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In this paper we explore determinantal representations of multiaffine polynomials and consequences for the image of
various spaces of matrices under the principal minor map. We show that a real multiaffine polynomial has a definite
Hermitian determinantal representation if and only if all of its so-called Rayleigh differences factor as Hermitian squares
and use this characterization to conclude that the image of the space of Hermitian matrices under the principal minor
map is cut out by the orbit of finitely many equations and inequalities under the action of (SL2(R))™ x S,,. We also
study such representations over more general fields with quadratic extensions. Factorizations of Rayleigh differences
prove an effective tool for capturing subtle behavior of the principal minor map. In contrast to the Hermitian case, we
give examples to show for any field F, there is no finite set of equations whose orbit under (SL2(F))™ x S, cuts out the
image of n X n matrices over F under the principal minor map for every n.

1 Introduction

Given an n X n matrix A with entries in a field IF, let Ag denote the determinant of the submatrix of A indexed
by the set S on the rows and columns. If we set Ay = 1, the principal minors of a matrix form a vector of length
2™. The principal minor map is the map that assigns to each matrix the vector of its principal minors, namely

o F F2" given by A — (AS)SQ[H] ’

One of the motivating goals of this paper is to characterize the image of this map. This problem dates back
to the 19th century [39], [40]. In the cases n = 2 and n = 3, this image is characterized by Ay =1 over C. In
the case n =4, Lin and Sturmfels [35] give an explicit list of 65 polynomials that cut out the image and they
conjectured that it is cut out by equations of degree 12 for any n.

The image of the space of real and complex symmetric matrices was studied by Holtz and Sturmfels [27],
who show that the image is closed and invariant under an action of the group SLo(R)™ % S,, and conjectured
that the vanishing of polynomials in the orbit of the hyperdeterminant under this group cuts out the image of
the principal minor map over C. This conjecture was resolved by Oeding [41]. In [3], we build of techniques in
[33] to generalize this result to hold over arbitrary unique factorization domain. Here we use similar techniques
to characterize the image of Hermitian matrices.

The principal minor map problem appears in many different fields and applications, including statistical
models, machine learning, combinatorics and matrix theory. One fundamental application is the study of
determinantal point processes (DPP). These are probabilistic models that arise naturally in the study of random
matrix theory [29] and machine learning [13| 2I]. Symmetric DPPs have attracted a lot of attention as they
reflect the repulsive behavior in modeling, see [1l, [8l [18] [32] [45]. Non-symmetric kernels are also of interest for
modeling both repulsive and attractive interactions [4], [12] 20]. Learning the parameters of such a model from
data leads to the computation problem of reconstructing a matrix from the vector of its principal minors. Griffin
and Tsatsomeros [22 23] give a numerical algorithm that reconstructs a preimage of a matrix, if it exists, over
C. Rising, Kulesza and Taskarc [43] provide an efficient algorithm for reconstruction in the symmetric case.

In this paper, we study the principal minor map via determinantal representations of an associated
multivariate polynomial. Explicitly, to each vector a = (ag) scm € F2", we assign a multiaffine polynomial
fa where fa=>" Scln] @S e n\s Li- This transforms the problem of characterizing the image of the principal
minor map to the problem of characterizing multiaffine polynomials with a determinantal representation, namely
polynomials that can be written as f = det (diag(z1,...,z,) + A) for some n X n matrix A. When the matrix
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A is symmetric (Hermitian), we call f a symmetric (Hermitian) multiaffine determinantal polynomial. In [3]
we prove that the class of symmetric determinantal multiaffine polynomials is characterized by their Rayleigh
differences being squares. The Rayleigh difference of a polynomial f with respect to i, j € [n] is defined to be

_of of o2 f

2l = 5000~ Gwom;

(1)
Here we explore the consequences of factorizations of Rayleigh differences for non-symmetric determinantal
representations. As described below, the relationship is more subtle than in the symmetric case. While in [3]
we were able to work over arbitrary unique factorization domains, here we mainly restrict ourselves to working
over fields in order to deal with this increased complexity. While we do recover some of the results from [3], we
do not recover them in full generality. In follow up work, the second author also uses factorizations of Rayleigh
differences to recover the full fiber of the principal minor map [2].

Using factorizations of Rayleigh differences into Hermitian squares, we characterize Hermitian determinantal
multiaffine polynomials over any field K with an automorphism of order two. In particular, this gives a
characterization of Hermitian determinantal multiaffine polynomials over C.

Main Result 1 (Corollary Theorem . A real multiaffine polynomial f has a linear Hermitian
detertminantal representation if and only if all of its Rayleigh differences A;;(f) factor as Hermitian squares. [

One of the themes of this paper is that factorizations of Rayleigh differences can capture subtle behavior
of the principal minor map.

Example (Example |4.8). For example the Rayleigh differences of the polynomial
fa(®1, T2, 23, 74) = 21220324 — T12T2 — T1T3 — T1T4 — ToT3 — Tolg — T3T4 + 1

factor into Hermitian squares in multiple ways, e.g. As4(fa) = (1 —1)(2z1 +1)(22 — 1)(22 +1). These different
choices of factorization capture some non-generic behavior in the fiber of the principal minor map and lead to
three inequivalent determinantal representations of f:

ry 1 1 1 ry 1 1 1 ry 1 1 1
1 =z 1 1 1 x2 —1 1 1 x9 1 1
1 —1 xz3 1 ’ 1 i x3 1 )° 1 —1 x3 -1
1 —1 —1 x4 1 —1 —1 x4 1 —1 1 x4

O

It is natural to ask about the fibers of the principal minor map. In the symmetric case, the fibers were
characterized by Engel and Schneider [19]. Given a matrix A, both its transpose and D' AD, for any diagonal
matrix D, have the same principal minors as A. In 1984, Loewy and Hartfiel [25] and then Loewy [36] gave
sufficient conditions on a matrix for its fiber under the principal minor map to be a single point, up to diagonal
equivalence and taking transposes. As the example above shows, the fiber in general can be larger. Using the
techniques of this paper, the second author establishes a converse to the theorem of Loewy in order to classify
the fibers of the principal minor map [2].

Here we use the classical theory of determinantal representations to understand the principal minor map,
including ideas from Dixon [16] on the construction of symmetric determinantal representations of plane curves.
The study of symmetric and Hermitian determinantal representations is also closely related to the theory
of hyperbolic and real stable polynomials, which are multivariable generalizations of real-rooted univariate
polynomials. Hyperbolic and stable polynomials have found wide-spread applications in combinatorics [24] 37],
convex analysis [6], operator theory [26, 38], probability [7], and theoretical computer science [5] [34] [44]. The
question of which stable polynomials have definite Hermitian determinantal representations has implications in
operator theory and the theory of convex optimization. See [46] for more. In general, the existence of definite
Hermitian representations does not follow from the existence of general representations over C. In this paper we
show that this is not the case for multiaffine polynomials.

Main Result 2 (Theorem [6.4). If a multiaffine real stable polynomial f has a linear determinantal
representation over C, then it has a definite Hermitian determinantal representation. O

From the classification above, we characterize the image of Hermitian matrices under the principal minor
map by characterizing the set of real multiquadratic polynomials that factor as Hermitian squares. This leads
to explicit equations and inequalities defining the image.
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Main Result 3 (Corollary [7.14). The image of the set of n x n Hermitian matrices under the principal minor
map is cut out by the orbit under SLy(R)™ xS, of two inequalities and three degree-12 equations defined by
polynomials in Q[ag : S C 4]. O

An explicit description of the image of general n X n matrices remains mysterious. Huang and Oeding [28]
give description of the image in the special case where all principal minors of same size are equal (the symmetrized
principal minor assignment problem) where they use the cycle sums in their approach. They provide a minimal
parametrization of the respective varieties in the cases of symmetric, skew symmetric and square complex
matrices. Kenyon and Pemantle [30] adjust the principal minor map by adding the almost principal minors to
the vector in the image and they showed that the ideal of the variety in this case is generated by translations of
a single relation using the rhombus tiling.

Arguably one of the most surprising results in this paper is that, unlike the case of symmetric and Hermitian
matrices, one cannot hope to define the image general n x n of the principal minor map for n by the orbit of
some fixed set of equations under the group SLy(F)™ % S,,. Using factorizations of Rayleigh differences, we found
a family of examples that shows that such a finite description is impossible.

Main Result 4 (Theorem [8.1). For any field F, there is no finite set of equations whose orbit under
SLo(F)™ xSy, cuts out the image of the principal minor map for all n. O

Example (Example . For instance, we show that the coefficient vector of the polynomial
f = £81(£L'3£L'4 + 1)(£CQCE5 + 1) + (.%21’3 —+ 1)(1’41‘5 + 1) (2)

does not belong to the image of the principal minor map but satisfies the orbit of equations vanishing on the
principal minors of 4 x 4 matrices under the group SLy(FF)> x Ss. O

This paper is organized as follows. In Section we introduce terminology and the basic properties
of determinantal representations and the action of SLy(F)™ x S,,. In Section [3] we give a characterization
of multiaffine determinantal polynomials involving the factoring of Rayleigh differences. For Hermitian
determinantal representations, this condition simplifies and we give an algorithm for constructing such
representations from a factorization, as described in Section [ and Section In Section [6] we give a
characterization of multiaffine stable determinantal polynomials and prove Theorem In Section we
translate these conditions into explicit equations and inequalities whose orbit under SLo(R)™ x S,, cuts of the
image of Hermitian matrices under the principal minor map. Finally, in Section [§] we conclude by presenting a
family of examples that disproves the existing of such a finite description for the image of general n x n matrices
under the principal minor map.

2 Background and notation

For a commutative ring R, we use R[x| to denote the polynomial ring R[x1,...,x,] and for f € R[x], we use
deg;(f) to denote the degree of f in the variable z;. For d = (d1,...,d,) with d; € Z>¢, let F{x]<q denote
the set of polynomials with degree at most d; in z; for each i =1,...,n. These form an R-module of rank
[T,(d;+1). When dy =...=d,, =m, we abbreviate R[X]<(m _m) by R[xX]<m. Of particular interest are
multiaffine polynomials, with degree < 1 in each variable, and multiquadratic polynomials, with degree < 2 in
each variable. These are denoted by R[x|<1 = R[x]ma and R[X]<2 = R[X]mq, respectively.

We use Mat,,(F) to denote the set of n x n matrices with entries in F.

2.1 The action of SLy(R)" x S,, and homogenezations

The action of SLy(R)"™ on R[x|<q is defined as follows. Let v = (7;);e[n) in SLa2(R)™ where ~; = (‘Z Z) Then
for f € R[X]gd,

n
: a1z + by any + by
f= ciwi + d;)%i - b .
L 1,1;[1(2 i) f<clx1+d1 ’cnxn+dn>
One way to interpret this action is with the multihomogenezation of f. Let f471°™ in R[zy, ..., 20, Y1, -, Unld

denote the polynomial

n
patem = TTws - £ @a/yn, o/ yn).-
=1
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The induced action of vy on f47h™ ig just a linear change of coordinates:

d—hom __ pd—hom A 1 . T

Restricting to y1 = ...y, = 1 gives back v - f.
We will also use the usual homogenization of a polynomial to some total degree d, using a single
homogenizing variable y. That is, for f =" c,x* € R[x] of total degree d = deg(f), its homogenization is

o =yt f @y, fy) =Y caxy" I € Rix,y)

[e%

Suppose that K is a field with an automorphic involution a +— @ with fixed field F. This extends to an
involution on K[x] by acting on the coefficients. We will say that a polynomial ¢ € F[x] is a Hermitian square
if ¢ = gg for some g € K[x]. To end this section, we remark that for f € F[x], the condition that A;;(f) is a
Hermitian square is robust to homogenization.

