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In this paper we explore determinantal representations of multia�ne polynomials and consequences for the image of

various spaces of matrices under the principal minor map. We show that a real multia�ne polynomial has a definite

Hermitian determinantal representation if and only if all of its so-called Rayleigh di↵erences factor as Hermitian squares

and use this characterization to conclude that the image of the space of Hermitian matrices under the principal minor

map is cut out by the orbit of finitely many equations and inequalities under the action of (SL2(R))n o Sn. We also

study such representations over more general fields with quadratic extensions. Factorizations of Rayleigh di↵erences

prove an e↵ective tool for capturing subtle behavior of the principal minor map. In contrast to the Hermitian case, we

give examples to show for any field F, there is no finite set of equations whose orbit under (SL2(F))n o Sn cuts out the

image of n⇥ n matrices over F under the principal minor map for every n.

1 Introduction

Given an n⇥ n matrix A with entries in a field F, let AS denote the determinant of the submatrix of A indexed
by the set S on the rows and columns. If we set A; = 1, the principal minors of a matrix form a vector of length
2n. The principal minor map is the map that assigns to each matrix the vector of its principal minors, namely

' : Fn⇥n �! F2n given by A �! (AS)S✓[n] .

One of the motivating goals of this paper is to characterize the image of this map. This problem dates back
to the 19th century [39], [40]. In the cases n = 2 and n = 3, this image is characterized by A; = 1 over C. In
the case n = 4, Lin and Sturmfels [35] give an explicit list of 65 polynomials that cut out the image and they
conjectured that it is cut out by equations of degree 12 for any n.

The image of the space of real and complex symmetric matrices was studied by Holtz and Sturmfels [27],
who show that the image is closed and invariant under an action of the group SL2(R)n o Sn and conjectured
that the vanishing of polynomials in the orbit of the hyperdeterminant under this group cuts out the image of
the principal minor map over C. This conjecture was resolved by Oeding [41]. In [3], we build of techniques in
[33] to generalize this result to hold over arbitrary unique factorization domain. Here we use similar techniques
to characterize the image of Hermitian matrices.

The principal minor map problem appears in many di↵erent fields and applications, including statistical
models, machine learning, combinatorics and matrix theory. One fundamental application is the study of
determinantal point processes (DPP). These are probabilistic models that arise naturally in the study of random
matrix theory [29] and machine learning [13, 21]. Symmetric DPPs have attracted a lot of attention as they
reflect the repulsive behavior in modeling, see [1, 8, 18, 32, 45]. Non-symmetric kernels are also of interest for
modeling both repulsive and attractive interactions [4, 12, 20]. Learning the parameters of such a model from
data leads to the computation problem of reconstructing a matrix from the vector of its principal minors. Gri�n
and Tsatsomeros [22, 23] give a numerical algorithm that reconstructs a preimage of a matrix, if it exists, over
C. Rising, Kulesza and Taskarc [43] provide an e�cient algorithm for reconstruction in the symmetric case.

In this paper, we study the principal minor map via determinantal representations of an associated
multivariate polynomial. Explicitly, to each vector a = (aS)S⇢[n] 2 F2n , we assign a multia�ne polynomial

fa where fa =
P

S⇢[n] aS
Q

i2[n]\S xi. This transforms the problem of characterizing the image of the principal
minor map to the problem of characterizing multia�ne polynomials with a determinantal representation, namely
polynomials that can be written as f = det (diag(x1, . . . , xn) +A) for some n⇥ n matrix A. When the matrix
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A is symmetric (Hermitian), we call f a symmetric (Hermitian) multia�ne determinantal polynomial. In [3]
we prove that the class of symmetric determinantal multia�ne polynomials is characterized by their Rayleigh
di↵erences being squares. The Rayleigh di↵erence of a polynomial f with respect to i, j 2 [n] is defined to be

�ij(f) =
@f

@xi

@f

@xj
� f

@2f

@xi@xj
. (1)

Here we explore the consequences of factorizations of Rayleigh di↵erences for non-symmetric determinantal
representations. As described below, the relationship is more subtle than in the symmetric case. While in [3]
we were able to work over arbitrary unique factorization domains, here we mainly restrict ourselves to working
over fields in order to deal with this increased complexity. While we do recover some of the results from [3], we
do not recover them in full generality. In follow up work, the second author also uses factorizations of Rayleigh
di↵erences to recover the full fiber of the principal minor map [2].

Using factorizations of Rayleigh di↵erences into Hermitian squares, we characterize Hermitian determinantal
multia�ne polynomials over any field K with an automorphism of order two. In particular, this gives a
characterization of Hermitian determinantal multia�ne polynomials over C.

Main Result 1 (Corollary 5.4, Theorem 5.6). A real multia�ne polynomial f has a linear Hermitian
detertminantal representation if and only if all of its Rayleigh di↵erences �ij(f) factor as Hermitian squares.

One of the themes of this paper is that factorizations of Rayleigh di↵erences can capture subtle behavior
of the principal minor map.

Example (Example 4.8). For example the Rayleigh di↵erences of the polynomial

fa(x1, x2, x3, x4) = x1x2x3x4 � x1x2 � x1x3 � x1x4 � x2x3 � x2x4 � x3x4 + 1

factor into Hermitian squares in multiple ways, e.g. �34(fa) = (x1 � )(x1 + )(x2 � )(x2 + ). These di↵erent
choices of factorization capture some non-generic behavior in the fiber of the principal minor map and lead to
three inequivalent determinantal representations of f :

8
<

:

0

@
x1 1 1 1

1 x2
1 � x3
1 � � x4

1

A ,

0

@
x1 1 1 1

1 x2 �
1 x3
1 � � x4

1

A ,

0

@
x1 1 1 1

1 x2
1 � x3 �
1 � x4

1

A

9
=

; .

It is natural to ask about the fibers of the principal minor map. In the symmetric case, the fibers were
characterized by Engel and Schneider [19]. Given a matrix A, both its transpose and D�1AD, for any diagonal
matrix D, have the same principal minors as A. In 1984, Loewy and Hartfiel [25] and then Loewy [36] gave
su�cient conditions on a matrix for its fiber under the principal minor map to be a single point, up to diagonal
equivalence and taking transposes. As the example above shows, the fiber in general can be larger. Using the
techniques of this paper, the second author establishes a converse to the theorem of Loewy in order to classify
the fibers of the principal minor map [2].

Here we use the classical theory of determinantal representations to understand the principal minor map,
including ideas from Dixon [16] on the construction of symmetric determinantal representations of plane curves.
The study of symmetric and Hermitian determinantal representations is also closely related to the theory
of hyperbolic and real stable polynomials, which are multivariable generalizations of real-rooted univariate
polynomials. Hyperbolic and stable polynomials have found wide-spread applications in combinatorics [24, 37],
convex analysis [6], operator theory [26, 38], probability [7], and theoretical computer science [5, 34, 44]. The
question of which stable polynomials have definite Hermitian determinantal representations has implications in
operator theory and the theory of convex optimization. See [46] for more. In general, the existence of definite
Hermitian representations does not follow from the existence of general representations over C. In this paper we
show that this is not the case for multia�ne polynomials.

Main Result 2 (Theorem 6.4). If a multia�ne real stable polynomial f has a linear determinantal
representation over C, then it has a definite Hermitian determinantal representation.

From the classification above, we characterize the image of Hermitian matrices under the principal minor
map by characterizing the set of real multiquadratic polynomials that factor as Hermitian squares. This leads
to explicit equations and inequalities defining the image.
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Main Result 3 (Corollary 7.14). The image of the set of n⇥ n Hermitian matrices under the principal minor
map is cut out by the orbit under SL2(R)n o Sn of two inequalities and three degree-12 equations defined by
polynomials in Q[aS : S ✓ 4].

An explicit description of the image of general n⇥ n matrices remains mysterious. Huang and Oeding [28]
give description of the image in the special case where all principal minors of same size are equal (the symmetrized
principal minor assignment problem) where they use the cycle sums in their approach. They provide a minimal
parametrization of the respective varieties in the cases of symmetric, skew symmetric and square complex
matrices. Kenyon and Pemantle [30] adjust the principal minor map by adding the almost principal minors to
the vector in the image and they showed that the ideal of the variety in this case is generated by translations of
a single relation using the rhombus tiling.

Arguably one of the most surprising results in this paper is that, unlike the case of symmetric and Hermitian
matrices, one cannot hope to define the image general n⇥ n of the principal minor map for n by the orbit of
some fixed set of equations under the group SL2(F)n o Sn. Using factorizations of Rayleigh di↵erences, we found
a family of examples that shows that such a finite description is impossible.

Main Result 4 (Theorem 8.1). For any field F, there is no finite set of equations whose orbit under
SL2(F)n o Sn cuts out the image of the principal minor map for all n.

Example (Example 8.1). For instance, we show that the coe�cient vector of the polynomial

f = x1(x3x4 + 1)(x2x5 + 1) + (x2x3 + 1)(x4x5 + 1) (2)

does not belong to the image of the principal minor map but satisfies the orbit of equations vanishing on the
principal minors of 4⇥ 4 matrices under the group SL2(F)5 o S5.

This paper is organized as follows. In Section 2, we introduce terminology and the basic properties
of determinantal representations and the action of SL2(F)n o Sn. In Section 3, we give a characterization
of multia�ne determinantal polynomials involving the factoring of Rayleigh di↵erences. For Hermitian
determinantal representations, this condition simplifies and we give an algorithm for constructing such
representations from a factorization, as described in Section 4 and Section 5. In Section 6 we give a
characterization of multia�ne stable determinantal polynomials and prove Theorem 6.4. In Section 7, we
translate these conditions into explicit equations and inequalities whose orbit under SL2(R)n o Sn cuts of the
image of Hermitian matrices under the principal minor map. Finally, in Section 8, we conclude by presenting a
family of examples that disproves the existing of such a finite description for the image of general n⇥ n matrices
under the principal minor map.

2 Background and notation

For a commutative ring R, we use R[x] to denote the polynomial ring R[x1, . . . , xn] and for f 2 R[x], we use
degi(f) to denote the degree of f in the variable xi. For d = (d1, . . . ,dn) with di 2 Z�0, let F[x]d denote
the set of polynomials with degree at most di in xi for each i = 1, . . . , n. These form an R-module of rankQn

i=1(di + 1). When d1 = . . . = dn = m, we abbreviate R[x](m,...m) by R[x]m. Of particular interest are
multia�ne polynomials, with degree  1 in each variable, and multiquadratic polynomials, with degree  2 in
each variable. These are denoted by R[x]1 = R[x]MA and R[x]2 = R[x]MQ, respectively.

We use Matn(F) to denote the set of n⇥ n matrices with entries in F.

2.1 The action of SL2(R)n o Sn and homogenezations

The action of SL2(R)n on R[x]d is defined as follows. Let � = (�i)i2[n] in SL2(R)n where �i =
⇣

ai bi
ci di

⌘
. Then

for f 2 R[x]d,

� · f =
nY

i=1

(cixi + di)
di · f

✓
a1x1 + b1
c1x1 + d1

, . . . ,
anxn + bn
cnxn + dn

◆
.

One way to interpret this action is with the multihomogenezation of f . Let fd�hom in R[x1, . . . , xn, y1, . . . , yn]d
denote the polynomial

fd�hom =
nY

i=1

ydi
i · f (x1/y1, . . . , xn/yn) .
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The induced action of � on fd�hom is just a linear change of coordinates:

� · fd�hom = fd�hom

✓
�1 ·

✓
x1

y1

◆
, . . . , �n ·

✓
xn

yn

◆◆
.

Restricting to y1 = . . . yn = 1 gives back � · f .
We will also use the usual homogenization of a polynomial to some total degree d, using a single

homogenizing variable y. That is, for f =
P

↵ c↵x↵ 2 R[x] of total degree d = deg(f), its homogenization is

fhom = ydf (x1/y, . . . , xn/y) =
X

↵

c↵x
↵yd�|↵| 2 R[x, y].

Suppose that K is a field with an automorphic involution a 7! a with fixed field F. This extends to an
involution on K[x] by acting on the coe�cients. We will say that a polynomial q 2 F[x] is a Hermitian square
if q = gg for some g 2 K[x]. To end this section, we remark that for f 2 F[x], the condition that �ij(f) is a
Hermitian square is robust to homogenization.

Proposition 2.1. Suppose that K is a field with an automorphic involution a 7! a with fixed field F. Let f 2 F[x].
For i, j 2 [n], the polynomial �ij(f) is a Hermitian square if any only if �ij(fhom) is a Hermitian square.

Proof . If �ij(fhom) is a Hermitian square, then specializing to y = 1 gives a representation of �ij(f) as a
Hermitian square. For the converse, let f 2 F[x] with total degree d and suppose that �ijf = gg for some
g 2 K[x]. Let m = deg(g) = deg(g). By definition, �ij(fhom) 2 F[x, y] is homogeneous of degree 2d� 2. Its
restriction to y = 1 equals �ijf . Therefore �ij(fhom) equals y2d�2�2m(�ij(f))hom, which is the Hermitian
square hh where h is the homogenezation of g to total degree d� 1.

