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ABSTRACT. Recent work of Kurasov and Sarnak provides a method for constructing one-
dimensional Fourier quasicrystals (FQ) from the torus zero sets of a special class of multivari-
ate polynomials called Lee-Yang polynomials. In particular, they provided a non-periodic
FQ with unit coefficients and uniformly discrete support, answering an open question posed
by Meyer. Their method was later shown to generate all one-dimensional Fourier quasicrys-
tals with N-valued coefficients (N-FQ).

In this paper, we characterize which Lee-Yang polynomials give rise to non-periodic N-
FQs with unit coefficients and uniformly discrete support, and show that this property is
generic among Lee-Yang polynomials. We also show that the infinite sequence of gaps be-
tween consecutive atoms of any N-FQ has a well-defined distribution, which, under mild
conditions, is absolutely continuous. This generalizes previously known results for the spec-
tra of quantum graphs to arbitrary N-FQs. Two extreme examples are presented: first, a
sequence of N-FQs whose gap distributions converge to a Poisson distribution. Second, a
sequence of random Lee-Yang polynomials that results in random N-FQs whose empirical
gap distributions converge to that of a random unitary matrix (CUE).

1. INTRODUCTION

An N-FQ is an N-valued measure supported on a discrete set whose Fourier transform
is also supported on a discrete set and has moderate growth (see Definition . A recent
sequence of works [14] [19] 3] established that all one-dimensional N-FQs arise from the torus
zero sets of a special class of multivariate polynomials called Lee-Yang polynomials.
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FIGURE 1. The Kurasov-Sarnak construction of an N-FQ from the zero-set of
a Lee-Yang polynomial in the torus T?. See Example
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Given a discrete periodic set A C R with period A > 0, the Poisson summation formula
states that

27 A
Y flwy="> flk), forall feS(R),
A
zEA keA*
where A* = {k € R : Vx € A, e = 1} and S(R) is the space of Schwartz functions:
smooth functions on R that rapidly decay to zero at +oo (properly defined in Section .
Fourier quasicrystals are generalizations of the Poisson summation formula to sets which are
not periodic but exhibit similar features.

1.1. Fourier quasicrystals. Elements in the dual space S’(R) are called tempered distri-
butions, and the Fourier transform of u € S’(R) is the tempered distribution fi defined
by duality, [ fdji := [ fdu. For example, if A is periodic as above, then y = > w0z 1S
tempered and its Fourier transform is ji = QK’T > rea Ox by the Poisson summation formula.
However, in general, if a tempered distribution p is supported on a non-periodic discrete set
A, e, =3 a0, for some complex coefficients (a;)yea, it is unlikely that j will also
be supported on a discrete set.

If u € 8'(R) satisfies the condition that both u and fi are supported on discrete (locally
finite) sets, then y is called a crystalline measure [17]. A crystalline measure =) _\ a;0,
with Fourier transform /i = Y, -« cxdr (so that S C R is some discrete set) is called a Fourier
Quasicrystal if |p| = > 4 laz]0, and |i] = >, g |ck|dr are tempered as well [15]. We say
that p is N-valued if a, € N for all z € A, and we abbreviate N-valued Fourier quasicrystals
as N-FQs.

1.2. Lee-Yang polynomials. Following [21], we call a polynomial p € C|zy, ..., z,] a Lee-
Yang polynomial if it has no zeros in the product D" of the open unit disk, D = {z € C :
|z| < 1}, and it has no zeros in the product of the outer disk (C \ D)". One fundamental
example is a determinant

p(21, 22, .. ., 2) = det(diag(zq, ..., 2,) + U),

where U is an n X n unitary matrix. The name Lee-Yang polynomials refers to the elegant
proof of the Lee-Yang Circle Theorem [9] [10] by Bréandén and Borcea. Lee-Yang polynomials
are intimately related, by Mobius tranformations to the class of real stable polynomials, i.e.,
p € Clz1, 23, ..., z,] with the property that p(a) is nonzero whenever a = (aq,...,a,) € C"
has imaginary part Im(a;) > 0 for all j = 1,...,n or Im(a;) < 0 for all j = 1,...,n.
Briandén and Borcea developed a classification of linear operations preserving stability and
used this to prove the Lee-Yang Circle Theorem [9) [10], among many other things. See [22]
for a survey of these techniques. Many properties of determinants, especially those involving
eigenvalues, also hold and have elegant proofs for general real stable polynomials. See, for
example, [5].

1.3. N-FQs and Lee-Yang polynomials. Meyer posed an intriguing question: Are there
any non-periodic crystalline measures p = »_ _\ 0., with unit coefficients (a, = 1) and
uniformly discreteli support A?

In their notable work [14], Kurasov and Sarnak presented a general construction of N-FQs.
Using this construction, they answered Meyer’s question by providing an explicit example

TEA

TA set A C R is said to be uniformly discrete if 3r > 0 such that |z —2'| > r > 0 for any distinct z, 2’ € A.
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of a non-periodic FQ p with unit coefficients and a uniformly discrete support. A question
addressed in this paper is whether these properties are common among all N-FQs.

To describe the Kurasov-Sarnak construction, suppose that p(z1,22,...,2,) = Y, CaZ®
is a Lee-Yang polynomial, where we use the multi-index notation z* = [[7_, 257, and let
0= (ly,...,¢,) € R}. Then, the univariate exponential polynomial

(@) = plexp(izt)) = p(e™™, ..., ") = " cqe™ ),
is real-rooted, namely f(z) = 0 = Im(x) = 0, since exp(izf) € D"U(C\D)" when Im(z) # 0.
If f(x) =0 let m(z) denote the multiplicityE of x as a zero of f.

Theorem 1.1 (Kurasov-Sarnak construction[14]). Given a positive vector £ € R’} and a
Lee-Yang polynomial p(z1, 2o, ..., 2,), let A denote the zero set of f(x) = p(exp(ixzfl)) and
m(zx) the multiplicity of x € A. Then, the measure

pp i= Z m(z)d,

zeA

15 an N-F(Q.

Example 1.2. The polynomial p(z1, 22) = 16(1+ 2723) — 8(21 + 20 + 2729 + 2123) + (21 — 29)*
is Lee-Yang and the vector £ = (37, 1) has Q-linearly independent entries. Let A = {t € R :
p(exp(itl)) = 0} be the support of p, . Figure [1| (top) shows the points of A in the interval
[0,107]. (bottom left) shows the zero set of p(e™, e”) and line (z,y) = t/ for 0 < ¢t < 107,
(bottom right) the image of these sets in R?/(277Z)>.

Olevskyii and Ulanovskii [19] proved that any one-dimensional N-FQ has the form pu =
> ven M(2)d,, where A and (m(z))zea are the zero set and multiplicities for some real-rooted
exponential polynomial f. Together with Cohen [3], the current authors showed that every
real-rooted exponential polynomial f is of the formf® f(z) = p(exp(iz()), for some Lee-Yang
polynomial p and positive vector £ € R} that has Q-linearly independent entries. All together
this gives:

Theorem 1.3 (Inverse result). [19 3] Let € S'(R) be an N-FQ. Then, jn = p,, as in the
Kurasov-Sarnak construction, for some n € N, a Lee-Yang polynomial p € C|zy, 2o, .. ., 2p)
and a positive vector £ € R’} whose entries are Q-linearly independent.

Given a set A C R let dimg(A) denote the dimension (as a Q-vector space) of the Q-linear
span of the elements of A. For a vector ¢ € R”, dimg(¢) = n means that its entries are
Q-linearly independent.

Theorem 1.4. |14, Theorem 3| Any N-FQ, say pn = Y ., m(x)0,, has uniformly bounded
weights m(x) and has two integers r,c > 0 such that its support N = Ly UL, U...UL.UN
is the union of r infinite arithmetic progressions and a set N which, if not empty, has
dimg(N) = oo and |N N L| < ¢ for any arithmetic progression L.

We elaborate on [14] Theorem 3] and the relation between the decomposition of the mea-
sure and the decomposition of the polynomial into irreducible factors (a proof provided in
Section . A polynomial is said to be binomial if it has only two monomials.

2The multiplicity of a zero x of an analytic function f is the minimal n € N for which the n-th derivative
is non-zero f(™(z) # 0.
3Up to a non-vanishing factor.
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Theorem 1.5 (Decomposition and non-periodicity). Given an N-FQ p, there is an n € N,
a Lee-Yang polynomial p in n variables, and a Q-linearly independent vector £ € R” such
that p = ppe. The polynomial p decomposes into distinct irreducible Lee-Yang polynomials

p= vazl q;j, each factor q; appears with a power c¢; € N. Let A be the support of p and A;
be the support of g, e for each q;. Then,

N N
Lpo = ch,quj and A= U A;j.
j=1 j=1
If q; is binomial, then pg, o has unit coefficients and A; is an infinite arithmetic progression.
If q; is non-binomial, let D denote its total degree and let jiq; o = er/\j m;(x)d,, then
(1) (almost all unit coefficients): The coefficients are bounded by m;(z) < D, and
mj(x) =1 for almost every x € A;:
el <R 2w ey my(e) = 1)
lim =
R—c0 Hlz| < R : =z €A}
(2) (dimension over Q): The support has dimg(A;) = oo with uniform bounds |[A;NA| <
¢ = c(m, D) for any set A C R with dimg(A) = m.

1.

Remark 1.6. [Quasicrystals and cut-and-project sets| The mathematical definition of a
quasicrystal (not to be confused with Fourier quasicrystal) is a set A C R™ which is uniformly
discrete, relatively dens and its set of differences A — A = {x — y : z,y € A} is contained
in finitely many translates of A, see |16, Definition 6]. A model set (also known as cut-and-
project set) A C R™ is the projection of a set (B x R™) N L, where L C R™ x R" is a lattice
in generic locationﬂ and B C R™ which is bounded with non-empty interior. Meyer showed
that any model set is a quasicrystal, and any quasicrystal lies in finitely many translates of
model sets |16, Theorem 1|. In particular, in such case dimg(A) < n + m.

Corollary 1.7. If p is an irreducible non-binomial Lee-Yang polynomial, then the support
of pip.e, for any Q-linearly independent ¢ € R}, intersect any quasicrystal and any model set
i at most finitely many points.

Proof. According to Remark if A is the support of a quasicrystal or a model set then
dimg(A4) < oo, and now the corollary follows from Theorem [1.5 (2). O

Remark 1.8 (non-uniqueness of the decomposition). Even though multivariate polynomials
p factor uniquely into irreducibles, the measure p, , depends only on the exponential polyno-
mial f(z) = p(exp(izf)). The ring of exponential polynomials is not a unique factorization
domain and, as a result, the decomposition of the measures in Theorem is not unique.
As a simple example, consider

k—1

1 —exp(iz) = (1 — exp(iz/2))(1 + exp(iz/2)) = (1 — exp(iz/2")) H(l + exp(iz/27))

j=1
for any k > 1. The corresponding measure is ) |, d,. The first factorization gives this mea-
sure as (er% (535) + (Z 4] ) The subsequent factorizations decompose the measure

re2Z+1 7%
further. For n > 1, this decomposition can also fail to be unique in non-trivial ways. The

4Relatively dense means 3R > 0 such that A intersects any ball of radius R.
SLattice in R™ x R™ such that the projection to R is dense and the projection to R" is injective
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Lee-Yang polynomial p(z1, z») in Example |1.2|is irreducible, however p(z?, z3) factors as the
product of four Lee-Yang polynomials g, = 2+ 0121 + 0925 + 20102212 for (o1, 09) € {&1}2.
Therefore, for any ¢ € R?,

Hpe = Z :qu,%ﬁ‘

oe{£1}?

1.4. Main Results. To set up notations, let LY 4(n) denote the set of Lee-Yang polynomials
p € Clz,..., 2, of degrees d = (di,...,d,), i.e., p that has degree d; in every z;. Let
|d| =di +ds + ...+ d, denote the total degree. Let T" = {z € C" : |z;| = 1 Vj}.

Theorem 1.9 (density and maximal gap). Let p € LYq4(n) and £ € R};. Then,
(1) ppe has density (d,0)/2m with uniformly bounded error term

.0

5 T+ err(x,T) with |err(z,T)| <|d|,
7r

pp e[,z +T1) =

forallz e R, T > 0.

(2) The gap between any pair of consecutive atoms in pi,e is at most 27— d|

(d,f)"
Remark 1.10. The bounds in Theorem [1.9] are tight: for any choice of n € N and d € N”
we can construct p,, with error term that gets arbitrarily close to |d| and gaps that get

arbitrarily close to 27 <11 % Let p(z) = [[;_,(1 - z;)% € LYq(n), and let u; be the sum of

delta masses at %—:Z, so that p,, = Z?Zl d;p;. In particular, there is an atom at 0 with

coeflicient |d|, so p,¢([—¢,€]) = |d| for sufficiently small ¢ > 0, and therefore err(—e, 2¢) =

d| — & €>e — 0 as € — 0. Moreover, the gap to the next atom is min 2* < 27 <<‘1d1|z>’ and if ¢

is arbitrary close to (2,27, ..., 27) then 279 — min 2% is arbitrary Close to zero.

(d,0) e
The next theorem shows that generically, an N-FQ enjoys the desired properties of having
uniformly discrete support and having all unit coefficients. For this end we define

Definition 1.11. Define mingap(p) € [0, 27) for p € LY 4(n) as follows:

When n = 1, if p has multiple root set mingap(p) = 0, otherwise let mingap(p) be the
minimal angle between different roots of pE When n > 1, set mingap(p) to be the minimum
of mingap(p,) over all z € T", where p,(s) := p(sz1, S22, ...,52,) is a univariate Lee-Yang
polynomial for any fixed z € T".

Theorem 1.12 (minimal gap for generic Q). Let n > 2 be an integer and d € 72,

(1) Characterization: For any Q-linearly independent ¢ € R’y and p € LYq4(n), the
measure [y, ¢ 15 non-periodic with unit coefficients and uniformly discrete support if
and only if p satisfies:

(i) Vp(z) # 0 whenever z € T™ such that p(z) = 0, and
(ii) p has a non-binomial factor.

(2) Ezplicit lower estimate: p has mingap(p) > 0 if and only if p satisfies (i). Denote

the ordered atoms of p,e by (x;);ez, then

mingap(p) <inf(ay0 — 1) < mingap(p)
max JEZ gmin

where the lower bound holds for any ¢ € R, the upper bound holds for any Q-linearly
independent £ € R, and lpax (Cmin) stands for the largest (smallest) entry of (.

9

6The roots of a univariate Lee-Yang polynomial lie on the unit circle.
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(3) Genericity: The set of Lee-Yang polynomials in LY qa(n) that satisfies both (i) and
(ii) is a semi-algebraic open dense subset of LY q(n).
Furthermore, we provide explicit perturbation taking any p € LYq4(n) to a one
parameter family polynomials py = p + ZLd:'I_I N gj, such that py = p and py satisfies
(i) for any A > 0.

The polynomial p from Example has mingap(p) = 0, as p(1,1) = 0 and Vp(1,1) = 0.
The measure 1, , then fails to have uniformly discrete support. Figure [2|shows the effect of
the perturbation p — p,. For A > 0, mingap(p,) > 0 and p,, ¢ is uniformly discrete.