Proposition 2.1. Suppose that K is a field with an automorphic involution a — @ with fized field F. Let f € F[x].
For i, j € [n], the polynomial N;;(f) is a Hermitian square if any only if A;;(fP°™) is a Hermitian square. [

Proof. If A;;(f"°™) is a Hermitian square, then specializing to y = 1 gives a representation of A;;(f) as a
Hermitian square. For the converse, let f € F[x] with total degree d and suppose that A;;f = gg for some
g € K[x]. Let m = deg(g) = deg(g). By definition, A;;(f"°™) € F[x,y] is homogeneous of degree 2d — 2. Its
restriction to y = 1 equals A;;f. Therefore A;;(f1™) equals 22272 (A;;(f))P°™, which is the Hermitian
square hh where h is the homogenezation of g to total degree d — 1. [ |

2.2 A description of the action of SLy(F)" on determinantal polynomials and matrices

One can describe the rational action of SLa(F)™ on Mat, (IF) via its action on multiaffine polynomials in
Flz1,...,2z,]. Given a matrix A € Mat,, (IF), consider the multiaffine polynomial f = det (diag (z1,...,2z,) + A).
For v = (7Vi)ig[n) in SLa(F)" with ~; = (‘” Z), v - f is defined by:

Cq

v f= H(cixi +d;) - det <diag (alxl + 0 , InZn b") + A) )

AR )
Pl 1y +dy CnTy +dp

Let A; denote the ith column of A and e; the vector whose ith entry is one and zero otherwise. By using the
factor (c;x; + d;) to scale the ith column, we see that

v - f =det (Cdiag(z,...,2,) + B)

where C is the matrix with ith column C; = (a;e; + ¢;4;) and B is the matrix with ¢th column B; = b;e; + d; A;.
When the matrix C is invertible, this gives

v« f =det(C) det (diag (z1,...,2,) + C~'B).

Up to the scalar multiple det(C'), the coefficients of 7 - f are the principal minors of the matrix C~!B. This
defines a rational action of SLy(F)™ on F x Mat,, (F). Namely, for v € SLy(IF)™ and (o, A) € F x Mat,,(F), this
is given by
(v, (@, A)) == (&) A7) := (adet(C), C'B)

where the matrices B and C' are defined as above. To avoid confusion, we reserve the notation ~y - for the action
of SLy(F)™ on the polynomial ring Flz1,...,z,]. We see that this rational action of SLy(F)™ on F x Mat,, (F) is
compatible its action on determinantal polynomials and that it commutes the action of (F*)” on Mat, (F) by
diagonal conjugation. More precisely:

Proposition 2.2. Let vy € SLy(F)" and (o, A) € F x Mat,,(IF). Let f = adet(diag(z1,...,z,) + A) and suppose
that the coefficient of x1---x, in - f is nonzero. Then

v f =a A det(diag(zy, . .., zn) + A7).

Moreover, for any invertible diagonal matriz D, (a(%DflAD), (D_lAD)'Y) = (a(%A), D~1(A")D). O
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Proof. We take v, A as above. The first claim follows from the arguments above. More specifically, the
calculations above give that

: ajry + by anTpn + by .
d AlE = (Cd Iy B
< l1ag <Cl.’131+d1’ ’Cnl‘n'i‘dn) + ) lag(xla , T )+

where B and C are defined as above and E denotes the matrix diag(ciz1 +d; ..., cpx, + dy). Since diagonal
matrices commute, we see that

diag (D20 @nZat b L poyp) Bl ot (g (BFED GeTat b N By
ci1x1 +dy CnTyn + dp ci1xy + dp CnXy +dy,

= D! (Cdiag (1,...,2,) +B)D
= (D~'CD)diag (z1,...,2,) + D"'BD.

This gives (D 'AD)Y = (D~'CD)"Y(D™'BD)=D"'C~'BD =D7'A"D. Since the determinants of
Cdiag (r1,...,7,) + B and D~!(Cdiag(xy,...,7,)+ B) D are equal, we see that the leading coefficient
remains unchanged. That is, (P~ AP) = ¢(14) = o det(C). ]

2.3 Resultants

For two univariate polynomials a = Z;l:o a;t! with aq # 0 and b = byt + by with by # 0, the resultant of a, b
with respect to the variable ¢ is defined to be

d
Resi(a,b) = Zaj(—bo)j(bl)d_j = b{- (ali=—bo /b ) - (3)
7=0

This polynomial vanishes if and only if the univariate polynomials a and b have a common root, namely

t = —bo/b;. See, for example, [15] §3.5] for more on resultants. We will focus on multiaffine polynomials and so
focus on resultants in degree d = 1. For k = 1,...,n, define
0 0

TeSy), (gah) = (glmk:O) : aTckh - (hlwk:O) . aimk .

In particular, if g and h both have degree one in xy, this agrees with Res,, (g, h). The benefit of this degree-
dependent definition is that it is invariant under the action of SLy(R).
o) @

If f € R[x] has degree < 1 in both z; and x;, then
Proposition 2.3. If f € R[z1,...,x,] has degree one in each of x; and x;, then A;;j(f) =0 if and only if f
factors into polynomial g - h with g € Rlxy, : k #i] and h € Rlzy, : k # j]. O

A”(f) = resy; <§£a f|zj_0> = IeSy; <(§Za f

Proof. By assumption we can write f = ax;x; + bx; +cxj +d for a,b,c,d € R[zy : k #4,j]. Then A;(f) =
be — ad. If A;;(f) =0, then bec = ad. Taking irreducible factorizations of both sides, we see that there is some
factorization b = b1bs and ¢ = c1¢o for which a = bicq and d = bace. Then f = (byx; + c2)(c1z; + be). Similarly,
if f= (blxi + CQ)(Cl.’L'j + bz) for some by, bo, c1,co € R[wk 2k £ ’L',j}7 then A”(f) = bibscicag — bibacica =0. N

Proposition 2.4. Let g € R[x]<q and h € R[x]<e with dy, = e, = 1. For v € SLy(R)",
7 - resg, (g, h) = resp(y - g,7 - h),

where v acts of on res,, (g,h) as polynomial of multidegree < d + e — 2 - 1, with 1y, is the vector with kth entry
is 1 and zero otherwise. O
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Proof. Write g = g1x + go and h = hyzy, + ho where g1, go, k1, ho are polynomials in the polynomial ring R[z; :
j # k]. The resultant res,, (g, h) is the determinant of the 2 x 2 matrix (Zi Zg). Consider v = (a cbl) € SLy(R)

C
acting on the jth coordinate. If j = k, then

v-g=g1(axy +b) + go(cxy +d), and ~-h=hi(axy+b)+ ho(cxy + d).

Taking coefficients with respect to {1,z }, we see that the res,, (v -g,7 - h) equals

ahy + chg bhi + dhg hi  ho a b hy  ho
‘ (agl +cgo by +d90> ¢ ((91 90> <c d>> € <gl go) resz, (9, h)
Since v acts on R[X|<dte—2.1, as the identity, this equals 7 - res;, (g, h).

If j £k, theny-g=(y-g1)xr + (v-90) and v - h = (v - hy)xp + (7 - ho), where v acts on g1, go and hy, hg
as elements of multidegree d — 15 and e — 1, respectively. It follows that

v h1 y-ho
res, -g,7v-h)=det = -res, (g, h).
(Y g7 h) (7_91 7,g0> 7 - resg, (9, h)

From , this gives the following:

Corollary 2.5. Consider an element v € SLa(R)™ that acts by (‘; Z) in the k-th coordinate and the identity
in all others. For any f € R[x]<1,

Ai(y-f) = {7 D (f)  otherwise.

O
3 Determinantal Representations and Rayleigh Differences
Let R be a unique factorization domain and denote by Mat,, (R) the set of n x n matrices with entries in R.
Theorem 3.1. Let f € R[x1,...,x,] be multiaffine in the variables x1, ...z, with its coefficient of x1 -z,

equals one. Then f = det(diag(x1,...,2,) + A) for some A € Mat,(R) if and only if for every i # j € [n], the
polynomials N;;(f) factor as the product g;; - g;; where

(a) gij € Rlxy : k # 14, 7] is multiaffine in xq,...,x, and
(b) for every k € [n]\{4, j}, ress, (gij, f) = Gingn;-

In this case, we can take gi; to be the (i,j)th entry of (diag(x1,...,zn) + A)*Y where M>Y represents the
adjugate matriz of M. O

Proof of (=). This follows from a classical equality on the principal minors of an n x n matrix, used by
Dodgson [17] as a method for computing determinants. This is also known as the Desnanot-Jacobi identity or
more generally as Sylvester’s determinantal identity. For any ¢ # j and k # ¢ in [n],

M €L €y
(MY (M) 5 — (M), (M), = det(M) -q  where ¢ = det eg 0 0], (5)
€; 0 0

where e; denotes the i coordinate unit vector in R™ and M?d denotes the adjugate matrix of M. See also [33]
Prop. 4.6]. For M = diag(x1,...,z,) + A,

af adj an ]\g % < adj ad]j
Gy = ( )ii7 0L 0% = det €; 0 0 s and A”(f) = (M )ij(M )ji' (6)
i 0% e 0 0

The last equality follows from with k =i and ¢ = j after rearranging terms.
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For every i,j € [n], let g;; denote (M?Y);;. Then g;; € R[zy : k #14,7] is multiaffine in z1,...,2, and
Ai;(f) = gij95:- Under an appropriate choice of indices, gives

M e e

Gk~ Gij — -4 = gik - gr; where g=det [ef 0 0

el 0 0
Note that grx = % is the coeflicient of ;, in f and g is the coeflicient of zy, in g;;. Therefore giy - gij — f - ¢ is
the resultant of g;; and f with respect to x. [ ]

Example 3.2. For n > 5, one cannot remove condition (b) from Theorem Consider

[ = T1xox33475 + 1X2X3%4 + T1T2T3T5 + T1X2XT4T5 + T1T3T4T5 + ToT3T4T5

+ T1T2T4 + T1X2T5 + T1X3%4 + ToT3T5 + T3T4T5-

One can check that for every i,j € [5], A;;(f) factors as the product of two multiaffine polynomials in
Q[z1,...,x5]. For example, Aja(f) = —zgxsxs5(x425 — 3+ x4+ 5). Since there is an irreducible factor
involving all three variables, there is only one possible factorization of A2(f) as the product of two multiaffine
polynomials g12 - g21, up to scalar multiples and switching the factors, namely g12 = —x3x425 and g9 =
T425 — T3 + x4 + 5. Taking the resultant of go; and f with respect to z3 gives

Resg, (921, f) = (125 + 21 + @5) (X224 + T2 + 24) (X425 + T4 + T5).

Each of the three quadratic factors are irreducible and so there is no way of writing this resultant as the product
of two multiaffine polynomials. Therefore there is no choice of polynomials go3 and g3; satisfying the conditions
in Theorem [B.11 O

Lemma 3.3. Let f € R[z1,...,x,] be multiaffine in the variables x1, ..., x, and its coefficient of x1 - - - x,, equals
one. If f =g-h for some g,h € R[xy,...,x,], then g and h are multiaffine in disjoint subsets of the variables
T1,...,Ty and we can take their leading coefficients in these variables to be one. Moreover, if the polynomials

Aij(f) have factorizations satisfying conditions (a) and (b) in Theorem|3.1} then so do Ai;(g) and Ay(h). O

Proof. For any i € [n], the degree of f in z; must be the sum of the degrees of g and h in z;. Since this sum of
nonnegative numbers is one for each i € [n], we see that for some subset I C [n], ¢ is multiaffine in {x; : i € I},
h is multiaffine in {x; : j € [n]\I}, and deg,(h) = deg;(g9) =0 for any i € [ and j ¢ I.

The highest degree term in f with respect to the variables z1,...,z,, H:.L:l x;, is the product of the highest
degree terms in g and h. Therefore after rescaling, we can assume that both g and h have leading coefficient in
these variables equal to 1. For i € I and j ¢ I, 0(g - h)/0x; = h-0g/0z; and O(g - h)/dx; = g - Oh/Ox;. From
this, one can check that A;;(gh) equals h?A;;(g) for i,j € I, g?A;j(h) for i, j € [n]\I and zero otherwise.