2.2 A description of the action of SL2(F)n on determinantal polynomials and matrices

One can describe the rational action of SL2(F)n on Matn(F) via its action on multia�ne polynomials in
F[x1, . . . , xn]. Given a matrix A 2 Matn(F), consider the multia�ne polynomial f = det (diag (x1, . . . , xn) +A).

For � = (�i)i2[n] in SL2(F)n with �i =
⇣

ai bi
ci di

⌘
, � · f is defined by:

� · f =
nY

i=1

(cixi + di) · det
✓
diag

✓
a1x1 + b1
c1x1 + d1

, . . . ,
anxn + bn
cnxn + dn

◆
+A

◆
.

Let Ai denote the ith column of A and ei the vector whose ith entry is one and zero otherwise. By using the
factor (cixi + di) to scale the ith column, we see that

� · f = det (C diag(x1, . . . , xn) +B)

where C is the matrix with ith column Ci = (aiei + ciAi) and B is the matrix with ith column Bi = biei + diAi.
When the matrix C is invertible, this gives

� · f = det(C) det
�
diag (x1, . . . , xn) + C�1B

�
.

Up to the scalar multiple det(C), the coe�cients of � · f are the principal minors of the matrix C�1B. This
defines a rational action of SL2(F)n on F⇥Matn(F). Namely, for � 2 SL2(F)n and (↵, A) 2 F⇥Matn(F), this
is given by

(�, (↵, A)) 799K (↵(�,A), A�) := (↵ det(C), C�1B)

where the matrices B and C are defined as above. To avoid confusion, we reserve the notation � · for the action
of SL2(F)n on the polynomial ring F[x1, . . . , xn]. We see that this rational action of SL2(F)n on F⇥Matn(F) is
compatible its action on determinantal polynomials and that it commutes the action of (F⇤)n on Matn(F) by
diagonal conjugation. More precisely:

Proposition 2.2. Let � 2 SL2(F)n and (↵, A) 2 F⇥Matn(F). Let f = ↵ det(diag(x1, . . . , xn) +A) and suppose
that the coe�cient of x1 · · ·xn in � · f is nonzero. Then

� · f = ↵(�,A) det(diag(x1, . . . , xn) +A�).

Moreover, for any invertible diagonal matrix D,
⇣
↵(�,D�1AD), (D�1AD)�

⌘
=
�
↵(�,A), D�1(A�)D

�
.
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Proof . We take �, A as above. The first claim follows from the arguments above. More specifically, the
calculations above give that

✓
diag

✓
a1x1 + b1
c1x1 + d1

, . . . ,
anxn + bn
cnxn + dn

◆
+A

◆
E = C diag (x1, . . . , xn) +B

where B and C are defined as above and E denotes the matrix diag(c1x1 + d1 . . . , cnxn + dn). Since diagonal
matrices commute, we see that

✓
diag

✓
a1x1 + b1
c1x1 + d1

, . . . ,
anxn + bn
cnxn + dn

◆
+D�1AD

◆
E = D�1

✓
diag

✓
a1x1 + b1
c1x1 + d1

, . . . ,
anxn + bn
cnxn + dn

◆
+A

◆
ED

= D�1 (C diag (x1, . . . , xn) +B)D

= (D�1CD) diag (x1, . . . , xn) +D�1BD.

This gives (D�1AD)� = (D�1CD)�1(D�1BD) = D�1C�1BD = D�1A�D. Since the determinants of
C diag (x1, . . . , xn) +B and D�1 (C diag (x1, . . . , xn) +B)D are equal, we see that the leading coe�cient

remains unchanged. That is, ↵(�,D�1AD) = ↵(�,A) = ↵ det(C).

2.3 Resultants

For two univariate polynomials a =
Pd

j=0 ajt
j with ad 6= 0 and b = b1t+ b0 with b1 6= 0, the resultant of a, b

with respect to the variable t is defined to be

Rest(a, b) =
dX

j=0

aj(�b0)
j(b1)

d�j = bd1 ·
�
a|t=�b0/b1

�
. (3)

This polynomial vanishes if and only if the univariate polynomials a and b have a common root, namely
t = �b0/b1. See, for example, [15, §3.5] for more on resultants. We will focus on multia�ne polynomials and so
focus on resultants in degree d = 1. For k = 1, . . . , n, define

resxk(g, h) = (g|xk=0) ·
@

@xk
h� (h|xk=0) ·

@

@xk
g.

In particular, if g and h both have degree one in xk, this agrees with Resxk(g, h). The benefit of this degree-
dependent definition is that it is invariant under the action of SL2(R).

If f 2 R[x] has degree  1 in both xi and xj , then

�ij(f) = resxi

✓
@f

@xj
, f |xj=0

◆
= resxj

✓
@f

@xi
, f |xi=0

◆
. (4)

Proposition 2.3. If f 2 R[x1, . . . , xn] has degree one in each of xi and xj, then �ij(f) = 0 if and only if f
factors into polynomial g · h with g 2 R[xk : k 6= i] and h 2 R[xk : k 6= j].

Proof . By assumption we can write f = axixj + bxi + cxj + d for a, b, c, d 2 R[xk : k 6= i, j]. Then �ij(f) =
bc� ad. If �ij(f) = 0, then bc = ad. Taking irreducible factorizations of both sides, we see that there is some
factorization b = b1b2 and c = c1c2 for which a = b1c1 and d = b2c2. Then f = (b1xi + c2)(c1xj + b2). Similarly,
if f = (b1xi + c2)(c1xj + b2) for some b1, b2, c1, c2 2 R[xk : k 6= i, j], then �ij(f) = b1b2c1c2 � b1b2c1c2 = 0.

Proposition 2.4. Let g 2 R[x]d and h 2 R[x]e with dk = ek = 1. For � 2 SL2(R)n,

� · resxk(g, h) = resk(� · g, � · h),

where � acts of on resxk(g, h) as polynomial of multidegree  d+ e� 2 · 1k with 1k is the vector with kth entry
is 1 and zero otherwise.



6 A. Al Ahmadieh and C. Vinzant

Proof . Write g = g1xk + g0 and h = h1xk + h0 where g1, g0, h1, h0 are polynomials in the polynomial ring R[xj :

j 6= k]. The resultant resxk(g, h) is the determinant of the 2⇥ 2 matrix
⇣
h1 h0
g1 g0

⌘
. Consider � =

⇣
a b
c d

⌘
2 SL2(R)

acting on the jth coordinate. If j = k, then

� · g = g1(axk + b) + g0(cxk + d), and � · h = h1(axk + b) + h0(cxk + d).

Taking coe�cients with respect to {1, xk}, we see that the resxk(� · g, � · h) equals

det

✓
ah1 + ch0 bh1 + dh0

ag1 + cg0 bg1 + dg0

◆
= det

✓✓
h1 h0

g1 g0

◆✓
a b
c d

◆◆
= det

✓
h1 h0

g1 g0

◆
= resxk(g, h).

Since � acts on R[x]d+e�2·1k as the identity, this equals � · resxk(g, h).
If j 6= k, then � · g = (� · g1)xk + (� · g0) and � · h = (� · h1)xk + (� · h0), where � acts on g1, g0 and h1, h0

as elements of multidegree d� 1k and e� 1k, respectively. It follows that

resxk(� · g, � · h) = det

✓
� · h1 � · h0

� · g1 � · g0

◆
= � · resxk(g, h).

From (4), this gives the following:

Corollary 2.5. Consider an element � 2 SL2(R)n that acts by
⇣

a b
c d

⌘
in the k-th coordinate and the identity

in all others. For any f 2 R[x]1,

�ij(� · f) =

(
�ij(f) if k = i or k = j

� ·�ij(f) otherwise.

3 Determinantal Representations and Rayleigh Di↵erences

Let R be a unique factorization domain and denote by Matn(R) the set of n⇥ n matrices with entries in R.

Theorem 3.1. Let f 2 R[x1, . . . , xn] be multia�ne in the variables x1, . . . , xn with its coe�cient of x1 · · ·xn

equals one. Then f = det(diag(x1, . . . , xn) +A) for some A 2 Matn(R) if and only if for every i 6= j 2 [n], the
polynomials �ij(f) factor as the product gij · gji where

(a) gij 2 R[xk : k 6= i, j] is multia�ne in x1, . . . , xn and
(b) for every k 2 [n]\{i, j}, resxk(gij , f) = gikgkj.

In this case, we can take gij to be the (i, j)th entry of (diag(x1, . . . , xn) +A)adj where Madj represents the
adjugate matrix of M .

Proof of ()). This follows from a classical equality on the principal minors of an n⇥ n matrix, used by
Dodgson [17] as a method for computing determinants. This is also known as the Desnanot-Jacobi identity or
more generally as Sylvester’s determinantal identity. For any i 6= j and k 6= ` in [n],

(Madj)ik(M
adj)j` � (Madj)i`(M

adj)jk = det(M) · q where q = det

0

@
M ek e`
eTi 0 0
eTj 0 0

1

A , (5)

where ei denotes the i coordinate unit vector in Rn and Madj denotes the adjugate matrix of M . See also [33,
Prop. 4.6]. For M = diag(x1, . . . , xn) +A,

@f

@xi
= (Madj)ii,

@2f

@xi@xj
= det

0

@
M ei ej
eTi 0 0
eTj 0 0

1

A , and �ij(f) = (Madj)ij(M
adj)ji. (6)

The last equality follows from (5) with k = i and ` = j after rearranging terms.
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For every i, j 2 [n], let gij denote (Madj)ij . Then gij 2 R[xk : k 6= i, j] is multia�ne in x1, . . . , xn and
�ij(f) = gijgji. Under an appropriate choice of indices, (5) gives

gkk · gij � f · q = gik · gkj where q = det

0

@
M ek ej
eTk 0 0
eTi 0 0

1

A .

Note that gkk = @f
@xk

is the coe�cient of xk in f and q is the coe�cient of xk in gij . Therefore gkk · gij � f · q is
the resultant of gij and f with respect to xk.

Example 3.2. For n � 5, one cannot remove condition (b) from Theorem 3.1. Consider

f = x1x2x3x4x5 + x1x2x3x4 + x1x2x3x5 + x1x2x4x5 + x1x3x4x5 + x2x3x4x5

+ x1x2x4 + x1x2x5 + x1x3x4 + x2x3x5 + x3x4x5.

One can check that for every i, j 2 [5], �ij(f) factors as the product of two multia�ne polynomials in
Q[x1, . . . , x5]. For example, �12(f) = �x3x4x5(x4x5 � x3 + x4 + x5). Since there is an irreducible factor
involving all three variables, there is only one possible factorization of �12(f) as the product of two multia�ne
polynomials g12 · g21, up to scalar multiples and switching the factors, namely g12 = �x3x4x5 and g21 =
x4x5 � x3 + x4 + x5. Taking the resultant of g21 and f with respect to x3 gives

Resx3(g21, f) = (x1x5 + x1 + x5)(x2x4 + x2 + x4)(x4x5 + x4 + x5).

Each of the three quadratic factors are irreducible and so there is no way of writing this resultant as the product
of two multia�ne polynomials. Therefore there is no choice of polynomials g23 and g31 satisfying the conditions
in Theorem 3.1.

Lemma 3.3. Let f 2 R[x1, . . . , xn] be multia�ne in the variables x1, . . . , xn and its coe�cient of x1 · · ·xn equals
one. If f = g · h for some g, h 2 R[x1, . . . , xn], then g and h are multia�ne in disjoint subsets of the variables
x1, . . . , xn and we can take their leading coe�cients in these variables to be one. Moreover, if the polynomials
�ij(f) have factorizations satisfying conditions (a) and (b) in Theorem 3.1, then so do �ij(g) and �ij(h).

Proof . For any i 2 [n], the degree of f in xi must be the sum of the degrees of g and h in xi. Since this sum of
nonnegative numbers is one for each i 2 [n], we see that for some subset I ✓ [n], g is multia�ne in {xi : i 2 I},
h is multia�ne in {xj : j 2 [n]\I}, and degi(h) = degj(g) = 0 for any i 2 I and j 62 I.

The highest degree term in f with respect to the variables x1, . . . , xn,
Qn

i=1 xi, is the product of the highest
degree terms in g and h. Therefore after rescaling, we can assume that both g and h have leading coe�cient in
these variables equal to 1. For i 2 I and j /2 I, @(g · h)/@xi = h · @g/@xi and @(g · h)/@xj = g · @h/@xj . From
this, one can check that �ij(gh) equals h2�ij(g) for i, j 2 I, g2�ij(h) for i, j 2 [n]\I and zero otherwise.

Suppose that for i, j 2 [n], �ij(f) = mijmji with mij multia�ne in x1, . . . , xn and resxk(mij , f) = mikmkj

for every i, j, k. For i, j 2 I, we see that mijmji = h2�ij(g). Since mij ,mji are multia�ne, they both must be
divisible by h, leaving m̃ijm̃ji = �ij(g), where m̃ij , m̃ji are multia�ne in xi for i 2 I. Moreover, for k also in I,

h2m̃ikm̃kj = mikmkj = Resxk(mij , f) = resxk(m̃ijh, gh) = h2resxk(m̃ij , g)

showing that m̃ikm̃kj = resxk(m̃ij , g). The desired factorization for �ij(h) with i, j 2 [n]\I follows similarly.

