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ABSTRACT
We present a rigorous quantum scattering study of the effects of hyperfine and Zeeman interactions on cold Li–H2 collisions in the presence
of an external magnetic field using a recent ab initio potential energy surface. We find that the low-field-seeking states of H2 predominantly
undergo elastic collisions: the ratio of elastic-to-inelastic cross sections exceeds 100 for collision energies below 100 mK. Furthermore, we
demonstrate that most inelastic collisions conserve the space-fixed projection of the nuclear spin. We show that the anisotropic hyperfine
interaction between the nuclear spin of H2 and the electron spin of Li can have a significant effect on inelastic scattering in the ultracold regime,
as it mediates two processes: the electron spin relaxation in lithium and the nuclear spin–electron spin exchange. Given the predominance
of elastic collisions and the propensity of inelastic collisions to retain H2 in its low-field-seeking states, our results open up the possibility of
sympathetic cooling of molecular hydrogen by atomic lithium, paving the way for future exploration of ultracold collisions and high-precision
spectroscopy of H2 molecules.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0193148

I. INTRODUCTION

Cold collisions and chemical reactions involving molecular
hydrogen have been the subject of much theoretical and experi-
mental interest due to their significance in astrochemistry and cold
controlled chemistry.1,2 In particular, the F +H2 → HF +H reac-
tion, despite having a high energetic barrier of ∼800 K, occurs quite
efficiently in cold environments (10–100 K) and is the only known
source of HF in the interstellar medium.3 Experiments on the Pen-
ning ionization of H2 upon collisions with metastable (3S) helium
revealed sub-K shape resonances,4 isotopic effects,5 and a significant
role of molecular rotation6 and anisotropy of the molecule–atom
interaction7 in cold reaction dynamics. Cold collisions of vibra-
tionally excited isotopologues of molecular hydrogen (HD and D2)
with D2,8,9 H2,9 and He10,11 revealed interesting stereodynamic
effects,12 interference patterns, and shape resonances, which enable
the quantum interference-based coherent control of the collision
outcome.13,14

Previous theoretical studies of cold collisions involving molec-
ular hydrogen and its isotopologues12,15–25 neglected the effects of
hyperfine interactions and Zeeman shifts on collisions with H2,
which could be substantial at ultralow temperatures. For instance,
the hyperfine splitting of the ν = 0,N = 1 state in ortho-H2 is
∼600 kHz26–28 (or kB 20 μK). The hyperfine structure of this state in
an externalmagnetic field is quite complex, comprising nine Zeeman
states.26 However, ultracold collision dynamics involving these states
and the mechanisms driving particular transitions (e.g., nuclear spin
relaxation) remain unexplored.

An additional motivation to study the role of hyperfine and
Zeeman interactions in cold collisions of H2 molecules is related to
high-precision spectroscopy of molecular hydrogen. Accurate deter-
mination of energy intervals between rovibrational states in hydro-
gen (with a relative accuracy reaching the sub-ppb level29,30) allows
for performing stringent tests of quantum electrodynamics31–33 and
for putting constraints on the strength of hypothetical interactions
beyond the standard model.34 To overcome Doppler broadening
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and enhance the precision of the determined transition frequencies,
experimental groups employ saturation techniques,35,36 molecular
beams29,30 or cooling of the gas sample37–39 (down to 57 K). Fur-
ther improvement in high-precision spectroscopy would be possi-
ble if molecular hydrogen could be cooled and trapped. Recently,
we proposed a scheme for implementing a magic wavelength for
the fundamental transition ν = 0,N = 0→ ν = 1,N = 2 in para-H2

40

(which is not magnetically trappable) that has a potential to enable
much higher accuracy. In contrast, magnetic trapping could be used
to increase the precision spectroscopy of the fundamental transition
(ν = 0,N = 1→ ν = 1,N = 1) in ortho-H2. Both the optical dipole
and magnetic traps could reach depths of the order of 1 mK, for the
laser power density of 1 MW/mm2 and magnetic field strength of
0.4 T, respectively (as recently demonstrated in Ref. 41, it is possi-
ble to use strong and focused laser beams to achieve trap depths of
∼3.6 K for H2). Further progress in high-precision spectroscopy is
contingent upon the ability to cool H2 far below 1 mK.

