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Abstract—The emerging Sixth Generation (6G) communication
networks promising 100 to 1000 Gbps rates and ultra-low
latency (1 millisecond) are anticipated to have native, embedded
Artificial Intelligence (AI) capability to support a myriad of
services, such as Holographic Type Communications (HTC),
tactile Internet, remote surgery, etc. However, these services
require ultra-reliability, which is highly impacted by the dy-
namically changing environment of 6G heterogeneous tiny cells,
whereby static AI solutions fitting all scenarios and devices
are impractical. Hence, this article introduces a novel concept
called the softwarization of intelligence in 6G networks to select
the most ideal, ultra-fast optimal policy based on the highly
varying channel conditions, traffic demand, user mobility, and
so forth. Our envisioned concept is exemplified in a Multi-
Armed Bandit (MAB) framework and evaluated within a use
case of two simultaneous scenarios (i.e., Neighbor Discovery
and Selection (NDS) in a Device-to-Device (D2D) network and
aerial gateway selection in an Unmanned Aerial Vehicle (UAV)-
based under-served area network). Furthermore, our concept
is evaluated through extensive computer-based simulations that
indicate encouraging performance. Finally, related challenges and
future directions are highlighted.

Index Terms—6G, softwarization, optimization, Artificial In-
telligence (AI), Multi-armed bandit (MAB).

I. INTRODUCTION

With the race to provide Terabits per second (Tbps) data
rates to mobile users to meet the dramatically increasing
network traffic demands [1], the Sixth Generation networks
(6G) are being conceptualized by researchers and practitioners
of the ITU (International Telecommunication Union). The
emerging 6G networks are anticipated to focus on mobile edge
computing, whereby the core, edge networking, and computing
functions will become seamlessly integrated. Furthermore, by
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leveraging the increasingly available computational opportu-
nities and embedded intelligence [2], 6G networks are also
expected to benefit from robust Artificial Intelligence (AI)
capabilities. Although the contemporary data centers have
recently enjoyed a significant paradigm shift during the Fifth
Generation (5G) era toward virtualization and programmable,
Software-Defined Networks (SDNs), the heterogeneous radio
access networks of 5G and beyond are yet to fully utilize the
tremendous power of programmable network functionality. For
instance, many commodity routers or even Base Stations (BSs)
may require hybrid Radio Access Networks (RANs) for on-
demand network functionalities, e.g., Neighbor Discovery and
Selection (NDS) in Device-to-Device (D2D) communication
[3], optimal band allocation under mobility and blocking
effect, relay probing [4], and so forth.

In 6G networks, even edge nodes are expected to engage
in edge computing because of the increasing computing
and energy resources. However, due to integrated terrestrial-
aerial-satellite-underwater networks, the network dynamics
of the heterogeneous access technologies in 6G networks
will be much more volatile and unpredictable than even
those in 5G networks. This is likely to severely impact
the 6G services, such as tactile Internet, augmented reality,
robotic surgery, and so forth, that demand ultra-reliability.
Furthermore, the sheer number of ultra-dense tiny cells will
make it more challenging to manage the network traffic in
a scalable manner without the intervention of optimization
and AI techniques available locally (i.e., at the BS/edge node
level). However, accommodating all possible optimization
and/or AI models in a single BS, let alone at an edge node,
is a formidable research challenge and not deemed practical
due to possibly high manufacturing, testing, deployment, and
operational costs.

To mitigate some of the above challenges, this article
presents the following contributions:

• We propose a programmable AI-based 6G system model
deployment into Access Points (APs), BSs, and edge
nodes in an on-demand manner to cope with the prevalent
network conditions.

• We propose a class of AI/optimization schemes in the
higher application plane of our system model, and then
instantiate objects of the most relevant optimal policy
type to any network topology (i.e., ranging from a macro



to a tiny cell), thereby transforming the “dumb” network
equipment into AI-enabled, self-decision-making intelli-
gent BSs or even smart edge nodes. The ideal policy type
can be optimization modules (e.g., linear programming,
convex/multi-objective optimization, and meta-heuristics)
or any of the supervised, non-supervised, reinforcement
learning or other sequential learning (e.g., Multi-Armed
Bandit (MAB) [3], [5]) models.

• We provide a use case with two scenarios, involving NDS
in a D2D-based network [3] and aerial gateway selection
in an Unmanned Aerial Vehicle (UAV) or drone-based
under-served area network [5], to extensively demonstrate
the performance evaluation of our conceptualized soft-
warized intelligence-based optimal policy selection for
ultra-fast decision-making in 6G networks.

The remainder of this article is organized as follows.
Section II presents our research motivation. Our considered
problem of AI-softwarized 6G networks and envisioned soft-
warized system model including ultra-fast, on-demand policy
selection methodology is described in Section III. Next, in
Section IV, we provide a use case with two scenarios to
demonstrate the effectiveness of employing various ultra-fast
optimal policies frameworks as an efficient enabler of the
future 6G applications under varying network conditions. The
challenges and future directions are delineated in Section V.
Finally, Section VI concludes the article.