Proof of ((). Suppose that f is irreducible and multia�ne of degree n. Let G denote the n⇥ n matrix with
(i, j)th entry gij for i 6= j and gii :=

@f
@xi

for i = j.
We claim that all of the 2⇥ 2 minors of G lie in hfi. This is immediate for the symmetric minors, as

giigjj � gijgji = f · @2f
@xi@xj

. Moreover, since @f
@x1

is the coe�cient of x1 in f , the resultant resx1(gij , f) has the

form @f
@x1

gij � qf for some q. This gives g11gij � gi1g1j = qf . Finally, suppose that i, j, k, ` are all distinct. Then

g211(gijgkl � gilgkj) = (g11gij)(g11gkl)� (g11gil)(g11gkj) ⌘ g1ig1jg1kg1l � g1ig1lg1kg1j = 0 mod hfi.

Since f is irreducible and g11 = @f/@x1 has smaller degree, g11 is not a zero-divisor in R[x1, . . . , xn]/hfi.
Therefore the minor gijgkl � gilgkj belongs to hfi.

From this it follows that fk�1 divides the k ⇥ k minors of G for every 2  k  n, see [42, Lemma 4.7]. In
particular, fn�2 divides the entries of the adjugate matrix Gadj. Let

M = (1/fn�2) ·Gadj. (7)
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Also fn�1 divides det(G), and since these both have degree n(n� 1), there must be some constant � 2 R for
which det(G) = � · fn�1.

We can see that � = 1 by taking top degree terms. Since deg(fi) = n� 1 and for all i 6= j, deg(gij)  n� 2,
the leading degree term of det(G) comes uniquely from the product of the diagonals f1 · · · fn and is therefore
(
Qn

i=1 xi)n�1. On the righthand side, the leading degree term of fn�1 is also (
Qn

i=1 xi)n�1, showing that � = 1.
Then

det(M) =
1

fn(n�2)
· det(Gadj) =

1

fn(n�2)
det(G)n�1 =

1

fn(n�2)
f (n�1)2 = f.

Note that the entries of M have degree  (n� 1)2 � n(n� 2) = 1, so we can write M as M0 +
Pn

i=1 xiMi

for some matrices Mi 2 Rn⇥n. We claim that
Pn

i=1 xiMi = diag(x1, . . . , xn).
To see this, first note that a non-principal (n� 1)⇥ (n� 1) minor of G involves at most n� 2 elements

from the diagonal of G and therefore has degree  (n� 2)(n� 1) + (n� 2) = n(n� 2), since the o↵-diagonal
entries of G have degree  n� 2. Therefore the o↵ diagonal entries of M have degree  n(n� 2)� n(n� 2) = 0.

Moreover in the expansion of any principal (n� 1)⇥ (n� 1) minor of G, there is a unique term of degree
(n� 1)2, namely the product of the leading terms of the diagonal elements,

Q
j 6=i LT(gjj). We can therefore take

the leading terms (7) to find that

nX

i=1

xiMi =
1

(LT(f))n�2 · (diag (LT(g11), . . . ,LT(gnn)))adj

=
1

⇣Qn
j=1 xj

⌘n�2 ·

 
nY

j=1

xj · diag
✓

1

x1
, . . . ,

1

xn

◆!adj

= diag (x1, . . . , xn) .

Finally, for general f , we take a factorization of f into irreducible polynomials f =
Q

` f`. By Lemma 3.3, for
every i, j, �ij(f`) has a factorization mijmji so into multia�ne polynomials mij with Resxk(mij , f) = mikmkj .
By the arguments above, fk has a determinantal representation of the correct form. Taking a block diagonal
representation of these representations (and permuting the rows and columns if necessary to reorder x1, . . . , xn)
gives a determinantal representation for f .

Remark 3.4. In Theorem 3.1 the matrix G = (gij)ij and the corresponding determinantal representation
diag(x1, . . . , xn) +A of f satisfy

G = (diag(x1, . . . , xn) +A)adj and (diag(x1, . . . , xn) +A) = f2�nGadj.

4 Multia�ne algebra for constructing Hermitian factorizations

In this section, we develop an algorithm for constructing factorizations that satisfy the conditions in Theorem 3.1.
To do this, we find it most convenient to work in the following level of generality throughout this section. Let S
be a unique factorization domain with an automorphic involution a 7! a. We use 0 and 1 to denote the additive
and multiplicative identities of S. The map S ! S given by a 7! a then must satisfy

(a) = a, 0 = 0, 1 = 1, a+ b = a+ b and a · b = a · b.

for all a, b 2 S. Let R be the subring of elements fixed by this automorphism, that is R = {a 2 S : a = a}.
The example of interest is the ring S = C[xn+1, . . . , xm] of polynomials with complex coe�cients with

the involution given by complex conjugation. In this case the fixed ring is the subring of polynomials whose
coe�cients are real, R = R[xn+1, . . . , xm].

Assumptions 4.1. Let f 2 R[x1, . . . , xn] satisfy the following:

1. f is irreducible in R[x1, . . . , xn],
2. f has degree  1 in each variable x1, . . . , xn,
3. the coe�cient

Qn
i=1 xi in f is nonzero,

4. for every 1  i < j  n, �ij(f) factors as gijgij in S[x1, . . . , xn], and
5. for every 1  i  n, the partial derivative @f

@xi
is irreducible in R[x1, . . . , xn] up to a constant in R. That

is, for any factorization @f
@xi

= g · h in R[x1, . . . , xn], g 2 R or h 2 R.
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In what follows, we will build up tools to show that under these assumptions Algorithm 1 produces the
desired representation of f . We first exploit some properties of multia�ne polynomials. For any disjoint subsets
S, T ⇢ [n], let

fT
S =

Y

i2S

@i · f |{xj=0 : j2T}.

Note that if f is multia�ne in x1, . . . , xn, then for any 1  i < j  n, we have

f = xifi + f i, fi = xjfij + f j
i , and f i = xjf

i
j + f ij .

From this, one can check that the formula for �ijf can be written without xi, xj :

�ijf = f j
i · f i

j � f ij · fij

If in addition we assume that f and all its partial derivatives are irreducible, then �ij(f) will have degree exactly
2 in each variable, as the following lemma shows.

Lemma 4.2. If f satisfies Assumptions 4.1, then for all 1  i, j  n, �ij(f) is quadratic in each variable xk

for k 2 [n] \ {i, j}.

Proof . For 1  i < j  n, we write �ij(f) as a quadratic polynomial in the variable xk:

�ij(f) = fifj � fijf = (fikxk + fk
i )(fjkxk + fk

j )� (fijkxk + fk
ij)(fkxk + fk),

which gives
coe↵(�ij(f), x

2
k) = fikfjk � fijkfk = �ij(fk).

If �ij(fk) = 0, then by Proposition 2.3, fk is reducible, contradicting Assumption 4.1(5).

We next use ring maps given by taking resultants with f . For any i = 1, . . . , n, define

'i : S[x1, . . . , xm] ! S[xk : k 6= i] by 'i(g) = Resxi(g, f),

as defined in (3). For instance if we restrict to polynomials g = gixj + gi with degree one in xi, then

'i(g) = �gif
i + gifi.

More generally, 'i(g) is obtained from g by substituting �f i/fi for xi and multiplying the result by fd
i where

d = degi(g). First we will start by listing some of the properties of these maps.

Lemma 4.3. If f satisfies Assumptions 4.1, then, for all g, h 2 S[x], the maps '1, . . . ,'n satisfy the following:

1. 'j(fi) = �ij(f) for all 1  i < j  n,
2. 'j(�ik(f)) = �ij(f)�jk(f) for all distinct 1  i, j, k  n,
3. if degj(g) = 0, then 'j(g · h) = g · 'j(h),
4. if degj(g) > 0 and degj(h) > 0, then 'j(g · h) = 'j(g) · 'j(h),
5. if degi(g) = degj(g) = 1 with sgj /2 hfji for all s 2 S, then 'j � 'i(g) = �ijf · 'j(g),
6. if degi(g) = 1 and degj(g) = 0, then 'j � 'i(g) = �ijf · 'j(g) = �ijf · g, and
7. if degj(g) = 1, then 'j(g) ⌘ fj · g modulo hfi.

Proof . We will prove (5), (6), and (7) and all the other properties follow similarly by direct computations. To
prove property (5), we write g = gijxixj + gji xi + gijxj + gij , then

'j � 'i(g) = 'j(�gijxjf
i � gji f

i + gijfixj + gijfi)

= 'j

⇣
(�gijf

i
j + gijfij)x

2
j + (�gijf

ij + gijf
j
i + gijfij � gji f

i
j)xj + (gijf j

i � gji f
ij)
⌘
.

If degj(g) = 1 and gj /2 hfji, then we claims that the coe�cient of x2
j in 'i(g) is nonzero. To see this, suppose

to the contrary that coe↵('i(g), x2
j ) = 0, meaning gijfij = gijf i

j . By assumption, the polynomial fj = fijxi + f i
j

is irreducible in R[x], up to a constant in R. In particular, the greatest common divisor s = gcd(fij , f i
j) belongs
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to S. Then 1
sf

i
j and 1

sfij are relatively prime and so the equation above gives that they divide gij and gij
respectively. From this we get that sgj 2 hfji, contradicting Assumption 4.1.5. Therefore coe↵('i(g), x2

j ) 6= 0.
Applying the map 'j to the expression above and simplifying then gives

'j � 'i(g) = �ij(f)(�gjf
j + gjfj) = �ij(f)('j(g)).

Similarly, for (6), suppose that degi(g) = 1 and degj(g) = 0. The calculation of 'j � 'i(g) above holds with
gij = gij = 0, giving

'j � 'i(g) = 'j

⇣
(gijfij � gji f

i
j)xj + (gijf j

i � gji f
ij)
⌘
= (gijfij � gji f

i
j)(�f j) + (gijf j

i � gji f
ij)(fj) = �ij(f)g.

The second equality comes from the observation that, as in the argument above, the coe�cient, gijfij � gji f
i
j ,

of xj in 'i(g) is nonzero. The last equality comes from substituting �f j = �f j
i xi � f ij and fj = fijxi + f i

j and
simplifying.

To prove (7), we write g as g = gjxj + gj and we use f j = f � fjxj

'j(g) = �gjf
j + gjfj = �gj(f � fjxj) + gjfj = �gjf + fj g,

showing that 'j(g) ⌘ fj g modulo hfi.

Lemma 4.4. If f satisfies Assumptions 4.1 and �ij(f) = pp for some 1  i < j  n, then for every k 2 [n] with
k 6= i, j, there is a factorization of each �ik(f) and �jk(f) into qq and rr, respectively, such that 'k(p) = qr.

Proof . Since �ik(f) and �jk(f) factor into two conjugates, we can write

�ik(f) = a1 · · · as · a1 · · · as and �jk(f) = b1 · · · bt · b1 · · · bt

where a1, . . . , as, b1, . . . , bt are irreducible in S[x1, . . . , xm] and multia�ne in x1, . . . , xn. Then

'k(p)'k(p) = 'k(�ij(f)) = �ik(f)�jk(f) = a1 · · · as · a1 · · · as · b1 · · · bt · b1 · · · bt.

After switching ai with ai and bi with bi if necessary, we get

'k(p) = a1 · · · as · b1 · · · bt = q · r

where q = a1 · · · as and r = b1 · · · bt are multia�ne polynomials such that �ik(f) = qq and �jk(f) = rr as
desired.

Lemma 4.5. If f satisfies Assumptions 4.1 and for some distinct 1  i, j, k  n, the factorizations �ij(f) = pp,
�ik(f) = qq and �jk(f) = rr satisfy 'k(p) = qr, then

'j(q) = pr and 'i(r) = pq.

Proof . We will prove the first equality and the second holds similarly. First notice that degk(p) = 1 and
degj(p) = 0. Also, degj(r) = degk(r) = 0. Then using the properties in Lemma 4.3 we get

'j(q)r = 'j(qr) = 'j � 'k(p) = �jk(f) · p.

Since �jk(f) = rr, dividing the above equation by r gives the desired result.

The following algorithm gives the desired factorizations of �ij(f) into gijgij that satisfy the hypothesis of
Theorem 3.1, which will in turn give the desired Hermitian determinantal representation in Theorem 5.1.
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Algorithm 1 Compatible Hermitian factorizations of Rayleigh di↵erences

Input: f 2 R[x1, . . . , xn] satisfying Assumptions 4.1
Output: Polynomials {gjk : 1  j < k  n} in S[x1, . . . , xn]

Take g12 2 K[x1, . . . , xn] so that �12f = g12 · g12.
for k = 3, k  n, k++ do

Q0 := gcd{�1k(f),'k(g12), . . . ,'k(g1(k�1))}
Factor �1k(f) = pk,1 · · · pk,mk · pk,1 · · · pk,mk with pk,j irreducible for all j.
for j = 1, j  mk, j++ do

if pk,jpk,j divides Qj�1 then Qj := Qj�1/pk,j
else Qj := Qj�1

g1k := Qmk

for j = 2, j  k � 1, j++ do

gjk := 'k(g1j)/g1k

Proposition 4.6. The polynomials {gik}1i<kn constructed in Algorithm 1 satisfy

(a) g1k is multia�ne in x1, . . . , xn for all k > 1,
(b) 'k(g1i) = g1kgik for all 1 < i < k, and
(c) �ik(f) = gikgik for all 1  i < k.