Suppose that for 4, j € [n], A;;(f) = mi;m;j; with m,; multiaffine in z4,. .., z, and res,, (my;, f) = mirmu;
for every ¢, 7, k. For 7,5 € I, we see that m;;m;; = hQAij (9). Since m;;, mj; are multiaffine, they both must be
divisible by h, leaving m;;m;; = A;;(g), where m;;,m,; are multiaffine in z; for ¢ € I. Moreover, for k also in I,

Rk = migme; = Resg, (Mg, f) = resq, (Mijh, gh) = h’res, (1, g)
showing that m;,my; = resy, (Mij;, g). The desired factorization for A;;(h) with 4, j € [n]\I follows similarly. ®

Proof of («<). Suppose that f is irreducible and multiaffine of degree n. Let G’ denote the n x n matrix with
(¢, 7)th entry g;; for i # j and g;; := % for i = j.
We claim that all of the 2 x 2 minors of G lie in (f). This is immediate for the symmetric minors, as

2
GiiGij — 9ii95i = [ - #afmj' Moreover, since C%fl is the coefficient of 1 in f, the resultant resg, (gs;, f) has the

form %gij — g f for some ¢. This gives g119:; — gi191; = qf. Finally, suppose that 1, j, k, £ are all distinct. Then

G31(gij gk — 9agr;) = (9119:5)(91191) — (91194)(9119k7) = 910917916911 — 91591G1kg1; = 0 mod (f).

Since f is irreducible and g1; = 0f/0x; has smaller degree, g1 is not a zero-divisor in R[xi,...,z,]/{f).
Therefore the minor g;;gr — gigr; belongs to (f).

From this it follows that f*~! divides the k x k minors of G for every 2 < k < n, see |42, Lemma 4.7]. In
particular, f?~2 divides the entries of the adjugate matrix G*¥. Let

M= (1/f""2). G4, (7)
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Also f*~! divides det(G), and since these both have degree n(n — 1), there must be some constant A\ € R for
which det(G) = A - 1.

We can see that A = 1 by taking top degree terms. Since deg(f;) =n — 1 and for all i # j, deg(g;;) <n —2,
the leading degree term of det(G) comes uniquely from the product of the diagonals f; --- f,, and is therefore
(IT;_, z;)»~*. On the righthand side, the leading degree term of f"~* is also ([]}"_, z;)"~*, showing that A = 1.

Then 1
det(M) = det(G*¥) =

1 2
. n—-1 _ -  p(n-1) _
f”("—Q) det(G) o fn(n—Q) f = I

fr(n=2)

Note that the entries of M have degree < (n — 1)> — n(n — 2) = 1, so we can write M as Mo+ Y ., ;M;
for some matrices M; € R™*™. We claim that Z?Zl x; M; = diag(z1, ..., x,).

To see this, first note that a non-principal (n — 1) x (n — 1) minor of G involves at most n — 2 elements
from the diagonal of G and therefore has degree < (n —2)(n — 1) + (n — 2) = n(n — 2), since the off-diagonal
entries of G have degree < n — 2. Therefore the off diagonal entries of M have degree < n(n —2) —n(n —2) = 0.

Moreover in the expansion of any principal (n — 1) x (n — 1) minor of G, there is a unique term of degree
(n — 1), namely the product of the leading terms of the diagonal elements, [ i LT(gj;). We can therefore take
the leading terms to find that

Z wili = (LT(fl))nQ ’ (dlag (LT(gll)a s 7LT(gnn)))adj

n adj
:—1 — ij~diag<l,...71)
(Hn ) e T Ty

j=1Tj

= diag (x1,...,zp).

Finally, for general f, we take a factorization of f into irreducible polynomials f =[], f¢. By Lemma(3.3] for
every i, j, Ayj(fe) has a factorization m;;m;j; so into multiaffine polynomials m;; with Resg, (mij, f) = mpmy;.
By the arguments above, f; has a determinantal representation of the correct form. Taking a block diagonal
representation of these representations (and permuting the rows and columns if necessary to reorder x1, ..., x,)
gives a determinantal representation for f. u

Remark 3.4. In Theorem the matrix G = (gi;);; and the corresponding determinantal representation
diag(x1,...,z,) + A of f satisty

G = (diag(zy, ..., z,) + A)*Y and (diag(zy,...,z,) + A) = 27 "GV,

4 Multiaffine algebra for constructing Hermitian factorizations

In this section, we develop an algorithm for constructing factorizations that satisfy the conditions in Theorem 3.1
To do this, we find it most convenient to work in the following level of generality throughout this section. Let S
be a unique factorization domain with an automorphic involution a — @. We use 0 and 1 to denote the additive
and multiplicative identities of S. The map S — S given by a — @ then must satisfy

(@ =a,0=0,1=1,a+b=a+banda-b=a-b.

for all a,b € S. Let R be the subring of elements fixed by this automorphism, that is R ={a € S : @ = a}.

The example of interest is the ring S = Clx,41,...,2Zm] of polynomials with complex coeflicients with
the involution given by complex conjugation. In this case the fixed ring is the subring of polynomials whose
coefficients are real, R = R[Zp41,. .., Zm]-

Assumptions 4.1. Let f € R[x1,...,x,] satisfy the following:

1. fisirreducible in R[x1,...,Z,],

2. f has degree < 1 in each variable x1, ..., 2y,

3. the coefficient [];_, z; in f is nonzero,

4. for every 1 <i < j <n, Aj;(f) factors as g;;G;; in S[x1,...,xy], and

5. for every 1 < i < n, the partial derivative % is irreducible in R[x1,...,2,] up to a constant in R. That

is, for any factorization % =g-hin R[zy,...,2,], g € Ror h € R.

k3
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O

In what follows, we will build up tools to show that under these assumptions Algorithm [1| produces the
desired representation of f. We first exploit some properties of multiaffine polynomials. For any disjoint subsets
S, T C [n], let

=110 flzy=o : jery-

€S
Note that if f is multiaffine in z1,...,z,, then for any 1 <i < j < n, we have
f=wifi+ [ fi=wifiy+f], and fl=a;fj+ Y.
From this, one can check that the formula for A;; f can be written without z;, z;:
Nijf=ff =17 f

If in addition we assume that f and all its partial derivatives are irreducible, then A;;(f) will have degree exactly
2 in each variable, as the following lemma shows.

Lemma 4.2. If f satisfies Assumptions E, then for all 1 <1i,j <n, Ay;(f) is quadratic in each variable xj,
for ke n)\ {i,j}. O

Proof. For 1 <i < j <n, we write A;;(f) as a quadratic polynomial in the variable zy:

Aij(f) = fify = fisf = (o + I Finan + 1) = (fignen + 15) (fran + ),

which gives
coeff (Ay; (f),23) = firfix — fijife = Dij(fr)-

If A;;(fx) = 0, then by Proposition fr is reducible, contradicting Assumption 5). |
We next use ring maps given by taking resultants with f. For any ¢ = 1,...,n, define

i - S[zla s ,.’L‘m] — S[xk ik 7é Z] by Qol(g) = Resmi(gaf)a
as defined in . For instance if we restrict to polynomials g = g;z; + g* with degree one in z;, then
wi(g) = —gif +9'fi.

More generally, ¢;(g) is obtained from g by substituting —f?/f; for #; and multiplying the result by f& where
d = deg;(g). First we will start by listing some of the properties of these maps.

Lemma 4.3. If f satisfies Assumptions E, then, for all g, h € S[x], the maps @1, ..., pn satisfy the following:

0 (fi) = D (f) foralll1 <i<j<n,
0i(Au(f)) = Dij(f)Ajr(f) for all distinct 1 < i, 5,k <n,

if deg;(g) = 0, then p;(g-h) = g-¢;(h),

NS s Lo =

if deg;(g) > 0 and deg;(h) > 0, then p;(g-h) = ¢;(g) - ;(h),

if deg;(g) = deg;(g9) = 1 with sg; & (f;) for all s € S, then p; o pi(g9) = A f - ©;(9),
if deg;(g) = 1 and deg;(g) = 0, then p; o pi(g) = A f - pj(g) = Aijf - g, and

if deg;(g) = 1, then v;(g) = f; - g modulo (f).

O

Proof. We will prove , @, and and all the other properties follow similarly by direct computations. To
prove property H we write g = g;jz,x; + gl v, + g;xj + g, then
0j 0 0ilg) = @i(—gijz; f' — gl f' + gl fizy + g7 fi)
=¥j ((*gz'jf; + 95 fi)at + (=g f7 + i f] + 97 fis — gl 1))ai + (97 F] - gffij)> :
If deg;(g) = 1 and g; ¢ (f;), then we claims that the coefficient of % in ©;(g) is nonzero. To see this, suppose

to the contrary that coeff(¢;(g), ;13?) = 0, meaning géfij = gijf]’f. By assumption, the polynomial f; = fi;z; + f;
is irreducible in R[x], up to a constant in R. In particular, the greatest common divisor s = ged( f;;, f;) belongs
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to S. Then % f]z and % fi; are relatively prime and so the equation above gives that they divide g§ and g;;
respectively. From this we get that sg; € (f;), contradicting Assumption 5. Therefore coeff(p;(g), x?) #0.
Applying the map ¢, to the expression above and simplifying then gives

@i o vi(g) = Dij(N)(—gi f7 + 9 f;) = Di; (F) (i (9))-

Similarly, for @, suppose that deg;(g) = 1 and deg;(g) = 0. The calculation of ¢; o ¢;(g) above holds with
g9ij = g% = 0, giving

w50 0i(9) = 25 (97 Fig = gl fws + (97 F] = gL 1)) = (97 Fig = gD ) + (g7 F] = gL (f3) = Ais (g

The second equality comes from the observation that, as in the argument above, the coefficient, ¢* fi; — gg },
of z; in ¢;(g) is nonzero. The last equality comes from substituting —f7 = — f{z; — f¥ and f; = fijz; + f; and
simplifying.
To prove , we write g as g = g;x; + ¢/ and we use fJ = f — fx;
0i(9) = =9, + 9 f; = —9;(f = [j25) + ¢’ [; = —9;f + [ 9,

showing that ¢;(g) = f; g modulo (f). u
Lemma 4.4. If f satisfies Assumptions@ and A (f) = pp for some 1 < i < j < n, then for every k € [n] with
k # 1,7, there is a factorization of each Ay (f) and A (f) into qg and r7, respectively, such that oi(p) = qr. O

Proof. Since A;x(f) and A, (f) factor into two conjugates, we can write
Ain(f)=a1---as-ay---a; and Ajk(f) =by b .E...Ft
where aq,...,as,b1,...,b; are irreducible in S[z1,...,x,] and multiaffine in z1,...,2,. Then
er(P)er(®) = oe(Ai () = D)) Aju(f) = a1 as-ar- @5 by~ by by~ by
After switching a; with @; and b; with b; if necessary, we get
QOk(p) =ai---as-b--by=q-r

where ¢ =a1---a, and 7 =b;---b; are multiaffine polynomials such that A;,(f) =qq and A, (f) =17 as
desired. u

Lemma 4.5. If f satisfies Assumptionle and for some distinct 1 < 4, j, k < n, the factorizations A;;(f) = pp,
Air(f) = qq and D (f) = 17 satisfy x(p) = qr, then

eilq) =pr and ¢;(r) = pq.

Proof. We will prove the first equality and the second holds similarly. First notice that deg,(p) =1 and
deg;(p) = 0. Also, deg;(r) = degy () = 0. Then using the properties in Lemma |4.3/ we get

pi(a)r = ¢;(qr) = @;j o vr(p) = A;r(f) - p-
Since Aji(f) = r7, dividing the above equation by r gives the desired result. ]

The following algorithm gives the desired factorizations of A;;(f) into g;;7;; that satisfy the hypothesis of
Theorem which will in turn give the desired Hermitian determinantal representation in Theorem
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Algorithm 1 Compatible Hermitian factorizations of Rayleigh differences

Input: f € R[xy,...,x,] satisfying Assumptions
Output: Polynomials {g;x : 1 < j <k <n}in S[z1,...,z,]

Take g2 € K[xl, L. ,J)n} so that Algf = g12 " g12-
for k =3,k <n,k++ do
Qo := ged{A1x(f), pr(g12)s - - s pr(91(6—1)) }
Factor A1, (f) =Dk Promy - Dkl - Phomy With pg ; irreducible for all j.
for j =1, <my,j++ do
if pi ;Pr,; divides Q;—1 then Q; := Q;_1/Dk,;
else Q; := Q1
g1k ‘= ka
for j=2,j<k-—1,j++ do

gjk ‘= <P/c(91j)/91k

Proposition 4.6. The polynomials {gix }1<i<k<n constructed in AlgorithmE satisfy

(a) gk is multiaffine in x1,...,z, for allk > 1,
(b) ©r(g1:) = g1rgix for all 1 < i <k, and
(c) Aik(f) = girGix for all 1 <i < k.

