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Abstract. The paper proposes and develops a novel inexact gradient method (IGD) for minimizing C1-smooth

functions with Lipschitzian gradients, i.e., for problems of C1,1 optimization. We show that the sequence of

gradients generated by IGD converges to zero. The convergence of iterates to stationary points is guaranteed

under the Kurdyka- Lojasiewicz (KL) property of the objective function with convergence rates depending on

the KL exponent. The newly developed IGD is applied to designing two novel gradient-based methods of non-

smooth convex optimization such as the inexact proximal point methods (GIPPM) and the inexact augmented

Lagrangian method (GIALM) for convex programs with linear equality constraints. These two methods inherit

global convergence properties from IGD and are confirmed by numerical experiments to have practical advan-

tages over some well-known algorithms of nonsmooth convex optimization.
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1 Introduction

The paper addresses numerical optimization, the area to which the contribution of Andreas Griewank
is difficult to overstate. In particular, his book with Andrea Walther [25] is the classical collection of
constructive methods of algorithmic differentiation in nonlinear optimization being a strong inspiration
for a great many of applied mathematicians and practitioners.

This paper is devoted to developing new algorithms to solve various classes of optimization prob-
lems. Let us start with the following basic problem of C1,1 optimization:

minimize f(x) subject to x ∈ IRn, (1.1)

where f : IRn → IR is a continuously differentiable (C1-smooth) objective function whose gradient ∇f
is globally Lipschitzian on IRn with some constant L > 0. A very natural and classical approach to
solve optimization problems of type (1.1) is by using the gradient descent method described as follows:
given a starting point x1 ∈ IRn, construct the iterative procedure

xk+1 := xk − 1

L
∇f(xk) for all k ∈ IN. (1.2)
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Largely due to its simplicity, the gradient descent method is broadly used to solve various optimization
problems; see, e.g., [7, 13, 17, 40, 41]. However, errors in gradient calculations may appear determin-
istically in various contexts. In derivative-free optimization problems where only the function values
are accessible, the exact gradients are not available but only their approximations via finite differences
and simplex gradients are [2, 5, 16]. In addition, many optimization methods for minimizing nons-
mooth functions [18, 37, 43, 45, 46, 48, 49] can be treated via the gradient descent method applied to
their regularized functions. Errors in gradient calculations for regularized functions, which appear in
practical situations, require developing gradient descent methods with inexact gradient information.

For these reasons, gradient methods taking errors into account have been developed over the
years. Among the major ones, we list the following. Gilmore and Kelley [24] proposed the implicit
filtering algorithm for minimizing a noisy smooth function under box constraints, which uses finite
difference approximations of the exact gradient. Bertsekas and Tsitsiklis [11] justified the convergence
of gradients in gradient methods with errors smaller than the multiplication of the stepsize by an
expression depending on the exact gradient. The convergence for incremental and stochastic gradient
methods was also established in [11]. Nesterov proposed in [38] and further developed in [39] and
his paper with Devolder and Glineur [18] gradient methods with inexact oracle for convex functions.
Generalizations of the inexact oracle are discussed in [12, 19] for nonconvex functions. Additionally,
accelerated gradient methods considering various types of errors are analyzed in [51]. Optimization
methods with stochastic errors are also studied in [22, 22]. Quite recently, the authors of the present
paper [31] proposed a general framework of inexact reduced gradient (IRG) methods for minimizing
nonconvex C1-smooth function with or without the Lipschitz continuity of the gradient under the
condition that the distance between the exact and the approximate gradient is less than a determined
error at each iteration. To the best of our knowledge, [31] is the first paper addressing the global
convergence and convergence rates of inexact gradient descent methods with deterministic error for
general classes of nonconvex functions.

The present paper designs and justifies the novel inexact gradient descent (IGD) method to solve
problem (1.1) by using some IRG ideas from [31]. The iterative procedure of IGD is (1.2) with
the exact gradient replaced by one of its approximations. The main differences between IGD and its
predecessor IRG are that the construction of IGD in Algorithm 1 use directly an approximate gradient
as a descent direction instead of introducing another reduced gradient direction as in [31, Algorithm 1].
The convergence analysis of the new IGD method does not involve the notion of null iterations which
is essential in the results of [31, Propositions 4.6, 4.7] and the construction of non-null iteration as in
[31, (5.23)]. The IGD method also achieves the following fundamental convergence properties:

• Convergence to zero of the gradient sequence.

• Convergence to some stationary point of the iterative sequence under the Kurdyka- Lojasiewicz
(KL) property of the objective function.

• Convergence rates depending on the KL exponent of the objective function for the sequences of
iterates, gradients, and function values.

It should be mentioned that the results in [18, 38, 39] address only convex optimization problems.
Although the implicit filtering method in [24] deals with nonconvex problems, it does not achieve any
of the fundamental convergence properties above due to the presence of noise. The gradient methods
with errors in [11] establish only the convergence to zero of the gradient sequence. Moreover, the rates
of convergence for the gradient sequence and function value sequence are not provided in [31].

The IGD method developed in this paper for C1,1 optimization problems of type (1.1) is applied then
to problems of nonsmooth optimization to design and justify the following gradient-based methods:

• The gradient-based inexact proximal point method (GIPPM) for minimizing general nonsmooth
convex functions.

• The gradient-based inexact augmented Lagrangian method (GIALM) for minimizing nonsmooth
convex functions under linear equality constraints.

2



The two methods listed above inherit the convergence properties from IGD with establishing in
this way the stationarity of accumulation points and the global convergence under the KL property of
the objective function with convergence rates depending on the KL exponent. Regarding application
aspects, the conducted numerical experiments show that the GIALM method with the new handling
of errors exhibit a better performance than the classical inexact augmented Lagrangian method by
Rockafellar [46] in practical problems of image processing as well as in random generated examples.

The rest of the paper is organized as follows. Section 2 presents some preliminaries and discus-
sions. The construction and convergence analysis of the main IGD method are given in Section 3.
The next Section 4, which is split into two subsections, proposes and justifies the new GIPPM and
GIALM methods of nonsmooth convex optimization with their convergence analysis. The numerical
experiments and comparisons between the newly developed inexact gradient-based methods with the
existing algorithms are given in the final Section 5.

2 Preliminaries and Discussions

First we recall some notions and notation frequently used in the paper. All our considerations are
given in the space IRn with the Euclidean norm ∥ · ∥. We use the matrix norm defined by

∥A∥ := max
{
∥Ax∥

∣∣ ∥x∥ = 1
}

for any m× n matrix A.

Along with the Euclidean norm ∥·∥, in Section 5 we also use the ℓ1 norm ∥·∥1 denoted by

∥x∥1 =

n∑
k=1

|xk| for all x = (x1, . . . , xn) ∈ IRn.

As always, IN := {1, 2, . . .} signifies the collections of natural numbers. The symbol xk
J→ x̄ means

that xk → x̄ as k → ∞ with k ∈ J ⊂ IN. Recall that x̄ is a stationary point of a C1-smooth function
f : IRn → IR if ∇f(x̄) = 0. A C1-smooth function f : IRn → IR is said to have a Lipschitz continuous
gradient with the uniform constant L > 0 on IRn if

∥∇f(x) −∇f(y)∥ ≤ L ∥x− y∥ for all x, y ∈ IRn.

It follows from [28, Lemma A.11] that the Lipschitz continuity of ∇f with constant L > 0 implies that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩ +
L

2
∥y − x∥2 for all x, y ∈ IRn. (2.1)

The converse implication may not hold in general as discussed in [31, Section 2].

The following Kurdyka- Lojasiewicz property is taken from Absil et al. [1, Theorem 3.4].