Proof . (a) This is immediate for k = 2. For 2 < k  n, notice that �1k(f) has degree two in x1, . . . , xn. Let
` 2 [n]\{1, k} and let pk,j , pk,j be the unique irreducible factors of �1k(f) with degree one in x`. By construction,
g1k divides Qj , which in turn divides �1k(f)/pk,j . Since this quotient only has degree one in x`, g1k must have
degree  1 in x`.

(b) follows directly from construction.
(c) We proceed by induction on k. It is trivially true for k = 2. For the inductive step, we will prove the

claim for �1k(f) and the other cases follow. By construction, g1kg1k divides �1k(f). To see this, note that for
each j = 1, . . . ,mk in Algorithm 1, we can take qj = pk,j if pk,j divides g1k and qj = pk,j otherwise. Then, by
construction, g1k divides q =

Qmk

j=1 qj and q · q = �1k(f), showing that g1k · g1k divides �1k(f).
Suppose for the sake of contradiction that �1k(f) 6= g1kg1k. Then there is some irreducible factor p of

�1k(f) such that pp does not divide g1kg1k. We claim that for every 1 < i < k, either p or p divides 'k(g1i). By
induction, for 1 < i < k, g1ig1i = �1i(f). Applying 'k gives

'k(g1i) · 'k(g1i) = 'k(�1i(f)) = �1k(f) ·�ik(f).

Since p is irreducible and divides �1k(f), it must divide either 'k(g1i) or 'k(g1i) = 'k(g1i). In the latter case, p
divides 'k(g1i). Since neither p nor its conjugate divide g1k, it follows from the construction that neither p nor
p divide Q0 = gcd{�1k(f),'k(g12), . . . ,'k(g1(k�1))}. Hence there exists distinct 2  i, j < k such that neither
p divide 'k(g1i) nor p divide 'k(g1j). By switching p and p if needed, we can assume i < j.

By induction (on k), we know that �1i(f) = g1ig1i, �1j(f) = g1jg1j and �ij(f) = gijgij . Moreover, by (b),
'j(g1i) = g1jgij . Lemma 4.5 then implies that '1(gij) = g1ig1j and

�1k(f)'k(gij) = 'k('1(gij)) = 'k(g1ig1j) = 'k(g1i)'k(g1j).

Now neither 'k(g1i) nor 'k(g1j) = 'k(g1j) is divisible by p while p divides �1k(f) and this gives the desired
contradiction. Therefore �1k(f) = g1kg1k.

For 1 < i < k, we calculate that

gik · gik =
'k(g1i)

g1k
· 'k(g1i)

g1k
=

'k(g1ig1i)

�1k(f)
=

�1k(f)�ik(f)

�1k(f)
= �ik(f).

Corollary 4.7. If f 2 R[x1, . . . , xn] satisfies Assumptions 4.1, then there exists a factorization of �ij(f) into
gijgji such that gij 2 S[x1, . . . , xn], gji = gij, and 'k(gij) = gikgkj for all distinct 1  i, j, k  n.
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Proof . Let {gij : 1  i < j  n} be the polynomials given by Algorithm 1 and for i < j let gji = gij . By
Proposition 4.6, �ij(f) = gijgij = gjigij . Since �ij(f) is quadratic in each variable x1, . . . , xn, then gij is
multia�ne in x1, . . . , xn. We will show that 'k(gij) = gikgkj for all distinct i, j, k. Assuming that i < j < k
and using Proposition 4.6 we get

resxk(g1i, f) = 'k(g1i) = g1kgki = g1kgki, and

resxk(gj1, f) = 'k(gj1) = 'k(g1j) = g1kgkj = gjkgk1.

Multiplying the above two equations and using Properties 4.3 we get

'k(g1igj1) = �1k(f)gkigjk.

Using Proposition 4.6 again, we know that 'j(g1i) = g1jgji and Lemma 4.5 implies that '1(gji) = gj1g1i. Again
using Properties 4.3 we find that

�1k(f)'k(gji) = �1k(f)gkigjk.

Since f is irreducible, �1k(f) is nonzero and thus 'k(gij) = 'k(gji) = gkigjk = gikgkj . Using Lemma 4.5, we get
that 'j(gik) = gijgjk and 'i(gjk) = gjigik as desired.

Example 4.8. (n = 4). Consider f 2 R[x1, x2, x3, x4] given by

f(x1, x2, x3, x4) = x1x2x3x4 � x1x2 � x1x3 � x1x4 � x2x3 � x2x4 � x3x4 + 1.

For any distinct i, j, k, ` 2 [4], the Raleigh di↵erences of f with respect to xi and xj are

�ij(f) = (x2
k + 1)(x2

` + 1) = (xk � )(xk + )(x` + )(x` � ).

Using Algorithm 1, we can choose g12 as any multia�ne factor of�12(f) of degree two. There are four possibilities
(x3 ± )(x4 ± ) and one can check that every choice works. We choose g12 = (x3 + )(x4 + ) and compute

'3(g12) = (x1 � )(x2 � )(x4 � )(x4 + ).

To choose g13 we compute gcd(�13(f),'3(g12)) = (x2 � )(x4 � )(x4 + ). Thus, up to scalar multiples, we have
two choices for g13, namely (x2 � )(x4 + ) or (x2 � )(x4 � ). We will choose the first option, giving

g23 = ('3(g12)/g13) = � (x1 + )(x4 + ).

To find g14, we compute the gcd(�14(f),'4(g12),'4(g13)) = (x2 � )(x3 � ) and we get g24 and g34 similarly.
Taking gji = gij for j > i and gii = @f/@xi, the final matrix is G =

0

@
x2x3x4 � x2 � x3 � x4 (x3 + )(x4 + ) (x2 � )(x4 + ) (x2 � )(x3 � )

(x3 � )(x4 � ) x1x3x4 � x1 � x3 � x4 � (x1 + )(x4 + ) � (x1 + )(x3 � )

(x2 + )(x4 � ) (x1 � )(x4 � ) x1x2x4 � x1 � x2 � x4 � (x1 + )(x2 + )

(x2 + )(x3 + ) (x1 � )(x3 + ) (x1 � )(x2 � ) x1x2x3 � x1 � x2 � x3

1

A .

Now we compute the adjugate matrix of G and divide its entries by f2 we get

M =
1

f2
Gadj =

0

@
x1 �1 �1 �1

�1 x2
�1 � x3
�1 � � x4

1

A = D�1

0

@
x1 1 1 1

1 x2
1 � x3
1 � � x4

1

AD

where D = diag(�1, 1, 1, 1). Indeed one can check that det(M) = f .
If we instead choose g12 = (x3 + )(x4 � ), then '3(g12) = (x1 � )(x2 � )(x4 � )2. In this case,

gcd(�13(f),'3(g12)) = (x2 � )(x4 � ), which must be g13. The other entries are also determined. Running
over all choices gives a total of six representations of f , up to diagonal equivalence, namely the following three
matrices and their transposes:

8
<

:

0

@
x1 1 1 1

1 x2
1 � x3
1 � � x4

1

A ,

0

@
x1 1 1 1

1 x2 �
1 x3
1 � � x4

1

A ,

0

@
x1 1 1 1

1 x2
1 � x3 �
1 � x4

1

A

9
=

; .

The six matrices A obtained by specializing xi = 0 for all i all have principal minors given by the coe�cients
of f . Since f is symmetric under the action of the symmetric group, S4. One could also consider the orbit of
these matrices under conjugation by permutation matrices A 7! P�1AP . One can check that, up to diagonal
equivalence, these six matrices belong to a single orbit under this action, as predicted by [28, Corollary 3.7]
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5 Hermitian determinantal representations

Let K be a field with an automorphism a 7! a of order two. Let F be the fixed field of this automorphism. We

call a matrix A 2 Matn(K) Hermitian if A = A
T
.

5.1 Consequences of Algorithm 1

Theorem 5.1. Let f 2 F[x1, . . . , xm] be a polynomial of total degree n  m that is multia�ne in x1, . . . , xn and
coe�cient of x1 · · ·xn equal to one. There exist Hermitian matrices An+1, . . . , Am, A0 so that

f = det

 
diag(x1, . . . , xn) +

mX

j=n+1

xjAj +A0

!

if and only if for all i, j 2 [n], �ij(f) is a Hermitian square in K[x1, . . . , xm].

Lemma 5.2. Let F be an infinite field and f 2 F[x1, . . . , xm] be irreducible, multia�ne in the variables
x1, . . . , xn with n  m and have coe�cient of x1 · · ·xn equal to 1. Let R = F[xn+1, . . . , xm]. For a generic
element � 2 SL2(F)n, the derivatives @

@xj
(� · f) are irreducible in R[x1, . . . , xn] up to a constant in R for all

j = 1, . . . , n and the coe�cient of
Qn

i=1 xi is nonzero.

As in Assumptions 4.1.5, we say that an element f 2 R[x1, . . . , xn] is irreducible up to a constant in R if
for any factorization f = g · h with in g, h 2 R[x1, . . . , xn], g 2 R or h 2 R.

Proof . Consider �j =
⇣
a b
c d

⌘
2 SL2(F) acting on xj . Then @j(� · f) = afj + cf j where f = fjxj + f j .

Consider the set

X =
�
(a, c) 2 F2 : afj + cf j is reducible in R[x1, . . . , xn] up to a constant in R}.

Suppose that the multidegree of f in x1, . . . , xm is given by d 2 Nm. By assumption, di = 1 for i = 1, . . . , n.
Note that X is contained in the union

S
e Xe where

Xe =
�
(a, c) 2 F2 : afj + cf j 2 Falg[x1, . . . , xm]e · Falg[x1, . . . , xm]d�e}

and the union is taken over all vectors e 2 Nm that are coordinate-wise  d with the property that ei = 1
and ek = 0 for some i, k 2 [n]\{j}. Here Falg denotes the algebraic closure of F. To see this, suppose (a, c) 2 X ,
meaning afj + cf j = g · h where g, h 2 R[x1, . . . , xn] are not elements of R. In particular, for some i, k 2 [n]\{j},
degi(g) > 0 and degk(h) > 0. Since afj + cf j has degree at most one in each of xi and xk, it follows that degi(g) =
degk(h) = 1 and degk(g) = degi(h) = 0. Taking e 2 Nm to be the multidegree of g gives g 2 F[x1, . . . , xm]e and
h 2 F[x1, . . . , xm]d�e. Then (a, c) 2 Xe.

By the projective elimination theorem, the image Falg[x1, . . . , xm]e · Falg[x1, . . . , xm]d�e is Zariski-closed
in the vectorspace Falg[x1, . . . , xm]d. Intersecting with the F-subspace spanned by {fj , f j} shows that Xe and
hence [eXe is Zariski-closed in (F)2. Therefore this union is either all of F2 or is an algebraic set of codimension
� 1. Suppose, for the sake of contradiction, that it is all of F2. Then there exists some e for which Xe = F2.
By assumption, there are i, k 2 [n] so that ei = 1 and (d� e)k = 1. By Proposition 2.3, it follows that for all
a, c 2 F, �ik(afj + cf j) is identically zero. For c = 1, this corresponds to the evaluation of �ik(f) at xj = a. It
follows that the polynomial �ik(f) is identically zero (see e.g. [3]). Proposition 2.3 then implies that f factors
as the product of two elements in R[x1, . . . , xn] neither of which belong to R.

Proof of Theorem 5.1. ()) By Theorem 3.1, for all i 6= j, �ij(f) factors as gijgji where gij the (i, j)th entry
of the adjugate matrix (diag(x1, . . . , xn) +A)adj. Since A is Hermitian, gji = gij , showing that �ij(f) = gijgij .

(() First assume that F is an infinite field and that f is irreducible in F[x1, . . . , xm]. Let R =
F[xn+1, . . . , xm]. By Lemma 5.2, there exists a generic � 2 SL2(F)n such that the partial derivatives of � · f are all
irreducible in R[x1, . . . , xn] and the coe�cient of x1 · · ·xn in � · f is nonzero. Then by Corollary 4.7, there exists
{gij}1i 6=jn with gij in K[x` : ` 6= i, j] satisfying �ij(� · f) = gijgji, gji = gij , and resxk(gij , � · f) = gikgkj
for all distinct i, j, k 2 [n]. Acting by ��1 on � · f and using Proposition 2.4 we get hij = ��1 · gij such that
�ij(f) = hijhij and resxk(hij , f) = hikhkj and thus using Theorem 3.1 we get a determinantal representation
of f over K and since hji = hij , the matrix will be Hermitian.