Remark 1.13. There is no loss of generality by considering only Q-linearly independent ¢’s,
due to [3]. Nevertheless, we point out that if p satisfies (i) then p, , will have unit coefficients
and uniformly discrete support for any ¢ € R7.

10T 107
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0 2 47 67 8 107 0 27 47 67 81 107

FIGURE 2. (Left) The singular zero set of p and the line in direction ¢, as
in Figure Il (Right) The regular zero set of the perturbed polynomial p, for
A = 0.2 and the same line in direction ¢.

Given p € LYq4(n) and £ € R, let (x;);cz be the zeros p(exp(izf)), numbered increasingly
with multiplicities (so that a zero of order m appears m times). Then u,, = ZjeZ 0z;- A
random measure of the form > ez 0z, for random x;’s, is called a point process and it can be
defined it in terms of the gaps A; = x;1 — x;, which are often taken to be ii.d A; samples
from some probability distribution. The next theorem shows that the gaps between atoms

in pp, 0 obey a well-defined “gap-distribution” p, ¢, by which we mean that
1 & D
N Z 6(Ij+1*1j) = Ppt;
j=1

where 2 stands for convergence in distribution. Equivalently, for any continuous f,

1) lim %JZ flases =) = [ Fdpye
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Theorem 1.14 (Existence of gap distribution). Fvery N-valued FQ p has a well-defined gap
distribution p with the following properties:
(1) It has finitely many atoms, say (r;)}L,, such that p = pac + Z;\il p({r;})dr,, and pac
15 absolutely continuous with respect to the Lebesque measure on R.
(2) pac =0 if and only if u is periodic.
(3) If A > 0 is any gap between consecutive atoms of u, then p(I) > 0 for any open
neighborhood I C R of A.
(4) The average gap E(p) is the reciprocal of its density.

When p = p, ¢ we denote the resulting gap distribution p,,. Together with Theorem [1.9
part (4) implies that the average gap of y,, is given by E(p,,) = %.

As discussed above, every N-valued FQ p can be written as p,, for some Lee-Yang poly-
nomial p and vector £ € R} where ¢ has linearly independent entries over Q. We explore
the dependence of the gap distribution p,, on both the polynomial p and vector ¢. First we
note that the gap distribution is independent of torus actions on p and give conditions on

the factorization of p under which the p, , has atoms.

Theorem 1.15 (p dependence of the gap distribution). Suppose p € LYq4(n) and let £ € R,
with Q-linearly independent entries, then
(1) For any fized x € R™, the polynomial q(z) = p(exp(ix)z) = p(e"1zy,...,€""z,) is in
LY4(n), and pge = ppe-
(2) The distribution p,y has an atom at A > 0 if and only if there are two irreducible
factors of p, say ¢; and q;, such that q;(z) = ¢;(exp(iAl)z). Moreover,
(3) if A >0 and ¢; = q;, namely g;(z) = ¢;(exp(iAl)z), then ¢; is binomial.

Corollary 1.16. Suppose p € LY 4(n) and let { € R} with Q-linearly independent entries.

(1) If p is irreducible and not binomial then p,, is absolutely continuous.
(2) If p is binomial, then p,, is the atomic measure at %.

(3) ppe has an atom at 0 if and only if p has a square factor.

(4) Suppose that p has N + M distinct irreducible factors, M which are binomial and N

non-binomial. Then, p,, has at most (];[) + M +1 atoms.

Next we show that the gap distribution p, , varies continuously in ¢ when we restrict to
vectors ¢ with Q-linearly independent entries. For arbitrary ¢ € R}, this gives rise to a well-
defined limiting distribution v, , that agrees when p,, when ¢ has Q-linearly independent
entries. The limiting measure v, is defined explicitly in Definition

Theorem 1.17 (¢ dependence of the gap distribution). Let p € LYq4(n) and ¢ € R".. Then

pp.i 15 supported inside [0, QW%]. There is a distribution vy, such that for any converging

sequence (Y9 — ( in which each (Y9 has Q-linearly independent entries,
D
Pp ) = Vpg.

In particular, v, ¢ = pp¢ whenever £ has Q-linearly independent entries.

A particularly interesting case is the limit v,; for ¢ = 1 := (1,1,...,1), which can be
calculated explicitly, as follows. Figure {4 displays the distributions v, for two important
examples of Lee-Yang polynomials p.
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Gap distribution Yo Convergence of CDF of v

p,L

'[—L,=19/667 ~0.9
*¢|—L,=10/337 ~0.95
0s|—L,=7/227 ~0.999
orf- - L=t

CDF

0 L L L L
0 05 1 15 2 25 3

FIGURE 3. Example of p, T vp1. The gap distributions for p as in Figure ,
and ¢ = (Ly,1) with L; converging to 1. (Left) the probability distribution
function of v, 1. (Right) the cumulative distribution functions of v, ; (dashed)
and of p,, for three different values of L;. Each p,, was computed from the
gaps in the interval [0,10%], while v,, was computed as in Theorem , by
sampling 10* random points on the torus.

Definition 1.18. Let p € LY (1) be a univariate Lee-Yang polynomial of degree N and
denote its roots by {e'% }jvzl with 0 < #; < ... <0y < 27. By convention 0y, = 01 + 27.
Then the gap distribution of p is a probability measure on [0, 27| given by

N
1
gaps(p) = N Z 00,410, -
j=1

If U is a unitary matrix, then p(s) = det(s — U) and ¢(s) = det(1 — sU) have the same gap
distribution, and we denote it by gaps(U).

For a fixed p € LY4(n) and a fixed point x € [0,27]", define the univariate polynomial
Px(8) := p(se™® s ... se™r) so that p, € LY y(1) with N = |d|. We may then take x
uniformly at random.

Theorem 1.19 (¢{ — 1). Let p € LYq4(n). Let x be a uniformly random point in [0, 27]".
Then v, 1, for { = 1, is given by

vp,1 = E [gaps(px)] -
Namely, for any sequence (9) — 1, such that each (Y has Q-linearly independent entries,

j—00 (271‘)”

1 1
i [ fdppu = [ o 03010 =00 |, 9 € CR)

where {ewi(")}»‘jdi1 are the ordered roots of px for every x, and 0jq;4+1(x) 1= 61(x) + 2.
Using Theorem we can provide examples of limiting gap distributions that correspond
to the following special distributions.

Example 1.20 (Poisson). If p(z1,...,2,) = [['_,(1 — 2;) and ¢ = 271, then v, is the dis-

J=1
tribution of gaps between n random points in a circle of circumference ;- , chosen uniformly
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FIGURE 4. (Left) v,; for p(z) = H?:1(Zj —1). (Right) v,1 for p(z) =
det(1 — diag(z)U) for a fixed 5 x 5 unitary matrix U, chosen at random (Haar

uniformly). Both calculated with 10* random points from the torus.

and independently. It is well known that this distribution converges to the gap distribution
of a Poisson process, in the limit of n — oc.

Example 1.21 (CUE). Given a fixed unitary n x n matrix u, let p,(z1,...,2,) := det(1 —
diag(z1, ..., 2z,)u). Then,

Vp,1 = E [gaps(diag(exp(ix))u)], x~ U([0,27]").
For a random u, Haar uniformly from U(n), the empirical gap distribution is
E(vp, 1) = E [gaps(diag(exp(ix))u)| = E [gaps(u)], u ~ Haar(U(n)).

The distribution E [gaps(u)] for u ~ Haar(U(n)) is well known, and when scaled to have av-
erage 1, by taking E(v,, ,) with £ = 271, it converges to the CUE (circular unitary ensemble)
gap distribution as n — oo.

The paper is organized as follows. The first two sections provides background and pre-
liminary results, Section [2| on crystalline measures and FQ’s, and Section |3| on Lee-Yang
polynomials and real stable polynomials. The torus zero sets of Lee-Yang polynomials are
analyzed in Section[d] Theorem [1.9] the growth rate and upper bound on the gaps, is proved
in Section 5] In Section [6]an ergodic dynamical system is defined on the torus zero set, which
is being used in the subsequent sections. Theorem decomposition and non-periodicity,
is proven in Section [7| Theorem minimal gap and genericity, is proved in Section
Section [9] focus on gap distributions, in which Theorem Theorem Theorem [1.17]
and Theorem are proved. This is summarized as follows:
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2. PRELIMINARIES ON CRYSTALLINE MEASURES AND FQ

A Schwartz function on R is a smooth function f € C*(R,C) that decays, as |z| — oo,
faster than any polynomial in |z|, and so does any of its derivatives. The Schwartz space
S(R) is the infinite dimensional vector space of Schwartz functions. It can be defined in
terms of the seminorms || f[|nm := sup,eg [2" ()™ f(2)],

SR) :={f € C*(R,C) : ||fllnm <oo forall m,n e Zsy},
and it is a complete metric space with respect to the metric d(f, g) := > _, %
A (C valued) Borel measure p on R is tempered if (f, ) := [ fdu is finite for all f € S(R).
The vector space of tempered measures is the dual of S(R) and is denoted by S'(R). The
Fourier transform F(f) := f, with f(k) := [ f(x)e ™ dx, is a linear automorphism of
S(R), and it defines an automorphism on the dual space. Given a measure p € S (R), its
Fourier transform is the measure ji € S'(R) defined by (f, i) := (f, ) for all f € S(R). Let
5z € S'(R) denote the atom at z € R (also known as Dirac delta at x), which is defined by

(f,0.) == f(x). We say that a measure pu is discrete if it is supported on a discrete (locally
finite) set, in which case it can be written as

(2) = Z 0y = jlgrolo Z (304
zEA zeAN[-T,T]

with complex coefficients a, € C and discrete support A C R. Whenever we write an infinite
sum as in (), it should be understood as the T — oo limit of the [~T, T truncated sum. One
can check that a discrete measure 4 is tempered, i.e. u € S'(R) , if and only if u([—~T,T]) is
bounded by some polynomial in 7', namely if there exist C' > 0 and m € N such that

Y a|<CA+TM), VT >0

zeAN[-T,T]
If /1 is a complex valued measure given by (2)), then [u] := " _, |a.|d,.

Definition 2.1 (FQ and N-FQ). [I7,[15] A crystalline measure is a discrete measure that is
a tempered distribution and whose Fourier transform is also discretelz. A Fourier quasicrystal

"The Fourier transform is tempered by definition.
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(FQ) is a crystalline measure p with the further restriction that || and || are also tempered.
To write it explicitly, u is an FQ if there exists discrete (locally finite) sets A, S, and complex
coefficients (a,)zen, (Ck)kes, such that

(3)  m=) ab, f=>)» cd, and Yooad+ D> el <c+Tm,
zeEA kesS zeAN[-T,T] keSN[-T,T)]
for some C' > 0,m € N, for all T"> 0. When a, € N for all x € A, we call u an N-FQ.

For example, the measure = > __, d, for any periodic A is an FQ due to the Poisson

summation formula.

zEA

3. PRELIMINARIES ON LEE-YANG POLYNOMIALS

Let C[z] denote the space C[z, ..., z,] of polynomials in indeterminates z = (z1, ..., z,).
For a nonnegative integer vector o = (ayq,...,q,) € Z%, we use z* to denote the monomial
| J ;7. The degree of a polynomial p = 3 asz" in C[z] in the variable z;, denoted
deg;(p), is the maximum value of «; appearing in a monomial with nonzero coefficient
ao #0. For d = (dy,...,d,) € N*, let C[z]<q denote the C-vectorspace of polynomials with
deg;(p) < d; in each variable z;, i.e. Clz]l<a = {d gcncq@az®: aq € C}, where o < d is
taken coordinate-wise.

Given a circular region in the complex plane C' C C, we say that p is stable with respect
to C if p has no zeroes in C". For us, the circular regions of interest will be the upper half
plane H, = {z € C : Im(z) > 0}, lower half plane H_ = {z € C : Im(z) < 0}, and the
open unit disk D = {z € C : |z| < 1}. Stability with respect to D is often known as Schur
stability. We use T to denote the unit circle {z € C: |z| = 1} in C and D for the closed unit
disk DUT. Of particular interest are polynomials stable with respect I and its inverse C\D.

Definition 3.1. We say that p € C[z] is a Lee-Yang polynomial if it is stable with respect
to both D and C\D and use LY4 to denote the set of Lee-Yang polynomials in C[z]<q of
multidegree equal to d. That is, LYq4 is the set of polynomials p = ). <4 @a2z® so that
deg;(p) = d; for all j with the property that p(z1, ..., 2,) # 0 whenever |z;| < 1 for all j or
|z;| > 1 for all j. When n is not clear from the context, we will write LY 4(n).

One property of stability that we will often use is that the set of multivariate polynomials
that is stable with respect to either an open disk or halfplane is closed in the Euclidean
topology on C[z]<q. This follows immediately from Hurwitz’s Theorem:

Hurwitz’s Theorem (Theorem 1.3.8 of [20]). Let Q@ C C™ be a connected open set and
(fn)nen a sequence of functions, each analytic and nonvanishing on €, that converges to a
limit f uniformly on compact subsets of 2. Then f is either nonvanishing on € or identically
zZ€ero.

Moébius transformations map between circular regions in C. Given a tuple of Mobius
transformations ¢ = (¢;(z;)); where ¢;(z) = %% and polynomial p € Clz]<q, define
n

- Cjz+dj

¢-p=]](c;z +d) "W - p(¢1(21), ... dn(zn)) € Clz)<a.

=1

We will sometimes abuse notation and, for a single Mdbius transformations ¢(z) = %’;, use

¢-p to denote (¢, ..., o) p. Then p is stable with respect to a region C' if and only if ¢ p is
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stable with respect to ¢~1(C). See [10, Lemma 1.8]. Now we will often fix ¢ to be a Mdbius
transformation taking H, to D. Explicitly, for any fixed 6 € [0, 27), consider the pair

0, 5 . 6 ) 6 —
%_HZ) and ¢ '(2) = % with p(z) = ¢ (e) = cot( I) :
The derivative of p, p'(z) = L csc?((0 — x)/2), is strictly positive everywhere it is defined,
which is for & 0 + 277Z. In particular, we can always choose 6 so that p and its derivative

are defined at any finite set aq,...,a, € R.
The following are straightforward from the definitions of stability:

(4) o(z) =

Proposition 3.2. For p € Clz|<q the following are equivalent:
(a) p is a Lee-Yang polynomial,
(b) for every { = ({1,...,0,) € R} and x € C, p(exp(izl)) = 0 implies x € R, and
(¢) for ¢ as in [{), ¢ - p is stable with respect to Hy and H_.

In order to understand polynomials stable w.r.t. D and C\D, we first recall some useful
facts about real polynomials stable w.r.t H .

We define the support of a polynomial ¢ = > _ a,z® to be the collection of exponents
of monomials appearing in ¢, i.e. supp(q) = {a € Z%, : a, # 0}. For any vector w =
(w1, ...,w,) € R", define the w-initial form of ¢ to be the sum over all terms in ¢ maximizing
(w, ). That is, we can define

deg,(q) = max (w,a) and in,(q) = (¥ Dq(t™ 2, .. t7"2,)) =0 = Zaaza,
a€supp(q) vy

where A is the subset of o € supp(p) maximizing (w, o).