Definition 2.1. Let f : IRn → IR be a differentiable function. We say that f satisfies the KL property
at x̄ ∈ IRn if there exist a number η > 0, a neighborhood U of x̄, and a nondecreasing function
ψ : (0, η) → (0,∞) such that the function 1/ψ is integrable over (0, η) and we have

∥∇f(x)∥ ≥ ψ
(
f(x) − f(x̄)

)
for all x ∈ U with f(x̄) < f(x) < f(x̄) + η. (2.2)

Remark 2.2. It has been realized that the KL property is satisfied in broad settings. In particular,
it holds at every nonstationary point of f ; see [3, Lemma 2.1 and Remark 3.2(b)]. Furthermore, it
is proved at the seminal paper by  Lojasiewicz [35] that any analytic function f : IRn → IR satisfies
the KL property at every point x̄ with ψ(t) = Mtq for some q ∈ [0, 1). As demonstrated in [31,
Section 2], the KL property formulated in Attouch et al. [3] is stronger than the one in Definition 2.1.
Typical smooth functions that satisfy the KL property from [3], and hence the one from Definition 2.1,
are smooth semialgebraic functions and also those from the more general class of functions known as
definable in o-minimal structures; see [3, 4, 32]. The following preservation properties for general
semialgebraic functions can be found, e.g., in [3]:
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• Finite sums and products of semialgebraic functions are semialgebraic.

• Functions of the marginal type type

IRn ∋ x 7→ f(x) = inf
y∈IRm

g(x, y),

where g is a semialgebraic function of two variables, are semialgebraic.

Next we present based on [1] some descent-type conditions ensuring the global convergence of
iterates for smooth functions that satisfy the KL property.

Proposition 2.3. Let f : IRn → IR be a C1-smooth function, and let the following conditions hold
along a sequence of iterates

{
xk

}
⊂ IRn for the function f :

(H1) (primary descent condition). There is σ > 0 such that we have

f(xk) − f(xk+1) ≥ σ
∥∥∥∇f(xk)

∥∥∥ ·
∥∥∥xk+1 − xk

∥∥∥
for sufficiently large k ∈ IN.

(H2) (complementary descent condition). The following implication holds:[
f(xk+1) = f(xk)

]
=⇒ [xk+1 = xk]

for sufficiently large k ∈ IN.

If x̄ is an accumulation point of
{
xk

}
and f satisfies the KL property at x̄, then xk → x̄ as k → ∞.

When the sequence under consideration is generated by a linesearch method and satisfies some
stronger conditions than (H1) and (H2) in Proposition 2.3, its convergence rates are established in
[31] under the KL property with ψ(t) = Mtq as given below.

Proposition 2.4. Let f : IRn → IR be a C1-smooth function. Assume that the sequences
{
xk

}
and{

dk
}

satisfy the iterative update xk+1 = xk + τdk with xk+1 ̸= xk for all k ∈ IN, and that

f(xk) − f(xk+1) ≥ α
∥∥∥dk∥∥∥2 and

∥∥∥∇f(xk)
∥∥∥ ≤ β

∥∥∥dk∥∥∥ (2.3)

for sufficiently large k ∈ IN with some constants τ, α, β > 0. Suppose in addition that x̄ is an accumu-
lation point of

{
xk

}
and that f satisfies the KL property at x̄ with ψ(t) = Mtq for some M > 0 and

q ∈ (0, 1). Then the following convergence rates are guaranteed:

(i) For q ∈ (0, 1/2], the sequence
{
xk

}
converges linearly to x̄ as k → ∞.

(ii) For q ∈ (1/2, 1), we have
∥∥xk − x̄

∥∥ = O(k
− 1−q

2q−1 ) as k → ∞

3 Inexact Gradient Descent Method

In this section, which is split into two subsections, we design and provide a convergence analysis of
our main inexact gradient method (IGD) to solve C1,1 optimization problems of type (1.1).

3.1 Algorithm Formulation and Motivating Examples

Here is the proposed IGD algorithm to solve (1.1) by using inexact gradients.

Algorithm 1 (IGD).

Step 0 (initialization). Select an initial point x1 ∈ IRn, initial error ε1, error reduction factor θ ∈ (0, 1),
and error scaling factor µ > 1. Set k := 1.
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Step 1 (inexact gradient). Find gk and the smallest natural number ik such that∥∥∥gk −∇f(xk)
∥∥∥ ≤ θikεk and

∥∥∥gk∥∥∥ > µθikεk. (3.1)

Step 2 (iteration and error update). Set xk+1 := xk − 1
Lg

k and εk+1 := θikεk. Increase k by 1 and go
back to Step 1.

Let us discuss some important features of Algorithm 1 and present an illustrating figure.

Remark 3.1. We have the following observations:

(i) The existence of gk and ik in Step 1: The procedure of finding gk and ik that satisfy Step 1 can
be given as follows. Set ik = 0 and find some gk such that∥∥∥gk −∇f(xk)

∥∥∥ ≤ θikεk. (3.2)

While
∥∥gk∥∥ ≤ µθikεk, increase ik by 1 and recalculate gk under (3.2). When ∇f(xk) ̸= 0, the

existence of gk and ik in Step 1 is guaranteed. Indeed, otherwise we get a sequence
{
gki
}

with∥∥∥gki −∇f(xk)
∥∥∥ ≤ θiεk and

∥∥∥gki ∥∥∥ ≤ µθiεk for all i ∈ IN.

Since θ ∈ (0, 1), this implies that ∇f(xk) = 0, a contradiction. In fact, we can bound the number
ik by considering the two cases as follows.

Case 1: εk <
1

µ+1

∥∥∇f(xk)
∥∥. In this case, we show that ik = 0.

To proceed, find some gk such that
∥∥gk −∇f(xk)

∥∥ ≤ εk. Combining this with εk <
1

µ+1

∥∥∇f(xk)
∥∥

and with the triangle inequality yields∥∥∥gk∥∥∥ ≥
∥∥∥∇f(xk)

∥∥∥−
∥∥∥gk −∇f(xk)

∥∥∥
≥

∥∥∥∇f(xk)
∥∥∥− εk

>
∥∥∥∇f(xk)

∥∥∥− 1

µ+ 1

∥∥∥∇f(xk)
∥∥∥

=
µ

µ+ 1

∥∥∥∇f(xk)
∥∥∥ > µεk.

This means that gk satisfies the desired condition with ik = 0.

Case 2: εk ≥ 1
µ+1

∥∥∇f(xk)
∥∥ . In this case, we show that ik ≤ logθ

(
1

εk(µ+1)

∥∥∇f(xk)
∥∥) + 1.

To proceed, assume while arguing by contradiction that ik > logθ

(
1

εk(µ+1)

∥∥∇f(xk)
∥∥)+1. Define

j := ik − 1 and get that j > 0. We show that for any gk ∈ IRn such that
∥∥gk −∇f(xk)

∥∥ ≤ θjεk,
the estimate

∥∥gk∥∥ > θjεk holds, which violates the construction of ik. It follows from j >

logθ

(
1

εk(µ+1)

∥∥∇f(xk)
∥∥) and θ ∈ (0, 1) that

θjεk <
1

µ+ 1

∥∥∥∇f(xk)
∥∥∥ .

Now take any gk ∈ IRn such that
∥∥gk −∇f(xk)

∥∥ ≤ θjεk and deduce that∥∥∥gk −∇f(xk)
∥∥∥ ≤ θjεk <

1

µ+ 1

∥∥∥∇f(xk)
∥∥∥ .

Applying the triangle inequality gives us∥∥∥gk∥∥∥ ≥
∥∥∥∇f(xk)

∥∥∥−
∥∥∥gk −∇f(xk)

∥∥∥
>

∥∥∥∇f(xk)
∥∥∥− 1

µ+ 1

∥∥∥∇f(xk)
∥∥∥

=
µ

µ+ 1

∥∥∥∇f(xk)
∥∥∥ > µθjεk.

Therefore, ik ≤ logθ

(
1

εk(µ+1)

∥∥∇f(xk)
∥∥) + 1.
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(ii) Geometric illustration of (3.1): It follows from Step 1 and Step 2 of Algorithm 1 that∥∥∥gk −∇f(xk)
∥∥∥ ≤ εk+1 and

∥∥∥gk∥∥∥ > µεk+1 for all k ∈ IN. (3.3)

Since µ > 1, the two conditions in (3.3) make the angle between ∇f(xk) and gk smaller than
900, which ensures that −gk is a descent direction of f at xk. As illustrated in Figure 1, the
angle between these vectors can be chosen arbitrarily small by increasing µ.