Now suppose that f is reducible. Let g be an irreducible factor of f with degi(g) = 1 for i 2 I ✓ [n] and
degj(g) = 0 for j 2 [n]\I where the coe�cient of

Q
i2I xi equals one. By Lemma 3.3, for every i, j 2 I, �ij(g)

is a Hermitian square. Therefore g has a determinantal representation of the correct form, g = det(diag(xi : i 2
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I) +
Pm

j=n+1 xjAij +Ai0). Taking a block diagonal representation of these representations (and permuting the
rows and columns to reorder x1, . . . , xn) gives a determinantal representation for f .

Now suppose that F is a finite field. Consider the transcendental extension of F to F(t) and of K to K(t).
Then by the arguments above, f = det (diag(x1, . . . , xn) +A(t)) for some Hermitian matrix A(t) 2 Matn(K(t)).
The (i, j)th entry of A(t) can be written as aij =

pij

qij
where pij , qij 2 K[t] are relatively prime and the polynomial

qij is nonzero. Specializing to t = 0 will give a determinantal representation of f over K. To do this, we need to
check that qij(0) is nonzero for all i, j. If aij = 0, then we can take pij = 0 and qij = 1. Suppose that for some
i, j 2 [n], pij is nonzero and qij(0) = 0. Then t divides qij and so also divides qij . Notice that

aii = coe↵

0

@f,
Y

k 6=i

xk

1

A and aijaji = aiiajj � coe↵

0

@f,
Y

k 6=i,j

xk

1

A

are both in F and hence pijpij = rqijqij for some r 2 F⇤. We get the desired contradiction by noticing that
t2 divides the right-hand side of the equation, while it does not divide the left-hand side since pij and qij are
relatively prime. Therefore we can specialize both sides of the equation f = det (diag x1, . . . , xn +A(t)) to t = 0,
which gives a Hermitian determinantal representation of f .

Example 5.3. Consider the polynomial f = x1x2x3 + x1 + x2 + x3 + 1 over the field F = F2. The Rayleigh
di↵erence �12(f) = x2

3 + x3 + 1 does not factor in F2[x3], showing that the coe�cient vector of f is not in the
image of Mat3(F2) under the principal minor map.

Consider the quadratic extension K = F2[↵]/h↵2 + ↵+ 1i. The map ↵ 7! 1 + ↵ extends to an automorphic
involution on K that fixes F2. Over K, the Rayleigh di↵erences factor into multia�ne polynomials, namely
�ij(f) = (xk + ↵)(xk + 1 + ↵), for distinct i, j, k. As then guaranteed by Theorem 5.1, f has a Hermitian
determinantal representation over K:

f = det

0

@
x1 1 + ↵ 1 + ↵
↵ x2 1 + ↵
↵ ↵ x3

1

A .

Corollary 5.4. Let f 2 R[x1, . . . , xm] be a polynomial of total degree n  m that is multia�ne in x1, . . . , xn

and coe�cient of x1 · · ·xn equals to one. There exist Hermitian matrices An+1, . . . , Am, A0 so that

f = det

 
diag(x1, . . . , xn) +

mX

j=n+1

xjAj +A0

!

if and only if for all i, j 2 [n], �ij(f) factors as gijgij for gij 2 C[x1, . . . , xm].

This provides a partial converse to [33, Corollary 4.3], which states that if some power of a polynomial f
has a definite determinantal representation, then for all i, j, the Rayleigh di↵erence �ij(f) is a sum of squares.
In particular, Hermitian representations of f give real symmetric determinantal representations of f2. We might
hope for the following.

Conjecture 5.5. If f 2 R[x1, . . . , xm] is multia�ne in x1, . . . , xn with n  m, and coe�cient of x1 · · ·xn is
nonzero, then some power of f has a definite real symmetric determinantal representation if and only if for all
i, j, �ij(f) is a sum of squares in R[x1, . . . , xm].

5.2 Other multia�ne determinantal representations

In this section we restrict ourselves to fields and consider the set of multia�ne determinantal polynomials of
the form

f(x) = � det (V diag(x1, . . . , xm)V ⇤ +W ) = � det

 
mX

i=1

xiviv
⇤
i +W

!
(8)

for some � 2 F, some matrix V = (v1, . . . , vm) 2 Kn⇥m and some n⇥ n Hermitian matrix W . Note that when
we take V to be the n⇥ n identity matrix and � = 1, this is the principal minor polynomial fW . When n < m,
the coe�cient of x1 · · ·xm in f is necessarily zero.

Theorem 5.6. A polynomial f 2 F[x]MA has a determinantal representation (8) if and only if for all i, j 2 [n],
�ijf is a Hermitian square in K[x]. Moreover, one can always take a representation of size n = deg(f).
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Proof . ()) Without loss of generality, we show that �12(f) is a Hermitian square. First suppose v1 and v2
are linearly dependent, i.e. let v1 = ↵v2 for some ↵ 2 K. Then we get v1v⇤1 = ↵↵v2v⇤2 and f(x1, . . . , xm) =

f(0,↵↵x1 + x2, x3, . . . , xm). Taking partial derivatives shows that @f
@x1

= ↵↵ @f
@x2

and that @2f
@x1@x2

= 0. Then

�12(f) = (↵ @f
@x2

)(↵ @f
@x2

) is a Hermitian square.

If v1 and v2 are linearly independent, then there is an invertible matrix U 2 Kn⇥n with Uv1 = e1 and
Uv2 = e2. Then

| det(U)|2f = � det

 
U

 
mX

i=1

xiviv
⇤
i +W

!
U⇤

!
= � det

 
diag(x1, x2,0) +

mX

i=3

xi evi evi⇤ +fW
!
.

where evi = Uvi and fW = UWU⇤. These matrices are still Hermitian and so by equation (6), �12(f) is Hermitian
square.

(() Let d = deg(f). We can assume, without loss of generality, that the coe�cient of x1 · · ·xd in f is
nonzero. Moreover since the set of polynomials of the form (8) is invariant under scaling, we can assume that
this coe�cient equals one. By Theorem 5.1, there are Hermitian matrices A0, Ad+1, . . . , Am so that

f = det

0

@diag(x1, . . . , xd) +
mX

j=d+1

xjAj +A0

1

A .

We take W = A0. By Lemma 5.7 below, for every k = n+ 1, . . . ,m, the rank of Ak equals the degree of f in
xk, which is one. It remains to show that the matrix Ak has the form vkv⇤k for some vk 2 Kd.

By homogenizing and specializing variables to zero, it su�ces to consider polynomials of the form
f = det (diag(x1, . . . , xd) + xd+1A) where A 2 Kn⇥n is Hermitian and rank-one. Then f can be written asQd

i=1 xi +
Pd

j=1 Ajj
Q

i2[d]\{j} xi, where Ajj is the jth entry of A. Then for j = 1, . . . , d,

�j(d+1)(f) = fd+1
j f j

d+1 � fj(d+1)f
j(d+1) =

 
dY

i=1

xi

!0

@Ajj

Y

i2[d]\{j}

xi

1

A = Ajj

0

@
Y

i2[d]\{j}

xi

1

A
2

.

By assumption, �j(d+1)(f) is a Hermitian square, and so we see that Ajj = ↵j↵j for some ↵j 2 K. Since A has
rank one, we can write it as �uu⇤ for some � 2 F⇤ and u 2 Kn. If uj 6= 0, then �ujuj = ↵j↵j , meaning that
� = �� for � = ↵j/uj . It follows that A = vv⇤ for v = �u.

Lemma 5.7. If f = det(diag(x1, . . . , xn) +
Pm

j=n+1 xjAj +A0) where Aj 2 Kn⇥n are Hermitian. Then the
rank of Aj equals the degree f in the variable xj.

Proof . The bound degj(f)  rank(Aj) follows from the Laplace expansion of the determinant. To see equality,
it su�ces to take j = m = n+ 1 and A0 = 0. Let fA be the polynomial fA = det(diag(x1, . . . , xn) +A) where
A 2 Kn⇥n is Hermitian. Then f =

P
S✓[n] ASx[n]\Sy|S| equals the homogenization of fA. From this we see that

the degree of f in the variable y equals the size of the largest nonzero principal minor of A. By the so-called
Principal Minor Theorem [31, Strong PMT 2.9], this coincides with the size of the largest nonzero minor of A, i.e.
rank(A). Therefore for a general polynomial f = det(diag(x1, . . . , xn) +

Pm
j=n+1 xjAj + x0A0), the restriction to

xk = 0 for k 2 {n+ 1, . . . ,m}\{j} and x0 = 0 has degree rank(Aj) in xj , showing that degj(f) � rank(Aj)

This immediately gives the invariance of the set of determinantal polynomials.

Corollary 5.8. The set of polynomials in F[x]MA with a determinantal representation (8) is invariant under
the action of SL2(F)n o Sn.

Proof . By Corollary 2.5, for any � 2 SL2(F)n, �ij(� · f) = � ·�ij(f). If �ij(f) is a Hermitian square gg with

g 2 K[x] then so is �ij(� · f) = (� · g)(� · g).
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6 Determinantal Stable Polynomials

In this section we consider polynomials over R and C and show that any real stable multia�ne polynomial
with a complex linear determinantal representation has a definite Hermitian determinantal representation
(Theorem 6.4). Moreover, if the original polynomial is irreducible, then the matrix is diagonally similar to
a Hermitian one (Theorem 6.6).

We build up to the proofs of these statements with a series of useful lemmas.

Lemma 6.1. Let f 2 R[x1, . . . , xm] be multia�ne in the variables x1, . . . , xn for some n  m with coe�cient
of x1 · · ·xn equals to one. If f is irreducible, then for a generic element � 2 SL2(R)n, @S(� · f) is irreducible for
every S ⇢ [n].

Proof . For each S ⇢ [n], the set of � 2 SL2(R)n for which @S(� · f) is irreducible is Zariski-open. Therefore it
su�ces to show that this set is nonempty for each S ⇢ [n]. Then the intersection of these nonempty, Zariski-open
sets will be nonempty and Zariski open.

We will proceed by induction on |S|. For |S| = 0, this is immediate, so suppose that |S| � 1 and let i 2 S.
Note that @S(f) = @i

�
@S\{i}f

�
. By induction, for generic � 2 SL2(R)n, @S\{i}(� · f) is irreducible. Moreover, its

coe�cient of
Q

j2([n]\S)[{i} xj is nonzero. Therefore, up to a scalar multiple, @S\{i}(� · f) satisfies the hypothesis
of Lemma 5.2, and hence for generic e� 2 SL2(R) acting on the ith coordinate,

@i
⇣
e� · @S\{i}(� · f)

⌘
= @S (e� · � · f)

is irreducible. Here we use that e� commutes with the di↵erential operator @S\{i}, since e� acts as the identity
in the coordinates indexed by elements of S\{i}. It follows that for a generic element � 2 SL2(R)n, @S (� · f) is
irreducible.

Lemma 6.2. If g = ax2
1 + bx1 + c is nonnegative on Rm where a, b, c 2 R[x2, . . . , xm], then the polynomial a is

nonnegative on Rm�1.

Proof . Fix p 2 Rm�1 and consider the specialization g(x1,p) = a(p)x2
1 + b(p)x1 + c(p) in R[x1]. Since g

is globally nonnegative on Rm, g(x1,p) is nonnegative on R and so its leading coe�cient a(p) must be
nonnegative.

Lemma 6.3. Suppose g, h 2 C[x1, . . . , xm] are multia�ne in x1, . . . , xn and @[n]g and @[n]h are nonzero
polynomials in xn+1, . . . , xm of total degree at most one. If the product g · h has real coe�cients and is
nonnegative as a function on Rm, then h is a positive scalar multiple of g, i.e. h = �g for some � 2 R>0.

Proof . (n = 0) Let g = a+ b and h = c+ d for some a, b, c, d 2 R[x1, . . . , xm]. Since g · h 2 R[x1, . . . , xm], we
see that ad = �bc. Note that if b = 0, then d = 0 and so both g and h are real. In order for g · h to be nonnegative
on Rn, we must have h = � · g for some � 2 R>0. The case d = 0 follows similarly.

Otherwise, since g and h are linear and thus irreducible, either a = �b and c = ��d or a = �c and
b = ��d for some nonzero � 2 R. In the first case, g = (�+ )b and h = (��+ )d = (�� )(�d) and thus
g · h = (�2 + 1)(�b · d) � 0 on Rn. Thus �d = µb for some µ 2 R>0. It follows that h = (�� )(µb) = µg. The
second case gives g = �h. Since g · h = �h · g is nonnegative on Rn

�0, we conclude � > 0, as desired.
(n � 1) Now suppose n � 1 and write g = gnxn + gn and h = hnxn + hn. Since g · h is real and nonnegative,

so is its coe�cient of x2
n, gn · hn. In particular, gn, hn satisfy the hypothesis of the theorem and so by induction,

hn = �gn for some � 2 R>0. Moreover, for every a 2 Rm�1 with gn(a) 6= 0, the roots (in xn) of the specialization
of g · h at x = a come in complex conjugate pairs. It follows that �hn/hn = �gn/gn as rational functions in
C(xk : k 6= n). Together with hn = �gn, this gives that h = �g. Moreover, since g · h = � · g · g is nonnegative
on Rn, we see that � > 0.