O

Proof. (a) This is immediate for k = 2. For 2 < k < n, notice that Ayx(f) has degree two in z1,...,z,. Let
¢ € [n)\{1, k} and let py j, Dr, ; be the unique irreducible factors of A (f) with degree one in z,. By construction,
g1 divides @Q;, which in turn divides A1x(f)/Px,;. Since this quotient only has degree one in ¢, g1 must have
degree < 1 in xy.

(b) follows directly from construction.

(c) We proceed by induction on k. It is trivially true for k£ = 2. For the inductive step, we will prove the
claim for Ay (f) and the other cases follow. By construction, ¢1xgrx divides A1x(f). To see this, note that for
each j =1,...,my in Algorithm [I} we can take q; = py ; if pr,; divides g1 and q; = Pr; otherwise. Then, by
construction, g1 divides g = H;nzkl g; and ¢ - ¢ = Aqx(f), showing that g1y - g1x divides A1 (f).

Suppose for the sake of contradiction that Ayx(f) # g1xGix- Then there is some irreducible factor p of
Ay, (f) such that pp does not divide ¢1xg1%. We claim that for every 1 < i < k, either p or p divides ¢k (g1:). By
induction, for 1 < i < k, g1,91; = A1;(f). Applying ¢y gives

or(g1:) - pr (1) = er(A1i(f)) = Au(f) - Dir(f)-
Since p is irreducible and divides Aqx(f), it must divide either ¢ (g1:) or ¢r(g17) = wr(g1:). In the latter case, p
divides g (g14). Since neither p nor its conjugate divide g, it follows from the construction that neither p nor
p divide Qo = ged{A1x(f), vr(912), - - -, @r(g1(k—1))}. Hence there exists distinct 2 <4, j < k such that neither
p divide ¢ (g1;) nor p divide ¢ (g1;). By switching p and p if needed, we can assume i < j.
By induction (on k), we know that Ay;(f) = 91:91:, A1;(f) = 91;91; and A;(f) = ¢i5Gi;- Moreover, by (b),
©;(91i) = 91,;9i;- Lemma then implies that ¢1(g;;) = g1:91; and

Avk(f)er(gis) = or(e1(9i)) = er(91i915) = pr(91i)er(15)-
Now neither ¢y (g1;) nor ¢i(g1;) = ¢r(g1;) is divisible by p while p divides A1;(f) and this gives the desired
contradiction. Therefore A1 (f) = g11£G1k-
For 1 < i < k, we calculate that

o eugu) enlgn) _er(@ug)  Aw(H)Aw(f) o
Gik Gk = T g Al Aw(f) Birlf)

Corollary 4.7. If f € R[z1,...,x,] satisfies Assumptions E, then there exists a factorization of A;;(f) into
9ijgji such that g;; € S[x1,...,2n], 95i = Gij, and vr(gij) = girgrj for all distinct 1 <1, j, k < n. O
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Proof. Let {g;; : 1 <i<j <mn} be the polynomials given by Algorithm [1| and for ¢ < j let g;; = g;;. By
Proposition A (f) = 9ijGi; = 95i9:5- Since A;;(f) is quadratic in each variable z1,...,z,, then g;; is
multiaffine in x1,...,2,. We will show that ¢(g:j) = girgr; for all distinct ¢, j, k. Assuming that ¢ < j <k
and using Proposition [4.6] we get

resg, (916, f) = wr(91:) = 9189k = 91k 9ki, and

IeSy, (gjla f) = Sﬁk(gjl) = Sﬁk(glj) = m = 9jk9k1-

Multiplying the above two equations and using Properties we get
er(911951) = Bak(f)grigjk-

Using Propositionagain, we know that ¢;(g1;) = g1;9;: and Lemmaimplies that ¢1(g;:) = gj191:- Again
using Properties [4.3] we find that
Avk(F)er(g5i) = Dak(f)grigin-

Since f is irreducible, Ay, (f) is nonzero and thus @i (gi;) = ¥k(9ji) = Grigik = ik gk;j- Using Lemma we get
that (pj (gik) = gijgjk and Sai(gjk) = gjigik as desired. |

Example 4.8. (n =4). Consider f € R[xy,z2, x3,x4] given by
flx1,@o, 3, 24) = T1T2X3T4 — T1T2 — T1T3 — T1XT4 — ToT3 — ToTy — T3Tg + 1.
For any distinct 4, 7, k, £ € [4], the Raleigh differences of f with respect to x; and z; are
Ay(f) = (7 + D)@ + 1) = (zg, — 1) (vg + 1) (ze + 1) (20 — 1).

Using Algorithm we can choose g12 as any multiaffine factor of A15(f) of degree two. There are four possibilities
(x3 £1)(xs £1) and one can check that every choice works. We choose g12 = (3 +1)(z4 + 1) and compute

p3(g12) = i(z1 — i) (22 — 1)(z4 — 1) (24 +1).

To choose g13 we compute ged(A13(f), p3(g12)) = (x2 —1)(x4 — 1)(x4 + 1). Thus, up to scalar multiples, we have
two choices for g13, namely (z2 —1)(x4 +1) or (z2 — 1)(z4 — 1). We will choose the first option, giving

923 = (@3(g12)/913) = —i(x1 + 1) (x4 +1).

To find g14, we compute the gcd(A14(f), p4(g12), v4(g13)) = (w2 —1)(z3 — 1) and we get go4 and g34 similarly.
Taking gj; = g;; for j > i and g;; = 0f/0x;, the final matrix is G =

ToL3LY4 — T — T3 — T4 (173 + ﬁ)(x4 + fl) (:EQ — fl) (m4 + fl) (mg — fl)(xg — fl)
(x3 —1)(zq — 1) T1X3T4 — T] — T3 — T4 —i(xy +1)(zq + 1) —i(xy +1)(z3 — 1)
(mg + 1'1)(174 — fl) ﬁ(ml — 1'1)(:1:4 — fl) T1L2XT4 — T1 — T — T4 71.1(.%1 + 1'1)(372 + fl)
(z2 + fl)(a,’g +1) i(zy — 1'1)(1’3 +1) fl(ﬂ:l — fl)(xz — fl) T1X2T3 — T1 — T2 — X3

Now we compute the adjugate matrix of G and divide its entries by f? we get

r -1 -1 -1 rp 1 1 1

M= iGadj _ —1 T2 1 1 — p-! 1 T2 1 i D
f2 -1 -1 3 1 1 —1 x3 1
-1 -1 -1 x4 1 —1 —1 x4

where D = diag(—1,1,1,1). Indeed one can check that det(M) = f.

If we instead choose g1 = (x3+1)(xq —1), then 3(g12) =i(xy —1i)(2g —1i)(xsy —1)?. In this case,
ged(A1s(f), v3(g12)) = (z2 — 1) (x4 — 1), which must be g13. The other entries are also determined. Running
over all choices gives a total of six representations of f, up to diagonal equivalence, namely the following three
matrices and their transposes:

zy 1 1 1 ry 1 1 1 Ty 1 1 1
1 x 1 1 1 xzo —1 1 1 x9 1 i
1 —1 xz3 1 ’ 1 1 x3 1 ’ 1 —1 x3 -1
1 —1 —1 x4 1 —1 —1 x4 1 —1 1 x4

The six matrices A obtained by specializing x; = 0 for all 4 all have principal minors given by the coefficients
of f. Since f is symmetric under the action of the symmetric group, Sy. One could also consider the orbit of
these matrices under conjugation by permutation matrices A — P~ AP. One can check that, up to diagonal
equivalence, these six matrices belong to a single orbit under this action, as predicted by [28 Corollary 3.7] O
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5 Hermitian determinantal representations

Let K be a field with an automorphism a — @ of order two. Let F be the fixed field of this automorphism. We
call a matrix A € Mat,,(K) Hermitian if A = a’

5.1 Consequences of Algorithm

Theorem 5.1. Let f € Flzy,...,z,] be a polynomial of total degree n < m that is multiaffine in x1,...,z, and
coefficient of x1 - - - x,, equal to one. There exist Hermitian matrices Api1, ..., Am, Ap so that

f=det (diag(mh e ,IL’n) + Z .’EjAj + AO)

j=n+1
if and only if for all 1,5 € [n], Ay;(f) is a Hermitian square in Klz1, ..., zy). O

Lemma 5.2. Let F be an infinite field and f € Flxy,...,zy] be irreducible, multiaffine in the variables

Z1y..., &y with n < m and have coefficient of x1---x, equal to 1. Let R =F[z,i1,...,2m]. For a generic

element v € SLo(IF)™, the derivatives %(’y - f) are irreducible in R[x1,...,2,] up to a constant in R for all
J

j=1,...,n and the coefficient of H?:l T; 1S monzero. O

As in Assumptions 57 we say that an element f € R[zq,...,x,] is irreducible up to a constant in R if
for any factorization f = ¢g-h with in g, h € R[x1,...,2,], g € Ror h € R.

Proof. Consider v; = (a Z) € SLo(F) acting on x;. Then 9;(y- f) =af; +cf? where f= fjz;+ f7.

C
Consider the set
X = {(a, c) € F? :af; + cf’ is reducible in R[x1,...,7,] up to a constant in R}.

Suppose that the multidegree of f in z1,...,z,, is given by d € N™. By assumption, d; =1 for : =1,...,n.
Note that & is contained in the union J, Xe where

Xo = {(a,c) cF?: af; + cfl e Falg[xl, ce s T <e ~Falg[x1, ey Tm]<d—e}

and the union is taken over all vectors e € N™ that are coordinate-wise < d with the property that e; =1
and ey, = 0 for some i, k € [n]\{j}. Here F318 denotes the algebraic closure of F. To see this, suppose (a,c) € X,
meaning afj + cf? = g - h where g,h € R[z1,...,,) are not elements of R. In particular, for some i,k € [n]\{j},
deg;(g) > 0 and deg;,(h) > 0. Since af; + cf? has degree at most one in each of z; and zy, it follows that deg,(g) =
deg; (k) = 1 and degy,(g) = deg;(h) = 0. Taking e € N™ to be the multidegree of g gives g € Flz1, ..., 2m]<e and
h e Flz1,...,2m]<d—e. Then (a,c) € Xe.

By the projective elimination theorem, the image F&8[zy, ..., 2., <e - F8[21, ..., 2] <d—e is Zariski-closed
in the vectorspace F&8[zq, ..., 2] <q. Intersecting with the F-subspace spanned by {f;, f’} shows that X, and
hence UeX, is Zariski-closed in (IF)2. Therefore this union is either all of F? or is an algebraic set of codimension
> 1. Suppose, for the sake of contradiction, that it is all of F2. Then there exists some e for which X, = F2.
By assumption, there are i,k € [n] so that e; =1 and (d — e); = 1. By Proposition it follows that for all
a,c € F, Ajp(af; + cf?) is identically zero. For ¢ = 1, this corresponds to the evaluation of A (f) at x; = a. It
follows that the polynomial A, (f) is identically zero (see e.g. [3]). Proposition then implies that f factors
as the product of two elements in R[zq,...,x,] neither of which belong to R. ]

Proof of Theorem [5.1] (=) By Theorem|3.1] for all i # j, A;;(f) factors as g;;g;; where g;; the (i, j)th entry
of the adjugate matrix (diag(z1,...,x,) + 4)*Y. Since A is Hermitian, g;; = g;;, showing that A;;(f) = ¢i;7i;-

(<) First assume that F is an infinite field and that f is irreducible in Flzq,...,2z,]. Let R =
FlZn+41, - - -, %m). By Lemmal[5.2] there exists a generic v € SLa(F)™ such that the partial derivatives of v - f are all
irreducible in R[z1,...,z,] and the coefficient of x4 - - - ,, in v - f is nonzero. Then by Corollary there exists
{9ijh1<izj<n with gi; in Klze : € # 4, j] satistying Ai;(v- f) = gij95i, 951 = Giz, and resy, (9ij,7 * f) = Gingr;
for all distinct 4,7,k € [n]. Acting by 7~ on 7 - f and using Proposition we get h;j =~ g;; such that
Ayi(f) = hwm and resy, (hij, f) = hikhy; and thus using Theorem we get a determinantal representation
of f over K and since hj;; = h;;, the matrix will be Hermitian.