II. MOTIVATION: ULTRA-FAST OPTIMAL POLICY
SELECTION IN 6G NETWORKS

In every successive generation of wireless communica-
tion networks, capacity and delay requirements are heavily
stressed. Compared to their predecessors, the emerging 6G
networks are anticipated to provide native, embedded intel-
ligence to support ultra-fast handover under high mobility,
determining actions of thousands of intelligent/re-configurable
surfaces, smart energy consumption, and so forth. Given the
massive connectivity support up to 107 devices/Km2 with
traffic capacity of up to 1 Gbps/m2, embedded intelligence
needs to be made scalable and available to both service
providers and edge users to support new killer applications
and human-centric services, space-air-ground-sea integrated
networks, holographic communication, tactile Internet, remote
surgery, augmented reality-based immersive computing, etc.
These services will often require ultra-fast, distributed learning
frameworks which may need to be rapidly changed depending
on the varying scenarios. In contrast to the current paradigm
where the pre-trained AI models are deployed to 6G-based
user-devices, provisioning scenario-specific AI models to op-
timally cater to these varying network dynamics will pose a
formidable research challenge. This is the primary motivation
behind this work.

III. PROPOSED SOFTWARIZATION OF INTELLIGENCE IN 6G
NETWORKS

We elucidate the critical need of softwarization of intelli-
gence in the emerging 6G communication systems, and then

describe our envisioned system model of heterogeneous soft-
warized networks as depicted in Fig. 1, where ultra-fast, online
learning models may play a versatile role in the AI-enabled
6G network optimization compared to traditional learning and
optimization models.

A. Why Softwarized 6G Networks?

Unlike 5G systems, the 6G networks are highly expected to
seamlessly integrate terrestrial, aerial, satellite, and underwater
networks with various radio access technologies and pro-
liferate the intelligent computing and communication across
these heterogeneous access networks, particularly at the edge
of the network. However, embedded intelligence at the edge
nodes cannot be static due to the highly variable behavior of
heterogeneous bands/channels (ranging from legacy MHz/GHz
range to THz carrier frequencies) under different-sized station-
ary/mobile blockers, high mobility of nodes, highly volatile
traffic demands, zero-day cyber-attacks, etc. If those edge
nodes are statically deployed, AI models may not be adequate
to cope with these dynamics. For example, consider the D2D
nodes in 6G networks that require relay node probing or
neighbor discovery within near-real-time performance.

Several AI models have been used in the literature to
improve the network performance, which are not limited
to reinforcement learning models like MAB, Q-learning, or
actor-critic but also belong to other smart learning techniques
such as game theory, supervised, and unsupervised learning
models. Theoretically, the softwarized architecture can select
the proper model dynamically to achieve the best possible
performance. Although various AI techniques can be imple-
mented for the softwarized SDN network, our main focus in
this article is to demonstrate a proof-of-concept with easy-
to-understand use cases that need different models for fast
decision making, no prior supervised training, adaptability to
varying environments, lightweight (stateless), and fast conver-
gence. Therefore, a list of various optimization, supervised and
unsupervised, and reinforcement learning models including
different MAB variants, are maintained by the softwarized
network. For instance, for quasi-static nodes, stochastic MAB
can be used as an optimal policy for rapid deployment
onto the nodes and ultra-fast decision-making in contrast
with traditional optimization and supervised learning models
due to its maximal accumulative/long term reward strategy.
Specifically, D2D devices need to be equipped with stochastic
MAB models [3] to select the best neighbor. However, when
the D2D nodes are mobile, an adversarial MAB model, which
considers the adversary environment needs to be employed
instead of the stochastic variant. Moreover, if we consider
multi-band capable devices, contextual MAB comes to the
scene, where the information obtained from one band can
be adopted as contexts [3]. Upon various network conditions,
the MAB policies (e.g., ϵ-greedy, Upper Confidence Bound
(UCB), Thompson Sampling (TS), etc. [3], [5]) may be
updated. By extending this example for many combinations of
dynamic network scenarios, the D2D nodes need to have the
capability of on-demand deployment of an intelligent model.
Similarly, consider the wireless Access Point (AP) or home
routers with dedicated operating software for routing, firewall,
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and security. Depending on the network dynamics, a capability
for procuring the best possible module for managing network
functions under the current network dynamism or dealing with
the ongoing security threats should be provisioned. The 6G
network equipment are considered to be programmable in our
system model, which can download, in an on-demand manner,
the necessary intelligent modules, which can range from
optimization models (e.g., linear programming to convex opti-
mization) or AI models (e.g., supervised/unsupervised/online
learning) as illustrated in Fig. 1. Our envisioned system
model goes beyond the existing SDN architectures that have
yet to achieve the actual potential of programmable network
functions.