Theorem 6.4. Let f 2 R[x1, . . . , xm] be stable and complex determinantal, i.e.

f = det

 
diag(x1, . . . , xn) +

mX

j=n+1

Ajxj +A0

!

for some n⇥ n complex matrices Aj. Then there exists Hermitian matrices B0, Bn+1, . . . , Bm for which

f = det
⇣
diag(x1, . . . , xn) +

Pm
j=n+1 Bjxj +B0

⌘
.
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Proof . First suppose f is irreducible. By Lemma 6.1, there is � 2 SL2(R)n, such that @S(� · f) is irreducible
for all S ⇢ [n]. By Proposition 2.2, we can replace f by � · f , and thereby assume that all the coe�cients ofQ

k2[n]\{i,j} x
2
k in the polynomials �ij(� · f) are non-zero. To see this, notice that by induction on n, we can

prove that

coe↵

0

@�ij(f),
Y

k2[n]\{i,j}

x2
k

1

A = �ij

⇣
@[n]\{i,j}(f)

⌘
.

If this coe�cient is zero, then Lemma 3.3 implies that @[n]\{i,j}(f) is reducible.
Let i < j 2 [n]. Since f is determinantal, by Theorem 3.1, the polynomial �ij(f) factors as gij · gji where

gij , gji are multia�ne in {xk : k 2 [n]\{i, j}} and have total degree  n� 1. In particular, the coe�cient ofQ
k2[n]\{i,j} xk in both gij and gji has degree  1 in xn+1, . . . , xm. By the arguments above we can assume

this coe�cient is nonzero. Since f is real stable, �ij(f) is also globally nonnegative on Rn [9]. Therefore
by Lemma 6.3, gji = �gij for some gij . It follows that �ij(f) factors as a Hermitian square hij · hij where
hij =

p
�gij . Theorem 5.1 then gives the desired Hermitian determinantal representation.

Now suppose f is reducible, say f = f1 · · · fr where each factor fk is irreducible and multia�ne in the
variables xi for i 2 Ik ⇢ [n]. Each factor is stable. Moreover, by Lemma 3.3, �ij(fk) is either zero or factors
as a product of two polynomials that are multia�ne in {x` : ` 2 Ik} and with total degree  |Ik|� 1. Since fk
is irreducible, the arguments above show that for every i, j 2 Ik, �ij(fk) is a Hermitian square, from which it
follows that �ij(f) = �ij(fk) ·

Q
` 6=k f

2
` is a Hermitian square. Theorem 5.1 then gives the desired Hermitian

determinantal representation.

Remark 6.5. Theorem 6.4 cannot hold for arbitrary real stable polynomials. For example, consider f to be
the basis generating polynomial of the Vámos matriod, defined in [10]. It was shown by Wagner and Wei [47]
that f is stable. By the theory of matrix factorizations, some power fr of f has a complex linear determinantal
representation (see [46, §3.3]). This power is necessarily stable, but as shown by Brändén [10], fr does not have
a definite Hermitian determinantal representation.

When f is reducible, one can easily construct determinantal representations of f that are not Hermitian

by taking block upper triangular representations. For example, x1x2 equals det

✓
x1 1
0 x2

◆
. However, when f is

irreducible and real stable, we see that all complex linear determinantal representations are Hermitian, up to
conjugation by diagonal matrices.

Theorem 6.6. Let f 2 R[x1, . . . , xm] be stable, irreducible, and complex determinantal, i.e.

f = det

 
diag(x1, . . . , xn) +

mX

j=n+1

Ajxj +A0

!

for some n⇥ n complex matrices Aj. Then there exists a real diagonal matrix D 2 Rn⇥n such that D�1AjD is
Hermitian for all j.

Proof . By Lemma 6.1, there exists � 2 SL2(R)n, such that @S(� · f) is irreducible for all S ⇢ [n]. By
Proposition 2.2, we can replace f by � · f , and thereby assume that all the coe�cients of

Q
k2[n]\{i,j} x

2
k in

the polynomials �ij(� · f) are non-zero, as in the proof of Theorem 6.4.
Let A(x) =

Pm
k=n+1 Akxk +A0 and let aij 2 C[xn+1, . . . , xm] denote the (i, j)th entry of A(x). Then the

coe�cient of
Q

k2[n]\{i,j} x
2
k in �ijf is aijaji. Since f is stable, the polynomial �ij(f) is nonnegative on Rm.

Then by Lemma 6.2, it follows that the coe�cient aijaji of
Q

k2[n]\{i,j} x
2
k in �ij(f) is nonnegative on Rn�m.

By Lemma 6.3, we can conclude that for each 1  i < j  n, there is some �ij 2 R>0 such that aij = �ijaji.
We claim that the scalars �ij satisfy �ij = �ik�kj for all 1  i < k < j  n. For simplicity, we show this

for i = 1, k = 2, j = 3 and the proof in general is virtually identical. By the arguments above, the starting
determinantal representation of f has the form

diag(x1, . . . , xn) +A(x) =

0

BBBB@

x1 + a11 a12 a13 . . . a1n
�12a12 x2 + a22 a23 . . .
�13a13 �23a23 x3 + a33

...
...

. . .
�1na1n xn + ann

1

CCCCA
.
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Recall that by (6), the polynomial�ij(f) factors as (Madj)ij(Madj)ji whereM = diag(x1, . . . , xn) +A(x). These
polynomials are a�ne in xk for k 2 [n]\{i, j}. In particular,

g := @[n]\{1,2,3}(Madj)13 = a12a23 � a13(x2 + a22), and

h := @[n]\{1,2,3}(Madj)31 = �12�23a12a23 � �13a13(x2 + a22).

These polynomials satisfy the hypotheses of Lemma 6.3, and so there is some µ 2 R>0 for which h = µg.
Since aij is nonzero for all i, j and a22 is invariant under conjugation, we see that �12�23 = µ = �13. More
generally �ij = �ik�kj for any i < k < j.

Now define D = diag(1,
p
�12, . . . ,

p
�1n). For i < j, �1j = �1i�ij we calculate the (i, j)th and (j, i)th entries

of D�1A(x)D as

(D�1A(x)D)ij =

p
�1jp
�1i

aij =
p

�ijaij and (D�1A(x)D)ji =

p
�1ip
�1j

�ijaij =
p

�ijaij .

7 Defining the set of factoring multiquadratic polynomials and the image of the principal
minor map

In this section we give a complete characterization of the image of the principal minor map of Hermitian
matrices using the characterization of Hermitian multia�ne determinantal polynomials from Section 5 and the
characterization of multiquadratic polynomials that are Hermitian squares. This set is invariant under the action
of SL2(R)n o Sn and we derive the defining equations and numerical conditions as the orbit of a finite set under
the action of this group, where R is a unique factorization domain. In this section, we will restrict to rings and
fields of characteristic 6= 2.

Lemma 7.1. Let g = ax2 + bx+ c 2 R[x] where char(R) 6= 2. The polynomial g factors into two linear factors
in R[x] if and only if its discriminant Discrx(g) is a square in R.

Proof . ()) If g factors, then it has a root in the fraction field of R. By the quadratic formula, this implies that
the discriminant is a square in frac(R), and hence in R.

(() Suppose that b2 � 4ac = q2 for some q 2 R. We can rewrite this as (b� q)(b+ q) = 4ac. Since R is a
unique factorization domain, there is some choice of factorization of a = a1a2 and c = c1c2 so that b� q = 2a1c1
and b+ q = 2a2c2. If a = 0, then g factors as 1 · (bx+ c), so we can assume a 6= 0. We can then write g as

g = a

✓
x� �b+ q

2a

◆✓
x� �b� q

2a

◆
= a1a2

✓
x+

c1
a2

◆✓
x+

c2
a1

◆
= (a2x+ c1)(a1x+ c2).

This lemma does not hold over rings of characteristic two. See [14, Section 2.4, Exercise 6] for further
discussion. Note that for g 2 R[x, y]MQ, Discrx(g) is a polynomial of degree 4 in y whose coe�cients are quadratic
in the coe�cients of g.

Lemma 7.2. Let h(x) =
P4

i=0 bix
i 2 R[x]4 a univariate quartic where char(R) 6= 2. Then h is a square in R[x]

if and only if b0, b4 and h(1) =
P

j bj are squares in R and the point (b0, b1, b2, b3, b4) satisfies

b4b
2
1 � b23b0 = 0, b33 � 4b4b3b2 + 8b24b1 = 0, b31 � 4b0b1b2 + 8b20b3 = 0 (9)

b2b
2
3 � 4b22b4 + 2b1b3b4 + 16b0b

2
4 = 0, and b21b2 � 4b0b

2
2 + 2b0b1b3 + 16b20b4 = 0.

Proof . ()) If h(x) is a square in R[x], then h(x) =
P4

i=0 bix
i = (↵x2 + �x+ �)2 for some ↵,�, � 2 R. We see

that b4 = ↵2, b0 = �2, and
P4

i=0 bi = (↵+ � + �)2 are all squares in R. Each of the coe�cients bi is a polynomial
in ↵, �, � and one can quickly check that all the cubics in (9) vanish identically on this parametrization.

(() Let b4 = ↵2, b0 = �2, and
P

j bj = �2 for some ↵, �, � 2 R. From b0b23 = b21b4, we see that �b3 = ±b1↵,
and replacing ↵ with �↵ if necessary, we can take �b3 = b1↵.
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If b3 is nonzero, we see from the second equation that b4, and hence ↵, must also be nonzero. Define
� = b3/(2↵) 2 frac(R). It follows immediately that b0 = �2, b1 = 2��, b3 = 2�↵, and b4 = ↵2. If b3 6= 0, the
second equation implies that

b2 =
1

4b3b4
(b33 + 8b1b

2
4) =

1

8�↵3
(8�3↵3 + 16��↵4) = �2 + 2�↵,

from which we conclude that (↵x2 + �x+ �)2 = h(x). Similarly, if b1 is nonzero then so are b0 and �. We
can define � = b1/(2�) and use 4b0b1b2 = b31 + 8b20b3 to conclude that (↵x2 + �x+ �)2 = h(x). In either case,
evaluating at x = 1 gives that ↵+ � + � = ±�, and � = ±�� ↵� � 2 R.

If b1 = b3 = 0, the equations simplify to 4b4(b22 � 4b0b2) = 0 and 4b0(b22 � 4b0b2) = 0. If b0 or b4 is nonzero,
then b2 = ±�↵ and h(x) is (↵x2 ± �)2. Otherwise b0 = b1 = b3 = b4 = 0, in which case b2 = �2 and h(x) =
(�x)2.

Corollary 7.3. When char(R) 6= 2, a quartic h(x) =
P4

j=0 bjx
j is a square in R[x] if and only if for all � in

SL2({0,±1}), (� · h)x=0 is a square in R and Bx(� · h) = Cx(� · h) = Dx(� · h) = 0, where

Bx(h) = b4b
2
1 � b23b0, Cx(h) = b31 � 4b0b1b2 + 8b20b3, and Dx(h) = b21b2 � 4b0b

2
2 + 2b0b1b3 + 16b20b4.

Proof . It su�ces to show that we can recover the conditions in Lemma 7.2, which we can do this with

three elements of SL2({0,±1}): the identity, �1 =
⇣

0 1

�1 0

⌘
and �2 =

⇣
1 1

0 1

⌘
, representing the fractional linear

transformations x 7! �1/x and x 7! x+ 1, respectively. Note that (�1 · h)(0) = b4 and (�2 · h)(0) = h(1) =P
j bj , so from (i), we recover that all of these are squares in R. The element �1 induces the transposition

bk 7! (�1)kb4�k for each k. One can quickly check that we recover the two missing cubics from this action of
�1.

Remark 7.4. The ideal generated by the five cubics in Lemma 7.2 is not saturated with respect to the ideal
hb0, . . . , b4i. Its saturation is minimally generated by these five cubics together with �b1b23 + 4b1b2b4 � 8b0b3b4
and �b21b3 + 4b0b2b3 � 8b0b1b4.

Note that the coe�cients of Discry(� · g) have degree two in the coe�cients c↵ of g, and so the polynomials
listed in (ii) above have degree six. For example,

Bx(Discry(� · g)) = 4(c01c11 � 2(c10c02 + c00c12))
2(c221 � 4c20c22)

� 4(c201 � 4c00c02)(c11c21 � 2(c20c12 + c10c22))
2.

Theorem 7.5. Let R be a unique factorization domain with char(R) 6= 2 and |R| � 13. A polynomial g =P
↵2{0,1,2}n c↵x↵ 2 R[x] is the product of multia�ne polynomials if and only if for all � 2 SL2(R)n o Sn,

(i) Discrx1(� · g)|x2=...=xn=0 = � · (c210 � 4c00c20) is a square in R,
(ii) the sextic polynomials in c given by specializing Bx2(Discrx1(� · g)), Cx2(Discrx1(� · g)) and

Dx2(Discrx1(� · g)) to x3 = . . . = xn = 0 are all zero.