Now suppose that f is reducible. Let g be an irreducible factor of f with deg;(g) =1 for ¢ € I C [n] and
deg;(g) = 0 for j € [n]\I where the coefficient of [],.; #; equals one. By Lemma for every 4,5 € I, A;;(g)
is a Hermitian square. Therefore g has a determinantal representation of the correct form, g = det(diag(z; : ¢ €
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I+ Z;n:n 41 ZjAij + Ajg). Taking a block diagonal representation of these representations (and permuting the
rows and columns to reorder x1,...,2,) gives a determinantal representation for f.

Now suppose that F is a finite field. Consider the transcendental extension of F to F(¢) and of K to K(¢).
Then by the arguments above, f = det (diag(z1,...,z,) + A(t)) for some Hermitian matrix A(t) € Mat,, (K(t)).
The (4, j)th entry of A(t) can be written as a;; = > where p;;, ¢;; € K[t] are relatively prime and the polynomial
gi; is nonzero. Specializing to ¢t = 0 will give a determinantal representation of f over K. To do this, we need to
check that ¢;;(0) is nonzero for all ¢, j. If a;; = 0, then we can take p;; = 0 and ¢;; = 1. Suppose that for some
i,7 € [n], pi; is nonzero and ¢;;(0) = 0. Then ¢ divides ¢;; and so also divides g;;. Notice that

ay; = coeff | f, ka and ajjaj; = aiaj; — coeff | f, H Tk
ki k#i,j

are both in F and hence p;;p;; = r¢;qi; for some r € F*. We get the desired contradiction by noticing that
t? divides the right-hand side of the equation, while it does not divide the left-hand side since p;; and ¢;; are
relatively prime. Therefore we can specialize both sides of the equation f = det (diagx1,...,z, + A(t)) to t =0,
which gives a Hermitian determinantal representation of f. n

Example 5.3. Consider the polynomial f = zizox3 4+ x1 + 22 + 3 + 1 over the field F = Fy. The Rayleigh
difference A12(f) = 22 + 23 + 1 does not factor in Fa[z3], showing that the coefficient vector of f is not in the
image of Matg(FF3) under the principal minor map.

Consider the quadratic extension K = Fa[a]/(a? + a + 1). The map a — 1 + « extends to an automorphic
involution on K that fixes Fo. Over K, the Rayleigh differences factor into multiaffine polynomials, namely
Ayi(f) = (xx + @)(xr + 1+ ), for distinct ¢, j, k. As then guaranteed by Theorem f has a Hermitian
determinantal representation over K:

r, 1l+a 14+«
f=det | a To 1+ a

e @ x3

O
Corollary 5.4. Let f € R[zy,...,xm] be a polynomial of total degree n < m that is multiaffine in x1,...,x,
and coefficient of x1 - - x, equals to one. There exist Hermitian matrices Ap11, ..., Am, Ay so that

m
f =det (diag(xl, ceyTp) Z z;A; + A0>
Jj=n+1

if and only if for all i,j € [n], Ai;(f) factors as gi;Gi; for gij € Clze, ..., Tm]. O

This provides a partial converse to [33, Corollary 4.3], which states that if some power of a polynomial f
has a definite determinantal representation, then for all 4, j, the Rayleigh difference A;;(f) is a sum of squares.
In particular, Hermitian representations of f give real symmetric determinantal representations of f2. We might
hope for the following.

Conjecture 5.5. If f € Rlxy,...,zy] is multiaffine in x1,...,2, with n < m, and coefficient of x1 -+, is
nonzero, then some power of f has a definite real symmetric determinantal representation if and only if for all
0,7, 8 (f) is a sum of squares in Rlx1,...,zy). O

5.2 Other multiaffine determinantal representations

In this section we restrict ourselves to fields and consider the set of multiaffine determinantal polynomials of
the form

f(x) = Ndet (Vdiag(z1,...,2,)V* + W) = Adet (Z xvv; + W) (8)
i=1
for some A € F, some matrix V = (v1,...,0,) € K™ and some n x n Hermitian matrix W. Note that when

we take V' to be the n x n identity matrix and A = 1, this is the principal minor polynomial fy,. When n < m,
the coefficient of x;1 - - - x,, in f is necessarily zero.

Theorem 5.6. A polynomial f € F[x|ya has a determinantal representation if and only if for alli,j € [n],
A f is a Hermitian square in K[x]|. Moreover, one can always take a representation of size n = deg(f). O
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Proof. (=) Without loss of generality, we show that Ai5(f) is a Hermitian square. First suppose v; and vo

are linearly dependent, i.e. let v; = avy for some « € K. Then we get viv] = aqwgvl and f(z1,...,2,) =
2
f(0, @z + 2,23, ...,2,). Taking partial derivatives shows that % = aaaa—mj; and that % = 0. Then

Aa(f) = (a%)(a%) is a Hermitian square.

If v; and vy are linearly independent, then there is an invertible matrix U € K"*" with Uv; = e; and
Uwvy = e5. Then

| det(U)[>f = Adet (U (Z z;00F + W) U*) = Adet (diag(ml, 72,0) + Y xitit;" + W) .

i=1 =3

where v; = Uv; and W = UWU*. These matrices are still Hermitian and so by equation @7 A12(f) is Hermitian
square.

(<) Let d =deg(f). We can assume, without loss of generality, that the coefficient of x1-- 24 in f is
nonzero. Moreover since the set of polynomials of the form is invariant under scaling, we can assume that
this coefficient equals one. By Theorem there are Hermitian matrices Ag, Agy1, ..., Am so that

m

f:det diag($17...,Id)+ Z l‘jAj+A0
j=d+1

We take W = Ag. By Lemma below, for every k =n +1,...,m, the rank of Ay equals the degree of f in
xy, which is one. It remains to show that the matrix Ay has the form v} for some vy, € K.

By homogenizing and specializing variables to zero, it suffices to consider polynomials of the form
f =det (diag(z1,...,24) + £4+1A) where A € K"*" is Hermitian and rank-one. Then f can be written as

Hle i + Z;‘l:1 Aj; Hie[d]\{j} x;, where A;; is the jth entry of A. Then for j =1,...,d,

2

d
Ajaen(F) = £ Fln = Fiaen /Y = (H ”3@> A II =) =au| II =
i=1 ield\ {5} i€ld\{5}

By assumption, Ajg41)(f) is a Hermitian square, and so we see that A;; = a;a; for some a; € K. Since A has
rank one, we can write it as Auu* for some A € F* and u € K". If u; # 0, then Au;u; = a;a@;, meaning that
A = fp for = a;/u;. It follows that A = vv* for v = fu. u

Lemma 5.7. If f = det(diag(xy,...,2,) + Z;'n:n.u xjA; + Ao) where A; € K"*" are Hermitian. Then the
rank of A; equals the degree f in the variable x;. O

Proof. The bound degj( f) < rank(A;) follows from the Laplace expansion of the determinant. To see equality,
it suffices to take j =m =n+1 and Ay = 0. Let f4 be the polynomial f4 = det(diag(x1,...,x,)+ A) where
A € K"*" is Hermitian. Then f = ngn} Agx[\3ylSI equals the homogenization of f4. From this we see that
the degree of f in the variable y equals the size of the largest nonzero principal minor of A. By the so-called
Principal Minor Theorem [31], Strong PMT 2.9], this coincides with the size of the largest nonzero minor of A, i.e.
rank(A). Therefore for a general polynomial f = det(diag(x1,...,2z,) + Z;n:nﬂ xjA; + x0Aop), the restriction to
rp =0for k€ {n+1,...,m}\{j} and 29 = 0 has degree rank(4;) in x;, showing that deg;(f) > rank(A;) W

This immediately gives the invariance of the set of determinantal polynomials.

Corollary 5.8. The set of polynomials in F[x|ma with a determinantal representation s tnvariant under
the action of SLa(F)™ x S,,. O

Proof. By Corollary for any v € SLa(F)™, A (v- f) =7 Ay (f). If Ayj(f) is a Hermitian square gg with
9 € K[x] then so is Ai;(y - f) = (v-9)(v - 9)- u
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6 Determinantal Stable Polynomials

In this section we consider polynomials over R and C and show that any real stable multiaffine polynomial
with a complex linear determinantal representation has a definite Hermitian determinantal representation
(Theorem . Moreover, if the original polynomial is irreducible, then the matrix is diagonally similar to
a Hermitian one (Theorem .

We build up to the proofs of these statements with a series of useful lemmas.

Lemma 6.1. Let f € Rlxy,...,2z,] be multiaffine in the variables x1,...,x, for some n < m with coefficient
of xy -+, equals to one. If f is irreducible, then for a generic element v € SLa(R)™, 8% (v - f) is irreducible for
every S C [n]. O

Proof. For each S C [n], the set of 7 € SLy(R)™ for which 9°(v - f) is irreducible is Zariski-open. Therefore it
suffices to show that this set is nonempty for each S C [n]. Then the intersection of these nonempty, Zariski-open
sets will be nonempty and Zariski open.

We will proceed by induction on |S|. For |S| = 0, this is immediate, so suppose that |S| > 1 and let i € S.
Note that 9°(f) = 0; (83\{i}f). By induction, for generic v € SLy(R)™, 3\t (v - f) is irreducible. Moreover, its
coefficient of [,

\$)u{i} T Is nonzero. Therefore, up to a scalar multiple, %\?} (y . f) satisfies the hypothesis
of Lemma and hence for generic 7 € SLy(R) acting on the ith coordinate,

0 (-0 (- ) =05 G- f)

is irreducible. Here we use that 5 commutes with the differential operator 9°\{} since 7 acts as the identity
in the coordinates indexed by elements of S\{i}. It follows that for a generic element v € SLo(R)", 9% (7 - f) is

irreducible. u
Lemma 6.2. If g = ax? + bxy + ¢ is nonnegative on R™ where a,b,c € R[xa, ..., x,], then the polynomial a is
nonnegative on R™~1, O

Proof. Fix p € R™~! and consider the specialization g(x1,p) = a(p)z? + b(p)x1 + c¢(p) in Rlz1]. Since g
is globally nonnegative on R™, g(x1,p) is nonnegative on R and so its leading coefficient a(p) must be

nonnegative. n
Lemma 6.3. Suppose g,h € Clxy,... 2, are multiaffine in x1,...,x, and 0™g and O"™h are nonzero
polynomials in Tpi1,...,T, of total degree at most one. If the product g-h has real coefficients and is
nonnegative as a function on R™  then h is a positive scalar multiple of g, i.e. h = A\g for some A € Ryo. [

Proof. (n =0) Let g =a + ib and h = ¢ + id for some a,b,c,d € R[z1,...,z,]. Since g - h € Rlzq, ..., zy], we
see that ad = —be. Note that if b = 0, then d = 0 and so both g and h are real. In order for g - h to be nonnegative
on R", we must have h = X - g for some A € Rq. The case d = 0 follows similarly.

Otherwise, since g and h are linear and thus irreducible, either a = Ab and ¢ = —Ad or a = Ac and
b= —Ad for some nonzero A € R. In the first case, g = (A+1)b and h = (-A+1)d = (A —1)(—d) and thus
g-h=A2+1)(~=b-d) >0 on R". Thus —d = pb for some pu € R+. It follows that h = (A —i)(ub) = ug. The
second case gives g = Ah. Since g - h = Ah - g is nonnegative on R%,, we conclude A > 0, as desired.