B. Envisioned Softwarized System Model

Now we provide our envisioned system model’s ground-
work. By referring to our considered system model in Fig. 1,
we derive optimal and intelligent models and/or policies for
deployment on to terrestrial/drone BSs, Radio Frequency (RF)
BSs, Wireless Local Area Network (WLAN) APs, Visible
Light Communication (VLC) BSs, User Equipment (UEs),
Vehicle-to-other (V2X) nodes [6], and Internet of Things (IoT)
devices. From the perspective of the application plane, the
optimal or intelligent modules can facilitate one or more
applications including Virtual Network Function (VNF) place-
ment, Quality of Service (QoS) and security provisioning in
network slice, signal and noise processing, dynamic allocation
of remote radio resources, mobility prediction with network
traffic control, sleep scheduling of BSs/user devices, etc. For
each of these applications for the hybrid BSs and edge nodes
in 6G during different times that experience different network
dynamics, a unique optimization or intelligent model needs
to be derived from providing the best solution with which
BSs/edge nodes need to be programmed. The optimization
and innovative models are executed through a pool of Central
Processing Units (CPUs), supported by Graphics Processing
Units (GPUs) to parallelize and scale up computing in the
control plane. Also, baseband units are included in the control
plane’s hardware, which facilitates the radio resource virtu-
alization and decouples the data plane. Nevertheless, in the
data plane, the access points, based on the derived optimal
and/or intelligent model/policy, observe the current traffic
demand, channel conditions, and so forth and then decide
which models are ideal for the current situation. Therefore,
by matching the network dynamics, they proactively download
the optimal/intelligent network policy stochastic MAB model
for stationary D2D nodes while adversarial MAB model for
the mobile UEs, and so forth [3]. Regarding the MAB models
stated in our example use case, the portrayed system model
benefits from the reusability of the MAB schemes for new
programmable network nodes. Specifically, the application
plane has to define a few primary instances of MAB model
types. Moreover, if we consider multi-band capable devices,
contextual MABs are more appropriate, where the information
obtained from one band can be adopted as contexts of the
MAB game played over the other band [3]. Upon current
network topology and dynamics, network devices can simply
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Fig. 1. Considered system model of heterogeneous softwarized networks
whereby the Base Stations (BSs), Access Points (APs), and user devices
can obtain on-demand, ultra-fast algorithmic policy selection to reflect the
dynamically varying network conditions.

be transformed to accommodate any AI model to combat
the prevalent conditions by merely creating an instance or a
program based on the base definition that it procures from the
repository of AI modules in the application plane.

C. Envisioned Ultra-fast On-demand Policy Selection via Soft-
warized Intelligence

For ease of discussion, among various softwarized intel-
ligence models maintained at the softwarized network con-
troller, we highlight the MAB variants. While MAB is appeal-
ing for various network-centric decision-making in contrast
with other optimization and supervised learning techniques,
how the most relevant MAB model can be dynamically
selected to cater to the highly varying network conditions
needs to be decided. The advantage of MAB, as a sequential,
online optimal policy selection algorithm, over the classical
optimization techniques and existing AI methods, as depicted
in Fig. 1, can be described in terms of its ultra-fast decision-
making capability. The classical optimization techniques are
not scalable with the highly varying network dynamics. As
a result, it is often challenging to provide a closed-form
expression on the existence and guarantee of an optimal
solution for a well-defined, complex problem. Many of the
constraints and conditions are often relaxed upon the utilized
algorithm design to reach a sub-optimal solution. Furthermore,
such optimization techniques are typically a one-shot process
as they require centralized, oracle-like knowledge to ingest
the entire dataset to give the optimal benchmark decision.
On the other hand, a supervised learning model typically
requires long training time as well as extensive and versatile
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TABLE I
A POOL OF MAB TYPES AT THE DISPOSAL OF THE PROPOSED ON-DEMAND SELECTOR FOR RAPIDLY IDENTIFYING THE RELEVANT MAB VARIANT WITH

THE OPTIMAL POLICY TO CATER TO EACH OF THE TWO SCENARIOS IN THE CONSIDERED USE CASE.

Network setting Objective Suitable MAB/policy type Expected outcome

Wireless power transfer [7] Efficiently charge all energy har-
vesters Combinatorial MAB Fair energy harvesting and QoS

Wireless Sensor Networks (WSNs) cooper-
ative relay selection [8]

Enhance hierarchical WSNs en-
ergy efficiency Multi-Player (MP-UCB) Better relay selection strategy

with higher energy efficiency

Online client scheduling [9] Reduce the latency in federated
learning UCB policy & virtual queuing High speed convergence with

fairness constraints

Small cell caching [10] Learning based caching for small
cells Multi-Player MAB (MP-MAB) High computational complexity

balance

Two hop relay selection [4] Maximize the throughput of the
network

Sleeping Contextual bandit (S-
LinUCB)

Better relay selection strategy
with higher energy efficiency

Millimeter Wave (mmWave) vehicular com-
munications [6] Fast beam tracking Context and social aware ma-

chine learning Near optimal performance

Machine-type communications [11] Scheduling fast uplink transmis-
sions Sleeping MABs A three fold latency reduction

Mode selection and resource allocation in
D2D [4]

Adaptable reduced computational
complexity Combinatorial MABs Efficient performance

Fast mmWave beam alignment [1] Accurate and reliable mmWave
beam alignment Stochastic Correlated MAB Optimal probable beam identifi-

cation

Handover management [12] Optimal BS selection during han-
dover Cascaded Bandits

Efficient dynamic and Received
Signal Strength Indicator (RSSI)
solutions

NDS in mmWave D2D [3] mmWave D2D best NDS Stochastic contextual MABs Prolong network lifetime with
good D2D link

UAV selection in disaster area [5] Gateway UAV selection problem Distributed, MP-MAB Perfect gateway UAV selection

Server selection [13] Optimal server selection in SDNs UCB, ϵ greedy, softmax Good average response time and
reward score

training datasets. The lack of an adequate dataset, which is
critical to train the existing machine/deep learning models,
appears as a crucial barrier to maximize their predictive
performance. Moreover, the performances of such supervised
learning-based models are typically sub-optimal, and a lack
of interpretation to why they provide such performances still
raises a lot of concerns among researchers for their deployment
on networking devices in contrast with the traditional straight-
forward, feedback-based decision making. Therefore, ultra-
fast online learning techniques are essential to be deployed
to the 6G users (e.g., BSs, home APs, mobile UEs, and so
forth) for localized, distributed decision making. The type of
MAB can also be changed in an on-demand manner to combat
the sudden change in the network conditions experienced
by the 6G users. Furthermore, the recent advances in regret
analysis for the variants of MAB algorithms can be leveraged
to demonstrate their tightly bounded performance guarantee.
Thus, from hereon, we regard MAB as a more viable technique
compared to the classical optimization and supervised learning
counterparts for ultra-fast, on-demand, and optimal policy
selection.

