25.24

5 Conclusions

FDs have been extensively analyzed for decades, mainly for human-driven vehicles. Recently, the
advent of AVs has challenged the applicability of classic static FDs as they do not fully capture
the higher-order characteristics, such as traffic hysteresis, of AV car-following control. To fill this
gap, this paper analytically formulated dynamic FD, based on an analytical car-following control
law. The frequency domain representation of the car-following law as a transfer function simplified
mathematical derivations. We further applied CA for the derived dynamic FD to provide more
accurate, higher-resolution evolution of flow-density relationship over time and incorporate
higher-order features. The derived dynamic FD enabled a systematic investigation into the
presence of traffic hysteresis in AV platoons and potential factors that impact AV FDs. To
systematically determine the orientation of traffic hysteresis, a right-hand rule based criterion was
presented.

We conducted a series of numerical experiments to verify the analytical results and examine
the properties of the derived dynamic FD with respect to various parameters. First, we investigated
the effects of the flow-density measurement region, expressed by the width of time window and
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the platoon size. The results suggest that a large time window can lead to underestimation of
hysteresis, underscoring the importance of using CA. The underestimation was more pronounced
with compound oscillations, consisting of multiple frequency components. We also provided some
quantitative insights into the impact of car-following control parameter setting on the properties of
dynamic FD. Specifically, the control gains, particularly the gain that regulates speed difference,
significantly impact the hysteresis magnitude, orientation, and the average wave speed. Further,
the delay in sensing and control actuation, desired time gap, and equilibrium speed were all found
to have unique impacts on the hysteresis properties. Understanding these effects would be crucial
for optimizing the platoon behavior in various traffic scenarios and effectively managing traffic
flow.

Some future studies are nonetheless desirable. First, in this study, we focus on the congested
regime of pure AV traffic for analytical tractability. Traffic hysteresis associated with transition
between uncongested and congested states or between different equilibrium states is deferred to a
future study. Second, we adopted the vertical measurement window for simplicity due to the lack
of knowledge on the wave propagation in AV traffic. A better understanding of this feature may
lead to a better selection of the measurement window. Third, for the purpose of analytical
derivation, we made several simplifying assumptions such as homogeneous AV traffic and time-
invariant and deterministic car-following features (i.e., constant parameters). However, the
intrinsic stochastic nature of traffic flow can significantly impact traffic properties such as stability
and capacity. Therefore, the deterministic assumption should be relaxed in the future. This can be
achieved, for example, by embracing stochastic and time-varying CF models (e.g., Jiang et al.,
2023). Further, linearization was undertaken to establish an analytical linkage between a CF law
and dynamic FD. For enhanced precision, future research may address the nonlinear characteristics
in CF laws by replacing the transfer function with data-derive functions, as demonstrated by prior
works (e.g., Li & Ouyang, 2011; Zhou et al., 2023). Lastly, this study can also be extended to
mixed traffic consisting of both AVs and human-driven vehicles to unveil how dynamic traffic
features, as represented by dynamic FD, would evolve as the AV market penetration increases in
the future.

Appendix A. Derivation of spacing

From Egs. (7) and (8), we obtain:

xo(t) = vt + Jlim M Agm) sin(wpy,t + Pp), (A1)
xy(t) = v,t — NAx, + lim Z%zlAgm)IG(jwm)IN sin(wpt + ¢ + NAG(jwy,)). (A.2)
Therefore,

xo(t) — xy(t) = NAx, + ¥M_, AT [sin(wmt + ¢m) — 1GGw) IV sin(wpt +
G + NAG(jwn))]

= NAx, + Z%zlAgm){[(l —1GGwn)IN cos(NEG(jwp,))) sin(w,t + (A.3)
bm)] =16 Gwn) " sin(NAG (jwy)) cos(@pmt + @)}
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For further simplification, assume f)=yM_, Agm){[(l -
1GGwm)IN cos(NAG(jwp))) sin(wpt + ¢p)] =G (wm)|Y sin(NAG(jwp,)) cos(wnt +
dm)} = Cysin(wpt + @) — C; cos(wpt + Pp).

According to trigonometry,
f(t) = C; sin(wpyt + ¢p) — C, cos(wpt + ¢Pp) = R sin(w,,t + ¢y, — D), (A.4)
where the amplitude
R =,(C)?*+(C)? =
J (1= 16 Gwm) N cos(N£GGwm)))” + (16w N sin(NAG(wy)))” = (A.5)

Jl = 2|GGwm)IN cos(NEG(jwy,)) +1G (jw,,) 2V,

— G2 _ 16G wm)IV sin(N4G (jwm)) A
¢. = arctan o arctan 1-|6Gwm)IN cos(NAG (jwm)) o

Therefore, we can have Equation (9).