(n > 1) Now suppose n > 1 and write g = g,z,, + ¢" and h = h,x,, + h™. Since g - h is real and nonnegative,
so is its coefficient of 2, g, - h,,. In particular, g,, h,, satisfy the hypothesis of the theorem and so by induction,
hyn, = Ag,, for some A € R+ q. Moreover, for every a € R™~! with g, (a) # 0, the roots (in z,,) of the specialization

of g-h at x = a come in complex conjugate pairs. It follows that —h"™/h,, = —g™/g, as rational functions in
C(zk : k # n). Together with h,, = Agy, this gives that h = A\g. Moreover, since g-h = A g -g is nonnegative
on R™, we see that A > 0. [ |
Theorem 6.4. Let f € Rlxq,...,x,,] be stable and complex determinantal, i.e.

f=det (diag(xl, coy Ty ) F Z Ajrj + AO)

Jj=n+1

for some n xn compler matrices A;. Then there exists Hermitian matrices Bo, Bpia,...,Bm for which
f =det (diag(gcl7 cey ) + Z;n:nﬂ Bjx; + BO) . ]
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Proof. First suppose f is irreducible. By Lemma there is v € SLo(R)", such that 9%(y - f) is irreducible
for all S C [n]. By Proposition [2.2] we can replace f by «- f, and thereby assume that all the coefficients of
er[n]\{z‘,j} z? in the polynomials A;;(v - f) are non-zero. To see this, notice that by induction on n, we can
prove that

coeff [ Aii(f), [ ot | =2y (3{n]\{i,j}(f)),
ke(n]\{i.s}

If this coefficient is zero, then Lemma implies that 8["]\{i’j}(f) is reducible.

Let i < j € [n]. Since f is determinantal, by Theorem the polynomial A;;(f) factors as g;; - g;; where
9ij» 95; are multiaffine in {x}, : k € [n]\{4,j}} and have total degree <mn — 1. In particular, the coefficient of
er[n]\{i’j} 2 in both g;; and g;; has degree <1 in @,11,...,%n. By the arguments above we can assume
this coefficient is nonzero. Since f is real stable, A;;(f) is also globally nonnegative on R™ [9]. Therefore
by Lemma gji = Agi; for some g;;. It follows that A;;(f) factors as a Hermitian square h;; - h;; where
hij = ﬁgij. Theorem then gives the desired Hermitian determinantal representation.

Now suppose f is reducible, say f = f1--- fi. where each factor fj is irreducible and multiaffine in the
variables x; for ¢ € I C [n]. Each factor is stable. Moreover, by Lemma A;;(fr) is either zero or factors
as a product of two polynomials that are multiaffine in {z, : £ € I;;} and with total degree < |I;| — 1. Since fi
is irreducible, the arguments above show that for every i,j € Iy, A;;(fr) is a Hermitian square, from which it
follows that A;(f) = As(fe) - 11, 2k f? is a Hermitian square. Theorem then gives the desired Hermitian
determinantal representation. ]

Remark 6.5. Theorem cannot hold for arbitrary real stable polynomials. For example, consider f to be
the basis generating polynomial of the Vamos matriod, defined in [10]. It was shown by Wagner and Wei [47]
that f is stable. By the theory of matrix factorizations, some power f" of f has a complex linear determinantal
representation (see [46l §3.3]). This power is necessarily stable, but as shown by Brandén [10], /™ does not have
a definite Hermitian determinantal representation. O

When f is reducible, one can easily construct determinantal representations of f that are not Hermitian

X1 1 .
0 x2>' However, when f is
irreducible and real stable, we see that all complex linear determinantal representations are Hermitian, up to

conjugation by diagonal matrices.

by taking block upper triangular representations. For example, z1x2 equals det

Theorem 6.6. Let f € R[xy,..., 2., be stable, irreducible, and complex determinantal, i.e.

m
f=det (diag(xh - ,;En) + Z Ajﬂ;‘j + AO)

Jj=n+1

for some n x n complex matrices A;. Then there exists a real diagonal matriz D € R™ ™ such that D' A;D is
Hermitian for all j. O

Proof. By Lemma there exists v € SLa(R)", such that 9°(y- f) is irreducible for all S C [n]. By
Proposition we can replace f by - f, and thereby assume that all the coeflicients of er[n]\{i,j} z3 in
the polynomials A;;(7 - f) are non-zero, as in the proof of Theorem (6.4

Let A(z) =370 .1 Axwi + Ag and let ai; € Clzpga, ..., @] denote the (4, j)th entry of A(z). Then the
coefficient of [], ., \{ij} z3 in Ay;f is a;jaj;. Since f is stable, the polynomial A;;(f) is nonnegative on R™.
Then by Lemma (6.2 it follows that the coefficient a;ja;; of er[n]\{i,j} z2 in Ay;(f) is nonnegative on R"~™.
By Lemma we can conclude that for each 1 <4 < j < n, there is some \;; € Ry such that a;; = A\jja5;.

We claim that the scalars A;; satisfy \;; = A\ipAg; for all 1 <4 <k < j < n. For simplicity, we show this
for i =1, k=2, j =3 and the proof in general is virtually identical. By the arguments above, the starting
determinantal representation of f has the form

T +an a2 a13 e QA1n
A12G12 T2 + a9 as3
: _ | XMsa A3 T a
dlag(wl’ .. ’:I;n) + A(m) — 13413 23023 3 + 33

)\lnaln Tn + Gnn
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Recall that by (6], the polynomial A;;(f) factors as (M?a4),; (M%) ;; where M = diag(z1, . .., z,) + A(z). These
polynomials are affine in zj, for k& € [n]\{4,j}. In particular,

g = oMNE23 (A radi) 15 = a15a05 — ar3(72 + asz), and

h = 5["]\{1’2’3}(Madj)31 = A2 A23@12G23 — A13@13(Z2 + a22).

These polynomials satisfy the hypotheses of Lemma and so there is some pu € Ry for which h = ug.
Since a;; is nonzero for all ¢,j and agp is invariant under conjugation, we see that AjaAa3 = = A13. More
generally \;; = A\ipAg; for any ¢ < k < j.

Now define D = diag(1, vA12, ...,V A1n). Fori < j, A1; = A\1;\;; we calculate the (4, 7)th and (j,4)th entries
of D7YA(z)D as

v/ A1j o
(D' A(@)D)y; = Y= ai; = /Ajai; and  (D7'A(@)D)js = ﬁ)\ufj = Vi

7 Defining the set of factoring multiquadratic polynomials and the image of the principal
minor map

In this section we give a complete characterization of the image of the principal minor map of Hermitian
matrices using the characterization of Hermitian multiaffine determinantal polynomials from Section [5[ and the
characterization of multiquadratic polynomials that are Hermitian squares. This set is invariant under the action
of SL2(R)™ x S,, and we derive the defining equations and numerical conditions as the orbit of a finite set under
the action of this group, where R is a unique factorization domain. In this section, we will restrict to rings and
fields of characteristic # 2.

Lemma 7.1. Let g = ax? + bz + ¢ € R[z] where char(R) # 2. The polynomial g factors into two linear factors
in R[x] if and only if its discriminant Discr,(g) is a square in R. O

Proof. (=) If ¢ factors, then it has a root in the fraction field of R. By the quadratic formula, this implies that
the discriminant is a square in frac(R), and hence in R.

(<) Suppose that b — dac = ¢2 for some ¢ € R. We can rewrite this as (b — q)(b+ q) = 4ac. Since R is a
unique factorization domain, there is some choice of factorization of @ = ajas and ¢ = ¢ycg so that b — ¢ = 2a1¢
and b+ q = 2ascy. If a = 0, then g factors as 1 (bz + ¢), so we can assume a # 0. We can then write g as

g=a (x— —b—|—q> <x— —b—q> = aqa9 <x—|— c1> <x+02> = (a2x + c1)(a1x + ¢2).
2a 2a ag ai

This lemma does not hold over rings of characteristic two. See [14] Section 2.4, Exercise 6] for further
discussion. Note that for g € Rz, y]mq, Discr;(g) is a polynomial of degree 4 in y whose coefficients are quadratic
in the coefficients of g.

Lemma 7.2. Let h(z) = Z?:o bix' € R[]y a univariate quartic where char(R) # 2. Then h is a square in R[z]
if and only if by, by and h(1) = Zj b; are squares in R and the point (bg, b1, b2, b3, bsa) satisfies

byb] — b3by = 0, by — 4bybsby + 8b3by =0, b3 — 4bgbiby + 8b3b3 = 0 (9)
bob2 — 4b3by + 2b1bgby + 16bobs =0, and b2y — 4bobs 4 2bgb1b3 + 16b3by = 0.

O

Proof. (=) If h(z) is a square in Rx], then h(x) = Z?:o bzt = (ax? + Bz + 6)? for some «, 3,5 € R. We see
that by = o2, by = 62, and Z?:o b; = (a+ B+ §)? are all squares in R. Each of the coefficients b; is a polynomial
in «, 8,  and one can quickly check that all the cubics in @ vanish identically on this parametrization.

(<) Let by = a2, by = §2, and Zj bj = A% for some «, §, A\ € R. From bob% = biby, we see that dbs = +ba,
and replacing « with —a if necessary, we can take dbs = bia.
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If b3 is nonzero, we see from the second equation that bs, and hence «, must also be nonzero. Define
B =bs/(2a) € frac(R). It follows immediately that by = 62, by = 2083, bs = 2Ba, and by = 2. If b3 # 0, the
second equation implies that

1

1
= (b3 4 8b1b3) = (883a® + 166B8a*) = B2 + 26,
4b3by

- 8Ba3
from which we conclude that (az? + Bz + 6)? = h(x). Similarly, if b; is nonzero then so are by and §. We
can define 8 = by /(25) and use 4bob1by = b3 + 8b3b3 to conclude that (ax? + Bx + §)? = h(zx). In either case,
evaluating at x =1 gives that a + f+d=+A, and f=E+A—a -0 € R.

If b = b3 = 0, the equations simplify to 4b4(b3 — 4bgbs) = 0 and 4by (b3 — 4bobs) = 0. If by or by is nonzero,
then by = £0c and h(z) is (ax? £ §)%. Otherwise by = by = by = by = 0, in which case by = A\? and h(z) =
(\z)2. [ |

Corollary 7.3. When char(R) # 2, a quartic h(z) = Z?:o bjzd is a square in R[z] if and only if for all v in
SLa({0,£1}), (v h)a—o is a square in R and By(vy-h) = Cy(y-h) = Dy(y-h) =0, where

B, (h) = byb? — b3bg, Cy(h) = b} — 4bobiby + 8b2bs, and D, (h) = b3by — 4bob3 + 2bgb1 b3 + 16b3by.

ba

O

Proof. It suffices to show that we can recover the conditions in Lemma which we can do this with
three elements of SLo({0,£1}): the identity, v4 = <_01 (1)) and vy, = ((1) D, representing the fractional linear

transformations « — —1/x and z — x + 1, respectively. Note that (v - h)(0) = by and (72 - h)(0) = k(1) =
> j b;, so from (i), we recover that all of these are squares in R. The element 7, induces the transposition
by > (—1)*by_, for each k. One can quickly check that we recover the two missing cubics from this action of
Y1 |
Remark 7.4. The ideal generated by the five cubics in Lemma is not saturated with respect to the ideal

(b, - .., bs). Its saturation is minimally generated by these five cubics together with —b1b3 + 4b1baby — 8bobsbs
and —b%bg + 4bgbobs — 8bgb1by. O

Note that the coefficients of Discr, (7 - g) have degree two in the coefficients ¢, of g, and so the polynomials
listed in (ii) above have degree six. For example,

Bw(DiSCI‘y(’}/ . g)) = 4(801611 — 2(010802 + 000812))2(631 — 4020822)
—4(c3; — 4egocoz) (cricar — 2(ca0c12 + c10c22))?.