Next, we present a high-level description of how the soft-
warized on-demand selection of MAB is possible by referring
to Table I. Note that each problem is matched with an appropri-
ate MAB technique, e.g., single player, Multi-Player (MP) [5],
[8], combinatorial [7], sleeping [4], contextual [3], correlated
bandits [1], cascaded MABs [12], and so on. For example,
single player, stochastic MABs and also contextual MABs
have been identified to solve mmWave D2D NDS problem in

our earlier work [3]. In small caching scenarios, MP-MABs
emerge as the most appropriate type [10]. MP-MABs have
also been leveraged for the Gateway UAV selection problem in
disaster scenarios [5]. On the other hand, sleeping contextual
MABs have exhibited encouraging performance for two-hop
relay probing in mmWave networks [4]. For handover problem
handling, cascaded bandits are the most suitable promising
solution [12] due to different rewards obtained by the learner
given the location. Moreover, in machine-centric communica-
tions, where some devices are inactive while others continue
to operate, the sleeping bandits can effectively describe the
scenario [11]. Also, a MAB-based server selection method is
discussed in [13] for SDNs, which provided better response
time and payoff scores. Now, we can consider that our
envisioned on-demand selector, as shown in Fig. 1, can choose
from a pool of these MAB frameworks and their various policy
implementations, along with other optimization and super-
vised/unsupervised/reinforcement learning techniques. When
the network dynamics changes, the on-demand selector will
proactively and rapidly select another AI model which is more
ideal to adapt with the new network topology/conditions, and
accordingly reprogram the network nodes to begin using the
new AI model.

IV. AN ILLUSTRATIVE USE CASE AND
PERFORMANCE EVALUATION

To confirm the effectiveness of using MAB variants with
different policies for ultra-fast inference in 6G networks, in
this section, we present an illustrative use case consisting of
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of two distinct scenarios that occur simultaneously, managed
by the softwarized network controller. The topology of the
first scenario is based on mmWave-enabled D2D topology
to extend the coverage area. When such D2D relay-based
coverage expansion is not adequeate in under-served areas,
we consider a UAV-based communication network topology
to further extend the coverage area in the second scenario.
The first scenario handles the NDS task of D2D nodes [3]
while the second scenario focuses on the aerial gateway se-
lection in UAV-based under-served (e.g., disaster-affected) area
communication [5]. The on-demand selector, in the control
plane of the softwarized network, acquires the current network
and demand information (e.g., mobility of users, traffic rate
variation, traffic demands of users, indoor or outdoor scenario,
QoS expectation, security expectation, and so forth), and then
can compare which MAB type from Table I best describes the
current network dynamics. Based on this, for either scenarios,
the on-demand selector chooses the most ideal MAB algo-
rithmic implementation with the optimal algorithmic policies
that include UCB (Upper Confidence Bound), TS (Thompson
Sampling), meta-TS, and so forth.

A. Scenario 1: Optimal Policy Selection in mmWave-enabled
D2D Neighbor Discovery Service

The first scenario of our considered use case is depicted
in Fig. 2(a). When the proposed on-demand selector of our
softwarized network controller identifies that the mmWave-
enabled D2D nodes are performing NDS tasks, it chooses
contextual and non-contextual budget constrained MABs [3].

In the scenario of Fig. 2(a), a trade-off exists between
investigating more nearby devices for increasing the spectral
efficiency of the D2D link and decreasing its achievable
throughput due to extensive beamforming training overhead.
Conventionally, direct NDS is employed by examining all
available nearby devices by the central one, as shown in the
figure, to select the highest spectral efficiency device. How-
ever, this scheme suffers from a low achievable throughput.
Also, it does not consider the limited battery capacity of the
nearby devices when the residual energy of the selected nearby
device should be reserved only for its essential activities.
The network controller, then, needs to select and deploy
an optimal algorithm depending on the specific needs of
this scenario. Based on the comparative scenarios and their
corresponding policies learned by the controller as listed in
Table I, the proposed on-demand policy selector identifies the
budget-constrained single player MAB to optimally address
this problem. The central device acts as the bandit player that
targets maximizing its achievable spectral efficiency, which
behaves as the reward of the bandit, by utilizing the nearby
devices as the arms of the bandit. By using multi-band
standardized WiGig devices, i.e., containing both 2.4/5 GHz
WiFi and 60 GHz mmWave bands as shown in Fig. 2(a), WiFi
contexts can be used to further enhance the mmWave D2D
NDS process. This is empowered by the direct relationship
between WiFi and mmWave link statistics. Thus, based on
Table I, our proposed on-demand policy selector adopts the
linear Contextual MAB algorithm, called LinUCB. To opti-
mize this algorithmic choice, it also adopts two variants of
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(a) Considered D2D network scenario where NDS is performed by the various
dual-band devices (referred to as “Dev”s) in presence of blockers.
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Fig. 2. Scenario 1: D2D-based neighbor discovery service. The results indi-
cate that the proposed on-demand selector chooses LinUCB, which exhibits
near-optimal performance for growing numbers of devices, and outperforms
conventional and random methods besides other MAB variants.

a budget-constrained, non-contextual MAB implementation,
referred to as Energy-Aware UCB (EA-UCB) and Energy-
Aware LinUCB (EA-LinUCB) policies. The WiFi contexts
include the instantaneous value of the WiFi Received Signal
Strength (RSS) in addition to its mean and variance up to time
t when the central device performs NDS.