Proof . We can express g =
P

�2{0,1,2}2 g�x
�1
1 x�2

2 where g� 2 R[x3, . . . , xn]2. The polynomial Bx2(Discrx1(g))
has degree six in the coe�cients g� and so degree  12 in each variable xj .

Consider I ⇢ R with |I| = 13. For �1 = �2 = 0 and �3, . . . ,�n 2 I, consider the element � =
⇣⇣

1 �j
0 1

⌘⌘

j

in SL2(R)n. For any polynomial F 2 R[x] the evaluation of � · F at x = 0 equals the evaluation of F at
x = (�1, . . . ,�n). In particular, (ii) implies that the polynomials Bx2(Discrx1(� · g)), Cx2(Discrx1(� · g)) and
Dx2(Discrx1(� · g)) vanish at the point x = (�1, . . . ,�n) for every choice of �j 2 I. Since these polynomials have
degree  12 in each variable xj and |I| � 13, it follows that each of these polynomials is identically zero, using
[3, Lemma 4.1].

We can now proceed by induction on n. The n = 1 case is the content of Lemma 7.1 together with
the observation that the discriminant is invariant under the action of SL2(R), so we suppose n � 2. Let
h = Discrx1(g) 2 S[x2] where S = R[x3, . . . , xn]. By induction, for every � 2 SL2(R) acting on the variable
x2, (� · g)|x2=0 factors into multia�ne polynomials and so (� · h)|x2=0 = Discrx1((� · g)|x2=0) is a square in
S = R[x3, . . . , xn].

By Corollary 7.3, it follows that Discrx1(g) is a square in S[x2]. Then by Lemma 7.1, g factors into linear
factors in x1 in the ring S[x1, x2] = R[x]. Using the action of Sn, we see that every irreducible factor of g must
have degree  1 in each variable.
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Remark 7.6. For every choice of i 6= j 2 [n] and � 2 In�3 we obtain three equations by evaluating
Bxj (Discrxi(g)), Cxj (Discrxi(g)) and Dxj (Discrxi(g)) at the point �, along with additional two polynomials
from the two missing analogous polynomials in Lemma 7.2, which can be recovered from the SL2-action on xj .
This gives a total of 5n(n� 1)13n�3 sextic equations in the coe�cients of g.

Lemma 7.7. Let S be a unique factorization domain with char(S) 6= 2 and an automorphic involution a ! a and
let R be the fixed ring under this involution. The quadratic polynomial g = ax2 + bx+ c 2 R[x] is a Hermitian
square in S[x] if and only if a and c are Hermitian squares in S and the discriminant Discrx(g) = q2 with
q 2 S[x] and q = �q.

Proof . ()) If g factors into two conjugates (sx+ t)(sx+ t), then a = ss and c = tt and

Discx(g) = b2 � 4ac = (st+ ts)2 � 4sstt = (st� ts)2

which satisfies the desired property.
(() Assume that b2 � 4ac = q2 such that q = �q. If a = 0, then b = ±q and thus b = �b. Since b 2 R, then

b = 0 and g = c is a Hermitian square as desired. If a 6= 0, then (b� q)(b+ q) = (b� q)(b� q) = 4ac = 4sstt,
where a = ss and c = tt. Thus, after relabeling if needed, we may assume that b� q = 2st. Thus, we can write
g as

g = a

✓
x� �b+ q

2a

◆✓
x� �b+ q

2a

◆
= ss

✓
x+

t

s

◆✓
x+

t

s

◆
= (sx+ t)(sx+ t).

Theorem 7.8. Let S be a unique factorization domain with char(S) 6= 2 and an automorphic involution
a 7! a. Let R be the fixed ring of this automorphism with |R| � 13. The polynomial g =

P
↵2{0,1,2}n c↵x↵

in R[x]MQ is a Hermitian square if and only if (� · g)|x3=...=xn=0 is a Hermitian square in S[x1, x2] for all
� 2 SL2(R)n o Sn.

Proof . If for all � 2 SL2(R)n o Sn, the polynomial (� · g)|x3=...=xn=0 is a Hermitian square in S[x1, x2], then
by Lemma 7.1, Discrx1(� · g)|x3=...=xn=0 is a square in S[x2] . Using Corollary 7.3 we see that the two conditions
of Theorem 7.5 are satisfied and hence we deduce that g is a product of multia�ne polynomials in S[x]. To
prove that g is a Hermitian square, we will proceed by induction on n. The case n = 2 is trivially satisfied. For
the inductive step, write g as g = p2x2

1 + p1x1 + p0 for some p2, p1, p0 2 R̃ = R[x2, . . . , xn]. By induction we see
that p2 and p0 are both Hermitian squares and as g is a product of multia�ne polynomials, then by Lemma 7.1,
we see that Discx1(g) = p21 � 4p2p0 = q2 for some q 2 S[x2, . . . , xn]. Since p21 � 4p2p0 2 R̃, then q2 2 R̃ and so
q = �q or q = q. In the former case, Lemma 7.7 implies that g is a Hermitian square and we are done. Otherwise
we get (� · q)|x=0 = (� · q)|x=0 for all � 2 SL2(R)n�1. Notice that by induction on the other hand, (� · g)|x=0 is
a Hermitian square and hence

Discx1((� · g)x=0) =
�
� · (p21 � 4p2p0)

�
x=0

= (� · q)2x=0 with (� · q)|x=0 = �(� · q)|x=0.

Thus we conclude that (� · q)|x=0 = 0 for all � 2 SL2(R)n�1. Consider � = (�i)2in where �i =
⇣

1 �i
0 1

⌘
for

�i 2 R. Notice that � · q|(x2=···=xn=0) = q|(x2=�2,...,xn=�n) = 0. Since |R| � 3, [3, Lemma 4.1] implies that q ⌘ 0
and thus q = �q and we apply Lemma 7.7 again to deduce that g is a Hermitian square.

Assumptions 7.9. We take F to be a field of char(F) 6= 2 with |F| � 13 and K to be a degree-two extension
field. Let � denote the square root of the discriminant of the minimal polynomial of this field extension. Then
K = F(�) and the involution � �! � = �� extends to an automorphism of K with fixed field F.

Remark 7.10. In the field K, q = �q is equivalent to requiring q = �r for some r 2 F.

Lemma 7.11. Let F, K satisfy Assumptions 7.9 and let g =
P

↵2{0,1,2}2 c↵x↵ 2 F[x1, x2]MQ. The polynomial

g is a Hermitian square in K[x1, x2] if and only if for all � 2 SL2({0,±1})2 o S2

(i) � · c(0,0) is a Hermitian square in K, and
(ii) 1

�2Discrx1(� · g) is a square in F[x2].
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Proof . Write g as g = p2x2
1 + p1x1 + p0 where p2, p1 and p0 are quadratics in F[x2]. Using Lemma 7.7, we see

that g is a product of two conjugate factors if and only if p2 and p0 are product of two conjugates in K[x2]
and Discx1g = q2 where q = �q for some q 2 K[x2]. Notice that by Remark 7.10, this condition is equivalent
to q = �r where r 2 F[x2] and thus requiring that 1

�2Discx1g is a square in F[x2]. Using Lemma 7.7, p2 and p0
are conjugates if and only if c(i,j) is a product of two conjugates for i, j 2 {0, 2} and 1

�2Discrx2(� · g)|x1=0 is a
square for � 2 SL2(F) and this gives the desired equivalence.

Theorem 7.12. Let F, K satisfy Assumptions 7.9. A polynomial g =
P

↵2{0,1,2}n c↵x↵ 2 F[x] is a Hermitian

square in K[x] if and only if for all � 2 SL2(F)n o Sn,

(i) (� · c0) is a Hermitian square in K,
(ii) 1

�2Discrx1(� · g)|x2=...=xn=0 = � ·
�

1
�2 (c

2
10 � 4c00c20)

�
is a square in F, and

(iii) the sextic polynomials in c given by specializing Bx2 (Discrx1(� · g)), Cx2 (Discrx1(� · g)) and
Dx2 (Discrx1(� · g)) to x3 = . . . = xn = 0 are all zero.

Proof . Using Lemma 7.8, g is a Hermitian square in K[x] if and only if for all � 2 SL2(F)n o Sn, the restriction
(� · g)|x3=...=xn=0 is a Hermitian square in K[x1, x2]. By Lemma 7.11, this is equivalent to � · c0 factoring as
a product of two conjugates and 1

�2Discrx1(� · g) being a square in F[x2]. By Corollary 7.3, this discriminant
being a square is equivalent to conditions (ii) and (iii).

Now we are ready to give a complete characterization of the image of the principal minor map of Hermitian
matrices using the characterization of Hermitian multia�ne determinantal polynomials from Section 5 and the
characterization of multiquadratic polynomials that are Hermitian squares.

Recall that to each element a = (aS)S✓[n] in F2n we associate the multia�ne polynomial

fa =
X

S✓[n]

aSx
[n]\S .

For n = 3, the discriminant of the Rayleigh di↵erence �12(f) with respect to x3 is Cayley’s 2⇥ 2⇥ 2
hyperdeterminant

HypDet(a) = (a1a23 + a2a13 � a3a12 � a;a123)
2 � 4(a1a2 � a;a12)(a13a23 � a3a123)

= a2;a
2
123 + a21a

2
23 + a22a

2
13 + a23a

2
12 � 2a;a1a23a123 � 2a;a2a13a123 � 2a;a3a12a123

� 2a1a2a13a23 � 2a1a3a12a23 � 2a2a3a12a13 + 4a;a23a13a12 + 4a123a1a2a3.

This quartic polynomial therefore appears in the arithmetic conditions on the image of the principal minor map.

Theorem 7.13. Let F, K satisfy Assumptions 7.9 and let a = (aS)S✓[n] 2 F2n with a; = 1. There exists a
Hermitian matrix over K with principal minors a if and only if for every � 2 SL2(F)n o Sn,

(i) � · (a1a2 � a;a12) is a Hermitian square in K,
(ii) 1

�2 HypDet(� · a) is a square in F, and
(iii) � · a satisfies the degree-12 polynomials given by specializing Bx4 (Discrx3(� ·�12fa)),

Cx4 (Discrx3(� ·�12fa)) and Dx4 (Discrx3(� ·�12fa)) to x5 = . . . = xn = 0.

Here the operators Bx, Cx, Dx are defined in Corollary 7.3.

Proof of Theorem 7.13. By Theorem 5.1 with n = m, a = (aS)S✓[n] 2 F2n is in the image of the principal
minor map if and only if �ij(fa) is a Hermitian square for all i, j 2 [n], which according to Theorem 7.8, is
satisfied if and only if for all � 2 SL2(F)n o Sn, � ·�34(fa)|x5=...=xn=0 is a Hermitian square in K[x1, x2]. This
is equivalent to the three hypotheses of Theorem 7.12, which in turn are equivalent to the three hypotheses of
the theorem.

Taking K = C with the action complex conjugation then gives the following.

Corollary 7.14. Let a = (aS)S✓[n] 2 R2n with a; = 1. There exists a Hermitian matrix over C with principal
minors a if and only if for every � 2 SL2(R)n o Sn,

(i) � · (a1a2 � a;a12) � 0,
(ii) HypDet(� · a)  0, and
(iii) � · a satisfies the three degree-12 equations given by restricting Bx4 (Discrx3(�12f�·a)),

Cx4 (Discrx3(�12f�·a)) and Dx4 (Discrx3(�12f�·a)) to x5 = . . . = xn = 0.
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8 A family of counterexamples

Let F be a field and for n � 2, consider the multia�ne polynomial f2n+1 2 F[x1, . . . , x2n+1] given by

f2n+1 = x1 ·
nY

j=1

(x2j+1x2j+2 + 1) +
nY

j=1

(x2jx2j+1 + 1) (10)

where we take x2n+2 = x2. We show that this polynomial is not determinantal, i.e. its vector of coe�cients do
not belong to the image of the principal minor map, but is determinantal after specializing any one variable:

Theorem 8.1. There is no finite set of equations whose orbit under SL2(F)n o Sn set-theoretically cuts out the
image of the principal minor map for all n.

Let In ⇢ F[aS : S ✓ [n]] be the homogeneous ideal of polynomials vanishing on the image of n⇥ n matrices
under the principal minor map in P2n�1(F). There is a natural inclusion of In into F[aS : S ✓ [n+ 1]].

Theorem 8.2. The coe�cient vector of the polynomial f2n+1 belongs to the variety of polynomials in the orbit
(SL2(F)2n+1 o S2n+1) · I2n but not the variety of I2n+1.

The proof of this theorem relies on the fact that the coe�cient of any generic specialization of f2n+1 lies
in the image of the principal minor map, up to scaling. One key observation is that the Rayleigh di↵erences
of f2n+1 do not all factor as the product of two multia�ne polynomials, but do have such factorizations after
specializing any one variable. We show this explicitly by writing down the determinantal representations of these
specializations.