One such possibility is sympathetic cooling, which relies on
immersing a molecular system in a gas of coolant atoms, preferably
of a similar mass.42–45 Under such conditions, elastic collisions result
in cooling by transferring momentum between molecules and the
coolant atoms. In contrast, inelastic collisions can cause transitions
to high-field-seeking (untrappable) states, which release the internal
energy stored in these states, and lead to heating and trap loss.44,45

For efficient sympathetic cooling, the ratio of the cross section for
elastic to inelastic collisions (γ = σel/σinel) should be larger than
100.46

A relatively small mass and the fact that it can be cooled down
to the μK regime using laser cooling techniques make atomic lithium
an attractive candidate for sympathetic cooling of H2. Duarte et al.47
have demonstrated a magneto-optical trap (MOT) for 6Li atoms
operating on a narrow 2S1/2 → 3P3/2 transition at 323 nm, achieving
temperatures as low as 59 μK.However, the feasibility of sympathetic
cooling of H2 by collisions with Li remains to be determined. For
instance, there is a significant mismatch in the Zeeman splittings of
the two species, which could lead to losses once the lithium MOT
and a hypothetical magnetic trap of H2 are overlapped. Furthermore,
it is unclear whether the ratio, γ, of the cross section for elastic to
inelastic collisions of H2 with Li is high enough to support the cool-
ing process. In order to accurately calculate γ, it is necessary to take
into account the effects of hyperfine interactions and the presence of
an external magnetic field.

In this paper, we present the first rigorous theoretical study
of the role of hyperfine and Zeeman interaction effects in cold
atom–H2 collisions. We investigate the cold collisions of ortho-H2
(ν = 0,N = 1) molecules with 6Li atoms using coupled-channel
quantum scattering calculations based on a highly accurate ab initio
potential energy surface (PES).48 In the field-free case, we find that
the three hyperfine states of H2 are collisionally stable, i.e., the ratio
of cross sections for elastic (F-conserving) to inelastic (F-changing)
collisions exceeds 100, with the exception of a narrow range in the
vicinity of a g-wave shape resonance located at E ≈ kB × 1.2 K. We
find that the presence of the magnetic dipolar interaction between
the nuclear magnetic moment of H2 and the electron spin mag-
netic moment of Li manifests itself in the ultracold regime, where
it drastically increases the inelastic F = 0→ F′ = 1 scattering (other-
wise suppressed by the selection rules for transitions driven by the
H2–Li interaction potential). We also perform quantum scattering

calculations in an external magnetic field, and we analyze relaxation
from the three low-field-seeking Zeeman states in H2 upon collisions
with 6Li atoms in the trappable (S = 1/2,MS = 1/2) state. We find
that the inelastic relaxation is dominated by collisions that conserve
the space-fixed projection of the nuclear spin of H2. The magnetic
dipolar interaction drives the relaxation of the electronic spin of Li,
which has profound consequences on the possibility of sympathetic
cooling of H2 by lithium.

This article is organized as follows: In Sec. II, we outline the
quantum theory of collisions between 1Σ molecules with two mag-
netic nuclei (such as ortho-H2) and 2S atoms in an external magnetic
field, which includes the intramolecular hyperfine interactions in
the 1Σ molecules, as well as the spin-dependent (SD) interaction
between the molecule and the 2S atom. Next, we apply this theory
to cold Li–H2 collisions in Sec. III, where we present and discuss the
results for the field-free case. Then, in Sec. IV, we provide the state-
to-state cross sections for transitions between the Zeeman sublevels
of ortho-H2 in an external magnetic field. We discuss the kinetic
energy andmagnetic field dependence of the cross sections, as well as
the implications of the calculated elastic-to-inelastic scattering ratio
on the possibility of sympathetic cooling of H2 by 6Li. Section V con-
cludes by summarizing the main results of this work. Atomic units
are used throughout this article unless stated otherwise.

II. THEORY
Here, we present the quantum theory of collisions between a

1Σ molecule and a 2S atom in the presence of an external magnetic
field. The theory is based on the seminal work of Krems and Dal-
garno49 and Volpi and Bohn,50 who first considered diatom–atom
collisions in a magnetic field. It is also an extension of the recent
work of Hermsmeier et al.51 (who studied nuclear spin relaxation
in cold He–13C16O collisions) to the case of collisions of open-shell
atoms, such as 6Li, and molecules with two magnetic nuclei, such as
ortho-H2.