Figure 1: Geometric illustration of (3.1)

Note that the problem of finding gk satisfying the first condition in (3.1) can be considered more
generally as follows. Given any point x ∈ IRn and any error value ε > 0, find an approximation G of
the gradient ∇f(x) such that

∥G −∇f(x)∥ ≤ ε. (3.4)

Let us present some examples where the approximate condition (3.4) appears in practical situations.

Example 1 (Gradient approximation methods). In many problems of derivative-free optimization
[5, 16], we only have access to function values, which can be used to derive approximate gradients
satisfying (3.4) by employing gradient approximation methods.

1. Forward finite difference (FFD): For a fixed number δ > 0, the FFD formula gives us the
approximation of the gradient ∇f(x) defined by

G :=
1

δ

n∑
i=1

(
f(x+ δei) − f(x)

)
ei, (3.5)

where ei is the ith vector in the standard basis of IRn. The following error bound is standard
and can be found, e.g., in [42, Section 7.2] and [9, Theorem 2.1]:

∥G −∇f(x)∥ ≤ L
√
nδ

2
. (3.6)

Therefore, the choice of δ ∈
(

0, 2ε
L
√
n

)
guarantees the error bound (3.4).
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2. Centered finite difference (CFD): For a given number δ > 0, the CFD formula gives us the
approximation ∇f(x) defined by

G :=
1

δ

n∑
i=1

(
f
(
x+

δ

2
ei
)
− f

(
x− δ

2
ei
))
ei. (3.7)

Assume that f is twice continuously differentiable (C2-smooth) having the Lipschitz continuous
Hessian with constant M > 0. It follows from [9, Theorem 2.2] that

∥G −∇f(x)∥ ≤
√
nMδ2

24
. (3.8)

Therefore, the choice of δ ∈
(

0,
√

24ε
M

√
n

)
guarantees the error bound required in (3.4).

When f is smoothed from another (possibly nonsmooth) function, the exact information about the
function value and its gradient is usually not available. However, some specific smoothing techniques
allow us to find an approximation of the gradient that satisfies condition (3.4).

Example 2 (Moreau envelopes). Let g : IRn → IR be a proper, lower semicontinuous (l.s.c.), convex
function, and let f := eλg be its Moreau envelope with proximal parameter λ > 0; see Section 4
for more details. By (4.2), the problem of calculating ∇f(x) approximately is equivalent to the
approximate calculation of Proxλg(x) approximately. The latter problem is equivalent to

minimize
y∈IRn

φλ(y) := g(y) +
1

2λ
∥y − x∥2 . (3.9)

Let ȳ be such that φλ(ȳ)− infy∈IRn φλ(y) ≤ λε2

2
, and set G := λ−1(x− ȳ). Since φλ is strongly convex

with positive constant 1/λ, we deduce from (4.2) that

∥G −∇f(x)∥ = λ−1 ∥ȳ − Proxλg(x)∥ ≤ λ−1

√
2λ

(
φλ(ȳ) − inf

y∈IRn
φλ(y)

)
≤ λ−1 ·

√
2λ
λ

2
ε2 = ε.

Therefore, G is an approximation of ∇f(x) with the error bound ε.

3.2 Convergence Analysis

In this subsection, we establish the convergence properties of Algorithm 1 including the convergence
of the sequence of gradients (to zero), the sequence of iterates, and the sequence of function values
together with their convergence rates under the KL property of the objective function. Let us begin
by connecting the conditions in (3.3) with the following two conditions on the gradient estimates:∥∥∥gk −∇f(xk)

∥∥∥ ≤ ν1

∥∥∥∇f(xk)
∥∥∥ for all k ∈ IN, (3.10)∥∥∥gk −∇f(xk)

∥∥∥ ≤ ν2

∥∥∥gk∥∥∥ for all k ∈ IN, (3.11)

with some ν1, ν2 ∈ [0, 1). Condition (3.10) was first introduced and studied by Polyak [44, Section 4.2.3]
for the convergence of inexact gradient methods for strongly convex functions. In [10], the convergence
of a general linesearch algorithm with noise is established when (3.10) is satisfied with high probability.
However, since ∇f(xk) is unknown, it is not easy to ensure (3.10). In fact, the authors in [9] write:

“Clearly, unless we know
∥∥∇f(xk)

∥∥, condition (3.10) may be hard or impossible to verify or guar-
antee.”

Regarding condition (3.11), it was studied in [15] for trust-region methods with inexact gradients for
minimizing C1-smooth and bounded from below functions with Lipschitzian gradients. For linesearch
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methods, condition (3.11) is a standing assumption for investigating complexity of the inexact gradient
method applied to C2-smooth strongly convex functions in [14], and also for convergence properties of
the inexact gradient method applied to convex smooth functions in [33].

It turns out that the sequence
{
gk
}

generated by Algorithm 1 gives us a universal approach to
ensure both conditions (3.10) and (3.11) when µ is chosen properly. Indeed, it follows from (3.3) that
(3.11) is satisfied with ν2 = 1/µ if µ > 1. Applying the triangle inequality in (3.11) brings us to (3.10)
with ν1 = 1

µ−1 ∈ (0, 1) whenever µ > 2. In addition to this observation, Step 1 of Algorithm 1 also tells

us that the error between gk and ∇f(xk) is chosen to be the largest one among
{
θiεk | i ∈ IN

}
, which

saves the executed time for finding gk in practice. In conclusion, Algorithm 1 uses the gradient errors
automatically controlled to be as large as possible while maintaining conditions (3.10) and (3.11).

Although conditions (3.10) and (3.11) are used in many contexts for linesearch methods, the global
convergence of the sequence of gradients (to zero), the sequence of iterates, and the sequence of function
values together with their convergence rates were not established in the studies listed above in the
case of nonconvex functions. These properties are now derived in the next theorem.

Theorem 3.2. Let
{
xk

}
and

{
gk
}

be the sequences satisfying the iterative procedure xk+1 = xk− 1
Lg

k

for all k ∈ IN under the condition (3.11) with ν2 <
1
2 . Assume that ∇f(xk) ̸= 0 for all k ∈ IN. Then

either
∥∥xk∥∥ → ∞, or we have the assertions:

(i) Both sequences
{
∇f(xk)

}
and

{
gk
}

converge to 0 ∈ IRn as k → ∞.

(ii) If f satisfies the KL property at some accumulation point x̄ of
{
xk

}
, then xk → x̄ as k → ∞.

(iii) If f satisfies the KL property at some accumulation point x̄ of
{
xk

}
with ψ(t) = Mtq for M > 0

and q ∈ (0, 1), then the following convergence rates are guaranteed:

• For q ∈ (0, 1/2], the sequences
{
xk

}
, {f(xk)}, and {∇f(xk)} converge linearly to x̄, f(x̄),

and 0 ∈ IRn respectively.