Lemma 8.3. The rational function 1
1+x1

f2n+1 can be written as det(diag(x2, . . . , x2n+1) +A) where for
2  i, j  2n+ 1,

Aij =

8
>>>>>>>><

>>>>>>>>:

1/(1 + x1) if i is odd, j is even, and i > j,

�x1/(1 + x1) if i is odd, j is even, and i < j,

�1 if i is even, j = i+ 1,

1 if i is even, j = i� 1,

�x1 if i = 2, j = 2n+ 1, and

0 otherwise.

Proof . Let D denote the determinant of the matrix M = det(diag(x2, . . . , x2n+1) +A). By definition, D is a
polynomial in 1

1+x1
, x1, x2, . . . , xn. Moreover the entries for which x1 + 1 appears in the denominator form a

square submatrix whose rows correspond to odd indices and whose columns correspond to even ones. It has the
form

1

1 + x1

0

BBBBBB@

1 �x1 �x1 . . . �x1

1 1 �x1 . . . �x1
...

. . .
. . .

. . .
...

1 1
. . .

. . . �x1

1 1 1 . . . 1

1

CCCCCCA
=

1

1 + x1
J � U

where J is the all ones matrix and U is an upper triangular matrix with Uij = 1 for i < j and Uij = 0 otherwise.
Since J has rank one, the exponent of 1 + x1 appearing in the denominator of any minor of this matrix is at most
one. This also shows that despite the many appearances of x1 in numerator of this matrix, it does not appear in
the numerator of any minor. There is only one other entry in M containing x1, and so the determinant D can
be written as (x1 + 1)�1p1 + p2 where p1 and p2 are multia�ne in x1, . . . , x2n+1. Moreover, the only term in the
Laplace expansion of the determinant of M avoiding this submatrix is the product of the diagonal

Q2n+1
j=2 xj .

Therefore we can write D as (x1 + 1)�1p where p is multia�ne in x1, . . . , x2n+1. To show that p = f2n+1 it
su�ces to show that they have the same specialization at x1 = 0 and the same coe�cient of x1.

When we specialize x1 to zero, M becomes a block upper-triangular matrix with diagonal blocks of the

form

✓
x2j �1
1 x2j+1

◆
. Its determinant agrees with the specialization of 1

1+x1
f2n+1 to x1 = 0.
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0

BBBB@

x2 �1 0 0 0 �x1
1

x1+1 x3 � x1
x1+1 0 � x1

x1+1 0

0 1 x4 �1 0 0
1

x1+1 0
1

x1+1 x5 � x1
x1+1 0

0 0 0 1 x6 �1
1

x1+1 0
1

x1+1 0
1

x1+1 x7

1

CCCCA
⇠

0

BBBB@

x2 0 0 �1 0 �x1
0 x4 0 1 �1 0

0 0 x6 0 1 �1
1

x1+1 � x1
x1+1 � x1

x1+1 x3 0 0

1
x1+1

1
x1+1 � x1

x1+1 0 x5 0

1
x1+1

1
x1+1

1
x1+1 0 0 x7

1

CCCCA

Fig. 1: The matrix A in Lemma 8.3 for 2n+ 1 = 7.

Consider the rational function g obtained by inverting x1 in 1
1+x1

f2n+1, which is

x1

1 + x1
f2n+1(x

�1
1 , x2, . . . , xn) =

1

1 + x1
·

 
nY

j=1

(x2j+1x2j+2 + 1) + x1 ·
nY

j=1

(x2jx2j+1 + 1)

!
.

Let M 0 be the matrix obtained from M by replacing x1 by x�1
1 and then multiplying the column indexed by 2

by x�1
1 and the row indexed by 2 by x1. The entries are now rational functions in x1 with only 1 + x1 appearing

in the denominator. After specializing M 0 to x1 = 0 and cyclic shifting the rows and columns by one, we find

another block upper triangular matrix with diagonal blocks of the form

✓
x2j+1 �1
1 x2j+2

◆
for j = 1, . . . , n� 1

and

✓
x2n+1 1
�1 x2

◆
. Therefore the determinant of M 0 restricted to x1 = 0 is given by

Qn
j=1(x2j+1x2j+2 + 1).

By definition, the determinant of M 0 equals D(x�1
1 , x2, . . . , xn) =

x1
1+x1

p(x�1
1 , . . . , xn). Restricting to x1 = 0

gives the coe�cient of x1 in p, which must be
Qn

j=1(x2j+1x2j+2 + 1). Therefore p coincides with f2n+1.

Lemma 8.4. For every m = 2, . . . , 2n+ 1, the coe�cients of 1
xm

f2n+1 are the principal minors of a 2n⇥
2n matrix with entries in {0,±1, x±1

m }. In particular, the rational function 1
x2n+1

f2n+1 can be written as

det(diag(x1, . . . , x2n) +B) where for 1  i, j  2n,

Bij =

8
>>>>><

>>>>>:

1 if j = i+ 1 and i > 1 or (i, j) = (1, 1) or (i, j) = (2, 1),

�1 if i is even and j = i� 1 or (i, j) = (2n, 1),

x2n+1 if i odd, i � 3, and j = 1,

1/x2n+1 if i 2 {1, 2} and j is even, and

0 otherwise.

Proof . Let M = det(diag(x1, . . . , x2n) +B) and let D denote its determinant. As in the proof of Lemma 8.3,
the entries of M with x2n+1 appearing in the denominator appear in a submatrix of rank-one. The entries with
x2n+1 appearing in the numerator are contained in the first column. Moreover, in the Laplace expansion of the
determinant, the only terms avoiding the submatrix of entries x�1

2n+1 must include the (1, 1) and (2, 2) entries,

and so will not involve any entries with x2n+1. It follows that D can be written as x�1
2n+1p where p is multia�ne

in x1, . . . , x2n+1. Therefore it su�ces to check that f2n+1 and p have the same restriction to x1 = 0 and same
coe�cient of x1.

We see that the coe�cient of x1 in D is the determinant of the matrix M after removing the first row
and column. This minor is a block matrix with one block of the form (x2 + 1/x2n+1) and the rest of the form✓
x2j+1 1
�1 xj+2

◆
. Therefore the coe�cient of x1 in p and f2n+1 agree.

The specialization of M to x1 = 0 is a matrix has the form

✓
1 bT

c A

◆
. Using Schur complements, we see

that the determinant equals the determinant of A� cbT . One can check that the matrix A� cbT is a block-lower

triangular matrix with diagonal blocks

✓
x2j 1
�1 x2j+1

◆
for j = 1, . . . , n� 1 and x2n + 1/x2n+1. This shows that

the restriction of p to x1 = 0 agrees with that of f2n+1.
For the corresponding statement with arbitrary m 6= 1, we use the symmetries of f2n+1 under the action

of a dihedral group of order n with the cyclic action j 7! j + 2 (identifying 2n+ j = j for j � 2) and reflection
n+ 1� j $ n+ 2� j. There is some element of this group that moves m to 2n+ 1, and we can take the image
of the representation above.
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0

BBBB@

x1 + 1
1
x7

0
1
x7

0
1
x7

1 x2 +
1
x7

1
1
x7

0
1
x7

x7 0 x3 1 0 1

0 0 �1 x4 1 0

x7 0 0 0 x5 1

�1 0 0 0 �1 x6

1

CCCCA

0

BB@

x2 1 0 0 0

�1 x3 0 0 0

0 �1 x4 1 0

�1 0 �1 x5 0
1
x7

0
1
x7

�1 x6 +
1
x7

1

CCA

Fig. 2: The matrices B (left) and A� cbT (right) in Lemma 8.4 for 2n+ 1 = 7.

To show that f2n+1 does not belong to I2n+1, we will use the following:

Lemma 8.5. The set of polynomials

Fn =
�
f 2 F[x]MA : for all i, j 2 [n],�ij(f) = gij · hij for some gij , hij 2 Falg[x]MA

 

is Zariski closed in F[x]MA
⇠= F2[n]

, where Falg denotes the algebraic closure of F.

Proof . The set of multiquadratic polynomials in Falg[x]MQ that factor as the product of two multia�ne
polynomials is the image of Falg[x]MA ⇥ Falg[x]MA under (g, h) 7! g · h. Since this map is bilinear, it follows
from the projective elimination theorem that the set {q 2 Falg[x]MQ : q = g · h for some g, h 2 Falg[x]MA} is
Zariski-closed in Falg[x]MQ.

Pulling back by the map �ij , it follows that for each i, j 2 [n], the set of polynomials f 2 Falg[x]MA for
which �ij(f) factors as the product of two multia�ne polynomials is Zariski-closed, as is their intersection over
all i, j 2 [n]. It follows that its intersection with F[x]MA is Zariski-closed in F[x]MA.

Theorem 3.1 implies that the image of Fn⇥n under the principal minor map is a subset of the variety Fn,
although as Example 3.2 shows, this containment can be strict. In order to show that f2n+1 does not belong to
the variety of I2n+1, it su�ces to show that f2n+1 does not belong to F2n+1.

Recall that for f =
P

S✓[n] aSx
[n]\S , the coe�cient vector of f is defined to be

coe↵(f) = (aS)S✓[n] 2 F2[n]

.

Proof of Theorem 8.2. For convenience, let f = f2n+1. Let P 2 I2n be a homogenous polynomial vanishing
on the image of F2n⇥2n under the principal minor map. Let Q denote the image of P under inclusion into
F[aS : S ✓ [2n+ 1]]. Note that Q only involves aS with 2n+ 1 62 S. Since our indexing of coe�cients is inclusion
reversing, we see that the evaluation of Q at the coe�cient vector of f depends only on coe�cients of monomials
containing x2n+1. In particular, its evaluation at the coe�cient vector of f equals the evaluation of P at the
coe�cient vector of derivative of f with respect to x2n+1, i.e.

Q(coe↵(f)) = P (coe↵(@f/@x2n+1)). (11)

If F is finite, it su�ces to replace it with any infinite field extension, such as F(t) or Falg. Let
(�,⇡) 2 SL2(F)2n+1 o S2n+1, with � generic, where Falg denote the (necessarily infinite) algebraic closure
of F. We can write (�,⇡) as the composition of elements (b�, b⇡) in SL2(F)2n o S2n and (�2n+1,�), where

�2n+1 =
⇣

a b
c d

⌘
2 SL2(F) acts on x2n+1 and � is the transposition � = (m(2n+ 1)) 2 S2n+1. Then

(�2n+1,�) · f = (cx2n+1 + d)f

✓
x1, . . . , xm�1,

ax2n+1 + b

cx2n+1 + d
, xm+1, . . . , x2n, xm

◆
.

By the genericity of �, c 6= 0 and

@

@x2n+1
((�2n+1,�) · f) = cf

��{xm = a/c, x2n+1 = xm}.

Call this polynomial g. The coe�cient � of
Q2n

i=1 xi in g is a+ c for m = 1 and a for m > 1. In either case, we
can assume it is nonzero by the genericity of �.

By Lemma 8.3 for m = 1 and Lemma 8.4 for m > 1, the polynomial 1
�g is determinantal and its coe�cient

vector belongs to the image of the principal minor map. Since the image of the principal minor map is invariant
under the action of (SL2(F)2n o S2n), by (11),

0 = P (coe↵(g)) = P (coe↵((b�, b⇡) · g)) = Q(coe↵((�,⇡) · f)).
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This shows that the coe�cient vector of f belongs to the variety of (SL2(F)2n+1 o S2n+1) · I2n.
On the other hand, we calculate that

�12(f) = (x3 � x2n+1)
2nY

i=3

(xixi+1 + 1).

These form a cycle of length 2n� 1 of irreducible bivariate factors, which cannot be factored as the product of
two multia�ne polynomials. It follows that f does not belong to the variety F2n+1 from Lemma 8.5, which, by
Theorem 3.1, contains the variety of I2n+1.

Example 8.1 (2n+ 1 = 5). Consider f5 = x1(x3x4 + 1)(x2x5 + 1) + (x2x3 + 1)(x4x5 + 1). By Lemmas 8.3
and 8.4, f5 is determinantal over F(xj)[xi : i 2 [5]\{j}] for each j = 1, . . . , 5. For example, for j = 1 and 5,

f5 = (x1 + 1) det

0

BB@

x2 �1 0 �x1
1

x1+1 x3 � x1
x1+1 0

0 1 x4 �1
1

x1+1 0 1
x1+1 x5

1

CCA = x5 det

0

BB@

x1 + 1 1
x5

0 1
x5

1 x2 +
1
x5

1 1
x5

x5 0 x3 1
�1 0 �1 x4

1

CCA .

However �12(f5) = (x3 � x5)(x3x4 + 1)(x4x5 + 1), which cannot be written as a product of two multia�ne
polynomials in F[x3, x4, x5]. Therefore f5 is not determinantal over F[x1, . . . , x5].

The polynomial f2n+1 shows that the orbit of the ideal I2n under (SL2(F)2n+1 o S2n+1) is not enough
to cut out the set of polynomials f 2 F[x1, . . . , x2n+1] all of whose Rayleigh di↵erences factor as the product
of two multia�ne polynomials. As Example 3.2 shows, even this is not enough to cut out the image of the
principal minor map. This leaves the question of what conditions cut out the image of the principal minor map
for arbitrary n wide open.
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