We use space-fixed Jacobi coordinates to describe the scatter-
ing system: the separation vector R from the atom to the center
of mass of the H2 molecule, the internuclear vector r, and the
angle θ between R and r. There are six angular momenta in the
H2(1Σ+g )–Li(2S) system: the rotational angular momentum of the
nuclei in H2 (N̂); the nuclear spin angular momenta of the pro-
tons, Î1 and Î2 (Ii = ∣Îi∣ = 1/2, i = 1, 2); the total electron spin of the
lithium atom, Ŝ (S = ∣Ŝ∣ = 1/2); the nuclear spin angular momentum
of lithium, ÎLi (ILi = ∣ÎLi∣ = 1 for 6Li and 3/2 for 7Li); and the angular
momentum operator describing the orbital motion of the collision
partners, l̂. For reasons clarified below, we neglect the hyperfine
structure of lithium and we exclude ÎLi from the analysis. We couple
the two nuclear spins of the protons to form the total nuclear spin
of H2, ÎH2 = Î1 + Î2. We recall that molecular hydrogen exists in two
spin isomeric forms: para-H2 with IH2 = ∣ÎH2 ∣ = 0 and ortho-H2 with
IH2 = ∣ÎH2 ∣ = 1. Because the total wave function of H2 must be anti-
symmetric with respect to the permutation of the protons, para-H2
exhibits a rotational structure with only even values of N = ∣N̂∣,
while the rotational structure of ortho-H2 involves only odd N val-
ues. Since IH2 = 0 for para-H2, this spin isomer does not have the
hyperfine structure and nuclear Zeeman shifts and interacts with the
magnetic field only through its weak rotational magnetic moment
(forN = 0 para-H2, the rotational magnetic moment is strictly zero).
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In contrast, ortho-H2 does have a non-zero nuclear spin, yielding
stronger Zeeman shifts that make it amenable to magnetic trapping.
Thus, we focus on ortho-H2 in what follows.

The Hamiltonian for the atom–molecule collision system is

Ĥ = − 1
2μR

∂2

∂R2 R +
l̂ 2

2μR2 + V̂(R, r) + V̂SD(R, r, Î, Ŝ) + Ĥas, (1)

where μ = matmmol/(mat +mmol) is the reduced mass of the collision
partners (we use mat = 6.015 121 and mmol = 2.015 65 atomic mass
units),52 V̂(R, r) is the atom–molecule potential energy surface, and
V̂SD(R, r, Î, Ŝ) denotes the spin-dependent (SD) Hamiltonian (note
that the subscript in ÎH2 is dropped for simplicity, and the nuclear
spin of H2 is denoted simply as Î),

V̂SD(R, r, Î, Ŝ) = ∑
i=1,2

Ai
F(R, r)Îi ⋅ Ŝ +∑

i=1,2
∑
α,β

ciαβ(R, r)Îiα Ŝβ, (2)

in which the sum over i involves the two protons in H2 and α and β
run over Cartesian components of the spin operators in a molecule-
fixed coordinate frame. The first term corresponds to the Fermi con-
tact interaction between the nuclear spin angular momenta, Îi of the
ith proton in H2, and the spin angular momentum, Ŝ, of the valence
electron in lithium, with Ai

F(R, r) being the coupling coefficient for
the Fermi contact interaction. Due to the similarity in the interaction
potentials and reduced masses, the magnitude of the Fermi contact
interaction in H2–Li can be estimated from the previous work on
3He–Li53 and 3He–K54 collisions. At the zero-energy turning point
of the Li–H2 potential (R ≈ 8.75a0), the Fermi contact interaction
constant for 3He–Li53 and 3He–K54 is on the order of 10−4 cm−1.
Since this interaction vanishes rapidly with increasing R,54 its influ-
ence on the low-temperature Li–H2 scattering is expected to be
negligible. We thus exclude the Fermi contact interaction from our
analysis. The second term in Eq. (2) is the intermolecular anisotropic
hyperfine interaction, of which the strength is determined by the
coupling tensor, ciαβ(R, r). Since calculating the full dependence of
the coupling tensor on R, θ, and r is beyond the scope of this work,
we use an approximate formula that is appropriate for describing the
long-range part of the anisotropic hyperfine interaction. We assume
that the total nuclear spin magnetic moment of H2, μ̂H2 = gHμN Î,
and the electron spin magnetic moment of Li, μ̂Li = gSμBŜ, are point
dipoles located at the centers of mass of H2 and Li, respectively. The
magnetic dipole interaction between the two magnetic moments is
given as54