Appendix B. Human driven vehicle vs. commercial AV

To apply our framework on human driven vehicles, we select the generalized linear optimal
velocity model (GL-OVM). This model, extensively employed by researchers for its capability to
emulate traffic flow, adopts a car-following structure represented as follows:

a; () = v,(8) = k[V(Ax,(£)) — v, (8)] (A7)

where V (Ax,;(t)) is the optimal speed function related to the spacing Ax;(t), k is the sensitivity
parameter. Then, the exponential optimal speed function established by Newell (1961) is denoted
as:

(A.8)

V(Ax,(t)) = v, \1 — exp <_%(Axl(t) - 50))

where v, is the free-flow speed, s, is the jam distance, and « is the parameter related to the
congested wave speed. Define ¥;(t): = v;(t) — v, and AX;(t): = Ax;(t) — Ax,, where U;(t) is
speed deviation from equilibrium speed v, , AX;(t) is the spacing deviation from equilibrium
spacing Ax,.

Then, we linearize the CF law for human driven vehicles in Eq. (A.7) via Taylor expansion
around the equilibrium state, in which a;(t) = 0,

V'(Ax,) (A.9)

V(8x,(0) = V(Bx) +—- (A, (6) — Ax,)

As V(Ax,) is the equilibrium speed, i.e., V(Ax,) = v, = v, ll — exp <—vﬁ (Ax, (t) — so)>l
0

according to Eq. (A.7). Eq. (A.9) can be further written as:

22



569

570
571

572
573

574

575

576
577

578
579
580
581
582
583
584

585
586

587

V(Ax,(t)) = V'(Ax,.)(Ax;(t) — Ax,) + v, (A.10)
Substitute Eq. (A.10) into Eq. (A.7),
a;(t) = v, (t) = k[V'(Ax,) (Ax, (t) — Ax,) + v, — v, (1)] (A.11)

where V' (Ax,) is the first order derivative of optimal speed function in Eq. (A.7) with respect to
the equilibrium spacing. It can be computed as:

V'(Ax,) = aexp [—%(Axe(ve) — so)] (A.12)

where Ax,(v,) is the equilibrium spacing as a function of equilibrium speed v,. Combining with
Eq. (A.8) and solving for Ax, when v,(t) = v,, we obtain

Vo v A.13
Ax,(v,) = 59— ;ln (1 - V_Z) ( )
Plugging AX; and 7;(t) into Eq. (A.11), we have
9,(t) = kV'(Ax)AZ, () — kD, (1) (A.14)
Then we conduct Laplace transform to convert ¥; and AX; into the frequency domain:
D,_1(s) = D,(s A.15
A%,(s) = 1-1( )S 1(s) ( )

Finally, the transfer function of linearized OVM based on first order Taylor derivative G;(s)
can be expressed as:

kV'(Ax,) (A.16)

G -
1(5) s? + ks + kV'(Ax,)

We further conduct a numerical experiment to compare the features of traffic hysteresis
between human driven vehicles and AVs. For the parameter setting, we adopt the calibration
results of OVM by Wang et al. (2012), where v, = 33.3m/s, k = 0.700s™ %, @ = 0.999s7 %, and
So = 1.62m. For the linear controller, we use the calibration results for a commercial AV by Jiang
et al. (2023), where k, = 0.3790 (s~2), k, = 0.3937(s™ 1), 1= 0.8s,5, = 7.3625m, and § =
Osec. Note that here v, = 25m/s and A, = 10m. Figure A1 shows the dynamic FD of GL-OVM
and commercial AV respectively.

2000 2500
—N=10 —N=10

1950 o “Newo =30
£ F £2450
< 1900 ( =
g \ g
= 1850 g . H
2 e - T 2400

1800

1750 2350

19 20 21 22 23 25 26 27 28 29
Density(veh/km) Density(veh/km)
(a) (b)

Figure A1l: CA Dynamic FD with different N: (a) GL-OVM and (b) commercial AV
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From the figure, we can notice that though all hysteresis loops are clockwise for both models.
However, the AV exhibits higher throughput and is string stable under the given oscillation setting,
whereas a platoon based on GL-OVM is string unstable.
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