Proposition 3.3. Let g =) a,z" € Clz, ..., 2,] be stable w.r.t Hy. Then

(a) for any w € R", in,(q) is stable w.r.t. H,,

(b) for any ai,...,a, € R%, and b € R", the polynomial q¢(b + y1a; + -+ yma,) €
Clys, ..., Ym) is stable w.r.t H,

(¢) if q is homogeneous, then all its coefficients have the same phase, and

(d) if b € R"™ is a real zero of q of multiplicity m, namely q(b) =0 and 0%q(b) =0 for
all || < m, then the nonzero entries of {0%q(b) : |a] = m} all have the same phase.

Proof. (a) Note that for any ¢ € R, the polynomial #d8w(@q(t=w12,, .. . t7%nz,) is stable
w.r.t. H,. By Hurwitz’s Theorem, the set of stable polynomials is closed in the Euclidean
topology on C[z]<4, taking the limit as t — 0 shows that in,(q) is stable w.r.t. H..

(b) First, suppose ay,...,a, € R}. If Im(y;) > 0 for all j, then the imaginary part of
b+ > y;a; belongs to R and so g(b+ > _.", y;a;) # 0. Hurwitz’s Theorem then shows
that the polynomial g(b + > ", y;a;) # 0 is stable for any ay, ..., a,, € RZ,.

(¢) This is the content of L1, Theorem 6.1]. -

(d) Let m denote the multiplicity of ¢ at z = b. Note that by replacing ¢(z) with ¢(z+b)
it suffices to address the case b = (0,...,0). The notation a! = []7_, a;! allows to write
0%¢(0) = a! - a, and so it is enough to prove that all non zero a, with || = m share the
same phase. Fix w = (—1,...,—1). Because a! - a, = 9%¢(0) = 0 for all |a] < m, then
the a € supp(p) that maximize (w,a) = —|a| are those with || = m, and in particular
iny(q) = X4=m @2z By parts (a) and (b), this polynomial is stable and so all of its
nonzero coefficients have the same phase, which proves the claim. O
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We translate this statement for derivatives of trigonometric polynomials of the form
F(x) = p(exp (ix)) where p € LY 4.
First, we need a technical lemma on derivatives of compositions:

Proposition 3.4 (Multivariate Chain Rule). Let ¢ : C — C be a meromorphic function
such that ¢'(x) is nonzero wherever defined. Consider f(x) = g(p(x)), where ¢ is applied
coordinate-wise. For any a € C" at which ¢ s defined, the multiplicity m of f at a equals
the multiplicity of g at b = p(a) and for any o € N" with |a| =

0" f(a) = Hso a;)®

Proof. The symbolic expansion of 0%g(¢(a)) using the chain rule will be a sum of products
of factors 3%g(b) and p®(a;) for some |3| < |a| and k < a;. The unique such term involving
9%g is 0°g(b) [I;_, ¢'(a;)* and all others have a factor of 9%g(b) with |3| < |a|. If m is the
multiplicity of g at b, then 9°g(b) = 0 for all |5| < m and 9%g(b) # 0 for some |a| = m.
The calculation above shows that 9° f(a) = 0 for all |3] < m and 9°f(a) # 0. O

Proposition 3.5. Let p € LYq4 and define F': C" — C by F(x) = p(exp (ix)). If a € R" is
a zero of F' of multiplicity m, then nonzero elements of {0“F(a) : |a| = m} have the same
phase.

Proof. Let ¢ be a Mobius transformation taking H, to D, as in (4]), with 0 such that e # e
for all the coordinates e, ... e of exp(ia). By Proposition 3.2, q(z) = ¢ - p(z) is stable
w.r.t. Hy and H_. Then

p(z) = ¢ q(z) =r(z) - q(¢7'(2)) and F(x) = p(exp(ix)) = r(exp(ix)) - ¢ (p(x)),
where p(x) = (cot(“5%), ..., cot(®5%)) and r(exp(ix)) = [[_, (" —¢™)%. In particular
r(exp(ia)) # 0, so q(p(a )) = 0, hence p(a) is a zero of ¢. An induction argument shows that
a must be a zero of ¢(p(x)) of multiplicity m. That is, 0%¢(p(x)) is zero at x = a for all
|| < m and nonzero for some |a| = m. To do so, suppose that 0%¢(p(x))|x=a = 0 for all

la] <m' —1 for m" < m. Then, for any a € Z%, with |a| =m/,

(5) OF(x) = Y r(exp(ix))d"q(p(x)),

Bty=a

0 = 0"F(x)|x=a = r(exp(1a))0“q(p(xX)) |x=a-
Since r(exp(ia)) # 0, then 0%g(p(x))|x=a = 0 for every |a| = m/, and by induction for any
|a| < m. Together with Proposition this gives that

9“F(a) = r(exp(ia))0%q(p(x))]x=a = r(exp(ia))(9°q)|z=p(a H

SO

The phase of the non-zero factor r(exp(ia)) [T;_, p'(a;)® is 1ndependent of a, since p'(a;) is

positive for all j, so the nonzero elements of {0“F(a) : |a] = m} have the same phase because
the nonzero elements of {0°¢|,—p@) : |a| = m} have the same phase, by Proposition [3.3(d).
0

Lemma 3.6. Fort € R, £ € RY, and p € LYq(n), the following coincide:
(a) the multiplicity of t € R as a zero of the function f(t) = p(exp(itl)),
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(b) the multiplicity of x = tl as a zero of F(x) = p(exp(ix)),
(¢) the multiplicity of z = exp (itl) € T" as a zero of p(z), and
(d) the multiplicity of 1 as a root of the univariate polynomial q(s) = p(sexp(itl)).

Proof. Note that by replacing p(z) with p(e“1z, ..., e 2,) it suffices to consider t = 0 for
this equivalence.
(a)=(b) Let D, denote the differential operator > 7, Eja%j. Then for any m € N, Dj* =

> jajem (M) £0%, where () = —™—, and

atlap!?

F0) = DEFlaony = 3 (Z)gaaam)_

|al=m

We see that the multiplicity of (0,...,0) as a zero of F'(x) = p(exp(ix)) lower bounds on the
multiplicity of 0 as a zero of the function f. Moreover, by Proposition when m is the
multiplicity of (0,...,0) as a zero of F(x), the nonzero values of {0*F(0) : |a| = m} have
the same phase. By assumption, at least one of these is nonzero, ensuring that their sum,
f(m)(0), is non-zero and that f has multiplicity m at ¢ = 0.

(b)=(c) Follows from Proposition 3.4 with ¢(x) = €.

(b)=(d) Consider ¢(s) = p(s,s,...,s) and h(t) = q(e™) = p(e™,... e") = F(t,t,...,t).

By Proposition the multiplicity of ¢ at s = 1 equals the multiplicity of A at t = 0. By
the equivalence (a)=(b) with ¢ = 1, this equals the multiplicity of F'(x) at x = 0. O

3.1. Connectivity of LY 4 and perturbations. One of the early results on real hyperbolic
polynomials is Nuij’s result that space of hyperbolic polynomials of a given degree is simply
connected [18]. Here we adapt these techniques to better understand LY 4.

Nuij’s proof relies on the following operators on univariate polynomial that preserve real
rootedness. For A € Ry, define D, : C[z] — C[z] by Di(q) = g + A¢’. Nuij shows that if ¢
is real rooted then D,(q) is real rooted, D, decreases the multiplicity of roots of ¢ by 1 for
A # 0, and all new roots of Dy(q) are simple. In particular, for any real rooted polynomial
q € R[z] of degree d, the multiplicity of any root of ¢ is at most d and so applying D, d times
to ¢ results in a real rooted univariate polynomial with d simple roots. The roots of D)(q)

interlace those of ¢ in the following sense: if aq,...,a, are the roots of ¢ and by,...,b; are
the roots of D)(q), then b; < a; < b,y for all j.
Let Cly, z|q denote the set of polynomials in 1, ..., y, and 21, .. ., z, that are homogeneous

of degree d; in each set of variables (y;, z;). The zero-set of such polynomials are well-defined
subsets of (P'(C))". Here we use P*(K) to denote the projective line over a field K, which
is K?\{(0,0)} modulo the equivalence (a,b) ~ (Aa,\b) for A # 0. For any polynomial
p € Cly,z]lg and A € (C)", p(MY1, -+ MYy M 215 - -5 AnZn) = ADW1, oy Uns 215 -+ 5 Zn)-
In a slight abuse of notation, we will use [a : b] to denote a point ([a; : b;])ic € (P(K))",
where a = (ay,...,a,) and b = (by,...,b,). Similarly, for a subset I C [n], we use [a; : by]
to denote the point ([a; : b;])icr € (PYH(K)).

To understand the zero set of p on (P!(K))™ we restrict to various affine charts. We can
partition points [a : b] € (P'(K))™ by the set I = {i € [n] : a; # 0}. The affine chart of
points [a : b] € (P'(K))™ with a; # 0 for all 7 is isomorphic to K™ via the coordinate-wise
correspondence [a; : b;] <> b;/a;. Fori € I, b; # 0 and for j € I, a; # 0, and so after rescaling
we may take b; = 1 and a; = 1.
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On this vector space of polynomials define the linear operator

Dy:Cly,zla = Cly,zla by Di(g) =q+A> ;0.4

Jj=1

Let D'Ad‘ denote the operator obtained from D, by applying it |d| = Z?Zl d; times.
For each d € Z%,, consider the following sets of polynomials:

Gq = {q € Cly,z]q : coeff(q,z%) = 1 and ¢(1,z) is stable w.r.t. H, and H_}
63 = {q € &4 : ¢ and Vq have no common zeros in (P*(R))"}.
Proposition 3.7. G4 C Rly, z|a.

Proof. One can check directly from the definition that the stability of ¢(1,z) implies that for
all a € R, the polynomial ¢(1,a + ¢1) € C[t] has real roots, say r; € R for j = 1,...,|d|.
By assumption, the coefficient of z4 in ¢ is 1, which implies that the coefficient of ¢4 in
g(l,a+1t1)is 1, s0 ¢(1,a+t1) = H‘jd:ll(t — r;) and therefore all of its coefficients must be
real. If ¢ = g + ih where g, h € Ry, z]q, then we have shown that h(1,a+ t1) € R]¢] is the
zero polynomial for all a € R™. In particular, h(1,a) = 0 for all a € R", which implies that
h is identically zero. 0

Proposition 3.8. If g € Clz1, ..., 2,]<a is stable with respect to H, and H_, then so is the
polynomial q + zn11 Y51 0z,q in Clz1, ..., 2n41]. Moreover, for any a € R" and b € RY,
the roots of q + Z?Zl 0.,q interlace those of q when restricted to z = a + tb. That is,
A S < Ao << Ny < yap, where {Aj}; and {p;}; are the roots of the restrictions of
q+ 2?21 0.,q and q, respectively.

Proof. We use the theory of stability preservers by Borcea and Brandén, [9, Theorem 1.3|.
The symbol of the operator D(q) = q + zp41 ), 0:,q is

Dl((z+w)) = (2 + w) (1 o Y dy + w»l) -
j=1

We can see by inspection that this polynomial is stable. If Im(z;) > 0 and Im(w;) > 0 for
all j, then Tm(—(z,41)~") > 0 and Tm((2; +w;)~") < 0 for all j, so Y7, d;(z; +w;)~! #
—(2ns1)7 Y, and therefore D((z + w)4) # 0. This shows that the symbol D((z + w)d) €
Rlz1, .+, Zns Zni1, W1, - - ., Wy is stable with respect to H, and by the same argument it is
also stable with respect to H_. Then, by [9] Theorem 1.3], the linear operation D preserves
stability.

The statement of interlacing then follows from [9, Lemma 1.8]. O

Lemma 3.9. Let ¢ € G4, I C [n], and let q; denote restriction of ¢ to y; =0 and z; =1
for all j & I. Then q; € Gq,, i.e. qr is nonzero and q;(1y,2zy) is stable w.r.t. Hy and H_.
If additionally q € &3, then qr € &3,, i.e. qi and Vq; have no common zeros in (PY(R))?.

Proof. Note that 1 = coeff(q,2z4) = ¢(0,1) = ¢;(0;,1;), showing that ¢; is nonzero and has
1 = coeff(qr, [[,c; 2). Note that [T zjj -qr(1y,zr) is the initial form of ¢(1, z) with respect
to the vector (07, 1,)\7) and so ¢;(17,2y) is stable by Proposition (a).

Suppose that g; is zero at a point [a; : br] € (P*(R))!. We will show that for some i € I,

0y,q or 0,,qr is nonzero at this point. Note that if a;, = 0 for some k € I, then we can replace
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I with I' = {i € I : a; # 0}, which is non-empty by assumption. If there is some i € I’
for which 0,,qr or 0,,qp is non-zero at [ap : by], this proves the claim. Therefore we may
assume that for all i € I, a; # 0 and take a; = 1. Moreover, by replacing ¢(y,z) with its
substitution of z; — z; + b;y; for all ¢ € I, we can assume that b; = 0 for all 2 € I.

Since ¢ € &g, there is some derivative J,,q or 0.,q that is nonzero at [a : b] where
a = (1;,04,\7) and b = (07, 1p,p7). If j € I, we are done so take j ¢ I and assume by
contradiction that all derivatives with respect to variables labeled by I are zero. Since q is
homogeneous of degree d; in (y;, 2;), then y;0,.q + 2;0.,q = d;q. Since ¢ and y; both vanish
at this point and z; does not, we see that it must be d,,q that is nonzero at [a : b].

Consider the polynomial ¢(s,t) = g(a — te;,b + s1;) € R[s,t]. We claim that this poly-
nomial is stable. To see this, note the upper halfplane is invariant under p(z) = —1/z. Let
¢1(z) be the vector with i-th entry o(z;) if i & I or z; otherwise, so that [[,,; z?j -pler(z))
is stable with respect to upper and lower halfplanes if and only if p(z) is. The polynomial

H(‘Zj)dj q(1,01(2) = (11, —2@p1), (21, L 1)) € R[Z]
€I

is stable. We then obtain the polynomial ¢ as a further restriction of z; = ¢, 2z, = 0 for
ke n)\(IU{j}) and z; = s for all ¢ € I. It follows that ¢ is stable by Proposition [3.3| (b).
Note that ¢(0,0) = g(a,b) = 0. Moreover, we have that

SQ‘ 5,t)=(0,0) (Z azZQ> (v,z)=(a,b) — 0 and atQ’ (s,6)=(0,0) = (_aij) ‘(y,z):(a,b) 7& 0.

el

The polynomial G(s,0) = g(a,b + s1;) has leading term s-wz% since ¢(0,1) = 1, and so is
nonzero. Let k be the smallest integer for which 8§Q|(S7t):(070) is nonzero. By the arguments
above, k exists and k > 2. This means that all monomials s*t? appearing in § with non-zero
coefficients either have § > 1 or a > k > 2. In particular ((—1,—k), (o, 5)) < —k, with
equality if and only if (o, ) = (k,0) or (a, ) = (0,1). We conclude that the initial form
in_1,_)q = as® + bt for some non-zero coefficients a,b € R*. By Proposition (a), it is
stable with respect to both upper and lower halfplanes. However, since k > 2, there is some
¢ € H. such that & = —24, and so (s,t) = (c,i) € H2 is a root, contradicting stability. O

Proposition 3.10. For any q € &4 and X\ > 0, D)(q) € Sq and D'/\d‘(q) € Gj.