Theorem 7.5. Let R be a unique factorization domain with char(R) # 2 and |R| > 13. A polynomial g =
Zae{O,l,?}" caX® € R[x] is the product of multiaffine polynomials if and only if for all v € SLy(R)™ X Sy,

(i) Discry, (V- 9)|oy=..—a,=0 = v - (39 — 4cooCa0) is a square in R,
(ii) the sextic polynomials in ¢ given by specializing B,,(Discry, (v-g)), Cu,(Discry, (v-g)) and
D,,(Discry, (v-g)) to x5 = ... =z, =0 are all zero.

O

Proof. We can express g = Zﬁe{o 1.2)2 g/_;x?leQ where g3 € R[xs, ..., Zn]<2. The polynomial B, (Discrz, (g))
has degree six in the coeflicients gg and so degree < 12 in each variable x;.

Consider I C R with |I| =13. For A\; = A2 =0 and As,..., A\, € I, consider the element v = ((é Af’)) ‘
J

in SLo(R)™. For any polynomial F' € R[x] the evaluation of v-F at x =0 equals the evaluation of F at
x = (A1,...,An). In particular, (ii) implies that the polynomials By, (Discry, (v g)), Cx,(Discry, (- g)) and
D, (Discrg, (7 - g)) vanish at the point x = (A1,...,\,) for every choice of A; € I. Since these polynomials have
degree < 12 in each variable x; and |I| > 13, it follows that each of these polynomials is identically zero, using
[3) Lemma 4.1].

We can now proceed by induction on n. The n =1 case is the content of Lemma together with
the observation that the discriminant is invariant under the action of SLa(R), so we suppose n > 2. Let
h = Discrg, (g9) € S[ze] where S = R[zs,...,x,]. By induction, for every v € SLy(R) acting on the variable
x2, (V- g)|z,—0 factors into multiaffine polynomials and so (- h)|z,—0 = Discry, (7 - g)|z,=0) is a square in
S = R[xg, ce ,l‘n].

By Corollary it follows that Discr,, (g) is a square in S[zs]. Then by Lemma g factors into linear
factors in x; in the ring S[z1, x2] = R[x]. Using the action of S,,, we see that every irreducible factor of g must
have degree < 1 in each variable. |
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Remark 7.6. For every choice of i# j € [n] and X\ € I"™2 we obtain three equations by evaluating
By, (Discry, (9)), Cs; (Discry, (g9)) and D, (Discrg,(g)) at the point A, along with additional two polynomials
from the two missing analogous polynomials in Lemma which can be recovered from the SLy-action on x;.
This gives a total of 5n(n — 1)13"~3 sextic equations in the coefficients of g. O

Lemma 7.7. Let S be a unique factorization domain with char(S) # 2 and an automorphic involution a — @ and
let R be the fized ring under this involution. The quadratic polynomial g = ax® + bx + ¢ € R[x] is a Hermitian
square in S[x] if and only if a and ¢ are Hermitian squares in S and the discriminant Discr,(g) = ¢* with
q € S[z] and § = —q. O

Proof. (=) If ¢ factors into two conjugates (sz + ¢)(sz + t), then a = s5 and ¢ = t¢ and
Disc,(g) = b* — 4ac = (st + t3)* — 4s5tt = (st — t5)?

which satisfies the desired property.

(<=) Assume that b — 4ac = ¢° such that § = —q. If a = 0, then b = ¢ and thus b = —b. Since b € R, then
b=0 and g = ¢ is a Hermitian square as desired. If a # 0, then (b —q)(b+ q) = (b — q)(b — q) = 4ac = 4s5tt,
where a = s5 and ¢ = tt. Thus, after relabeling if needed, we may assume that b — g = 2st. Thus, we can write

U el ) () e ) () =

Theorem 7.8. Let S be a unique factorization domain with char(S) # 2 and an automorphic involution
a—a. Let R be the fized ring of this automorphism with |R| > 13. The polynomial g = Za€{012}" CaX®

in R[x|mq is a Hermitian square if and only if (77 9)|es=..=z,=0 18 a Hermitian square in S[x1,x2] for all
v € SLa(R)™ X S,,. O

Proof. If for all v € SLy(R)™ x Sy, the polynomial (- g)|zs=...—=x,—0 is a Hermitian square in S[xy, z3], then
by Lemma Discry, (7 * 9)|vs=...—z,—0 i a square in S[x,] . Using Corollary [7.3| we see that the two conditions
of Theorem are satisfied and hence we deduce that ¢ is a product of multiaffine polynomials in S[x]. To
prove that g is a Hermitian square, we will proceed by induction on n. The case n = 2 is trivially satisfied. For
the inductive step, write g as g = paa? + p121 + po for some pa, p1,po € R= R[za,...,2,]. By induction we see
that ps and pg are both Hermitian squares and as g is a product of multiaffine polynomials, then by Lemma [7.1
we see that Discy, (g) = p? — 4papo = ¢ for some q € S[xa, ..., z,]. Since p? — 4papo € R, then ¢2 € R and so
q = —q or ¢ = . In the former case, Lemma/[7.7]implies that ¢ is a Hermitian square and we are done. Otherwise
we get (7 q)|x=0 = (7 q)|x=0 for all ¥ € SLy(R)"~1. Notice that by induction on the other hand, (7 - g)|x=o is
a Hermitian square and hence

Disca, (7 9)x=0) = (v (0 — 4p2p0)),_o = (7 @20 With (v @)lx=0 = —(7 - ¢)|x=0-

Thus we conclude that (- q)|x=o = 0 for all v € SLy(R)"~!. Consider v = (v;)2<i<n Where v; = (é ’\f) for

Ai € R. Notice that v - ¢|(z,=...—2,=0) = @l(zo=rs,...,zn=2,) = 0. Since [R| > 3, [3, Lemma 4.1] implies that ¢ = 0
and thus ¢ = —¢ and we apply Lemma [7.7] again to deduce that g is a Hermitian square. n

Assumptions 7.9. We take I to be a field of char(IF) # 2 with |F| > 13 and K to be a degree-two extension
field. Let ¢ denote the square root of the discriminant of the minimal polynomial of this field extension. Then
K =TF(d) and the involution § — 0 = —¢ extends to an automorphism of K with fixed field F. O

Remark 7.10. In the field K, § = —q is equivalent to requiring ¢ = dr for some r € F. O

Lemma 7.11. Let F, K satisfy Assumptions @ and let g = Zae{0,1,2}2 cax® € Flx1, z2]pmq- The polynomial
g is a Hermitian square in K[z1, xo] if and only if for all vy € SLa({0,4£1})? x Sy

(i) 7 - co,0) is a Hermitian square in K, and
(it) szDiscry, (v g) is a square in Flas).
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Proof. Write g as g = pax? + p121 + po where p2, p1 and pg are quadratics in F[xy]. Using Lemma we see
that g is a product of two conjugate factors if and only if py and pg are product of two conjugates in K[zs]
and Disc,, g = ¢* where § = —¢ for some ¢ € K[z3]. Notice that by Remark this condition is equivalent
to g = 0r where r € Flz,] and thus requiring that 35 Disc,, g is a square in F[z,]. Using Lemma p2 and pg
are conjugates if and only if c(; ;) is a product of two conjugates for i, j € {0,2} and (S%Discr362 (7 g)|z,=0 is
square for v € SLo(F) and this gives the desired equivalence. u

Theorem 7.12. Let F, K satisfy Assumptions @ A polynomial g =
square in K[x] if and only if for all v € SLa(F)™ x S,,,

(i) (- co) is a Hermitian square in K,

we{0,1,2yn Cax® € F[x] is a Hermitian

(it) 3zDiscre, (7 9)|za=...—zn=0 = 7 - (352 (c}o — 4cooc20)) is a square in F, and
(iii) the sextic polynomials in c given by specializing B, (Discry, (v-9)), Cau, (Discry, (v-g)) and
D,, (Discry, (v-g)) toxz = ... =z, =0 are all zero.

O
Proof. Using Lemma g is a Hermitian square in K[x] if and only if for all y € SLy(IF)™ x S,,, the restriction
(7 9)les=..=z, =0 is a Hermitian square in K[z, z2]. By Lemma [7.11] this is equivalent to + - ¢o factoring as
a product of two conjugates and %Discrxl('y - g) being a square in F[xs]. By Corollary this discriminant
being a square is equivalent to conditions (ii) and (iii). [ |

Now we are ready to give a complete characterization of the image of the principal minor map of Hermitian
matrices using the characterization of Hermitian multiaffine determinantal polynomials from Section [5| and the
characterization of multiquadratic polynomials that are Hermitian squares.

Recall that to each element a = (as)scy) in F2" we associate the multiaffine polynomial

fam Y asxt,
SCIn]

For n =3, the discriminant of the Rayleigh difference Ajo(f) with respect to z3 is Cayley’s 2 x 2 x 2
hyperdeterminant

HypDet(a) = (ajags + aza13 — azaiz — apaies)?® — 4(araz — agaia)(aizass — azaiaz)

2 2 2 2 2 2 2 2
CL@CL123 + 71093 + AoQ73 + as319 — 2&@&1&23&123 — 2&@&2&13&123 — 2&@&3&12&123

— 2a1a2a13023 — 2a1a3012023 — 2a2a3a12013 + 4agagzaizai + 4daiazaraszas.
This quartic polynomial therefore appears in the arithmetic conditions on the image of the principal minor map.

Theorem 7.13. Let F, K satisfy Assumptions (7.9 and let a = (as)scp] € F2" with ag = 1. There exists a
Hermitian matriz over K with principal minors a if and only if for every v € SLa(F)™ x Sy,

(i) v (a1a2 — agaiz) is a Hermitian square in K,
(ii) 5% HypDet(v - a) is a square in F, and
(iii) «v-a  satisfies the degree-12  polynomials  given by  specializing By, (Discry, (v - A12fa)),
Cy, (Discry, (7 A1afa)) and Dy, (Discry, (v A1afa)) to zs = ... =2, =0.

O
Here the operators B, C,, D, are defined in Corollary

Proof of Theorem [T.13. By Theorem with n =m, a = (as)sc € F2" is in the image of the principal
minor map if and only if A;;(fa) is a Hermitian square for all 4, j € [n], which according to Theorem is
satisfied if and only if for all v € SLy(F)™ % Sy, v - Aga(fa)|zs=...=2, =0 is a Hermitian square in K[z, x2]. This
is equivalent to the three hypotheses of Theorem which in turn are equivalent to the three hypotheses of
the theorem. u

Taking K = C with the action complex conjugation then gives the following.

Corollary 7.14. Let a = (as)scin) € R?" with ag = 1. There exists a Hermitian matriz over C with principal
minors a if and only if for every v € SLy(R)™ % S,,,
(i) v - (a1a2 — apai2) > 0,
(i) HypDet(y-a) <0, and
(i11) v-a satisfies the three degree-12  equations given by restricting By, (Discrg, (Ai2fy.a)),
Cy, (Discry, (A12fy.a)) and Dy, (Discry, (A12fy.a)) toxs =... =z, =0.

O
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8 A family of counterexamples

Let IF be a field and for n > 2, consider the multiaffine polynomial fo,, 11 € Flz1,...,22,41] given by
n n
fong1 =1 - H($2j+1$2j+2 +1)+ H($2j$2j+1 +1) (10)
j=1 j=1

where we take xa,+2 = 9. We show that this polynomial is not determinantal, i.e. its vector of coefficients do
not belong to the image of the principal minor map, but is determinantal after specializing any one variable:

Theorem 8.1. There is no finite set of equations whose orbit under SLa(IF)™ xS, set-theoretically cuts out the
image of the principal minor map for all n. O

Let I, C Flag : S C [n]] be the homogeneous ideal of polynomials vanishing on the image of n x n matrices
under the principal minor map in P2"~(F). There is a natural inclusion of I,, into Flas : S C [n+1]].