• For q ∈ (1/2, 1), we have the convergence rate estimates∥∥∥xk − x̄
∥∥∥ = O

(
k
− 1−q

2q−1

)
, (3.12)

f(xk) − f(x̄) = O
(
k
− 2−2q

2q−1

)
, (3.13)∥∥∥∇f(xk)

∥∥∥ = O
(
k
− 1−q

2q−1

)
. (3.14)

Proof. Since ∇f is Lipschitz continuous with constant L, we deduce from the descent condition (2.1),
the relationship xk+1 = xk − 1

Lg
k, and the condition (3.11) that

f(xk+1) ≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+
L

2

∥∥∥xk+1 − xk
∥∥∥2

= f(xk) +

〈
∇f(xk) − gk,− 1

L
gk
〉
− 1

L

∥∥∥gk∥∥∥2 +
L

2

∥∥∥∥ 1

L
gk
∥∥∥∥2

≤ f(xk) +
1

L

∥∥∥∇f(xk) − gk
∥∥∥ ·

∥∥∥gk∥∥∥− 1

2L

∥∥∥gk∥∥∥2
≤ f(xk) +

ν2
L

∥∥∥gk∥∥∥2 − 1

2L

∥∥∥gk∥∥∥2
= f(xk) − 1 − 2ν2

2L

∥∥∥gk∥∥∥2 for all k ∈ IN. (3.15)

It follows from ν2 <
1
2 that the sequence

{
f(xk)

}
is decreasing. If

∥∥xk∥∥ → ∞ as k → ∞, there
is nothing to prove, and thus we suppose that

{
xk

}
has an accumulation point x̄. Then f(x̄) is an

accumulation point of
{
f(xk)

}
. Combining this with the decreasing property of

{
f(xk)

}
, we deduce

that limk∈IN f(xk) = f(x̄), which implies that f(xk) − f(xk+1) → 0. Then (3.15) tells us that gk → 0,
which being combined with (3.11) gives us ∇f(xk) → 0 as k → ∞ and hence verifies (i).
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To justify the assertions in (ii) and (iii), let x̄ be some accumulation point of
{
xk

}
, and let f

satisfy the KL property at x̄. It follows from (3.11) that∥∥∥∇f(xk)
∥∥∥ ≤

∥∥∥gk∥∥∥ +
∥∥∥∇f(xk) − gk

∥∥∥ ≤ (1 + ν2)
∥∥∥gk∥∥∥ for all k ∈ IN. (3.16)

Combining the latter with (3.15) and the recurrent relation xk+1 = xk − 1
Lg

k gives us the estimates

f(xk) − f(xk+1) ≥ 1 − 2ν2
2L

∥∥∥gk∥∥∥2 =
1 − 2ν2

2

∥∥∥gk∥∥∥ ∥∥∥∥ 1

L
gk
∥∥∥∥ (3.17)

≥ 1 − 2ν2
2(1 + ν2)

∥∥∥∇f(xk)
∥∥∥ ·

∥∥∥xk+1 − xk
∥∥∥ for all k ∈ IN. (3.18)

Thus assumption (H1) in Proposition 2.3 is satisfied with σ = 1−2ν2
2(1+ν2)

> 0. The second assumption

(H2) in Proposition 2.3 is also satisfied since f(xk) = f(xk+1) yields gk = 0 by (3.17) and hence
xk+1 = xk by the relationship xk+1 = xk − 1

Lg
k. Thus Proposition 2.3 brings us to xk → x̄ as k → ∞,

which verifies (ii).
To justify (iii), we first employ Proposition 2.4 with dk = −gk for all k ∈ IN and τ = 1

L . By (3.17)
and (3.16), both conditions in (2.3) are satisfied with α = 1−2ν2

2L and β = 1 + ν2. It follows from
(3.16) and ∇f(xk) ̸= 0 that gk ̸= 0 for all k ∈ IN. Combining this with xk+1 = xk − 1

Lg
k, we get

that xk+1 ̸= xk for all k ∈ IN. Therefore, all the assumptions in Proposition 2.4 are satisfied, which
verifies the convergence rate of

{
xk

}
to x̄ stated in (iii). Since x̄ is an accumulation point of

{
xk

}
, we

also deduce from (i) that x̄ is a stationary point of f , i.e., ∇f(x̄) = 0. Therefore, it follows from the
descent condition (2.1) and the decreasing property of

{
f(xk)

}
that

0 ≤ f(xk) − f(x̄) ≤
〈
∇f(x̄), xk − x̄

〉
+
L

2

∥∥∥xk − x̄
∥∥∥2 =

L

2

∥∥∥xk − x̄
∥∥∥2 ,

which justifies the convergence rates of
{
f(xk)

}
to f(x̄) as asserted in (iii).

It remains to verify the convergence rates for
{
∇f(xk)

}
. Since ∇f is Lipschitz continuous with

constant L > 0, this follows from the convergence rates for
{
xk

}
due to∥∥∥∇f(xk)

∥∥∥ =
∥∥∥∇f(xk) −∇f(x̄)

∥∥∥ ≤ L
∥∥∥xk − x̄

∥∥∥ ,
which therefore completes the proof of the theorem.

Remark 3.3. By the triangle inequality, the estimate in (3.10) with ν1 <
1
3 yields the one in (3.11)

with ν2 <
1
2 . Therefore, Theorem 3.2 also verifies the global convergence of the sequences in the

general inexact gradient methods under (3.10).

Now we are ready to establish the convergence properties of the proposed IGD Algorithm 1.

Theorem 3.4. Consider Algorithm 1 with µ > 2 and assume that ∇f(xk) ̸= 0 for all k ∈ IN. Then we
have that either

∥∥xk∥∥ → ∞, or the assertions in (i)–(iii) in Theorem 3.2 hold with εk ↓ 0 as k → ∞.

Proof. It follows from (3.3) that condition (3.11) is satisfied with ν2 = 1
µ < 2. Then applying

Theorem 3.2 yields its assertions (i)–(iii). The convergence to 0 of
{
gk
}

in (i) and the inequality∥∥gk∥∥ > µεk+1 for all k ∈ IN from (3.3) tells us that εk ↓ 0 and thus completes the proof.

4 Gradient-Based Inexact Methods in Nonsmooth Convex Opti-
mization

In this section, we employ the inexact gradient method for C1,1 optimization developed in Section 3
to design and justify two new gradient-based inexact methods to solve problems of nonsmooth convex
optimization. The reductions of such nonsmooth problems to C1,1 optimization is conducted by using
smoothing procedures via Moreau envelopes and proximal mappings.

The methods we develop in this way are the following:
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(i) The gradient-based inexact proximal point method (GIPPM) to minimize l.s.c. convex functions.

(ii) The gradient-based inexact augmented Lagrangian method (GIALM) to solve nonsmooth convex
programs with equality linear constraints.

Each of these two methods is considered in the corresponding subsection below. First we recall
the appropriate constructions of convex analysis used in what follows; see [6, 36, 47] for more details.
Given a proper (i.e., with dom g := {x ∈ IRn | g(x) <∞} ̸= ∅), l.s.c., convex function g : IRn → IR :=
(−∞,∞], the subdifferential of g at x ∈ dom g is defined by

∂g(x) :=
{
v ∈ IRn

∣∣ ⟨v, y − x⟩ ≤ g(y) − g(x) for all y ∈ IRn
}
.

For any proximal parameter λ > 0, the Moreau envelope eλg : IRn → IR and the proximal mapping
Proxλg : IRn ⇒ IRn are defined, respectively, by

eλg(x) := infy∈IRn

{
g(y) +

1

2λ
∥y − x∥2

}
,

Proxλg(x) := argminy∈IRn

{
g(y) +

1

2λ
∥y − x∥2

}
.

(4.1)

The following result taken from [6, Proposition 12.28, 12.29] and [47, Theorem 2.26, Proposi-
tion 12.19] presents remarkable properties of Moreau envelopes and proximal mappings for convex
functions that allow us to pass from convex nonsmooth optimization problems with extended-valued
objectives (i.e., incorporating constraints) to problems of C1,1 optimization.

Lemma 4.1. Let g : IRn → IR be a proper, l.s.c., convex function, and let λ > 0. Then the Moreau
envelope eλg is convex, C1-smooth, and has the Lipschitz continuous gradient on IRn with constant
1/λ that satisfies the relationship

∇eλg(x) = λ−1
(
x− Proxλg(x)

)
for all x ∈ IRn. (4.2)

Furthermore, the proximal mapping Proxλg is Lipschitz continuous on IRn with constant 1, and every
stationary point of eλg is a minimizer of g.

4.1 Gradient-Based Inexact Proximal Point Method

We consider here the class of optimization problems given in the form

minimize g(x) subject to x ∈ IRn, (4.3)

where g : IRn → IR is a proper, l.s.c., and convex function. Although problems (1.1) and (4.3)
are written in the similar format, there is a huge difference between the C1,1 objective in (1.1) and
the extended-real-valued objective in (4.3). Besides different differential properties of the objective
functions in (1.1) and (4.3), observe that (1.1) is a problem of unconstrained optimization, while (4.3)
incorporates constraints coming from x ∈ dom g when the function g is extended-real-valued.