Proof. By Proposition the operation ¢ — ¢ + AY ., 0,,q preserves stability of poly-
nomials in R[z]. We need to show that D‘dlq has no common zeros with its gradient on
(PY(R))". By the univariate case discussed above, D‘ (1, b+t1) € R[t] has simple roots for
all b € R". It follows that if D‘/\ |q(1, z) vanishes at z € R" then its gradient does not. This
shows that D'/\d‘q(l z) and its gradient have no common zeros of the form [a : b] where a; # 0
for all j. Assume by contradiction that D' | q(1,z) and its gradient have some common zero
[a:b] € (PY(R))" and let [ = {i : a; # 0} so I # [n]. Note that we can assume b; = 1
forall j ¢ I. If I = (), then [a : b] = [0 : 1], at which DLd|q(0, 1) = coeff(D‘/\dlq,zd) # 0.
Therefore, ) C I C [n].
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Let ¢; € Rly;, 2 : ¢ € I] denote the restriction of ¢ to y; = 0 and z; = 1 for j € I. Note
that the operator D) commutes with the restriction to y; = 0 and z; = 1. That is,

(Drq) | y;=0,2,=1:j¢1y = <Q+)\ZyiaziQ> l{y;=0.2=1:5¢1y = QI+)\Z%3Z¢Q1 = Dxqr.
i=1 icl
In particular, Dyq;(ar, 1;) = Daqi(1,a;") = 0. Since q; € Sgq,, by Lemma and it
has total degree |d;| < |d|, then the argument above shows that Dyq; € G4, and that the

gradient of D'/\d‘(QI)(l,ZI) cannot vanish at the zero (17,a;"'). Hence, there must be some
nonzero derivative of D‘/\d|(q1) at [1; : a;'] = [a; : by], which gives a nonzero derivative of
D (q) at [a: b]. O

Proposition 3.11. Both &4 and G are contractible and &4 equals the closure (in the
Fuclidean topology on Ry, z|a) of G(R).

Proof. The proof follows the proof of the main theorem in [18]. For p € R, consider the
linear operator G, on Ry, z]q defined by G,(¢) = q(uy,z). This operator preserves both
stability and the coefficient of zd.

For A € [0, 1], consider the map D‘ﬂ/\G,\. This map preserves stability and, for \ # 1, the
image of G4 under this map belongs to &3. For A = 1, we get the identity map ng‘Gl(q) =q
and for A = 0 we get DI%(z9) € S (R). Therefore this gives a deformation retraction of
both &4 and &3 onto the point Dlld‘(zd). O

Proposition 3.12. The interior of &4 in {q € Ry, z]q : coeff(q,z%) = 1} is not empty, and
in particular, it contains Gy.

Proof. Suppose that ¢ € &3, so that ¢ and its gradient have no common zeros in (P!'(R))".
Let (S')" = {(y,2) € R*" : 37 + 27 = 1Vj} and let V = {(y,2z) € (S")" : Diq(y,z) = 0},
where Diq is Dyq at A = 1. Consider the set of polynomials

U ={g €Rly,z]q : coeff(g,2%) = 1, ¢(y,z)q(y,z) > 0 for all (y,z) € V}.

The set V' is compact, since (S*)" is compact, and so mingy ,ev g(y,2)q(y,z) is continuous
in the coefficients of g, which means that U is open in {g € R[y, z]q : coeff(g,z%) = 1}. We
claim that ¢ € U and U C &j.

To see that ¢ € U, it suffices to show that ¢ and D;q have no common zeros in (P'(R))".
We first check this for the points in the affine chart y = 1. Suppose that ¢(1,b) = 0
for [1 : b] € (P'(R))", so by assumption, there is some j for which 9, ¢(1,b) is nonzero.
By Proposition all of the the nonzero entries of {J.,q(1,b) : i = 1,...,n} have the
same phase, which implies that . , 9,,¢(1,b) is nonzero. Since ¢(1,b) = 0, it follows that
Dig=q+ Y., 0,q is nonzero at [1: b.

For any arbitrary point [a : b] € (P'(R))", let I = {i € [n] : a; # 0}, which by assumption
is non-empty. By Lemma qr is stable and has no common zeros with its gradient on
(PY(R))’. The argument above shows that ¢; and D;q; cannot both be zero at [a : b;], and
so ¢ and D;q cannot both be zero at [a : b].

To see that U C &3, let a € R", b € R"! and let {);}; denote the roots of D1¢(1,a + bt)
and {s;}; denote the roots of ¢(1,a + bt). These roots are distinct by the argument above.

By Proposition@ A< pr <A <...< Agq < pyq- In particular, ¢ must alternate signs
on the roots of Dyg(1,a+bt). If g € U, then g(1,a-+ bt) € R[t] has degree |d| with positive
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leading coefficient b¥, and it alternates signs on the roots of D;¢(1,a+ bt). Hence it has |d|
distinct real roots. As this holds for any a € R", b € R}, then g € &3. See, for example,
22) 2.3,2.4. 0

We can modify this using the Mobius transformations ¢ from to translate these results
to LYq4. For any x € [0,27)" define

LYq(x) = {p € LYq : p(exp(ix)) # 0} and

LY3(x) = {p € LYq(x) : p and Vp have no common zeros in T"}.

One can check that ¢ € Cly,z]q belongs to Sq (respectively &) if and only if ¢~ - ¢(1,2)
belongs to LY 4(x) (respectively LY3(x)) for ¢ defined using the angles ¢, ... e,

Definition 3.13. Define an involution of polynomials in C|z]<q by

(21, ) = (2, ) = 2% (270, .., 2, )), namely
ST S )
[e% « «

and define the set of polynomials in C[z]<q that are invariant under the involution

Clz }<d = {p € Clz]<q : pZPT}I{Zaaza D Qo = Qd—q foralla},

a<d
and the set of polynomials for which p' is a scalar multiple of p by
C-Clz]2q:={cp : c€C,peClz)2q} ={peClz]<q : p' =cp for some ¢ with |c| = 1}.
The next lemma is straight forward.
Lemma 3.14. The set C[z]2y is a real vectorspace of dimension []}_,(d; + 1), spanned by
(z*+297%) and i(z* —2z97*) for a < d. The set C-C[z]y is a semialgebraic set of dimension
1+ dim(Clz]2y) in the (2 [T (d; + 1)) -dimensional real vectorspace Clz|<q, from which it
inherits the Euclidean topology.
Remark 3.15. Note that from the polynomial ¢ = ¢p with z € [0,7) and p € C[z]i;d, we
can uniquely determine  and p. Namely, ¢ = (e /e™®)V/2 = (q(z)/q!(2z))"/? and p = e7*q.
The image of C - R[y,z]q under the map ¢ — ¢~ - ¢(1,2) coincides with C - C[z]2y:

C-Clz]24 = {cZaa )l (z 4 exp(ix))%(z — exp(ix))9™ : a, ER,c € (C} :
a<d

D <d ao(—1)1%(z + exp(ix))®(z — exp(ix))¥~* with a, € R, using the

(z) =
(L,

Note that for p(z

notation z- ) we have
Z |a‘ Ut exp(—ix))*(z~! — exp(—ix))4™
(exp(— Z ao (1) (exp(ix) + z)%(exp(ix) — 2)97% = (— exp(—ix))Ip(z),

a<d

and so cp € C[z]2y for ¢ = (iexp(—ix/2))<.
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Definition 3.16. Let D, x : C[z]q — C[z]q denote the linear operator corresponding to D,
and tuple of Mobius transformations ¢ = (¢1,...,¢,) where ¢; is defined as in (4) with
0 = z; for x = (z1,...,2,) € R". Namely p — (¢! 0Dy o0 ¢ - p'™)|y_y, where p'™ =
yp(21/y1, - - -, 2n/yn). Explicitly, for p(z) = 3,4 ao(—1)1(z + exp(ix))*(z — exp(ix))d~,

Dy xp(z) +>\ZZa]aa —i)l*l(z + exp(ix))* ¢ (z — exp(ix)) 472,

=1 a<d
Corollary 3.17. For any p € LYq(x) and A > 0 and ¢ defined as above, Dy x(p) € LY a(x
and (Drx)'Y(p) € LY3(x). The interior of LYa(x) in the Euclidean topology on C - Clz]%4
is nonempty and contains LY 3(x). Moreover, LY q(x) is contained in the closure of LY 3(x).

Proof. Note that p € LY q4(x), resp. LYg(x), if and only if the homogenezation of ¢-p belongs
to C*Gq, resp. C*&4(x). The result then follows from Propositions[3.10}[3.11, and [3.12] O

Remark 3.18. The set of Lee-Yang polynomials is connected but not contractible, even in
P(C[z]®4). For example, the set of univariate Lee-Yang polynomials p of degree-one, modulo
global gcaling7 is parametrized by z — %, for § € [0, 2], showing this set to be a circle.
Remark 3.19. The proof of Proposition [3.11]gives an explict contraction of LY 4(x) (modulo
scaling) to a polynomial p* € LY§(x), namely ¢! oDlldlzd, which we can explicitly compute.
The space of real stable polynomials is contracted to

\dld |d\_ d _ |d‘ ago,d _ |d| d! gd—a
i 1+Zyj ’ _Z(Oc y 0.z _Z a a‘y

« a<d

where the sum in the third term is taken over all o € Z% with [a| < [d], ('d‘) W,

and 9 = []7_ ( ) Taking ¢ as in (4, we find that P(LY4(x)) is contracted to

7=1

pi(z)=¢ Dl =" (‘d‘) L 2 — exp(ix))* (—i(a + exp(ix))) .

a ) ol
a<d

As above let C[z]24 denote the real vectorspace of polynomials in C[z]<q that are invariant
under the involution ) a,z® — ) Ga_az®.
Theorem 3.20. For any d € Z%, the set of Lee-Yang polynomials LY q is a full-dimensional
semialgebraic subset of C - Clz|2y. That is, dim(LYq) = [[}_,(d; + 1) + 1. Its interior in
C - Clz]2y is nonempty and contains

LYy ={p € LYq4 : p and Vp have no common zeros in T"}
and LY 4 is contained in the closure of LY.
Proof. Note that the set
{(p,a,b) € C-C[z]Zq x R" x R" : p(a+ib) = 0 and ((a} + b < 1Vj) or (a; + b7 > 1Vj))}

is semialgebraic. By the Tarski-Seidenberg theorem its projection on to C - C[z]2, is also
semialgebraic, as is the complement of the image of this projection, LY 4. -
Suppose that p € LY4 and fix x € [0, 27)" with p(exp(ix)) # 0. Then p € LY 4(x) and we
invoke Corollary If p and Vp have no common zeros in T™, then p belongs to LYq(x),
which is contained in the interior of LY 4(x) C LY4 in C - C[z]?4. Otherwise, p is contained
in the closure of LYg(x) C LYy. - O
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FIGURE 5. (Left) The zero set of p(e™,e”) (in red) and the line (z,y) = t/
(in black) as in Figure I} (Right) ¥,, the zero set modulo 27, and the line
(z,y) =t¢ mod 27.

4. THE TORUS ZERO SET X,

It is a simple, yet fruitful, observation that the zeros of z — p(exp(izf)) correspond to
intersection points of the line {#f mod 27 : x € R} C R"/27Z"™ with the zero set

Y, ={x e R"/2rZ" : p(exp(ix)) = 0}.

See Figure 5| In particular, certain properties of j1,, are determined by the structure of ¥,
regardless of the choice of £ € R’} with Q-independent entries.

Lemma 4.1 (dimension and singularity). Given p € LYq4(n), its torus zero set ¥, C
R™ /277 is a real analytic variety of dimension n — 1, and

(1) The set of singular points, sing(¥,), is a subvariety of dimension at most n — 2. If
p has no square factors (i.e., square free), then x € X, is singular if and only if
VD|s=exp(ix) = 0, or equivalently, its multiplicity is m(x) > 1.

(2) Ewvery irreducible factor of p is a Lee-Yang polynomial. If p is irreducible, then ¥, is
irreducible in the following sense: the zero set of q(exp(ix)) in X,, for any polynomial
q € Clz1,..., 2], is a subvariety of smaller dimension (at most n — 2 dimensional),
unless p is a factor of q in which case q(exp(ix)) vanishes on ¥,.

Proof. Since the real and imaginary parts of F/(x) = p(exp(ix)) are real analytic, then 3, is
a real analytic variety. As such, its singular set sing(3,) is subvariety of lower dimension. To
see why X, is n — 1 dimensional, let p € LY 4(n) and let Z, denote its zero set in C”. As seen
in [1], if p is Lee-Yang, then Z, N'T™ has real dimension n — 1 and therefore dim(X,) =n—1
by the homeomorphism x — exp(ix) between them. Moreover, Z, N T" is Zariski dense in
Z,, according to [1], which proves Part (2).

For part (1) suppose that p is square-free, so that the singular points of Z,, are exactly the
points in Z, where Vp = 0 (if p has square factors this criteria fails at zeros of any multiple
factor), or equivalently with multiplicity > 1. Due to Proposition with ¢(z) = €,
x € sing(X,) if and only if z = exp(ix) € sing(Z,). O
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4.1. The layers structure of ¥,. It was shown in [2, Lemma 4.14|, for Lee-Yang polyno-
mials arising from quantum graphs, that >, is the union of 2n layers, each homeomorphic to
(0, 27]"1. These special polynomials are square free and have d = (2,2,...,2) so 2n = |d]|.
In this chapter, it is shown that for any p € LY4, ¥, is the union of |d| such layers, and in
the case of polynomials with square factors multiplicities should be taken into account.

Proposition 4.2 (Layers structure). Given p € LYq(n), X, is the union of |d| layers,

Id]
S U Xp.js
j=1

each layer homeomorphic to (0,2n]"~! through the parameterization ¢; : (0,27]"1 — %, ,

¢i(y) = (y,0)+6;(y,0)1 mod 27,

where 1= (1,1,...,1) and 6; : R* — R is a continuous function. Each @; is real analytic on
the open set <pj’1 (reg(2,)) C (0,27 which has full Lebesgue measure. The multiplicity of
x as a zero of p(exp(ix)) is equal to the number of layers ¥, ; containing x. In particular,if
p is square free, then

sing(S,) = | SN

1<i<j<|d]
See Figure [] for example of the layers structure of ¥, for p from Example

Remark 4.3 (Square factors, overlaps, and multiplicities). Suppose that p = Hj\[:l qjj where
(qj)ﬁvzl are the distinct irreducible factors, each raised to the power ¢; € N. Define the
reduced polynomial pr¢ := vazl q;, so that it is square free and has the same zero set as p,

SO Ypred = Xp, but the total degree of p**d may be smaller, in which case Yrea would have
fewer layers than »,. This means that the layers coming from p must overlap, resulting in
multiplicity. Note that a given layer Y, ; might comprise of pieces of the varieties of several
different irreducible factors of p, each coming with their own multiplicities, which can differ.

To prove Proposition the continuous phase functions 6; : R* — R, for j =1,...,|d|,
are introduced in the next proposition.