Next, we describe our simulation results with the afore-
mentioned MAB adoption in this scenario. In the conducted
simulations, 20 to 100 dual-band devices are uniformly dis-
tributed around the central device in an area of 125× 125m2.
Also, a perfect mmWave beam alignment is assumed. The
TX (transmission) power for mmWave and WiFi modules
are considered to be 10 and 20 dBm, and their operating
frequencies are set to 60 GHz and 5GHz with 2.16 GHz and
40 MHz bandwidths, respectively. The beamforming training
time is set to 0.28 s while a time horizon of 1000 is assumed.
The path losses (standard deviation) for WiFi and mmWave
LoS (Line of Sight) and NLoS (Non Line of Sight) paths are
set to 2.32 (6), 2.22 (10.3), and 3.88 (14.6) , respectively. The
initial energy levels of the devices are randomly selected in the
range of [0.1, 1] Joule, and the noise power is set to -70 dBm.
Fig. 2(b) demonstrates the average throughput of the compared
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Fig. 3. Scenario 2: aerial gateway selection in UAV-based communication
for an under-served area. The results illustrates why proposed on-demand
selector chooses MP-BA-UCB, which outperforms conventional (near) and
random methods as well as another MAB variant (MP-BA-EXP3) for various
numbers of UAVs.

MAB schemes in addition to the conventional direct NDS
as well as the random NDS policy. The results in Fig. 2(b)
indicate that the average throughput of the conventional NDS
decreases with the growing number of nearby devices. This
happens due to the extensive beamforming training overhead.
The compared MAB algorithms are not only known to have
a fast convergence compared to the optimal and conventional
methods, but also experience the lowest beamforming training
overhead. This is because they need to investigate only a
single nearby device at a time that significantly improves the
achievable average throughput. Thus, the results in Fig. 2(b)
elucidate that the on-demand policy selector chooses LinUCB
since it knows from the pool of MAB variants in Table I that it
demonstrates near-optimal performance for a growing number
of devices, and also outperforms conventional and random
methods along with the other energy-aware MAB variants.

B. Scenario 2: Aerial gateway selection for UAV-based com-
munication network in an under-served area

To further extend the communication range, in the second
scenario of our use case depicted in Fig. 3(a), the formation
of a UAV-based wireless communication network is assumed
for an under-served area. The distributed UAVs are split
into access nodes and aerial gateways. The access nodes
are used to perform data collection from the under-served
users. Furthermore, the aerial gateways relay the collected data
from access UAVs to the nearest terrestrial BS. Thus, each

access UAV should select and fly towards an aerial gateway
to maximize its achievable throughput while minimizing its
flight energy. The proposed on-demand selector identifies
the multi-player (MP) budget-constrained MAB to optimally
address this issue. In this scenario, the access UAVs act as
the players of the MAB game to maximize their achievable
throughputs acting as the rewards of bandit game, while aerial
gateways are considered as the bandit-arms. Moreover, each
access UAV selfishly plays the game as information is neither
available beforehand nor exchanged among the distributed
UAVs in such a fully decentralized setting. To implement the
specific policies for the multi-player budget-constrained MAB,
two Battery-Aware (BA) policy implementations using UCB
(stochastic type) and Exponential-weight algorithm (EXP3)
(adversarial type) are adopted [5], referred to as MP-BA-UCB
and MP-BA-EXP3, respectively. Based on the past history,
the proposed on-demand policy selector identifies the MP-
BA-UCB as the viable policy to be rapidly deployed to the
UAV nodes for an effective aerial gateway selection. By
only observing their achievable throughputs, access UAVs
can learn the interference/collision patterns and enhance their
gateway UAV selections while the game continues to execute.
For the simulation setup, a post-disaster area of dimension
750 × 750m2 is assumed where access UAVs are uniformly
distributed inside this area for rescue services. The gateway
UAVs are uniformly distributed around this area in a circle
of 1250 m diameter. The mmWave TX power is set to 10
dBm with 60 GHz central frequency and 2.16 GHz bandwidth.
The noise power is set to -120 dBm. The hovering and
flying engine powers of the UAV are set to 4 and 2 watts,
respectively. Moreover, the hovering time is set to 120 s, while
the flying speed is adjusted to 40 Km/h. The total battery
capacity of the access UAV is set to 400,000 Joules. Fig. 3(b)
demonstrates the average system rate comparison among these
two MAB variants and two benchmark algorithms, i.e., near
and random aerial gateway selection schemes. In the near
selection scheme, the closest aerial gateway is always chosen
by the access UAV. In the random scheme, the aerial gateway
selection is performed arbitrarily. Without any loss of gener-
ality, the mmWave communication links are assumed among
the UAVs with a beamwidth of 60°, and 20 Gateway aerials
are considered in this scenario.

In Fig. 3(b), when using a low number of access UAVs,
the average system rate of the MAB algorithms increases.
Then after reaching a certain point, it slightly drops with the
growing number of access UAVs. This comes from the low
interference experienced by the small number of access UAVs.
However, as the number of access UAVs is increased beyond
the number of ariel UAVs, i.e., 20 UAVs, a high interference is
experienced by access UAVs. Note that MP-BA-UCB achieves
much better performance than MP-BA-EXP3. The poor aerial
gateway selection policy of MP-BA-EXP3 can be explained
by its nearly equal weights assignment to the UAVs during
each trial. To analyze the performance of the adopted MAB
algorithms, the analysis of regret (the cumulative rewards of
the best arm in hindsight) is useful; however this is beyond the
scope of this article. For simplicity, consider that the algorithm
to be successful if its regret is O(T ) after T trials (meaning
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TABLE II
EXECUTION TIMES OF COMPARED MAB ALGORITHMS IN THE TWO SCENARIOS.