Theorem 8.2. The coefficient vector of the polynomial fa,41 belongs to the variety of polynomials in the orbit
(SLa(F)2"*1 % So,41) « Ioy but not the variety of Ioni1- O

The proof of this theorem relies on the fact that the coefficient of any generic specialization of fo, 1 lies
in the image of the principal minor map, up to scaling. One key observation is that the Rayleigh differences
of fon+1 do not all factor as the product of two multiaffine polynomials, but do have such factorizations after
specializing any one variable. We show this explicitly by writing down the determinantal representations of these
specializations.

Lemma 8.3. The rational function Tlmlfgnﬂ can be written as det(diag(za,...,Tont1)+ A) where for
2<i,j<m+1,

1/(1+ 1) if i is odd, j is even, and i > j,

—x1/(14+x1) ifiis odd, j is even, and i < j,

-1 if i is even, j =1+ 1,

Ay = L .

1 if i is even, j =1 —1,

—I ifi=2,7=2n+1, and

0 otherwise.

O

Proof. Let D denote the determinant of the matrix M = det(diag(za,...,zo,+1) + A). By definition, D is a
polynomial in ﬁ,xl,xg, ..., Zpn. Moreover the entries for which x1 + 1 appears in the denominator form a
square submatrix whose rows correspond to odd indices and whose columns correspond to even ones. It has the
form

1 -z —x —T
1 1 -1 . —X7
1 . _ 1 J_
]. +.’E1 ]. +.’E1
1 1 —I
1 1 1 1

where J is the all ones matrix and U is an upper triangular matrix with U;; = 1 for ¢ < j and U;; = 0 otherwise.
Since J has rank one, the exponent of 1 4+ z; appearing in the denominator of any minor of this matrix is at most
one. This also shows that despite the many appearances of x1 in numerator of this matrix, it does not appear in
the numerator of any minor. There is only one other entry in M containing x1, and so the determinant D can
be written as (z1 + 1)*1p1 + p2 where p; and po are multiaffine in 1, ..., x9,41. Moreover, the only term in the
Laplace expansion of the determinant of M avoiding this submatrix is the product of the diagonal Hji;l Zj.
Therefore we can write D as (xy + 1)~'p where p is multiaffine in x1,...,72,,1. To show that p = fo, 1 it
suffices to show that they have the same specialization at 1 = 0 and the same coefficient of z;.

When we specialize x1 to zero, M becomes a block upper-triangular matrix with diagonal blocks of the

| . . C e
form (a:lg] x2j+1>' Its determinant agrees with the specialization of ﬁf2n+1 to 1 = 0.
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x9 -1 0 0 0 —x1 o 0 0 -1 0 —x
1 _

oows 25 0 =BG 0 0 x4 0 1 1 0
0 1 z4 -1 0 0 (1) 0 g o 1 -1

~ X €T

a:11+1 0 I11+1 L5 _wfll 0 :E11+1 _ziil _mlil x3 0 0
0 0 0 1 z6 -1 w71 wdI a0 w0
1 0 1 0 1 1 1 1 0o o0

i1 i1 i1 xr7 T+l T A1 Ti+1 x7

Fig. 1: The matrix A in Lemma for2n+1=71.

Consider the rational function g obtained by inverting x; in fon+1, which is

_1
1-‘,—1‘1

X

_ 1 n n
——— fons1(a7 @2, 1) = : (H($2j+1x2j+2 +1) o [ [ (o500 + 1)) :

142 =1 =1
Let M’ be the matrix obtained from M by replacing x; by xl_l and then multiplying the column indexed by 2
by xfl and the row indexed by 2 by x1. The entries are now rational functions in z; with only 1 4+ x; appearing
in the denominator. After specializing M’ to x1 = 0 and cyclic shifting the rows and columns by one, we find

another block upper triangular matrix with diagonal blocks of the form (IQJ;1 xil ) forj=1,...,n—-1
2542

and (w_"l+1 3612> Therefore the determinant of M’ restricted to x1 = 0 is given by H;L:l(xzj+1$2j+2 +1).
By definition, the determinant of M’ equals D(gclfl7 Tyenoy Ty) =

x3

p(x7!, ..., z,). Restricting to z; = 0

1+x1
gives the coefficient of 7 in p, which must be H?=1(l'2j+1$2j+2 + 1). Therefore p coincides with fo,11. |
Lemma 8.4. For every m =2,...,2n+ 1, the coefficients of %anJrl are the principal minors of a 2n X

2n matriz with entries in {0,+1,x:1}. In particular, the rational function ﬁfgnﬂ can be written as
det(diag(x1,...,22,) + B) where for 1 <i,j < 2n,

1 ifj=i+1landi>1or(ij)=(1,1) or (i,5) = (2,1),
-1 if i is even and j =i —1 or (i,j) = (2n, 1),
Bij =  Tont1 ift odd, 1 > 3, and j =1,
1/xonr1  if i € {1,2} and j is even, and
0 otherwise.

O

Proof. Let M = det(diag(x1,...,22,) + B) and let D denote its determinant. As in the proof of Lemma
the entries of M with x5, 1 appearing in the denominator appear in a submatrix of rank-one. The entries with
Zop+1 appearing in the numerator are contained in the first column. Moreover, in the Laplace expansion of the
determinant, the only terms avoiding the submatrix of entries x5! 41 must include the (1,1) and (2,2) entries,
and so will not involve any entries with xa,1. It follows that D can be written as xQ_nl 4 1p where p is multiaffine
in x1,...,22,41. Therefore it suffices to check that fs, 11 and p have the same restriction to ;1 = 0 and same
coefficient of x7.

We see that the coefficient of z; in D is the determinant of the matrix M after removing the first row
and column. This minor is a block matrix with one block of the form (s + 1/x2,41) and the rest of the form

; 1 . .
<x231'1 . > Therefore the coefficient of 1 in p and fa,,11 agree.
- 42
L : . 1 o7 ,
The specialization of M to xy = 0 is a matrix has the form e Al Using Schur complements, we see

that the determinant equals the determinant of A — ¢b”. One can check that the matrix A — ¢b” is a block-lower
Z2;

-1 x9;41
the restriction of p to x1 = 0 agrees with that of fo, 1.

For the corresponding statement with arbitrary m # 1, we use the symmetries of fs,+1 under the action
of a dihedral group of order n with the cyclic action j — j + 2 (identifying 2n + j = j for j > 2) and reflection
n+1—j<+>n+2—j. There is some element of this group that moves m to 2n + 1, and we can take the image
of the representation above. n

triangular matrix with diagonal blocks > for j=1,...,n—1 and 22, + 1/22,4+1. This shows that
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1 1 1
s+l 0 =z 0 3 2 1 0 0 0
1 w+L 1 L o L
2 7 xT7 xT7 -1 I3 0 0 0
7 0 zz 1 0 1 0 -1 x4 1 0
0 0 ~1 2y 1 0 1 0 -1 z5 0
Ty 0 0 0 x5 1 1 11 e+ L
1 0 0 0 —1 g @7 @7 67 ar

Fig. 2: The matrices B (left) and A — ¢b? (right) in Lemma for2n+1=1.

To show that fa,11 does not belong to Is, 41, we will use the following:

Lemma 8.5. The set of polynomials
Fn = {f € Fix]ma : foralli,j € [n], Ni;(f) = gij - hij for some gij,hij € Falg[x]MA}
is Zariski closed in Fx|pa = FQ["], where B8 denotes the algebraic closure of . O

Proof. The set of multiquadratic polynomials in F2& [x]mq that factor as the product of two multiaffine
polynomials is the image of F*8[x]ya x F&8[x]ya under (g,h) + g - h. Since this map is bilinear, it follows
from the projective elimination theorem that the set {q € F*#[x]\iq : ¢ = g h for some g,h € Fl8[x]ya} is
Zariski-closed in F2!8[x]yq.

Pulling back by the map A;;, it follows that for each 4, € [n], the set of polynomials f € F#8[x]ys for
which A;;(f) factors as the product of two multiaffine polynomials is Zariski-closed, as is their intersection over
all 4, j € [n]. It follows that its intersection with F[x]|ya is Zariski-closed in F[x]ya- u

Theorem implies that the image of F™*™ under the principal minor map is a subset of the variety JF,,
although as Example shows, this containment can be strict. In order to show that fa,41 does not belong to
the variety of Io,11, it suffices to show that fs,,11 does not belong to Fopy1.

Recall that for f = ngn} asx™\5 the coefficient vector of f is defined to be

n]

[
coeff(f) = (as)scm) € F2.

Proof of Theorem [8.2] For convenience, let f = fa,41. Let P € I, be a homogenous polynomial vanishing
on the image of F2"*2" under the principal minor map. Let @ denote the image of P under inclusion into
Flas : S C [2n + 1]]. Note that @ only involves ag with 2n 4+ 1 ¢ S. Since our indexing of coefficients is inclusion
reversing, we see that the evaluation of ) at the coefficient vector of f depends only on coefficients of monomials
containing za,41. In particular, its evaluation at the coefficient vector of f equals the evaluation of P at the
coefficient vector of derivative of f with respect to xo,41, i.e.

Q(coeff(f)) = P(coeff (Of /0xani1)). (11)

If F is finite, it suffices to replace it with any infinite field extension, such as F(t) or F&le. Let
(7, m) € SLy(F)?"*! x4 Sy,4 1, with v generic, where F*# denote the (necessarily infinite) algebraic closure
of F. We can write (y,7) as the composition of elements (¥,7) in SLy(F)?" x1 Sy, and (Yap+1,0), where

Von+1 = (‘Z Z) € SLy(F) acts on xa,41 and o is the transposition o = (m(2n + 1)) € Sa,41. Then

aTop+1 +0

n+1, S = n d seesdbm—1, )
(Yont1,0) - f = (cxant1 +d) f (Il L R

Tm+1,-- 'aIanxm) .

By the genericity of v, ¢ # 0 and

0

Damis ((v2nt1,0) - f) = Cf|{xm = a/c, Tans1 = Tm}"

Call this polynomial g. The coefficient A of H?Zl z; in g is a + ¢ for m =1 and a for m > 1. In either case, we
can assume it is nonzero by the genericity of ~.

By Lemma for m = 1 and Lemma for m > 1, the polynomial % g is determinantal and its coefficient
vector belongs to the image of the principal minor map. Since the image of the principal minor map is invariant
under the action of (SLy(F)?" x Sa,), by (1)),

0 = P(coeff(g)) = P(coeff((7, ) - g)) = Q(coeff((y,7) - f)).
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This shows that the coefficient vector of f belongs to the variety of (SLa(F)?"*! x So,,11) - Io,.
On the other hand, we calculate that

2n

Aa(f) = (w3 — w2ng1) [ [(wimipr + 1)

1=3

These form a cycle of length 2n — 1 of irreducible bivariate factors, which cannot be factored as the product of
two multiaffine polynomials. It follows that f does not belong to the variety Fa,41 from Lemma which, by
Theorem contains the variety of Io, 1. ]

Example 8.1 (2n+ 1 =15). Consider f5 = x1(x3xs + 1)(z225 + 1) + (z2x3 + 1)(2425 + 1). By Lemmas
and f5 is determinantal over F(x;)[z; : i € [5]\{j}] for each j =1,...,5. For example, for j =1 and 5,

wo g mil w0 g

xr3 - 1 ZTo + =— 1 o

— D det | 211 z1+1 — det Zs Z5

Is (x1+1)de (1) 1 1,14 1 T de s 0 2y 1
141 0 it T5 -1 0 —1 x4

However Ajs(fs) = (5 — x5) (324 + 1) (2425 + 1), which cannot be written as a product of two multiaffine
polynomials in F[zg, 24, 25]. Therefore f5 is not determinantal over Flzq, ..., z5]. O

The polynomial fs,y; shows that the orbit of the ideal I, under (SLg(F)?"*! x S5,,1) is not enough
to cut out the set of polynomials f € F[x1,...,z2,41] all of whose Rayleigh differences factor as the product
of two multiaffine polynomials. As Example shows, even this is not enough to cut out the image of the
principal minor map. This leaves the question of what conditions cut out the image of the principal minor map
for arbitrary n wide open.
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