V̂SD(R, Î, Ŝ) = −gSμBgHμN
√

24π
5

α2

R3

2

∑
q=−2
(−1)qY2,−q(R̂)[Ŝ⊗ Î]2

q
,

(3)

where gS and gH are the electron and proton g-factors, respectively,
μB and μN denote the Bohr and nuclear magnetons, respectively, and
α is the fine-structure constant. Y2q(R̂) is a spherical harmonic of
rank 2, which depends on the orientation of the scattering system,
and [Ŝ⊗ Î]2

q
is a tensorial product of Ŝ and Î. We note that the gen-

eral expression for the anisotropic hyperfine interactions, Eq. (2),
is used in the studies of hyperfine and Zeeman effects in three-
atom molecules with nonzero nuclear and electronic spins, such as

HCO,55 NH2,56 and Na3.57,58 These interactions also play a crucial
role in electron spin decoherence of alkali-metal atoms trapped in
solid para-H2 matrices.59 A form similar to Eq. (3) is used to describe
the long-range magnetic dipolar interaction between the electron
spins of 2Σmolecules and 2S atoms,44,45 two 2Σmolecules,49 and two
3Σmolecules.49,60–62

The asymptotic Hamiltonian Ĥas in Eq. (1) is given by

Ĥas = ĤH2 + ĤLi, (4)

where ĤH2 and ĤLi correspond to the Hamiltonians of the isolated
molecule and atom, respectively. The effective Hamiltonian for the
H2 molecule in the ground electronic (1Σ+g ) state is

ĤH2 = Ĥrot + ĤHF + ĤZeeman (5)

and involves the rotational, intramolecular hyperfine (HF), and
Zeeman terms,

Ĥrot = BvN̂ 2 −DvN̂ 4, (6)

ĤHF = −cnsrN̂ ⋅ Î + g2Hμ2N(
μ0
4π
)( Î1 ⋅ Î2

r3
− 3(Î1 ⋅ r)(Î2 ⋅ r)

r5
), (7)

ĤZeeman = −grμNN̂ZBZ − gHμNIZBZ(1 − σ). (8)

Here, Bv and Dv are the effective rotational and centrifugal dis-
tortion constants in the vibrational state v. The intramolecular
hyperfine Hamiltonian describes the two dominant hyperfine inter-
actions in H2—the nuclear spin–rotation interaction and the dipolar
interaction between the nuclear spins. The respective hyperfine cou-
pling constants, cnsr and cdip, quantify the strength of these two
interactions. The two terms in the Zeeman Hamiltonian correspond
to the contribution of the interaction of the rotational magnetic
moment and the nuclear magnetic moment with the external mag-
netic field, with gr and σ being the rotational nuclear g-factor and
the anisotropic part of the nuclear shielding tensor, respectively.
We assume that the external magnetic field is aligned along the
space-fixed Z-axis. The diamagnetic interaction parameterized by
molecular susceptibility, i.e., the interaction of the magnetic field
with an induced molecular magnetic moment, contributes signif-
icantly only in intense magnetic fields (B > 1 T),51 and thus, we
neglect it in the following analysis.

Because our interest here is in transitions between the hyper-
fine states of H2, we also neglect the internal hyperfine structure of
the lithium atom. Thus, the effective Hamiltonian for the isolated
lithium atom, ĤLi, involves only the Zeeman term,

ĤLi = −gSμBŜZBZ , (9)

where gS is the electron spin g-factor.
The total wave function of the system is expanded in a com-

plete set of uncoupled basis states in a space-fixed frame of Refs. 49
and 63,
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∣Ψ⟩ = 1
R∑N

N

∑
MN=−N

1

∑
MI=−1

1/2

∑
MS=−1/2

×∑
l

l

∑
Ml=−l

FNMNMIMS lMl(R)∣NMN⟩∣IMI⟩∣SMS⟩∣lMl⟩, (10)

whereMN ,MI ,MS, andMl are the projections of N̂, Î, Ŝ, and l̂ on the
space-fixed Z-axis, respectively. The expansion (10) is appropriate
for weakly anisotropic atom–molecule interaction potentials, such
as the Li–H2 potential used in this work.