Scenario 1 (mmWave-enabled D2D NDS) Scenario 2 (UAV-based network gateway selection)
Number of devices UCB EA-UCB Lin-UCB EA-LinUCB Number of UAVs MP-BA-UCB MP-BA-EXP3

20 0.1 ms 0.1ms 0.3ms 0.3ms 10 1.5ms 1.7ms

40 0.1 ms 0.1ms 0.4ms 0.4ms 20 1.6ms 1.8ms

60 0.1ms 0.1ms 0.6ms 0.6ms 30 1.7ms 1.9ms

80 0.2 ms 0.2 ms 0.8ms 0.8ms 40 1.9ms 2ms

100 0.2 ms 0.2ms 0.9ms 0.9ms 60 2.0ms 2.1ms

that the average regret per trial converges to zero). The adopted
MAB models with UCB or TS have O(logT ) regret bounds.

The execution times of the MAB-based approaches uti-
lized in the two scenarios are summarized in Table II. We
recorded the MATLAB R2020 b execution time of these MAB
techniques against different numbers of devices and UAVs,
respectively. The utilized machine specifications consist of
an Intel core i7-8565U CPU (Central Processing Unit) and
8 GB (Giga Bytes) RAM (Random Access Memory). From
the table, execution times of the proposed algorithms are
within milliseconds range suited to 6G millisecond latency. On
the other hand, when traditional Integer Linear Programming
(ILP)-based optimization solver is used for the mmWave
topology, the execution time is in the order of seconds for
10 nodes and is not attempted for higher number of nodes
in [14]. Similarly, for scenario 2, the execution time of a
traditional application of an optimization algorithm also results
in execution times of order of seconds and exponentially
increases for an increase of coverage areas [15]. Thus, the
high execution times of the traditional optimization algorithms
reflect a high time complexity in contrast with those of
the considered MAB techniques. This corroborates with our
proposed optimal policy selector’s choice of deploying the
aforementioned MAB models for fast, sequential decision
making in the considered scenarios.

V. CHALLENGES AND FUTURE DIRECTIONS

In this section, we describe the challenging research topics
for further investigation in softwarized intelligence, partic-
ularly using ultra-fast policy selection and deployment in
6G networks, by exploiting MAB frameworks and similar
sequential/online algorithms.

• Resource allocation in Low Power Wide Area Network
(LoRAWAN) networks, Non-Orthogonal Multiple Access
(NOMA), underwater relay selection and routing, and
underlay D2D communication can greatly benefit from
using relevant MAB variants to suit a diverse range of
scenarios. Also, the on-demand controller’s decisions in
the proposed softwarized network can be greatly im-
proved for routing information by utilizing MABs with
ideal policies.

• Reflecting Intelligent Surfaces (RIS) and meta-learning
are two attractive, relatively new areas where sequential
learning algorithms may be highly effective. RIS is a
two-dimensional surface composed of several passive
reconfigurable meta-material elements, which reflect the

incident signal by introducing a controllable phase shift.
Recently, RIS has been used in communication networks
for several purposes, including coverage enhancement,
relaying, and physical-layer security. However, there are
several challenges for achieving the potential of such
structure, where AI-based techniques, particularly on-
demand deployment of MAB models, can help learn the
proper phase shift for each element under the discrete-
phase shift assumption.

• Meta-learning may be a helpful technique in induc-
tive bias’s selection automation. It leverages valuable
information or active observations from tasks that are
expected to be related to the future tasks of interest.
Such learning can facilitate the AI model training with
a significantly lower amount of data and time. Hence,
the meta-learning policies for MAB may be effectively
leveraged for satisfying the ultra-low latency requirement
of 6G network nodes.

VI. CONCLUSION

Intelligent decision-making is anticipated to be a key
embedded feature in the upcoming 6G networks that will
realize innovative future applications. Since these services
have ultra-reliable requirements easily impacted by varying
network dynamics, on-demand ultra-fast learning techniques
emerge as a formidable research challenge. In this article, we
addressed this challenge, and proposed a softwarized network
consisting of an on-demand policy selector that considers the
ongoing network dynamics and accordingly chooses the best
intelligence module for that particular network setting. Unlike
the classical optimization and supervised learning methods,
online/sequential learning techniques such as MAB algorithms
with different policies, were illustrated to be viable sequential
learning techniques by the proposed on-demand selector for
6G node deployment. A use case with two scenarios was pre-
sented comprising NDS in a D2D network and aerial gateway
selection in a UAV network, respectively. Extensive computer-
based simulation results demonstrated that the selected MAB
variant for both scenarios significantly outperforms both the
conventional techniques and other MAB variants. Thus, the
reported results clearly indicate the optimal policy selection
capability of our proposed on-demand selector. As a caveat, it
is worth noting that for deploying the models in an on-demand
manner, there could be some connectivity issues causing the
AI models not to be timely updated that may cause the
target routers/network nodes to be rendered dysfunctional.
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To combat such a corner case, we may assume a default,
basic functionality of programmable routers to cope with
such scenarios. How to optimally generalize such a default
functionality is left open as a future work for 6G softwarized
networks and programmable routers.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers JP21K14162 and JP22H03649 and also supported by the
National Science Foundation of the USA under Award No.
2210252 and Prince Sattam bin Abdulaziz University, KSA,
project No. (PSAU/2023/R/1444).