The following gradient-based inexact proximal point method/algorithm GIPPM is now proposed
to solve the general class of nonsmooth convex optimization problems (4.3).

Algorithm 2 (GIPPM).

Step 0 (initialization). Choose a proximal parameter λ > 0, initial point x1 ∈ Rn, initial error
ε1 > 0, error reduction factor θ ∈ (0, 1), and scaling factor µ > 2. Set k := 1.

Step 1 (inexact proximal mapping). Find pk and the smallest natural number ik such that∥∥∥pk − Proxλg(xk)
∥∥∥ ≤ λθikεk and

∥∥∥xk − pk
∥∥∥ > λµθikεk. (4.4)

Step 2 (error and iteration update). Set xk+1 := pk, εk+1 := θikεk. Increase k by 1 and go to Step 1.
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Remark 4.2. Similarly to the discussions in Remark 3.1, the procedure of finding pk and ik that
satisfy (4.4) can be given as follows. Set ik = 0. Find some pk such that∥∥∥pk − Proxλg(xk)

∥∥∥ ≤ λθikεk.

While
∥∥xk − pk

∥∥ ≤ λµθikεk, increase ik by 1 and recalculate pk under the condition above. Then
the existence of pk and ik satisfying (4.4) is guaranteed when 0 /∈ ∂g(xk). Indeed, otherwise for each
k ∈ IN we get a sequence

{
pki
}

as i ∈ IN with∥∥∥pki − Proxλg(xk)
∥∥∥ ≤ λθiεk and

∥∥∥xk − pki

∥∥∥ ≤ λµθiεk for all i ∈ IN.

Since θ ∈ (0, 1), the latter inequalities mean that xk = Proxλg(xk), which is equivalent to

xk = argmin
x∈IRn

{
g(xk) +

1

2λ

∥∥∥x− xk
∥∥∥2} .

By using the subdifferential Fermat rule, we get 0 ∈ ∂g(xk), a contradiction.

Now we are ready to establish convergence properties of Algorithm 2.

Theorem 4.3. Let
{
xk

}
be the iterative sequence generated by Algorithm 2 with µ > 2. Assume that

0 /∈ ∂g(xk) for all k ∈ IN. Then either
∥∥xk∥∥ → ∞ as k → ∞, or we have the assertions:

(i) Every accumulation point of
{
xk

}
is a minimizer of g, and both sequences

{∥∥xk − pk
∥∥} and {εk}

converge to 0 as k → ∞.

(ii) If eλg satisfies the KL property at an accumulation point x̄ of
{
xk

}
, then xk → x̄ as k → ∞.

(iii) If eλg satisfies the KL property at an accumulation point x̄ of
{
xk

}
with ψ(t) = Mtq for some

M > 0 and q ∈ (0, 1), then the following convergence rates are guaranteed as k → ∞:

• For q ∈ (0, 1/2], the sequence
{
xk

}
converges linearly to x̄ as k → ∞.

• For q ∈ (1/2, 1), we have
∥∥xk − x̄

∥∥ = O
(
k
− 1−q

2q−1
)

as k → ∞.

Proof. Define f := eλg. By Lemma 4.1, we have that ∇f is Lipschitzian with constant L = 1/λ and

∇f(x) = λ−1
(
x− Proxλg(x)

)
for all x ∈ IRn.

Defining gk := λ−1(xk − pk), the inequalities in (4.4) can be rewritten as∥∥∥gk −∇f(xk)
∥∥∥ =

∥∥∥gk −∇eλg(xk)
∥∥∥

=
∥∥∥λ−1(xk − pk) − λ−1(xk − Proxλg(xk))

∥∥∥
= λ−1

∥∥∥Proxλg(xk) − pk
∥∥∥ ≤ θikεk and

∥∥∥gk∥∥∥ = λ−1
∥∥∥xk − pk

∥∥∥ > µθikεk,

respectively. Furthermore, it follows from Step 2 of Algorithm 2 that the iterative procedure in this
algorithm can be represented by

xk+1 = pk = xk − λgk = xk − 1

L
gk,

Therefore,
{
xk

}
is the iterative sequence generated by Algorithm 1 with f = eλg. Then Theorem 3.4(i)

tells us that every accumulation point of
{
xk

}
is a stationary point of eλg, which is actually a minimizer

of g by Lemma 4.1. Finally, assertions (ii) and (iii) follow from Theorem 3.4(ii), (iii), respectively.
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Next we discuss some features of Algorithm 2 and its relationships with other developments.

Remark 4.4. Observe the following:

(i) By using the properties of semialgebraic functions listed in Remark 2.2 and the Moreau envelope
construction in (4.1), we can verify that the assumption on the KL property of eλg in Theorem 3.4
is satisfied if g is a semialgebraic function.

(ii) Applying Theorem 3.2 and using the arguments similar to Theorem 4.3 allow us to get the
convergence properties for Algorithm 2 if (4.4) is replaced by more general conditions∥∥∥pk − Proxλg(xk)

∥∥∥ ≤ ν2

∥∥∥xk − pk
∥∥∥ with ν2 <

1

2
,

∥∥∥pk − Proxλg(xk)
∥∥∥ ≤ ν1

∥∥∥xk − Proxλg(xk)
∥∥∥ with ν1 <

1

3
.

(iii) Let us highlight important improvements of our GIPPM over the two versions of the classical
inexact proximal point method (IPPM) of Rockafellar [45] applied to (3.9) as follows:

xk+1 = pk,
∥∥∥pk − Proxλg(xk)

∥∥∥ ≤ δk,
∞∑
k=1

δk <∞, (A)

xk+1 = pk,
∥∥∥pk − Proxλg(xk)

∥∥∥ ≤ δk

∥∥∥xk − pk
∥∥∥ , ∞∑

k=1

δk <∞. (B)

To this end, we mentioned first that in deriving convergence results, our approach in Algorithm
2 is by employing the IGD method applied to the Moreau envelope eλg, while the one by
Rockafellar in (A) and (B) is using the properties related to the maximal monotonicity of the
subgradient mapping ∂g. This creates various differences between our GIPPM and Rockafellar’s
IPPM. In comparison with (A) of IPPM, our GIPPM can achieve a linear convergence rate while
the convergence rate of (A) is not established in [45]. In practice, the sequence of errors {δk} in
(A) is usually chosen as δk := ck−p with p > 1 and c > 0. If δk is too small, the procedure of
finding approximate proximal points pk takes a lot of time while if δk is too large, pk becomes
unreliable. Note that in each iteration, the GIPPM algorithm verifies whether the approximate
proximal point is acceptable and then decreases the error if necessary.

Regarding the version (B) of IPPM, it follows from the choice of δk that δk → 0 as k → ∞. This
ensures that for any ν2 <

1
2 there is N ∈ IN with δk < ν2, which gives us∥∥∥pk − Proxλg(xk)

∥∥∥ ≤ ν2

∥∥∥xk − pk
∥∥∥ as k ≥ N.

Therefore, the convergence properties of the algorithm with the procedure (B) can be deduced
from (ii). In addition to the advantage on the generality in convergence analysis, our GIPPM
method is also promising in practical implementation. Indeed, since ν2 is a constant while δk is
decreasing to 0, the procedure of finding pk under the conditions in (4.4) of Algorithm 2 takes
significantly less time than the procedure (B) of IPPM while maintaining impressive convergence
results achieved in Theorem 4.3.