Substitution of the total wave function from Eq. (10) to the
Schrödinger equation, Ĥ∣Ψ⟩ = E∣Ψ⟩, leads to a set of coupled channel
(CC) equations for the expansion coefficients, FNMNMIMS lMl(R),

[ d2

dR2 + 2μE −
l(l + 1)
R2 ]FNMNMIMS lMl(R)

= 2μ ∑
N′ ,M′N ,M

′
I ,M

′
S ,l
′ ,M′l

FN′M′NM′IM′S l′M′l (R)

× ⟨NMN ∣⟨IMI ∣⟨SMS∣⟨lMl∣V̂(R, r) + V̂SD(R, r, Î, Ŝ)
+ Ĥas∣N′M′N⟩∣IM′I⟩SM′S⟩∣l′M′l ⟩, (11)

where E is the total energy and μ is defined in Eq. (1). The evalu-
ation of the matrix elements on the right-hand side is described in
Appendix A. Note that the CC equations are block-diagonal with
respect to M =MN +MIH2

+MS +Ml, the projection of the total
angular momentum, Ĵ, on the space-fixed Z-axis. This is a conse-
quence of the fact that in the presence of an external magnetic field,
M, contrary to J, is conserved.49,63 This allows us to solve the CC
equations for each value ofM separately.

We solve the CC equations numerically (for computational
details, see Sec. II A) and transform the asymptotic solution to
the eigenstate basis of the asymptotic Hamiltonian (4) for H2 in a
magnetic field,

∣(NI)γH2⟩ =
N

∑
MN=−N

I

∑
MI=−I

AγH2
MI ,MN

(B)∣NMN⟩∣IMI⟩, (12)

where γH2 denotes the eigenvalue of the H2 Hamiltonian (5). In
principle, the asymptotic Hamiltonian involves a term that cou-
ples different rotational states of H2, but this coupling is extremely
small, as shown in Appendix A, so we treat N as a good quantum
number. We also note that the asymptotic Hamiltonian of the Li
atom, introduced in Eq. (9), is diagonal in the basis of ∣SMS⟩ states;
thus, ∣SMS⟩ is an approximate eigenvector for an isolated lithium
atom with MS = ±1/2 labeling the atomic Zeeman levels. Next, we
match the result to the linear combinations of the Riccati–Bessel and
Neumann functions to obtain the scattering S-matrix.64 The state-
to-state cross sections are calculated from the S-matrix elements at
a given collision energy, Ekin, by summing contributions from all
M-blocks,49

σγH2MS→γ′H2
M′S(Ekin) =

π
k2γH2MS

∑
M
∑
lMl

∑
l Ml′
∣δl,l′δMl ,M′l

δγH2 ,γ
′
H2
δMS ,M′S

− SMγH2MS lMl ,γ′H2
M′S l

′M′l
∣
2
, (13)

where kγH2 MS
=
√
2 μ(E − EγH2

− EMS) is the collision wavevector.

Since we are interested in the collisional relaxation of the
nuclear spin states of molecular hydrogen, we define a state-to-state
cross section, which is summed over the final Zeeman states of the
lithium atom,

σγH2→γ′H2
(Ekin) =∑

M′S

σγH2MS=1/2→γ′H2
M′S(Ekin), (14)

and the related rate coefficient,

kγH2→γ′H2
(T) =

√
8

πμk3BT3∫
∞

0
σγH2→γ′H2

(Ekin)Ekine−Ekin/kBTdEkin.

(15)

In this work, we assume that the lithium atom is initially in the trap-
pableMS = 1/2 state, so we can drop theMS symbol on the left-hand
side of Eqs. (14) and (15).

When considering collisions in the absence of an external
magnetic field, we expand the total wave function as follows:

∣Ψ⟩ = 1
R∑N

N+1

∑
F=∣N−1∣

1/2

∑
MS=−1/2

∑
l

l

∑
Ml=−l

FNFMFMS lMl(R)

× ∣(NI)FMF⟩∣SMS⟩∣lMl⟩, (16)

i.e., we use the coupled basis vectors to represent the states of H2,

∣(NI)FMF⟩ = (−1)−N+1−MF
N

∑
MN=−N

1

∑
MI=−1

√
2F + 1

×
⎛
⎜
⎝
N 1 F

MN MI −MF

⎞
⎟
⎠
∣NMN⟩∣IMI⟩. (17)

Here, (. . .