REFERENCES

[1] W. Wu, N. Cheng, N. Zhang, P. Yang, W. Zhuang, and X. Shen,
“Fast mmwave beam alignment via correlated bandit learning,” IEEE
Transactions on Wireless Communications, vol. 18, no. 12, pp. 5894–
5908, 2019.

[2] X. Pan, X. Wang, B. Tian, C. Wang, H. Zhang, and M. Guizani,
“Machine-learning-aided optical fiber communication system,” IEEE
Network, vol. 35, no. 4, pp. 136–142, 2021.

[3] S. Hashima, K. Hatano, H. Kasban, and E. Mahmoud Mohamed, “Wi-
Fi assisted contextual multi-armed bandit for neighbor discovery and
selection in millimeter wave device to device communications,” Sensors,
vol. 21, no. 8, p. 2835, 2021.

[4] E. M. Mohamed, S. Hashima, K. Hatano, S. A. Aldossari, M. Zareei, and
M. Rihan, “Two-hop relay probing in WiGig device-to-device networks
using sleeping contextual bandits,” IEEE Wireless Communications
Letters, vol. 10, no. 7, pp. 1581–1585, 2021.

[5] E. M. Mohamed, S. Hashima, A. Aldosary, K. Hatano, and M. A. Abdel-
ghany, “Gateway selection in millimeter wave UAV wireless networks
using multi-player multi-armed bandit,” Sensors, vol. 20, no. 14, p. 3947,
2020.

[6] D. Li, S. Wang, H. Zhao, and X. Wang, “Context-and-social-aware
online beam selection for mmwave vehicular communications,” IEEE
Internet of Things Journal, vol. 8, no. 10, pp. 8603–8615, 2021.

[7] Y. Xing, Y. Qian, and L. Dong, “A multi-armed bandit approach to
wireless information and power transfer,” IEEE Communications Letters,
vol. 24, no. 4, pp. 886–889, 2020.

[8] J. Zhang, J. Tang, and F. Wang, “Cooperative relay selection for load
balancing with mobility in hierarchical WSNs: A multi-armed bandit
approach,” IEEE Access, vol. 8, pp. 18 110–18 122, 2020.

[9] W. Xia, T. Q. S. Quek, K. Guo, W. Wen, H. H. Yang, and H. Zhu,
“Multi-armed bandit-based client scheduling for federated learning,”
IEEE Transactions on Wireless Communications, vol. 19, no. 11, pp.
7108–7123, 2020.

[10] X. Xu, M. Tao, and C. Shen, “Collaborative multi-agent multi-armed
bandit learning for small-cell caching,” IEEE Transactions on Wireless
Communications, vol. 19, no. 4, pp. 2570–2585, 2020.

[11] S. Ali, A. Ferdowsi, W. Saad, N. Rajatheva, and J. Haapola, “Sleeping
multi-armed bandit learning for fast uplink grant allocation in machine
type communications,” IEEE Transactions on Communications, vol. 68,
no. 8, pp. 5072–5086, 2020.

[12] C. Wang, J. Yang, H. He, R. Zhou, S. Chen, and X. Jiang, “Neighbor
cell list optimization in handover management using cascading bandits
algorithm,” IEEE Access, vol. 8, pp. 134 137–134 150, 2020.

[13] H.-A. Tran, S. Souihi, D. Tran, and A. Mellouk, “MABRESE: A new
server selection method for smart SDN-based CDN architecture,” IEEE
Communications Letters, vol. 23, no. 6, pp. 1012–1015, 2019.

[14] G. H. Sim, M. Mousavi, L. Wang, A. Klein, and M. Hollick, “Joint re-
laying and spatial sharing multicast scheduling for mmWave networks,”
in 2020 IEEE 21st International Symposium on ”A World of Wireless,
Mobile and Multimedia Networks” (WoWMoM), 2020, pp. 127–136.

[15] J. Sabzehali, V. K. Shah, Q. Fan, B. Choudhury, L. Liu, and J. H. Reed,
“Optimizing number, placement, and backhaul connectivity of multi-
UAV networks,” arXiv preprint arXiv:2111.05457, 2021.

BIOGRAPHIES

Sherief Hashima is currently a postdoctoral researcher with the
computational learning theory team, RIKEN-AIP, Japan. He also
holds the position of Associate Professor with the Department of

Engineering and Scientific Equipment, Nuclear Research Center
(NRC), Egyptian Atomic Energy Authority (EAEA), Egypt. He was
a visiting researcher at EJUST Center, Kyushu University, Japan.
His research interests include wireless communications, machine
learning, online learning, Massive MIMO, B5G, and 6G systems,
image processing, millimeter waves, and Internet of things. He is
a technical committee member in many international conferences
and a reviewer in many international conferences, journals and
transactions. He is an IEEE senior member and AAAI member.

Zubair Md Fadlullah [M’11, SM’13] is currently an Associate
Professor with the Computer Science Department, Lakehead
University, and a Research Chair of the Thunder Bay Regional
Health Research Institute (TBRHRI), Thunder Bay, Ontario, Canada.
He was an Associate Professor at the Graduate School of Information
Sciences (GSIS), Tohoku University, Japan, from 2017 to 2019.
He received his Ph.D. degree in Information Sciences from Tohoku
University, Japan in 2011. His main research interests are in the
areas of emerging communication systems, UAV based systems,
smart health technology, cyber security, game theory, and smart grid.