4.2 Gradient-Based Inexact Augmented Lagrangian Method

In this subsection, we propose the gradient-based inexact augmented Lagrangian method/algorithm
GIALM to solve equality-constrained convex programs given in the form:

minimize h(x)

subject to Ax = b,
(P)
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where h : Rn → R is a proper, l.s.c., convex function, and where A ∈ Rm×n, b ∈ Rm. Assume in what
follows that the feasible set {x ∈ IRn | Ax = b} of (P) is nonempty. Given a parameter λ > 0, for each
pair (x, y) ∈ Rn × Rm, consider the Lagrange function and the augmented Lagrangian defined as in
[27], respectively, by

ℓ(x, y) := h(x) + ⟨y,Ax− b⟩ and Lλ(x, y) : = ℓ(x, y) +
λ

2
∥Ax− b∥2 . (4.5)

The dual Lagrange function d : IRm → [−∞,∞) is given by d(y) := infx∈Rn ℓ(x, y), and the corre-
sponding dual problem is formulated as

maximize d(y)

subject to y ∈ IRm.
(D)

It follows from [20, Lemma 9] that the function g := −d is l.s.c. and convex. Therefore, when g is
proper, its proximal mapping is well-defined and can be represented via the dual function d as

Proxλg(y) = argmin
w∈IRm

{
g(w) +

1

2λ
∥w − y∥2

}
= argmax

w∈IRm

{
d(w) − 1

2λ
∥w − y∥2

}
. (4.6)

Now we present the construction of the gradient-based inexact augmented Lagrangian method.

Algorithm 3 (GIALM).

Step 0. Choose a starting point y1 ∈ Rm, proximal parameter λ > 0, initial error ε1 > 0, error
reduction factor θ ∈ (0, 1), and scaling factor µ > 2. Set k := 1.

Step 1. Find some xk+1 and the smallest natural number ik such that

Lλ(xk+1, yk) − inf
x∈IRn

Lλ(x, yk) ≤
λθ2ikε2k

2
and

∥∥∥b−Axk+1
∥∥∥ > µθikεk. (4.7)

Step 2. Set yk+1 := yk + λ(Axk+1 − b) and εk+1 := θikεk. Increase k by 1 and go back to Step 1.

As a part of our convergence analysis for GIALM, we derive the following two propositions of
their independent interest. The first proposition provides a useful representation of the augmented
Lagrangian function different from (4.5).

Proposition 4.5. For any z ∈ Rn, η ∈ Rm, and λ > 0, we have the representation

Lλ(z, η) = sup
w∈IRn

{
ℓ(z, w) − 1

2λ
∥w − η∥2

}
.

Proof. Taking into account the construction of ℓ in (4.5), we see that

w 7→ ℓ(z, w) − 1

2λ
∥w − η∥2 = h(z) + ⟨w,Az − b⟩ − 1

2λ
∥w − η∥2

is a quadratic concave function, and thus it attains the global maximum when Az− b = 1
λ(w−η), i.e.,

at w = λ(Az − b) + η. Thus we have

sup
w

{
ℓ(z, w) − 1

2λ
∥w − η∥2

}
= h(z) +

〈
λ(Az − b) + η,Az − b

〉
− 1

2λ
∥λ(Az − b)∥2

= h(z) + ⟨η,Az − b⟩ +
λ

2
∥Az − b∥2

= Lλ(z, η),

which therefore verifies the claim of the proposition.
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Next we obtain a relationship between the augmented Lagrangian (4.5) and the proximal mapping
(4.6). The result of this type was stated in [46, Proposition 6] but only for the iterative sequence of
the inexact augmented Lagrangian method for convex programs with inequality constraints. Using a
similar technique, a general result for problem (P) without considering a specific iterative sequence is
presented in the next proposition.

Proposition 4.6. Suppose that the function g defined above is proper. Then we have

1

2λ
∥y + λ(Ax− b) − Proxλg(y)∥2 ≤ Lλ(x, y) − inf

z∈IRn
Lλ(z, y)

for all pairs (x, y) ∈ IRn × IRm.

Proof. Fix any (x, y) ∈ IRn × IRm and denote p = y + λ(Ax − b). Take an arbitrary η ∈ IRm and
define the function ϑ : IRn × IRm → IR by

ϑ(z, w) := ℓ(z, w) − 1

2λ
∥w − η∥2 = h(z) + ⟨w,Az − b⟩ − 1

2λ
∥w − η∥2 .

It is clear that the function ϑ is l.s.c. convex in z, and continuous concave in w with ϑ(0, w) → −∞
as ∥w∥ → ∞. Applying Proposition 4.5 and then [50, Theorem 2.7] to ϑ(z, w) with taking [50,
Remark 2.2] into account, we get the equalities

inf
z
Lλ(z, η) = inf

z
sup
w

{
ℓ(z, w) − 1

2λ
∥w − η∥2

}
= sup

w
inf
z

{
ℓ(z, w) − 1

2λ
∥w − η∥2

}
= sup

w

{
d(w) − 1

2λ
∥w − η∥2

}
. (4.8)

Combining this with the construction of Lλ(x, y) in (4.5) gives us

Lλ(x, y) +
1

λ
⟨p− y, η − y⟩ = h(x) + ⟨y,Ax− b⟩ +

λ

2
∥Ax− b∥2 + ⟨Ax− b, η − y⟩

= h(x) + ⟨η,Ax− b⟩ +
λ

2
∥Ax− b∥2

= Lλ(x, η) ≥ inf
z
Lλ(z, η)

= sup
w

{
d(w) − 1

2λ
∥w − η∥2

}
≥ d

(
Proxλg(y)

)
− 1

2λ
∥Proxλg(y) − η∥2 . (4.9)

Employing (4.8) again with η := y and taking into account the construction of the proximal mapping
in (4.6), we arrive at the equalities

inf
z
Lλ(z, y) = sup

w

{
d(w) − 1

2λ
∥w − y∥2

}
= d

(
Proxλg(y))

)
− 1

2λ
∥Proxλg(y) − y∥2 .

The latter expression combined with (4.9) tells us that

Lλ(x, y) − inf
z
Lλ(z, y) ≥ 1

2λ

(
∥Proxλg(y) − y∥2 − ∥Proxλg(y) − η∥2 − 2 ⟨p− y, η − y⟩

)
.

Choosing finally η := Proxλg(y) + y − p brings us to

Lλ(x, y) − inf
z
Lλ(z, y) ≥ 1

2λ

(
∥Proxλg(y) − y∥2 − ∥p− y∥2 − 2 ⟨p− y,Proxλg(y) − p⟩

)
=

1

2λ
∥p− Proxλg(y)∥2 ,

which therefore completes the proof of the proposition.
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Remark 4.7. The procedure of finding xk+1 and ik in Step 1 of Algorithm 3 can be performed
similarly to Algorithm 1 and Algorithm 2 in the following way. Set ik = 0 and find some xk+1 with

Lλ(xk+1, yk) − inf
x∈IRn

Lλ(x, yk) ≤
λθ2ikε2k

2
. (4.10)

While
∥∥b−Axk+1

∥∥ ≤ µθikεk, increase ik by 1 and recalculate xk+1 under condition (4.10). This
procedure terminates finitely when the function g defined above is proper, and when yk is not a

solution to (D). Indeed, if (4.10) does not stop, for each k ∈ IN we get
{
xk+1
i

}
, i ∈ IN, such that

Lλ(xk+1
i , yk) − inf

x∈IRn
Lλ(x, yk) ≤

λθ2iε2k
2

and
∥∥∥b−Axk+1

i

∥∥∥ ≤ µθiε for all i ∈ IN. (4.11)

Combining the first inequality in (4.11) with Proposition 4.6 gives us

1

2λ

∥∥∥yk + λ(Axk+1
i − b) − Proxλg(yk)

∥∥∥2 ≤ λθ2iε2k
2

.

Since θ ∈ (0, 1), letting i → ∞ with taking into account the second inequality in (4.11), we get that
yk = Proxλg(yk), which implies by the subdifferential Fermat rule that 0 ∈ ∂g(yk). Therefore, yk is a
solution to the dual problem (D) due to its convexity. This is a contradiction.

Now we are ready to establish the convergence results of our GIALM algorithm.

Theorem 4.8. Let the sequences
{
xk

}
,
{
yk
}

are generated by Algorithm 3. Assume that supy∈IRm d(y) >

−∞ and yk is not a solution to (D) whenever k ∈ IN. Then either
∥∥yk∥∥ → ∞ as k → ∞, or we have:

(i) Every accumulation point of
{
yk
}

is a solution to (D). If in addition the sequence
{
yk
}

is
bounded, then every accumulation point of

{
xk

}
is a solution to (P).