21

(=]

21

FIGURE 6. (right) The four layers of ¥,, presented in the tilted fundamental
domain, for p € LY (59) given in Example (left) The graphs of 6;(y,0) for
y € (0, 27].
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Definition 4.4. Givenp = ) a,z® € LY4(n) and x € R”, define the univariate polynomial
px(s) € C[s] by

|d|
(6) px(s) = p(se™, ... se") = Z Z R
J=0 \lal=j
px has degree |d|, with leading term aqe’™®Dsldland all roots on the unit circle, say

(ewf(x))ljdz‘l. Let m(6;,x) denote the multiplicity of €™ as a root of py, which agree with
the multiplicity of x as a zero of p(exp(ix)) when ¢ = 1, by Lemma

Proposition 4.5 (Phase functions). Given p € LYq4(n), its phase functions are |d| contin-
uous functions 6; : R* — R, such that (e () ..,em\dl(x)) are the roots of px, ordered as

Jollows 6,(x) < ... < 0q(x) < 01(x) + 2, for all x € R™. Let ip denote the lift of ¥, to
R"™, so that

\d| ||

(7) plexp(ix)) = aqe’ H (1—€®™) | and ip = U 9;1(27TZ).
Jj=1 Jj=1

The phase functions enjoy the following properties:

(1) Fach 0; satisfy 0;(x +t1) = 0;(x) —t, for all x € R" and t € R. More generally, 0,
1s monotonically decreasing when restricted to lines in any non-negative direction { €
R%, with upper and lower bounds on the slope —tlmax < 0;(x +1l) — 0;(x) < —tlmin,
where (i and Unax are the minimal and maximal entries of L.

(2) Fach 0; is real analytic on reg(ip). It is also real analytic around any x € R"™ which
is not a discontinuity point of m(6;,x), the multiplicity of €™ as a root of px. The
discontinuity set of x — m(@ x), denoted by M; C R", is a closed set of dimension
dim(M;) < n—1, and sing(3,) = U, (6, (27Z) N M).

(3) The sum of the phase functions is lmear inx € R”

S 05x) = (d.x)+ > 05(0)

(4) Translations by the lattice 2nZ" acts on the ordered tuple (61, ...,6q)) by
0(x + 2mn) = c'd™P(x) mod 2r,
for all n € Z", where o is the permutation (1,2,...,|d]) — (|d],1,2,...,|d] —1).

Remark 4.6. The choice of such phase functions is not unique. However, given any x, € R"
which is a zero of p(exp(ix)) of multiplicity m < |d|, there is a unique choice of phase
functions as in Proposition [4.5 such that

0= 01(X0) =...= Qm(Xo) < 0m+1(X0) <...< €‘d|<X0) < 2m.
The proof of Proposition [4.5] includes a proof of Remark

Proof of Proposition[4.5 Fix arbitrary xo € R™ such that p(exp(ixg)) = 0 with multiplicity
m < |d|, so that s = 1 is a root of py,(s) of multiplicity m, by Lemma Let (s; (xo))‘dl
denote the roots of py,, S0 we can write s;(xo) = €%0) such that

0= 91(X0) =...= Qm(Xo) < 9m+1(XO) <...< 9‘d|(X0) < 2.
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The roots of a univariate polynomial changes continuously with its coefficients, as a result

of Rouché’s Theorem. The coefficients of px are analytic in x € R", so the roots of py,

can extend continuously to the roots (s (x))ljd:‘1 of py for any x € R", since R™ is simply

connected, and we may do it while maintaining their counter-clockwise ordering. Each
sj : R" — S* can be lifted to a (unique) continuous function 6; : R* — R with 6;(x¢) as
prescribed above. Since the roots were kept in a counterclockwise order throughout R™, then
the relation 6; < ... < 6,9 < 6 + 27 holds everywhere. Since the leading coefficient of py

is aged¥) | as stated in Definition we may write py(s) = aqe’d¥ HL.d:ll (s — ™). In

particular,
|d|

plexp(ix)) = px(1) = age’ H (1- eiej(x)) :
j=1
Since ip is the zero set of p(exp(ix)) in R™, then it is the union of 9;1(27TZ).
The univariate polynomial changes along the line {x +¢1 : t € R}, for x € R", by

Prpin(s) = p(seTm0 L sellTom)y = p (se™).

Together with the continuity and ordering of the phase functions, it gives
(8) 0;(x +11) = 0;(x) -

(Proof of (2)) The function x — m(6;,x) is integer valued, so it is continuous at a point if
it is constant in a neighborhood of that point. Therefore Mj, its set of discontinuity points,
is closed. Let pg(k)(s) denote the k-th derivative (in s) of px(s). Given a point x € R™ \ M;
with m = m(6;,x), every x’ in some small neighborhood of x satisfies p)(:f)(sj(x’)) = 0 for
all £ < m and pg,n)(sj(x’)) # 0. Then, s, is analytic around x, by the implicit function
theorem for analytic functions, as the s(x’) solution of py*l)(s) = 0 around the point
(s,x') = (sj(x),x). We conclude that s; is analytic on R" \ M;, and therefore 6, is real
analytic on the same domain. Since 0;(x +t1) = 6;(x) — ¢ holds for all j simultaneously,
then m(6;,x + t1) = m(#;,x) for all x € R" and ¢t € R. In particular, m(6;,x’) is locally
constant around a point x € 6;1(27#@) C ip, namely x ¢ M;, if and only if it is constant in
some neighborhood of x in the level set 6’]-_1(27rk’). Since the multiplicity m(x) of x as a zero of
p(exp(ix)) agree with m(6;,x) for x € (9]»_1(27TZ) C X,, by Lemma and the discontinuity
set of m(x) over f]p is exactly smg(ip), we conclude that smg(f] ) = U‘d| (0;1<27TZ) N M;).
Next we show that U‘jﬂle is the projection of an analytic variety of dimension n — 1, from
which it follows that dim(M;) < n — 1 for each M;. By (), as discussed above, each M;
is invariant under translations in direction 1. In particular, using (8 again, x € U'd‘ M;
if and only if x +¢1 € smg(E ) for some t € R. According to Lemma smg(E ) is an
analytic variety of dimension at most n — 2, so {(X t) ER*"XR:x+1t1€ smg(A Y,)} is an
analytic variety of dimension at most n — 1, and U M is the projection of this variety to

R™ and it is closed since each M; is. We conclude that U‘jile is a closed subanalytic set
with dimension at most n — 1 (locally around any point), see [8] for the definitions.

(Proof of (1)) We claim that V#;(x) € RZ, for all j and all x € R" \ Uld‘ M;. To
see that, let x € R™\ U'd‘ 1M, and since V9]|x = V0O;|xt+a by ., we may assume that
g;(x) =0. In partlcular, X € reg(Zp). Note that fp can also be written as the zero set
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~

red of p. Since x € reg(¥,), then it

of Frd(x) = p*d(exp(ix)) for the reduced polynomial p
has multiplicity one as a zero of F™4(x), and there is a well defined normal vector to X, at
x, which is proportional to both V6;(x) and VF™(x). According to Proposition @, the
nonzero coordinates of VF™4(x) have the same phase, and therefore the nonzero coordinates
of VO;(x) € R™ all have the same sign. Since (8) gives V,(x) -1 = —1, we find that

It follows that 6;(x1) > 6;(x2) whenever x; —x; € R%;. To see why, we may use continuity

to assume that both x; and x, lie in the open dense set R™ \ X for X = U'fl:lle. Consider
all possible smooth curves ¢ : [1,2] — R™ with ¢(1) = x1, ¢(2) = x2 and ¢/(t) € R%, for all
t. For such ¢, the composition 6; o ¢ is continuous for all ¢, and smooth with non-positive
derivative as long as p(t) ¢ X. Since X is a closed subanalytic set of dimension at most n—1,
there exists such ¢ that either intersects X transversely in a discrete set of points, or doesn’t
intersect X at all, by [8, Theorem 1.2] and dimension count. For such ¢, 0(p(2)) > 6(¢(1)).

Now let x € R",t € R, and ¢ € RZ,,. Consider the three points x; = x4+, 1, X3 = x+1/,

and x3 = X + tlpa1, 50 X3 — Xp € RY and xp — x; € RY;, which gives
0;(x 4+ thnaxl) < 0j(x+t0) < 0;(x + tlpinl),
and therefore, using ,
0;(x) — tlhnax < 0j(x +tl) < 6,(x) — tlin.

(Proof of (3)) Recall that py(s) = aqe{d® H‘jd:ll (s — e®™) and by substituting s = 0 we
. d
get p(0) = py(0) = ad(—1)|d‘e’(<d’x>+2:;419]'(")) # 0 for all x € R". Since (d,x) + ng:ll 6,(x)

; \d|
is continuous and () +25=16:() — (—1)"1“%2) is constant, then

d] ]
(d.x)+ ) 0;(x) =) _0,;(0), forallxeR"
j=1 i=1

(Proof of (4)) To prove that §(x + 27n) = ¢/¥™g(x) mod 27 holds for all x € R" and
n € Z", where o is the permutation (1,2,...,|d]) — (|d|,1,2,...,|d| — 1) and 0(x) =
(01(x),...,0jq/(x)), it is enough to consider standard basis vectors, namely n = e;. We only
consider n = e; but the proof holds for every e;. For every x € R", the polynomials p, and
Px+2re, are equal by Definition [4.4] so their roots are equal as a set but may have different
counterclockwise numbering, which means that 0(x + 2me;) = 0"0(x) + 27k for some integer
0 <r <|d| and k € Z™ that may a-priori depend on x. Notice that if the roots of py are
all simple, then r and k are uniquely determined, however if all the roots have multiplicity
two for example, then there can be two choice r and r + 1. Nevertheless, as the roots of py
and pxiame, changes continuously in x in the same manner, then there is a continuous (hence
constant) choice of r and k. It is therefore enough to show that r = d; for some point xq
that minimise min;<q m(6;,x), and as this quantity is invariant to translations in direction

1 then we may take xq € ip. Let m = m(xg) < |d|, and by Remark 4.6/ we may assume that

0= 91(X0) =...= em(Xo) < 9j+1(X0) <...< 9|d‘(XQ) < 2.
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Let r and k = (ki,...,k,) such that 0(xo + e;) = 0"0(x0) + 2wk. Using part (3) and the
fact that the sum of 6"0(xo) and 0(xg) is the same, we get

Z k; = Ze(xo +ey) — Ze(xo) = —27d,.

J=1 J=1

By part (1), 6;(xo+e1) —6,(x0) € [0,27]. Since 2rk; = 6;(x¢+e€1) —0;/(x0) for some j', and
60/ (x0) — 8;(x0)| < 2m, then k; € {0, —1} for all j. The equation for the sum above implies
that k has exactly d; entries equal to —1 and the rest are zero.

Denote v := 0"60(xg) so that

U = (Olaj—r+1(%0), Oa—r+2(X0), - - -, 0 (X0), 01 (X0), - - -, Oaj—r(x0)),

then v; < ... < v, and v, < ... <y with v, = 0 < v, < 27, while v + 27k is ordered
increasingly. We conclude that k; = —1 for j < r and k; = 0 for j > r, which means that
r = dy. This proves part (4).

O

We are now in position to prove Proposition [4.2] using Proposition [4.5]

Proof of Proposition[4.2 Consider the linear transformation 7 (y,t) = (y,0) + ¢1, and the
quotient map 7 : R" — R"/27Z". Consider Q2 := T ((0, 27]™), which is a fundamental domain
of 27Z"™ so w : @ — R"/2xZ™ is bijective. The map y — T (y,0;(y,0)) is continuous with a
continuous inverse X — (x1—p, ..., Ty_1—Ty), Since 6; is continuous by Proposition@, and
therefore ¢;(y) = (T (y,0,(y,0))) is a homeomorphism between (0,27]"~! and its image,
which we denote by >, ;.

Notice that 6;(7 (y,t)) = 6,(y,0) — t by Part (1) of Proposition SO

(9) 0;(T(y,t) € 2nZ <= @;(y) = (T (y,t))-

(X,; C X,) Given y € (0,27]" ! let t = 6,(y,0), so that 6;,(T(y,t)) = 0;(y,0) — ¢ = 0.
Therefore, T (y,t) € 3, which means that 7(7 (y,t)) = ¢(y) € 5, by 9.

(X, C Uﬁ'lEm) Consider Q := T((0,27]™), which is a fundamental domain of 277"
so m : Q — R"/27Z" is bijective, and therefore any x € ¥, C R"/27Z" has a unique
point (y,t) € (0,2x]" x (0,2] for which 7(7(y,t)) = x. In such case, T(y,t) € &, 50
0;(T (y,t)) € 2aZ for some j, and p;(y) = 7(T (y,t)) = x by (9).

(Multiplicity and singularity) Let x = 7(7 (y,t)) € ¥, as above. The number of lay-
ers containing x is the number of j’s for which ¢;(y) = x, which are those j’s for which
(T = 1. This is exactly m(x), the multiplicity of x as a zero of p(exp(ix)), by
Lemma If p is square-free, then x € sing(¥,) <= m(x) >1 <= xe€ X,;NY,; for
some i # 7, by Lemma ~

(Real analyticity) Suppose that ¢;(yo) = 7(T (yo,t)) € reg(X,), then T (yo,t) € reg(%,)
which means that 6, is real analytic around 7 (yo,t) = (y0,0) + t1, according to Propo-
sition Therefore, 0; is real analytic around (yo,0), due to the shift 6;((y,0) +v) =
0,(T(y,t)+v)+tforallveR"yeR" It follows that y — T (y,6,(y,0)), and hence ¢;,
are real analytic around yy. U

d|
j=1

We may now relate the mingap(p) defined in Definition [1.11|to the phase functions (6;)
defined in Proposition [4.5]
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Lemma 4.7. Let p € LYq4(n), let (Qj)‘j(ﬂl be its phase functions, then
mingap(p) = min[f;1(x) — 0,;(x)] over 1 <j <|d| and x € [0, 27]",

where we 0iq141 = 61 + 21 by convention. In particular, mingap(p) > 0 if and only if p is has
no square factors and sing(X,) = 0 (equivalently, Vp(z) # 0 for any z € T™ with p(z) = 0).

Proof. By definition, if z = exp(ix) € T" then (eieﬂf("));d:ll are the roots of p,, ordered
cyclically with multiplicity, and so mingap(p,) is the minimum of 6;(x) — 6;(x) over 1 <
J <|d|, and since this difference is invariant to x — x + t1, we see that mingap(p.) = 0 if
and only if 0;,1(x + ¢1) = 0;(x + t1) = 0 for some ¢, which means that e”z = exp(x + ¢1)
is a multiple zero of p (multiplicity two or higher) by Lemma Since mingap(p) is the
minimum of mingap(p,) over x € [0, 27", then mingap(p) > 0 if and only if mingap(p.) > 0
for all z € T™ which happens if and only if p has no multiple zeros in T", which happens if
and only if p has no square factors and sing(%,) = 0. O

5. ZEROS DENSITY - PROOF OF THEOREM [1.9

When the polynomial p arises from a quantum graph, then Theorem [1.9/holds by the proof
of Weyl’s Law for quantum graphs in |6, Lemma 3.7.4]. In such case, p(z) = det(1 — D(z)5),
where S is some orthogonal matrix and D(z) = diag(zy, ..., 2n, 21,...,2,). The proof for a

general Lee-Yang polynomial p is similar. The roots (e% (X))L-d:‘l of the univariate polynomial
px($) replace the eigenvalues of D(exp(ix))S.