Mostafa M. Fouda [M’11, SM’14] is currently an Assistant
Professor with the Department of Electrical and Computer
Engineering at Idaho State University, ID, USA. He also holds the
position of Associate Professor at Benha University, Egypt. He
received his Ph.D. degree in Information Sciences from Tohoku
University, Japan in 2011. His research interests include cyber
security, machine learning, IoT, and 6G networks. He has served on
the technical committees of several IEEE conferences. He is also
a Reviewer in several IEEE Transactions and Magazines. He is an
Editor of IEEE Transactions on Vehicular Technology (TVT) and an
Associate Editor of IEEE Access.

Kohei Hatano received Ph.D. from Tokyo Institute of Technology
in 2005. Currently, he is an associate professor at Faculty of Arts
and Science in Kyushu University. He is also the leader of the
Computational Learning Theory team at RIKEN AIP. His research
interests include machine learning, computational learning theory,
online learning and their applications

Ehab Mahmoud Mohamed (Member,IEEE) received the B.E.
and M.E. degrees in electrical engineering from South Valley
University,Egypt, in 2001 and 2006, respectively, and the Ph.D.
degree in information science and electrical engineering from Kyushu
University, Japan, in 2012. From 2013 to 2016, he has joined Osaka
University, Japan, as a Specially Appointed Researcher. Since
2017, he has been an Associate Professor with Aswan University,
Egypt. He has also been an Associate Professor with Prince Sattam
Bin Abdulaziz University, Saudi Arabia, since 2019. His current
research interests include 5G, B5G and 6G networks, cognitive
radio networks, millimeter wave transmissions,Li-Fi technology,
MIMO systems, and underwater communication. He is a technical
committee member of many international conferences and a reviewer
of many international conferences, journals, and transactions. He is
the General Chair of the IEEE ITEMS’16 and IEEE ISWC’18.

Basem M Elhalwany (Senior Member, IEEE) received the
master’s degree from Benha University, Banha, Egypt and the Ph.D.
degree from Egypt-Japan University of Science and Technology,
New Borg El Arab, Egypt, in 2011 and in 2014, respectively, both
degrees in electronic and communication engineering. He is an
Associate Professor with the Faculty of Engineering, Shoubra,Benha
University. He has authored or coauthored more than 40 high-
quality research papers in international leading journals and primer
conferences. He was a Research Fellow with Smart Sensing and
Mobile Computing Laboratory, Shenzhen University, Shenzhen,
China, and EJUST Center, Kyushu University, Fukuoka, Japan.
His research interests include performance analysis, resource
management, and optimization in wireless networks, NOMA, and

8



machine learning applications in communication. Dr. ElHalawany is
a Technical Committee Member in many international conferences
and a Reviewer in many international conferences, journals, and
transactions.

Mohsen Guizani [S’85-M’89-SM’99-F’09] received the B.S.
(with distinction) and M.S. degrees in electrical engineering, the
M.S. and Ph.D. degrees in computer engineering from Syracuse
University, Syracuse, NY,USA, in 1984, 1986, 1987, and 1990,
respectively.He is currently a Professor at the Computer Science
and Engineering Department in Qatar University,Qatar. Previously,
he served in different academic and administrative positions at the
University of Idaho, Western Michigan University, University of West
Florida, University of Missouri-Kansas City, University of Colorado-
Boulder, and Syracuse University. His research interests include
wireless communications and mobile computing, computer networks,
mobile cloud computing, security, and smart grid. He is currently
the Editor in-Chief of the IEEE Network Magazine, serves on the
editorial boards of several international technical journals and the

Founder and Editor-in-Chief of Wireless Communications and Mobile
Computing journal (Wiley). He is the author of nine books and more
than 600 publications in refereed journals and conferences. He guest
edited a number of special issues in IEEE journals and magazines.
He also served as a member, Chair, and General Chair of a number
of international conferences. Throughout his career, he received three
teaching awards and four research awards. He is the recipient of the
2017 IEEE Communications Society Wireless Technical Committee
(WTC) Recognition Award, the 2018 AdHoc Technical Committee
Recognition Award for his contribution to outstanding research in
wireless communications and Ad-Hoc Sensor networks and the
2019 IEEE Communications and Information Security Technical
Recognition (CISTC) Award for outstanding contributions to the
technological advancement of security. Hewas the Chair of the IEEE
Communications Society Wireless Technical Committee and the
Chair of the TAOS Technical Committee. He served as the IEEE
Computer Society Distinguished Speaker and is currently the IEEE
ComSoc Distinguished Lecturer. He is a Fellow of IEEE and a Senior
Member of ACM.418

9


	Introduction
	Motivation: Ultra-fast Optimal Policy Selection in 6G Networks
	Proposed Softwarization of Intelligence in 6G Networks
	Why Softwarized 6G Networks?
	Envisioned Softwarized System Model
	Envisioned Ultra-fast On-demand Policy Selection via Softwarized Intelligence

	An Illustrative Use Case and Performance Evaluation
	Scenario 1: Optimal Policy Selection in mmWave-enabled D2D Neighbor Discovery Service
	Scenario 2: Aerial gateway selection for UAV-based communication network in an under-served area

	Challenges and Future Directions
	Conclusion
	References