(ii) If eλg satisfies the KL property at an accumulation point ȳ of
{
yk
}

, then yk → ȳ as k → ∞.

(iii) If eλg satisfies the KL property at an accumulation point ȳ of
{
yk
}

with ψ(t) = Mtq for some
M > 0 and q ∈ (0, 1), then we get the convergence rates:

• If q ∈ (0, 1/2], then the sequence
{
yk
}

converges linearly to ȳ as k → ∞.

• If q ∈ (1/2, 1), then ∥yk − ȳ∥ = O
(
k
− 1−q

2q−1
)

as k → ∞.

Proof. (i) Since supy∈IRm d(y) > −∞, the function g = −d in (D) is proper. It follows from Proposi-
tion 4.6 and the first inequality in (4.7) that

1

2λ

∥∥∥yk + λ(Axk+1 − b) − Proxλg(yk)
∥∥∥2 ≤ λθ2ikε2k

2
.

Defining pk := yk + λ(Axk+1 − b), the latter can be equivalently written as∥∥∥pk − Proxλg(yk)
∥∥∥ ≤ λθikεk for all k ∈ IN.

Moreover, the second inequality in (4.7) also tells us that∥∥∥yk − pk
∥∥∥ > λµθikεk for all k ∈ IN.

Therefore,
{
yk
}

is the iterative sequence generated by Algorithm 2 to find minimizers of g. Then
Theorem 4.3(i) tells us that every accumulation point of

{
yk
}

is a minimizer of g, i.e., it is a solution
to (D). Furthermore, we have εk ↓ 0 and

∥∥yk − pk
∥∥ → 0 as k → ∞.

Assume next that
{
yk
}

is bounded and show that every accumulation point of
{
xk

}
is a solution

to (P). Since
∥∥yk − pk

∥∥ → 0, we deduce from the construction of pk that

Axk − b→ 0 as k → ∞. (4.12)
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Picking any feasible solution x∗ to (P) tells us that Ax∗ = b. It follows from the first inequality in
(4.7) and Step 2 of Algorithm 3 that

Lλ(xk+1, yk) ≤ inf
x∈IRn

Lλ(x, yk) +
λε2k+1

2
≤ Lλ(x∗, yk) +

λε2k+1

2
.

Combining this with the construction of Lλ in (4.5) and the feasibility of x∗ gives us

h(xk+1) +
〈
yk, Axk+1 − b

〉
+
λ

2

∥∥∥Axk+1 − b
∥∥∥2 ≤ h(x∗) +

〈
yk, Ax∗ − b

〉
+
λ

2
∥Ax∗ − b∥2 +

λ

2
ε2k+1

= h(x∗) +
λ

2
ε2k+1 for all k ∈ IN. (4.13)

Taking now any accumulation point x̄ of
{
xk

}
, we find some infinite subset J ⊂ IN such that xk

J→ x̄.
Then it follows from (4.12) that Ax̄ = b, which verifies the feasibility of x̄. Invoking (4.12) again
together with the boundedness of

{
yk
}

gives us the convergence〈
yk−1, Axk − b

〉
+
λ

2

∥∥∥Axk − b
∥∥∥2 → 0 as k → ∞. (4.14)

Combining the latter with the lower semicontinuity of h, the estimate (4.13), and the condition εk ↓ 0
tells us that

h(x̄) ≤ lim inf
k

J→∞
h(xk)

= lim inf
k

J→∞

{
h(xk) +

〈
yk−1, Axk − b

〉
+
λ

2

∥∥∥Axk − b
∥∥∥2}

≤ lim inf
k

J→∞

{
h(x∗) +

λ

2
ε2k

}
= h(x∗).

Since x∗ is any feasible solution to (P), we conclude that x̄ is an optimal solution to (P).
Finally, assertions (ii) and (iii) follow from Theorem 4.3(ii), (iii), respectively.

5 Numerical Experiments

In this section, we compare numerical aspects of the newly designed GIALM and the classical IALM
in solving the basic Lasso problem given by

minimize
1

2
∥Ax− b∥2 + γ ∥x∥1 subject to x ∈ IRn, (5.1)

where A is an m × n matrix, b is a vector in IRm, and γ > 0. By omitting constants and defining
p(x) := γ ∥x∥1 and c := A∗b, we observe that Lasso problem (5.1) is equivalent to

maximize − 1

2
∥Ax∥2 + ⟨c, x⟩ − p(x), x ∈ IRn (5.2)

This is the dual problem of the following primal convex program with linear equality constraints:

minimize
1

2
∥y∥2 + p∗(z) (5.3)

subject to −A∗y − z = −c,

where the indicator function p∗(·) = δγB∞(·) is the convex conjugate of p with B∞ := {z ∈ IRn | max |zi| ≤ γ}.
Indeed, the corresponding Lagrange function and the dual function of (5.3) are given, respectively, by

ℓ(y, z, x) =
1

2
∥y∥2 + p∗(z) + ⟨x, c−A∗y − z⟩ ,
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d(x) = inf
y,z
ℓ(y, z, x) = inf

y

{
1

2
∥y∥2 − ⟨y,Ax⟩

}
+ inf

z

{
p∗(z) − ⟨x, z⟩

}
+ ⟨c, x⟩

= −1

2
∥Ax∥2 + ⟨c, x⟩ − p∗∗(x).

Since p is convex and continuous, we know from basic convex analysis that p∗∗ = p, and thus d is
exactly the objective function in (5.2). Since (5.3) has the form of (P), we can apply GIALM to solve
(5.3), which brings us to the following algorithm.

Algorithm 4 (GIALM for solving (5.3)).

Step 0. Choose a starting point x1 ∈ Rn, proximal parameter λ > 0, initial error ε1 > 0, error
reduction factor θ ∈ (0, 1), and scaling factor µ > 2. Set k := 1.

Step 1. Find some (yk+1, zk+1) and the smallest natural number ik such that

Lλ(yk+1, zk+1, xk) − inf
y,z

Lλ(y, z, xk) ≤
λθ2ikε2k

2
and

∥∥∥A∗yk+1 + zk+1 − c
∥∥∥ > µθikεk. (5.4)

Step 2. Set xk+1 := xk −λ(A∗yk+1 + zk+1− c) and εk+1 := θikεk. Increase k by 1 and go to Step 1.

The augmented Lagrangian Lλ(y, z, x) in (5.4) is written now as

Lλ(y, z, x) =
1

2
∥y∥2 + p∗(z) − ⟨x,A∗y + z − c⟩ +

λ

2
∥A∗y + z − c∥2 .

Given ik ∈ IN, we employ the technique in [34] to find (yk+1, zk+1) that satisfy the first inequality in
(5.4). Define the mapping Ψk : IRm → IRn and the function ψk : IRm → IR by

Ψk(y) := argmin
z

Lλ(y, z, xk) and ψk(y) := inf
z
Lλ(y, z, xk). (5.5)

It follows from [34, Section 3.2] that

Ψk(y) = Proxp∗/λ

(
xk

λ
−A∗y + c

)
,

ψk(y) =
1

2
∥y∥2 +

1

2λ

∥∥∥Proxλp(x
k − λ(A∗y − c))

∥∥∥2 − ∥∥xk∥∥2
2λ

.

In addition, ψk is strongly convex with constant 1 and C1-smooth with the Lipschitzian gradient

∇ψk(y) = y +AProxλp(x
k − λ(A∗y + c)) for all y ∈ IRm.

Note that there are explicit formulas for calculating Proxλp and Proxp∗/λ; see, e.g., [7, Section 6.9]
and [21]. However, we do not need these formulas and exact computations of proximal mappings in
our algorithms and numerical experiments, since we only focus on solving (4.7) inexactly to illustrate
the efficiency of GIALM in what follows.

To proceed further, deduce from the definitions of Ψk and ψk in (5.5) the relationships

ψk(y) = Lλ(y,Ψk(y), xk) and inf
y,z

Lλ(y, z, xk) = inf
y
ψk(y).