Proof of Theorem[1.9. Let p € LYq4 and consider the phase functions (Qj)‘jdil described in
Proposition Given ¢ € R, a point x € R is a zero of f(x) = p(exp(izl)) of multiplicity
m if and only if exactly m of the phase functions satisty 6,(z¢) € 27Z, by Lemma and
Proposition The number of zeros of p(exp (izf)), counted with multiplicities, in an
interval [a,b] C R is therefore

Id|
e (] Z\{x € la,b] : 0;(x0) € 2nZ}|.

According to Proposition part (1), 6;(al) > 6;(bl) for each j, and the map x — 6,(x()
is a bijection between [a, b] and the mterval 16,( E),HJ( 0)] C R of length 6;(al) — 6;(bl).
Therefore,

0;(al) — 0,(be)

H{z € a,b] : 0;(z0) € 2nZ}| = |[0;(bL), 0;(al)] N 27Z| = 5 + err;,
T
with |err;| < 1. Let err := ledz‘l err;. Then |err| < |d| and
4 0;(be) (d, ?)
Lpe(] Z +err = ?\b—a\#—err.

In the last equality we used part (3) of Proposition This proves part (1) of the theorem,
by substituting [a,b] = [x,z + T] and err(z,T) = err.
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For part (2) of the theorem, let x;11 > x; be consecutive zeros of f(x) and consider an
arbitrary interval I C (z;,x41), SO

(d, ) lerr| d]
0= Iy < —=T = I <2m—0- < 2m—+
and |/| can get arbitrarily close to x4 — ;. O

6. ERGODIC DYNAMICS ON X,

To prove the existence of a gap distribution for the eigenvalues of a quantum graph,
Barra and Gaspard introduced an ¢-dependent “first return” dynamical system on ¥, for the
associated Lee-Yang polynomial p, which is uniquely ergodic when ¢ is Q-linearly independent
[4]. The same holds for any Lee-Yang p, as shown in this section.

Given ¢ € R}, consider the linear flow on R"/27Z" induced by the constant vector field
¢. That is, the flow at time ¢ is a map x — x + ¢/ mod 27 from R"/277Z" to itself. The
minimal ¢ > 0 for which a point x € 3, gets back to X, is called the first return time 7,(x),
and x — x + 7(x)¢ mod 27 is a map from ¥, to itself that defines a dynamical system.

Remark 6.1. Throughout this subsection we omit the “mod 27” when it is clear from the
context.

0 m 2 0 m 2m

FIGURE 7. Illustration of Ty, 7,, and the measure m,, as in Definition @
for the Lee-Yang polynomial p from Example and ¢ = (m,1). In the
background the line (x,y) =t/ mod 27 for ¢ € [0, 44].

Definition 6.2 (Dynamical system on X,). Let p € LYq4(n) and ¢ € R". The first-return
time 7, : X, — R4 and the first-return map T, : 3, — 3, are defined by,

To(x) :==min{t > 0:x+tl € £,}, and Ty(x) = x + 7(x)L.

The measure my is a Borel measure on ¥, defined for any Borel subset A C ¥, by

my(A) :=lim —VOIn(Ad)

e—0 2¢

, with Ay :={x+1tl : x€ A, [t| <¢e},

where vol,, is n-dimensional volume (Lebesgue measure) in R"/27Z".
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Definition 6.3. A bounded function A : ¥, — C is called Riemann integrable if its disconti-
nuity set has zero volume in X, with respect to the n — 1 dimensional volume form induced
by the n-dimensional volume form on R"/27xZ".

Recall that if p has a decomposition into distinct irreducible factors p = vail q;-j , then

the reduced polynomial is p9 := H]Ail ¢; and its multi-degree is denoted by d*d. Let m(x)
denote the multiplicity of exp(ix) as a zero of p.

Theorem 6.4 (Unique Ergodicity). Let p € LYq4(n), let ¢ € R" with Q-linearly indepen-
dent entries, and fix an arbitrary point xo € X,. Let (z;)jez denote the zeros of f(x) =
plexp(i(xg + 20))), ordered increasingly with multiplicities, and consider (T} (xo));ez, the Ty
orbit of xo. Then the averages of any bounded Riemann integrable h : 3, — C over the orbit
(Tg(xo))jeN, and over the sequence (xg + x;{) jen, are independent of xo and are given by

j 1
(10) ngréo— E h(T} (x0)) (Qﬁ)n—1<dredjg> /zp h(x)dmy(x)
1

where my(%,) = (2m)" 1<d“’d1 ¢y and fz x) dmy(x) = (2m)"1{d, ¢).

For Lee-Yang polynomials associated to quantum graphs, this is shown in [4, [7, 12]. A
proof for any Lee-Yang polynomial is provided for completeness.

Proof. Let {z;};en denote the positive zeros of f(x) = p(exp(i(xg + 2{))) ordered with mul-
tiplicity, and let xo = 0, since xo € ¥,. Let {k;};en denote the distinct zeros of f, ordered
without multiplicity, with ko = 0, so that T} (xo) = xo + ki and m(T}(xo)) is the multiplicity
of k; as a zero of f for all 7 € N. The first step of the proof is showing that for any bounded
Riemann integrable i : ¥, — C,

1
(12) 1%520— Z h(T} (x0)) = @ / hdm,.

Consider a layer ¥, ; as in Proposition and let h = x4 be the indicator function of a Borel
set A C ¥, ; with boundary of zero volume in 3,. The set A = {x+1t(: (x,t) € AX[—¢, €|}
is then a Borel set with boundary of zero volume in R™/27Z". Since ¢ has Q-linearly
independent entries, the Kronecker-Weyl Theorem gives

vol,(Ae) lim length ({t € [0, R] : xo + t{ € A})
(271')” R0 R ‘

(13)

Let A = {k; : T{(x0) € A} C R, so that 0;(xq + ki{) € 27Z for all k; € A since A C %, ;.
The function ¢ — 6;(x¢ + tf) is strictly monotone with uniform upper and lower bounds on
its slope, by Proposition part (1), so A is uniformly discrete, and therefore, for small
enough ¢ > 0, the 2eintervals [k; — €, k; + €] for k; € A are mutually disjoint. The set
{t € [0,R] : xo + t¢ € Ay} is the intersection of these disjoint 2e-intervals with [0, R], so
up to an error of 2e, its lengths is 2¢[A N[0, R]| = 2eY", _ph(T{(xo)). Substituting this
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estimate into gives

(14) % = lim (26}% > (T (xo)) + %0(@) = QEP}EEO— Z h(T} (x0))

ki<R

Dividing both sides by 2¢ and taking ¢ — 0 proves for the indicator function h = x 4.
Both sides of are linear in h, so it holds for any step function Z;VZI cjxa, such that the
sets A; C X, are Borel with boundary of zero volume in 3J,. Such functions can approximate
(in the sup-norm) any non-negative bounded Riemann integrable function from below and
above to any given precision, by taking the upper and lower Darboux sums as they converge to
the Riemann integral of h. We conclude that holds for any bounded Riemann integrable
function h : ¥, — C, as it can be written as h = hy — hy + i(hs — hy) such that each h;
is real non-negative, bounded, and Riemann integrable and hence can be approximated by
step functions for which holds.

The second step is calculating m,(3,) and fz x)dmy(x). The sum of multiplicities of

distinct zeros up to T is the number of repeated zeros up to R, -, _pm(T}(x0)) = [{z; < R}|
which equals to * R + O(1), by Theorem , and applying to h = m gives

.1 i {z: <R} _ (d,0)
X)dmy(x) = I+ 3 m(Ti(x)) = i ST A0
ki<T
It follovvs that fz x)dmy(x) = (2m)""1{d, ¢), and by replacing p with p we get that
my (3 fz dm, = (27T)" 1{drd ). To see why notice that the torus zero set of p*d is

equal to 2p, with the same measure my, but with multiplicity functions which is one for every
x € reg(X,). The complement has my(sing(3,)) = 0, since dim(A) < n—2 for A = sing(%,),
which means that dim(A.) < n — 1 and so vol,(A.) = 0.

To prove apply twice and divide the two limits

Jo hdme S h(Tio0) SN BT (x0)

Since Y-, g h(xo + x:il) = 32, _pm(T}(x0))h(T{(x0)), the same argument gives

fzp m(x)h(x)dmy(x) . Y ai<r (X0 + 2if) . ST h(xo + 2if)

Js, m(x)dmy(x) koo [{x; < R} N—s00 N

O

6.1. Properties of 7, and m,. The gap distributions in Section [J] are defined in terms of
7o and my. The needed properties of 7, and m, are stated in the next two lemmas.

In what follows, consider reg(X,) as a smooth Riemannian manifold with volume form
do, induced by dvol, in R"/27Z", and the normal vector field n with n(x) € RZ, for all
x € reg(X,), as guaranteed by Proposition The n — 1 form with dx; missing is denoted

bydl‘l/\dl’z/\/\dl'j/\/\dl’n
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Lemma 6.5. The measure my is absolutely continuous with respect to do, the volume form
on reg(X,), with a strictly positive distribution

(15) dmy = (i, O)do = > (;(—1) duy Ay A Aday A A da,.

For each layer %, ;, with parameterization p; : (0,27]"1 — ¥, as in Proposition and
for every measurable h : 3, ; — C,

(16) [ megum) == [ b)) (90,600, Oy

D,J

and in particular, for { = 1,

(17) [ hedmat = [ hipylv)ay.
Sy (0,27]n—1
Proof of Lemmal[6.5 It was shown in the proof of Theorem [6.4] that m,(sing(¥,)) = 0, so m,
is supported on reg(3,). To show (L5) it is enough to consider a small open set A C reg(3,).
If A is sufficiently small, for € > 0 sufficiently small, we can choose local coordinates k =
(K1, ..., Kn—1) such that dk = do, which extend to local coordinates in a neighborhood of A,
by adding a coordinate ¢ in the normal direction . The fact that do is induced from dvol,

means that dvol, = drkdt. Therefore, vol,,( = [, [(n(k),2e0)|dk = 2¢ [, (n(k), £)dr > 0,
using that ¢ € R and n(x) € R for all k € A We conclude that

my(A) = lim oA /A (1, 0)do.

e—0 26

By definition, the form (n,¢)do agree with the n — 1 form
W=y L(=1)duy Ay A Adag A A da,

when restricted to reg(3,).
We are left with deducing from by simple change of variables. Let y € (0,2x]"!

such that ¢;(y) € reg(X,), let D = Dyjl|, be the n x (n — 1) matrix of derivatives whose

A(pj)s

(s, i)th entry is =5~

y. Then the change of variables formula for x = ¢;(y) is
ST O(~1)dry Aday AN dzg A N =Y G (=1)FH Dydy,

where D; denotes the (n — 1) x (n — 1) minor of D obtained by removing the j-th row.
Adding ¢ as a column vector gives an n X n matrix M = (D E), whose determinant is
exactly det(M) = >")_, €x(—1)*"' Dy, by expanding according to the column ¢. We need
to show that det(M) = —(V0,(y,0),¢). Let v = (aeg(y;l,o)’ e 8;;5?’_’?)) € R™ !, so that the
entries of D are Dy; = v; if i # s, and D;; = v; + 1, since ¢;(y) = (y,0) + 6;(y,0)1.
Subtracting the last row of M from all other gives the matrix

M = (1dn—1 f) , with £= (0, — s — Loy oo Loy — L),

v 4,
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so that det(M) = det(M) = £, — (v, £), using Schur complement in the last equality. Notice
that (v, ¢) = (V,(y,0),¢ —(,1) = (V,(y,0),¢) — ¢, since (VO;(y,0),1) = —1 by Proposi-

tion part (1). We conclude that det(M) = —(V6;(y,0),¢) which proves (16]), and
follows from (V#0;(y,0),1) = —1 again. O

For the next lemma, let p € LYq4q(n) and for any ¢ € R’ consider the first-return-time
7+ 3, — R, introduced in Definition

Lemma 6.6. For any fized ¢ € R, the map 7, : X, — R4 is bounded by 2%% and satisfies:

(1) Given any pair of distinct consecutive zeros of f(z) = p(exp(izl)), say x;41 > x;,
(X)) = x4 —x; for x =x;¢ mod 27.
If xj1 = x;, then x € sing(%,), and
(2) For any x € sing(X,) and any U C X, neighborhood of x,
{0, 70(x)} C {m(x) : x €reg(,)NU}.

In particular, the infimum of 7,(x) over x € reg(X,) is 0 if and only if sing(X,) = 0.
(3) Assume p is square free (otherwise replace p with p™?), then the infimum of 7, is
bounded by

mingap(p) <infr < mingap(p)
gmax - o gmin

lax (Cmin) denotes the largest (smallest) entry of ¢ and mingap was defined in Defi-

nition (see also Lemmal[{.7).

Moreover, if we let £ vary in R,

Y

(4) the map 7(x,0) = 74(x) is continuous on reg(3,) x Rt and is real analytic on the
open subset {(x, () € reg(X,) x R : Ty(x) € reg(3,)}.

Proof. Since p and the reduced polynomial p™d share the same torus zeros set, then they

share the same 7y, and so we may assume that p is square free. We work with the lift of 7,
from ¥, to ¥,. Abusing notation, we write 74(x) = 7(x mod 27) when x € ¥, C R", and

similarly 7 lifts to i\p x R?. This means that
7(x,0) = 7p(x) = min{t > 0 : p(exp(i(x + t£))) = 0}.
In particular, 74(z;¢) = x;11 —x; when x;,1 > x; are consecutive zeros of p(exp(izf)), which
proves (1).
For the bound 74(x) < 32—'%‘, by replacing p(z) with p(e ™'zy,...,e " 2,) if needed, it is
enough to consider 7,(0) when p(exp(0)) = 0, and to number the zeros of f(z) = p(exp(iz{))
such that 0 = zg < x;. Then 7(0) = x; — x¢ < 2m|d| by Theorem .

(d,6)
For (2) and (4), the same argument allows us to assume that p(exp(0)) = 0, namely

—~

0 € X, and focus on a small neighborhood of 0. The two cases of 0 being a regular or a
singular point of X, are treated separately.

(0 € reg(i;)) If 0 is a regular point of i\p, then it is a zero of p(exp(ix)) of multiplicity
one, since p is square free. The phase functions (defined in Proposition can be chosen
according to Remark such that

0= 91<0) < 92<0) <...< 9|d|(0) < 27‘[‘,
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Taking U C ip a small enough neighborhood of 0, we can ensure that 6;(x) = 0 and
0;(x) € (0,2m) for all x € U and j > 2. In particular, the minimal ¢ > 0 for which
plexp(i(x + tf)) = 0 must satisfy 0y(x + t¢) = 0, for any (x,/) € U x R%, by the ordering
and strict monotonicity of the phase functions as shown in Proposition In such case,
T = 7(x,/0) is the unique solution to #5(x + 7¢) = 0 and is therefore continuous in (x,¢),
by the continuity of (x,¢,t) — 602(x + t¢) and the implicit function theorem for monotone
continuous functions. As a result (x, () — Ty(x) = x+7(x, () is also continuous in U x R},

~

and therefore the set ) := {(x,0) € U x R} : Ty(x) € reg(X,)} is an open subset of
UxRy.If (X, 0) € Q, then 05(x + /) is real analytic in (x,¢,t) around (x', ¢, 7(x', (")),
by Proposition and so 7(x,¢) is real analytic around (x’,¢') by the implicit function
theorem for real analytic functions, which proves (4).