. . .
) are the 3-j symbols65 and F = ∣F̂∣ is the quantum num-

ber associated with the total angular momentum of H2, in which
F̂ is the result of coupling of N̂ to Î. This representation is con-
venient because F is conserved in the field-free case; see Sec. III.
The rest of the procedure follows the same steps as detailed above
and hence is not repeated here. The matrix elements of the PES, the
spin-dependent interaction, and the asymptotic Hamiltonian in the
coupled basis [see Eq. (16)] are provided in Appendix B.

A. Computational details
The spectroscopic constants used to parameterize the Hamil-

tonian of H2 [Eq. (5)] and Li [Eq. (9)] are listed in Table I. We
use the ab initio H2–Li PES reported by Makrides et al.48 This PES
has recently been used in the calculations of elastic, inelastic, and
glancing-angle rate coefficients for collisions of ultracold Li atoms
with room-temperature H2 molecules in the context of the cali-
bration of a cold-atom vacuum standard.48,70–72 For the purpose of
solving the CC equations, we expand the PES in Legendre polyno-
mials [Eq. (A1)]. Since H2 is a homonuclear molecule, the expansion
index takes only even values. We truncate the expansion in Eq. (A1)
at λmax = 4. The dependence of the expansion coefficients on the H2
stretching coordinate, r, is averaged out by the integration over rovi-
brational wave functions of the isolated H2 molecule in the ground
vibrational state; see Eq. (A3) for details.
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TABLE I. Spectroscopic parameters of H2 used in the calculations reported in the
present work.

Constant Value Source

Bv 59.322 cm−1 66
Dv 4.575 × 10−2 cm−1 66
cnsr (3.81 ± 0.01) × 10−6 cm−1 27
cdip (9.614 ± 0.005) × 10−6 cm−1 27
gr 0.882 5 67
gH 5.585 694 698 3 68
σ 1.76 ppm 69

We solve the CC equations using a log-derivative
propagator64,73 on a radial grid from Rmin = 3.0a0 to Rmax
= 200a0 (for collisions with Ekin < 10−2 cm−1, we increase Rmax to
500a0) with a constant step size of 0.05a0. While this integration
range is notably smaller than that used in Ref. 48, where the authors
extended Rmax to 5000a0, we validated that it is sufficient to ensure
a subpercent convergence of the state-to-state cross sections. We
cover the range of kinetic energies from 10−9 to 50 cm−1. Due to the
weak anisotropy of the Li–H2 PES, it is sufficient to keep only the
lowest two rotational levels of ortho-H2 (N = 1 and N = 3) in the
basis to obtain a subpercent convergence of the cross sections. The
number of partial waves, lmax, included in our calculations depends

on the collision energy and varies from 6 up to 55. To verify our
calculations, we compared the field-free cross sections with the
previous results48 and found excellent agreement. Finally, we note
that the exact value of the rotational constant has no significant
influence on the cross sections. For instance, switching between
Bv=0 and Be modifies the elastic cross section for the scattering of H2
in the F = 0 hyperfine state by 0.03% and the inelastic cross sections
by less than 0.005%.

III. RESULTS: FIELD-FREE H2–Li COLLISIONS
In the absence of an external magnetic field, the ν = 0,N

= 1 state of H2 is split into three hyperfine levels, spread over a
range of ∼600 kHz,27 as shown in the inset of Fig. 1(a). The three
states are labeled by F, the total angular momentum of H2. We
present the hyperfine-resolved state-to-state cross sections of H2
(ν = 0,N = 1) colliding with 6Li in Fig. 1. The elastic (F-conserving)
cross sections are shown in Fig. 1(a) as blue (F = 2), green (F = 1),
and red (F = 0) lines. The cross sections are almost identical, apart
from kinetic energies close to the feature located at Ekin = 1.2 cm−1,
where the largest difference between the cross sections approaches
20%. This structure was attributed to the g-wave (l = 4) shape res-
onance in Ref. 48. The inelastic (F-changing) cross sections are
typically orders of magnitude smaller than the elastic cross sections.
However, near Ekin = 1.2 cm−1, this difference narrows to a factor
of 2.5. The three panels [(b)–(d)] provide additional information