As a consequence, (yk+1, zk+1) satisfying the first inequality in (5.4) can be obtained from

ψk(yk+1) − inf
y
ψk(y) ≤

λθ2ikε2k
2

and zk+1 = Ψk(yk+1). (5.6)

The standard characterization of strong convexity gives us the error bound

ψk(yk+1) − inf
y
ψk(y) ≤ 1

2

∥∥∥∇ψk(yk+1)
∥∥∥2 ,
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which implies that the first inequality in (5.6) is satisfied if∥∥∥∇ψk(yk+1)
∥∥∥ ≤ ωk :=

√
λθikεk. (5.7)

Since ∇ψk is Lipschitz continuous, we can apply the gradient descent method to ψk with the stepsize
1/L, where L is the Lipschitz constant of ∇ψk, and find an approximate minimizer yk+1 under (5.7).
We also put ε1 = 1 and θ = 0.8 in the initial setting of Algorithm 3. The two selections of scaling factor
are µ = 3 and µ = 1.1, which correspond to the versions GIALM-3 and GIALM-1.1, respectively.

Now we recall the iterative procedure of classical IALM from [46] to solve (D). Given an initial
point x1 ∈ IRn, IALM uses the following updates for (yk+1, zk+1) and then xk+1 at each iteration:

Lλ(yk+1, zk+1, xk) − inf
y,z

Lλ(y, z, xk) ≤ δ2k and xk+1 = xk − λ(A∗yk+1 + zk+1 − c), (5.8)

where the sequence {δk} is positive and summable. Using arguments similar to the above tells us
that for each k ∈ IN the pair (yk+1, zk+1) satisfying the inequality in (5.8) can be obtained from∥∥∥∇ψk(yk+1)

∥∥∥ ≤ ωk :=
√

2δk and zk+1 = Ψk(yk+1),

where ψk and Ψk are given in (5.5). In our implementation, we choose ωk := k−q for all k ∈ IN with
some q > 1 to ensure the summability of {δk}. Consider also the two specific choices of q = 2 and
q = 3, which correspond to the versions IALM-2 and IALM-1.5, respectively.

Our two numerical experiments presented below are conducted by using a computer with the
parameters: 10th Gen Intel(R), Core(TM), i5-10400 (6-Core 12M Cache, 2.9GHz to 4.3GHz), 16GB
RAM memory, and the code written in MATLAB R2022b.

5.1 An Example in Image Processing

The setup for the experiment in this subsection follows from that in [8]. More specifically, we first
assume the reflexive boundary conditions [26] for the 256 × 256 cameraman test image. Then we let
this image go through a Gaussian blur of size 9 × 9 and standard deviation 4 followed by a standard
Gaussian noise with standard deviation 10−3. Then vector b in (5.1) represents the observed image,
and A is the blurred operator. The regularization parameter is chosen as γ = 10−4. The proximal
parameter for the tested methods is chosen as λ = 5, and the initial point is x1 = b. In this numerical
experiment, we first generate an (approximate) optimal value f∗ with its associated (approximate)
solution by running GIALM-1.1 in 1000 iterations. The original, blurred, and optimal images are
presented in Figure 2.

Figure 2: Deblurring of the cameraman

Then we record the results obtained by the tested methods after running 500 iterations. Their
function values compared with f∗ and the total number of iterations in the subproblems they execute
are given in Figure 3 below. It can be seen that GIALM methods have a better performance than the

18



classical IALM methods. Indeed, the left graph shows that after around 5s, the values generated by
the GIALM methods are always lower than those for the IALM methods. This is explained in more
detail in the right graph, where we see that the IALM methods execute a much larger total number
of gradient descent iterations in comparison with the subproblems of the GIALM methods.

Figure 3: Function values (left) and total number of iterations in subproblems (right)

5.2 Randomly Generated Examples

In the second experiment, we test the GIALM and IALM methods with different sizes of data. To
proceed, the m× n matrix A and vector b ∈ IRm are generated randomly with i.i.d. (identically and
independently distributed) standard Gaussian entries. We employ the following stopping criterion
used in [29, 30, 34] (see the discussions therein):

ηk :=

∥∥∥xk − Proxγ∥·∥1(xk −A∗(Axk − b))
∥∥∥

1 + ∥xk∥ + ∥Axk − b∥
≤ 10−6. (5.9)

We also stop the algorithms if they reach either the time limit of 4000 seconds, or the maximum number
of iterations of 200,000. The initial points are chosen as x1 = 0 ∈ IRn for all the algorithms. The
selections of the tested parameter γ are 10−3 and 10−3 ∥A∗b∥∞, where ∥x∥∞ := max {|xi|, i = 1, . . . , n}
for any x = (x1, . . . , xn) ∈ IRn. While running the tests, we choose the proximal parameter as λ = 0.01
to get the best performance for the tested methods. The detailed information and the results are
presented in the table below, where ‘TN’, ‘iter’, ‘ηk’, and ‘time’ stand, respectively, for test number,
the total number of iterations, the residual (5.9) in the last iteration, and CPU running time of the
methods. The tests using the regularization parameter γ = 10−3 ∥A∗b∥∞ are signified by the asterisks
(*) after their test numbers.

TN m n
IALM-1.5 IALM-2 GIALM-1.1 GIALM-3

iter ηk time iter ηk time iter ηk time iter ηk time
1* 500 1000 40688 1.0E-06 68.19 40725 1.0E-06 524.31 40495 1.0E-06 20.78 40634 1.0E-06 25.08
2* 1000 1000 1963 1.0E-06 28.16 2110 1.0E-06 80.55 1985 1.0E-06 6.21 2065 1.0E-06 10.23
3* 1000 2000 28444 1.0E-06 879.53 8020 9.1E-05 4000 28613 1.0E-06 291.99 28546 1.0E-06 407
4* 2000 2000 2447 1.0E-06 979.43 2588 1.0E-06 3999.08 2520 1.0E-06 215.27 2560 1.0E-06 430.91
5* 2000 4000 3917 2.0E-04 4000 608 4.8E-03 4000 28929 1.0E-06 2594.49 21416 2.2E-06 4000
6* 4000 4000 952 9.8E-07 3701.33 153 7.8E-03 4000 1076 9.9E-07 1318.44 1114 1.0E-06 2704.56
7 500 1000 200000 2.1E-05 253.4 200000 2.1E-05 1802.58 200000 3.1E-05 96.91 200000 2.1E-05 98.29
8 1000 1000 75875 1.5E-04 4000 35188 5.2E-04 4000 200000 1.0E-05 233.99 200000 1.0E-05 244.08
9 1000 2000 87898 8.1E-05 4000 16867 7.2E-04 4000 200000 3.1E-05 1548.4 200000 2.1E-05 1626.42
10 2000 2000 1668 1.6E-02 4000 928 3.1E-02 4000 183214 6.1E-06 4000 109370 4.7E-05 4000
11 2000 4000 6852 1.7E-03 4000 2298 4.5E-03 4000 76571 3.6E-04 4000 58342 1.1E-04 4000
12 4000 4000 184 1.2E-01 4000 118 1.8E-01 4000 19637 1.4E-03 4000 6219 3.8E-03 4000

Table 1: Results of IALM and GIALM in random tests

It can be seen that in Tests 1-6, GIALM-1.1 exhibits the best performance since it achieves the
main stopping criterion and has the lowest running time. In Test 7, GIALM-3 is the best since it
achieves the smallest residual with the running time lower than IALM-1.5 and IALM-2. In the other
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tests, GIALM methods also have better performances, i.e., they achieve a smaller residual with the
running time less than for the IALM methods. The role of the controlling error of GIALM is presented
clearly in Test 12, where GIALM-1.1 executes nearly 20,000 iterations while IALM-2 executes only 118
iterations and thus stagnates at a solution with a much larger residual ηk. This is because the error
of the subproblems in IALM, not being controlled as in GIALM, becomes too small. Therefore, the
subproblems of IALM waste much more time to stop. This observation is confirmed by the Figure 4
below, which illustrates the residual ηk and the error ωk in the subproblems of the algorithms.

Figure 4: Value of residual ηk (left) and error ωk (right) in Test 12

In conclusion, GIALM performs better than the classical IALM in these numerical experiments.
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