(0 € sing(i\p)) If 0 is a singular point of f]p, then it has multiplicity m = m(0) as a zero
of p(exp(ix)). Choose the phase functions according to Remark [4.6| such that

0=0:1(0)=...=0,(0) <8,41(0) <...<0q(0) < 27,
IfU C i\p is a small enough neighborhood of 0, the it has the form
U=UjLU;, with Uj:={xeU:0;x)=0},

since ip = U|]~d:‘149]~_1(27TZ) and the phase function are continuous. Define ¢;(x, ¢) as the unique
t-solution to 6;(x + t¢) = 0. As before, t; is continuous on U x R, and 7(0, ) = t,,41(0, ()
(where fjqi11 = 01 + 27 if m = |d|). Furthermore, for any j < m and x € U; N reg(f]p),
6,41(x) > 0, and so 7(x,¢) = t;+1(x,¢). Consider a converging sequence x,, — 0, with x,, €

reg(ip) for all n, and by taking a subsequence if needed, we may assume x,, € reg(3,) N U;
for all n, for some specific j. So 7(x,, ) = t;41(x,, {) for all n, and

{T(O,E) if j=m

lim 7(xn, £) = £j:1(0,0) = { | if1<j<m—1’

n—oo
by continuity of ¢4, using that 6;,1(0) = 0 when j + 1 < m. This proves the first part
of (2), and the fact that if sing(3,) # 0 then the infimum of 7, over reg(X,) is zero. On
the other hand, if sing(3,) = 0, then 7, is continuous on ¥, = reg(X,) and positive, and by
compactness it has a positive minimum. This proves (2).

For (3), define 74 ;(x) as the ¢ solution to 6;11(x + t¢) = 6,(x), which is well defined
an positive since the phase functions are ordered, continuous and monotone in positive
directions. Then 601 (x) — 041 (x+ 74,;(x)¢) = 0;11(x) — 0;(x) and Proposition 4.5 (1) gives

0j41(x) — 0;(x) < 7)< 9j+1(>2n; 0;(x)

and by taking the minimum over all x € R” and 1 < j < |d| we get

?
gmax

mingap(p) < min (%) < mingap(p)

émax x,] gmin

using Lemma Now, on the one hand, for any x € i\p there is some j such that 6;_;(x) =0
mod 27 and 0;(x) > 6;_1(x) so 74(x) = 74,;(x), which means that miny ; 7 ;(x) < inf 7. If
inf7, = 0 then we are done. If inf7, > 0, then sing(¥,) = (), and therefore 7,;(x) > 0
for all x and j. By Proposition (1), 7;(x +t1) = 74 ;(x) and we can choose ¢ so that

Y
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6,_1(x+1t1) =0 mod 2, in which case 7(x+t1) = 74,;(x). Therefore, inf 7, = miny ; 7 ;(x)
which finshes the proof.

7. PROOF OF THEOREM

Let p € LYq4(n) with decomposition p = H;\lzl q;-j into distinct irreducible polynomials,
and let ¢ € R, with Q-linearly independent entries. Each factor ¢; is a Lee-Yang polynomial
by definition. Let m,(z) denote the multiplicity of = as a zero of f,(z) = p(exp(izf)), with
my(z) = 0if f,(z) # 0, and similarly let m;(x) denote the multiplicity with respect to
fi(x) = q;(exp(izl)). Since f(z) = vazl (f;(x))? and multiplicity of zeros is additive under
multiplication of functions, then m(x) = Zjvzl c;mj(x). As a result

N

:upf_zmp )0z _ZCJ ij ch:“qufv

TEeEA = xEA; j=1

where A denotes the zero set of f and A; the zero set of f;. Clearly, A = U 1 ;. The proof
of Theorem [1.5]follows from the next lemma and proposition, considering the case of p being
irreducible and either binomial or not.

Lemma 7.1 (Binomial). If p € LYq(n) is binomial, normalized such that p(0) = 1, then
p(z) = 1—e%z9 for some p € R. In such case, for any (", the zeros of f(x) = (exp(mﬁ))
are simple and form an infinite arithmetic progression {gp + 2” k: : kelZ}.

Proof. If p € LY4(n) then p(0) # 0 and the Coefﬁcient of z4 is non-zero. If it has only two
monomials and p(0) = 1, then p(z) = 1 + az9. Assume by contradiction that |a| # 1, then

for any |d|-th root w € C of a, the point z = (w,...,w) will be a root of p in D" or (C\]D) ,
in contradiction to p € LY 4(n). Therefore p(z) = 1 — e™%z4, and so f(x) = 1 — ¢((dH7=%),
for some ¢ € R. Hence, f(z) =0 <= x—¢p € <M>Z in Wthh case f'(x) # 0. O

Proposition 7.2 (Non-binomial). Let p € LYq4(n) be irreducible and non-binomial, ¢ €
R% be Q-linearly independent, and f(x) = p(exp(izl)) with zero set A and multiplicities
(m(2))sen- Then,

(1) m(z) < |d| for all x € A and limp_,+ ‘{|$|T{Ifx|<i;€/\xg§:ﬁ B q
(2) For any N € N and any set I' € R with dimg(I") = N, [ANT| < ¢, with uniform

bound ¢ = c(|d|, N) that only depends on |d| and N. In particular, dimg(A) = co.

Proof of Proposition[7.2 part (1). The bound m(z) < |d| follows from Theorem-part 1).
Numbering the distinct zeros of f(z) by (k;)jez, with k; > 0 for j > 0 and k; < 0 for j < 0.
We need to show that

~-N<j<N : ki) >1

lim { =] m(k;) }
N—oo 2N

Let pf € LY4 as in Definition 3.13|, so that p' is also irreducible, non-binomial, and has

pl(exp(izl)) = 0 <= p(exp(—ixzl)) = 0 with the same multiplicities, so it is enough to

prove the one sided limit

=0.

i LGN 5 mi) > 1)

N—oo N =0
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By Lemma and since p is irreducible, m(k;) > 1 if and ounly if ;¢ € sing(3,). Notice
that k;¢ = T/ (kof), using the fact that the k;s are the distinct zeros. Let h be the indicator
function of sing(X,), so that [{1<j <N : m(k;) > 1} = Z;V:lh(Tej(koﬁ)). Then, h is
bounded Riemann integrable and Theorem gives

N—oo N

lim — Z h(T! (kot)) / h(x)dm,(x) = my(sing(%,)) = 0.

O

The proof of Proposition part (2) is a consequence of [13| Theorem 1.2], often known
as Lang’s GM Theorem. To state we consider (C*)” as multiplicative group, and it will be
convenient to define the notions of rank, division group, and algebraic torus cosets in terms
of the exponent map exp : C" — (C*)".

Definition 7.3. A subgroup G C (C*)" has rank N, if N is the minimal integer for which
G = {exp(4Ak) : k € Z"} for some matrix A € C™N. Tts division group is defined by
G = {exp(Ak) : k € QV} for the same A. An algebraic torus of dimension d torus in (C*)"
has the form H = {exp (By) : y € C%} for some integer matrix B € Z™*? of rank d. The
algebraic torus coset zH for z = exp(x) is the set zH = {exp (x + Ay) | y € C?}, for the
same matrix B. It also has dimension d.

Theorem. [13, Theorem 1.2] Let V' C (C*)" be an algebraic variety of dimension N and
degree D, and let G be a subgroup of (C*)", of rank N, with division group G. Then
G NV s contained in a union of at most r algebraic torus cosets z;H; C V for r <

cven(en(s) )

Lemma 7.4. Suppose that zH C (C*)" is an algebraic torus coset of dimension d < n — 2,
and that ¢ € R™ has Q-linearly independent entries. Then there is at most one k € R such
that exp (ik() € zH.

Proof. Let B € Z™% of rank d such that H = {exp (By) : y € C%}, and suppose that
both exp (ikl) and exp (ik'l) lie in zH. Then, exp (i(k — k')¢) € H and therefore (k — k)¢ =
By +27k for some k € Z",y € C%. The left kernel of B in C" contains an (n—d)-dimensional
Q-linear vector space of vectors orthogonal to By, so dimg(By) < d, and therefore,

dimg((k — k')¢) = dimg(By + 27k) < d + 1 < n.
However, if k — k' # 0 then dimg((k — £')¢) = dimg(¢) = n, a contradiction. O
Proposition[7.2 part (2). Let p,¢, and A as in Proposition Let V' C (C*)™ be the zero
set of p in (C*)". The degree of V' is finite and only depends on |d|. Given N € N, let I' C R
of dimg(T') = N, so I' = {{a,k) : k € QV} for some a € RY. Define the matrix A € C™*V
whose j-th row is the vector il;a € CV, and let G = {exp(A4k) : k € Z"} so that its division
group is the set G = {exp(Ak) : k € QV} = {exp(itf) : t €T}. So
r€ANT < exp(izl) € GNV.

Since G has rank at most N, Lang’s GM Theorem says that there are at most r = r(|d|, V)
algebraic torus cosets z;H; C V such that GNV C z;H, U...Uz.H,. In particular, any

x € ANT satisfies exp(izl) € z;H; for some i. An algebraic torus coset of dimension n — 1
is the zero set of a binomial polynomial, and since p is irreducible and not binomial, then
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dim(z;H;) < dim(V) —1 =n— 2 for every i = 1,...,r. By Lemma [7.4] each z;H; contains
at most one point exp(izf) for x € R. We conclude that ANT contains at most r points. [

8. PROOF OF THEOREM

Proof of Theorem[1.12. Suppose that n > 2. Say that p € LYq(n) satisfies (i) if p and Vp
have no common zeros in T", and satisfies (ii) if p has a non-binomial factor. Say that i,
satisfies (*) if it is non-periodic, with unit coefficients and has a uniformly discrete support.
The proof of Theorem consists of three parts.

Proof of Characterization:

((1)+(ii))=(*)) It follows from Theorem that p,, is non-periodic when ¢ is Q-linearly
independent and p satisfies (ii). It is left to show that if p satisfies (i), then p,, has unit
coefficients and uniformly discrete support for any ¢ € R}. Assume that p satisfies (i) and
¢ € R". Property (i) is equivalent to sing(¥,) = ) and m(x) = 1 for all x € ¥,. According to
Lemma this means that the multiplicities of the zeros of f(z) = p(exp(izf)), which are
the coefficients in p,, are all equal to one. According to Lemma , sing(X,) = 0 implies
that r = inf{7(x) : x € ¥£,} > 0. The zeros of f are distinct, so their gaps are given by 7,
as seen in Lemma providing uniform lower bound =41 — z; = 7(x;£) > r > 0.

((*)=(1)+(ii)) Let p € LYq(n) with Q-linearly independent ¢ € R", and assume that s,
satisfies (*). Let A be the support of p,,, so it is non-periodic and uniformly discrete. If
p had only binomial factors, then A would be a union of infinite arithmetic progressions,
by Theorem and such a union is either periodic or it has gaps as small as we wish.
We conclude that p satisfies (ii), and it is left to show (i), namely that sing(X,) = 0 and
m(x) = 1. Let (z;)jez be the zeros of f(x) = p(exp(ixzl)), ordered increasingly, so by (*)
they are all simple and 7(x;¢) = z;11 —x; > r > 0 uniformly for some given r > 0. Note
that ;¢ € reg(X,) with m(z;¢) =1 for all j € Z, since every z; has multiplicity one. The
sequence {x;(};cz is dense in reg(X,) since ¢ is Q-linearly independent, so m(x) = 1 for all
x € reg(X,) and inf{r,(x) : x € reg(X,)} = inf{m(x;¢) : j € Z} > r > 0, by continuity of 7,
and m on reg(X,). Then sing(X,) = (), by Lemma which means that m(x) = 1.

Proof of explicit lower estimate:

That mingap > 0 if and only if p satisfies (i) is stated Lemma[£.7 If (i) fails that inequalities
hold trivially. If (i) holds then the inequality follow from Lemma [6.6| parts (1) and (3).

Genericity:

By Theorem For any d € ZZ,, the subset LY C LYq4 of p € LYq4(n) that satisfy
(i), is a semialgebraic open, dense subset of LYq4(n). Furthermore, for any nonzero p €
LYq4(n), we can chose x € [0,27)" for which p(exp(ix)) # 0. By Corollary [3.17 for any
A > 0, the polynomial (D) ,)dlp satisfies (i). As seen in Definition M every application
of D, x contributes one to the degree of A and so the result, (D,\x)‘d'p can be expressed as a
polynomial of degree |d| in A.

For (ii), consider the set B, of polynomials p € LY4(n) that has a binomial factor of
multi-degree @ < d, o # d. We will see that B, is a semialgebraic subset of LYq4(n) of
positive codimension. By Lemma the binomial factor of p has the form (1 + az®) for
some a € C* with |a| = 1. Therefore B, = {(1+az*)q(z) : |a] =1, ¢ € LYq_n}. From this
and Theorem we see that B, is semi-algebraic of dimension

dim(B,) = 1 +dim(LYa-a) = 2+ [[(d; — a; +1).

j=1
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Since a # 0, there is some «; > 1. We then calculate that

[T — oy +1) < (di— o+ )]s +1) = [[(dj + 1) — i [J(d; + 1) < [ (d; +1)
Jj=1 J#i J=1 J#i Jj=1
using that a; [],,(d; +1) > 2" > 1 since n > 2 and d; + 1 > 2 for all j. This shows that
dim(B,) < dim(LY4) for any 0 < a < d.

Together these show that the set of polynomials in LY q4(n) satisfying (i) and (ii) is a
semialgebraic, open dense subset of LY 4(n). O

::s

9. GAP DISTRIBUTIONS

The existence of a gap distribution p,, was previously known for specific type of Lee-Yang
polynomials, those for which the zeros of p(exp(ixzf)) are the square-root eigenvalues of a
quantum graph that has n edges of lengths ¢ = (¢y,...,¢,), assuming these lengths are Q-
linearly independent [4] [7, [12]. The existence of a gap distribution of p,, for any choice of
Lee-Yang p and positive ¢ is proven in this chapter. In particular, this includes the case of
quantum graphs with edge lengths that are not QQ-linearly independent.

Recall that if p has multi-degree d and it decomposes as p = vazl q]C-j into distinct irre-
ducible g;’s, then pd = vazl g; is the reduced square-free polynomial and we denote its
multi-degree by d™4. In particular, d™! < d element-wise, with equality if and only if p is
square free. As seen in Lemmal6.6] if we number the zeros of f(x) = p(exp(iz()) increasingly
with multiplicity, then the positive gaps are described by 7 : X, — R,

(18) xjy1 —x; = 7(x;¢) whenever x4y # z;,
as can be seen in Figure 5} To prove Theorem [I.14] let us define the measure v, ;.

Definition 9.1. Let p € LY4(n), £ € R}, and let (74).m, denote the push-forward of m, by
7. Define the measure v,, on R>o by

(d — dred, ¢) 1

(19) Vpe i = 0050 + C7-<7_g)*mg, with Cy - — <d’€> , Cr 1= W

That is, for any continuous f : R>g — C,

(20) / iy = o 0) + o [ 7(lx)) dmilo)

Remark 9.2. The measure v, , is normalized, fdl/pg =1, since [ d(7).m, = m,(3,),

1 fE —1 dmg( )
fgp () dmy(x) and ¢y = =1-cmy(X,).

fzp < Jm (x)
Proof of Theorem and Theorem[1.15] Fix pu, an N-FQ, and let n € N,p € LYq(n),

and ¢ € R with Q-linearly independent entries, such that y = p,,, as guaranteed by [3].

Consider the decomposition p = vazl qjc-j into distinct irreducible Lee-Yang polynomials.

Let (x;);ez be the zeros of p(exp(izf)), numbered increasingly with multiplicity.
The proofs of Theorem and Theorem interlace according to the following sequence
of lemmas, which will be proven afterwards. For each, we take the assumptions listed above.

Ccr =
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Lemma 9.3. The gap distribution p = p,, exists and is equal to v,,. That is, for any

continuous f : R — C,
Jm % Zf vje1— ) = [ o

Moreover, v, = v, when q(z) := p(exp(zxo) ) for any fixed xo € R™ (Theorem|1.15(1)).

For the average gap, Theorem |1.9| provides two estimates ji, ¢([z1, 2n41]) = N +O(1) and

tpe([21, TN11]) = %(zNH —x1) + O(1), and their ratio as N — oo gives the following.

Corollary 9.4 (Theorem [1.14[(4)). The average gap is the density inverse

E(p) := li > Tl — T — Qi VLT 2m

Pr= 3B N D A W

Lemma 9.5 (Theorem [1.15(2),(3)). The distribution v,, has an atom at A =0 if and only
if p is not square free. It has an atom at A > 0 if and only if some (not necessarily distinct)
pair of factors, q; and q; are related by q;(z) = q;(exp(iAl)z) for all z. Moreover, if this
holds and q; = q; then g; is binomial.

Lemma 9.6. v,, has no singular continuous part.
Lemma [9.5] and Lemma [9.6] then give the following.

Corollary 9.7 (Theorem [1.14[(1)). The distribution v,, has finitely many atoms and no
singular continuous part.

Lemma 9.8 (Theorem[1.14(3)). For any A = x;,1—x; and any open interval I that contains
A, l/p75<[) > (.

Together with Theorem [L.5] this gives the following:

Corollary 9.9 (Theorem [1.14)2)). If ., is periodic then v, is purely atomic. Conversely,
if e @5 not periodic, with support A, then at least one of the following holds:

(1) A contains two arithmetic progressions with periods Ay, Ay such that ﬁ—; ¢ Q.

(2) dimg(A) = 0.
Each one of these ensures that there are infinitely many gap values, hence the support of vy,
is not finite. In particular v,, must have an absolutely continuous part.

Finally, for Once proven, these statements complete the proof of Theorem and The-
orem [L.15] O

Proof of Lemma(9.5 Let f : R — C be continuous, so the composition f o7, is bounded and
Riemann integrable, since 74 is bounded and continuous on an open full measure set reg(%,),
see Lemma Therefore, the function

~ m(x) -1 1

f(0) + Wx)f(ﬁ(x))’

is bounded and Riemann integrable. By Theorem we get,

(d —drd, ¢) 1
]\}I_Igo — Z h Wf(()) + m . f(Tf( dmg /fdl/pg
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Whenever z;_1 < 2, = Tj11 = ... = Tjt(m-1) < Tjm, We have 7(2,0) = Tjim — Tjpm-1)
and m(x;0) =m forallie {j,...,7+m — 1}, so
j+m—1 J+m—1

Z hzil) = (m = 1) f(0) + f(@j4m — Tjrm-1) = Z f(@isr — @)

Therefore, given any N € N such that zy < xy11,
1 & 1 &
(21) Nzh(l’j@ = NZf(%‘H — ;).
j=1 j=1

The left-hand-side of converges to [ fdv,, as N — oo. The equality in holds for
infinitely many N values (those for which zny < xy41) whose spacing is bounded by the
maximum multiplicity |d|, so according to Lemma

N
. 1
Nh_fgoﬁ E 1 f(@j1 — ;) = /dep,ﬁ-
]:

Given any fixed xg € R"/27Z", let q(z) := p(exp(ix¢)z) and let (t;);cz denote the repeated
ordered zeros of t — q(exp(itl)) = p(exp(i(xo + t£))), then according to Theorem

N N

.1 1

Aim 2f($j+1 — ;) = lim - Zlf(tj-l-l —t5),
J: J:

namely v, = vg. ]

Proof of Lemma|9.5 By Definition vy has an atom at A = 0 if and only if the multi-
degrees of p and p¢ differ, which occurs if and only if p is not square free.

Suppose that v,, has an atom at A > 0. Then, (7,),m, has an atom at A, which
means that the level set 7,'(A) has positive measure my(7; '(A)) > 0. The set A :=
reg(3,) NT; *(reg(%,)) is an open subset of reg(2,) of full m, measure and 7 is real analytic
on A by Lemmal6.6] Since my is absolutly continuous with respect to the volume measure on
A, then AN 7, (A) has positive volume, and therefore 7, is identically A on some open set
U C A. By taking U sufficiently small, there are two (not necessarily distinct) irreducible
factors of p, say ¢ and go, such that ¢;(exp(ix)) = 0 and g(exp(i(x + Af))) = 0 for all
x € U. It follows that ¢1(z) = ¢2(exp(iAl)z) for all z € C" by Lemma part (3), since ¢
and ¢y are irreducible Lee-Yang polynomials.

Now, suppose that ¢; = ¢q, 80 ¢1(z) = ¢q1(exp(iAl)z) for all z € C". In particular, if A is
the zero set of z — gy (exp(izfl)), then for any z € A we have x + A € A, and as a result,
x4+ jA € A for any j € N. Since ¢ is irreducible Lee-Yang polynomial and ¢ € R has

Q-linearly independent entries, then ¢; must be binomial, by Theorem O
Proof of Lemma|9.6, 1t follows from Lemma@that vy has finitely many atoms, say (¢;),

so that v,, = Z?Zl ¢j0t, + Pac; With p,. being a continuous measure (no atoms). We now
show that p,. is absolutely continuous with respect to Lebesgue measure. Let A := reg(X,)N
T, (reg(X,)). We use A, to denote the union of the connected components of A on which
T is not constant. Then pg. is (¢, times) the push-forward of m, by the restriction of 7, to
Ay, using that A has full measure. It is left to show that for any set £ C R of Lebesgue
measure zero, the set A,,.N Te_l(E) has zero m, measure, or equivalently, due to Lemma [6.5]
zero volume in reg(%,).
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Since 7, is real analytic on A and is not constant on any open set in A,., then the set
Q={x€ A, : Vr(x)#0}is open in A,. and its complement in A,. has zero volume.
By the definition of 2, 7, has no critical points in €2, which means that for any compact
connected K C ), the image of 7, over K is an interval [a, b] and the level sets K N7, (¢) for
t € [a, b] are homotopic to one another. In particular, if we let area(K,t) = 0, _o( K N7, (t))
denote the (n — 2)-dimensional volume of the level set, induced by the volume form do on
reg(3,), then t — area(K,t) is continuous in ¢ € [a, b], and so it is bounded by some constant.
Let C' be the maximum of area(K,t) for t € [a,b], and |V7,(x)|~! for x € K. Then,

/ do < C/ |V (x)||do(x) = M/ area( K, t)dt < 02/ dt =0,
Knr, Y(E) Knr; '(B) teE teE

using the co-area formula (or Disintegration Theorem) in the middle equality. It follows that
m,(KN7, ' (E)) = 0 for any compact connected K C €2, hence pu.(E) oc my(QN7, ' (E)) = 0.
As it holds for any F of zero Lebesgue measure, p,. is absolutely continuous. 0

Proof of Lemma[9.8 Let A = ;.1 — x; for some arbitrary fixed choice of j, let I C R be
any open interval with A € I, and consider the open set U := {x € reg(X,) : 7(x) € [}. It
is enough to show that U # ) to conclude that m,(U) > 0, by Lemma and so

l/p7g(]) > Cng(U) > 0.

Consider two cases, according to whether A > 0 or A = 0.

(A > 0) Suppose z;+1 > x; and let x = z;¢ mod 27, so 7(x) = A. If x € reg(X,), then
x € U. Otherwise, if x € sing(%,), then A € {r(x) : x € reg(¥,)}, by Lemma which
means that U # 0.

(A = 0) Suppose x4 = x;. If sing(X,) # 0 then A = infycreq(s,) 7e(x) by Lemma
and so U # (). Otherwise, if sing(X,) = 0, having z;;1 = x; means that p has a square
factor, and so

Vpo([A — €, A+¢€]) > v,,({0}) = co > 0.
0

Proof of Corollary[1.16. (2) and (3) were already discussed in Theorem [1.5|and Lemma
respectively. For (1), if p is irreducible and not binomial, then its gap distribution cannot
have any atoms by Theorempart (3), and so it is absolutely continuous by Theorem m
part (1). Part (4) is a counting argument. Suppose that p has N + M distinct irreducible
factors, M of which are binomial. There can be three types of atoms according to Lemma[9.5]

(a) an atom at zero.

(b) an atom at positive A > 0 coming from a pair of distinct non-binomial factors related
by ¢i(z) = q;(exp(iAl)z).

(c) an atom at a positive A > 0, coming from a pair of (not necessarily distinct) binomial
factors related by ¢;(z) = ¢;(exp(iAl)z).

Notice that if ¢; is binomial and g; is non-binomial, then they cannot satisfy a relation of
the form ¢;(z) = ¢;(exp(iAf)z), as such a relation means that the torus zero set ¥,,, which
is a torus, is a translation of the torus zero set 3J;,, which is not a torus. It is left to bound
the number of atoms of each type. There can be at most one (a) atom.

For atoms of type (b), notice that a pair of non-binoimal factors cannot satisfy the relation
¢i(z) = gqj(exp(iAl)z) for two different values of A > 0, say A; # A,. Otherwise, we get
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¢;(z) = gq;(exp(i(A; — Ag)l)z) in contradiction to ¢; being non-binomial. Therefore, there
are at most (g) atoms of type (b), one for each possible pair.

To bound the number of type (c) atoms, consider a pair of (not necessarily distinct)
binomial factors related by ¢;(z) = ¢;(exp(iAf)z). In particular, ¢; and g; share the same
multi-degree, say . According to Lemma [7.1] the zero sets of fi(z) = ql(exp(ixﬁ)) and
fi(z) = qj(exp(ixé)) are arithmetic progressions of the same step size, say A; = {a—|— k}kez
and \; = {a—i—A—i— k}keZ for some a € R. Suppose that p has exactly M, bmomlal factors
with multl degree a and let A, denote the union of their arithmetic progressions defined
above. Then A, is i—”> periodic with M, points in a period, and therefore at most M,

gap values between consecutive points. By partitioning the M binomial factors according to
their multi-degrees we see that there are at most M atoms of type (c¢). To conclude, there
are at most (];) + M + 1 atoms 0

Proof of Theorem [1.17, By Lemma9.3} if p € LYq4(n) and £ € R” has Q-linearly independent
entries, then p,, = v,,. It is left to show that v, , is weakly continuous in ¢, namely, that
for any fixed continuous f : R — C, the following integral is continuous in ¢ € R,

[t = ot | ) dmef).

The weights ¢ and ¢, given in Definition 9.1} are continuous in £ € R, and the remaining
integral can be written as

[ 1) dmifox) = / F(r(x)) dm(x 26 / F(m(x)) dm (),

reg(Zp) reg(Xp)

using that my(sing(X,)) = 0 in the first equality, and the linearity of my in ¢, by Lemma
in the second equality. The integral freg(zp) f(m(x)) dm,,(x) is continuous in ¢ because

(x,0) — f(7¢(x)) is continuous over reg(X,) x R'}, by continuity of f and Lemmal6.6l O
Let us now prove Theorem [1.19]

Proof of Theorem[1.19. Fix p € LYq(n), and for any x € R" let p, € LY q/(1) be the
univariate polynomial py(s) = p(se™®, se™®2, . ,sei‘”") whose degree is |d| and its roots lie
on the unit circle. Let 6; : R* — R, for j = 1 2...,|d|, be the continuous phase functions

given in Proposition so that (e¥ (x))L | are the roots of py, numbered (counter-clockwise)
increasingly including multiplicity, and 1et Oiaj+1 = 01 + 2m. We need to prove that for any
continuous f: R — C,

|d|

1
/ fd”pvlzw/xqo,zﬂn |d|zf (%) = 05()) | dx,

where 1 = (1,1,...,1). Fix a continuous f : R — C and define

h(x) == ————f(0) + ﬁx)f(n(x))-
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Consider the layers ¥, ; and their parameterizations ¢; as defined in Proposition so that
the multiplicity m(x) counts the number of layers containing x, so that

|d| |d|

/E m(x)h(x)dmy (x Z / x)dm; (x Z /m y))dy,

P

using from Lemma [6.5]in the last equality. As in the proof of Lemma [9.3] this gives
Id]
1

/fdyp’l N W p m(x)h(x) dmax) = (27 ) 1|d| Z/o (0,27]7—1 Y))dy-

As seen in the proof of Lemmal6.6} if 6,1 (¢;(y)) > 9](g0 (y)) then 71 (p;(y)) is equal to the
unique ¢t € R such that 0;1(p,(y) +t1) = 6;(¢;(y)). In such case using Proposition
part (1) and the definition of ¢;, we get 71 (p;(y)) = 6,+1(y,0) — ( ,0). The number ofj S

1
for which 6,.41(y,0) = 6;(y, 0) is exactly Zw (m(p;(y)) —1), s
|d| |d|

Zh(n(go] Zf i+1(y,0) — 0;(y,0))

for every y, and integrating gives,
\d|

(22) /fdl/p,l = ﬁ Zf i+1(y,0) — 0;(y, 0)) dy

(0,27]™

Let g(x) := Z'J.dz‘l f(0;41(x)—0;(x)), and notice that g is continuous, satisfies g((y,0)+t1) =
g(y,0) by Proposition part (1 ) and is 27 periodic by Proposition part (4), so

/ oy, 0)dy = / 9((y,0) + t1)dydt — / g(x)dx.
ye(0,2r]n—1 ye(0,2r]n—1 x€(0,2m]™

The needed result follows

J 101 = Gy [ |20 060~ 500

j=1

APPENDIX A.
The next lemma is being used throughout the paper.

Lemma A.1. Let (a,)nen be a bounded sequence |a,| < M and let (S,)nen be the sequence

of partial averages, sy = % ZTJLI a,. Suppose that there exists a converging subsequence
im0 Sp; = L, with a uniform spacing bound nj —n; < M'. Then, lim,_,o s, = L.

Proof. Given any n; < n' < njyq, the uniform spacing bound gives % — 0 as j — oo, and
we have
L R e - M'M

/ - .
n n;

|Spr — =5, | = — 0 as j — oo.
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