FIG. 1. Hyperfine-resolved state-to-state cross sections for collisions of H2 with 6Li. Panel (a) presents the elastic (F-conserving) cross sections (solid lines) and the total
inelastic state-to-state cross sections (dashed lines) for a given F initial state. The gray vertical lines correspond to the energy differences between the three hyperfine states
and are shown to illustrate the mechanism of channel opening. The energy diagram in the bottom right corner of panel (a) shows the hyperfine structure of the ν = 0, N = 1
level of H2. In panels (b)–(d), we show the cross sections separately for each initial value of F along with the decomposition of the total inelastic cross section into the different
final state, F′, contributions.
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about the inelastic processes that affect each F-labeled state. Inelas-
tic scattering from the F = 0 state, which has the largest energy, is
dominated by the F = 0→ F′ = 2 de-excitation [the grey solid and
blue dotted-dashed lines in Fig. 1(b) are almost overlapped]. This
process is driven by the λ = 2 anisotropic term of the Li–H2 PES [see
Eq. (B1)]. The F′ = 1 state is not directly coupled to the initial state
by the PES (there is no λ = 1 term in the PES expansion since H2 is
a homonuclear molecule), and the cross sections for the F = 0→ F′

= 1 de-excitation are at least one order of magnitude smaller than
those for the F = 0→ F′ = 2 transition. The nuclear spin–electron
spin interaction introduces a weak coupling between the F = 0 and
F = 1 levels, which influences the cross sections only for kinetic ener-
gies smaller than 10−6 cm−1 as discussed below. Similarly, inelastic
scattering from the F = 1 state is dominated by the F = 1→ F′ = 2
de-excitation, driven by the λ = 2 term in the PES expansion. When
the kinetic energy crosses the ΔEF=0,F=1 = EF=0 − EF=1 threshold (at
546.5 kHz), the excitation to the F = 0 state becomes energetically
accessible. As mentioned above, since the F = 1 and F = 0 chan-
nels are not directly coupled by the PES, this contribution to the
total inelastic cross section is significantly (two orders of magnitude)
weaker than the F = 1→ F′ = 2 de-excitation. For the F = 2 initial
state, we note that until the kinetic energy surpasses the first thresh-
old (EF=1,F=2 = EF=1 − EF=2 at 54.6 kHz), the scattering is purely
F-conserving. Both the F = 2→ F′ = 1 and F = 2→ F′ = 0 excita-
tions are driven by the λ = 2 term (with a weak contribution from
the spin-dependent interaction).

Overall, the magnetic dipole–dipole interaction, Eq. (3), has a
negligible influence on the state-to-state cross sections for collisions
of H2 with 6Li in the absence of an external magnetic field. The only
significant effect that we observe is an enhancement of the ΔF = 1
de-excitation in the ultracold regime (below 10−6 cm−1)—the dashed
and solid lines in Fig. 2 represent the values of σF→F′=F+1 calculated
with and without the spin-dependent H2–Li interaction, respec-
tively. Interestingly, the inclusion of this weak interaction is neces-
sary to obtain theWigner threshold behavior74 of the σF=0→F′=1 cross
section (σ ∼ E−1/2kin ) at Ekin ≈ 10−6 cm−1. We observe a slight alter-
nation of the ΔF = −1 excitation cross sections near the thresholds
(ΔEF=0,F=1 = 546.5 kHz and EF=1,F=2 = 54.6 kHz), which is not shown
in Fig. 2. In the remaining field-free cases (larger relative kinetic
energies and other scattering processes), the nuclear spin–electron

FIG. 2. Influence of the nuclear spin–electron spin interaction on the hyperfine-
structure resolved state-to-state cross sections for collisions of H2 with 6Li.
The dashed and solid lines present the cross sections calculated including and
neglecting the spin-dependent interaction, respectively.

spin interaction has a negligible influence on the state-to-state cross
sections.

IV. RESULTS: H2–Li COLLISIONS IN AN EXTERNAL
MAGNETIC FIELD

Before proceeding to discuss the results of scattering calcula-
tions, we briefly consider the energy structure of the H2 molecule in
an external magnetic field. Figure 3(a) shows the Zeeman energy lev-
els in the ν = 0,N = 1 rovibrational manifold of ortho-H2 obtained
by diagonalization of the Hamiltonian in Eq. (5) with the spectro-
scopic parameters of H2 gathered in Table I. At large field strengths,
the nine levels are grouped into sets of three states, which share the
same projection of the nuclear spin, MI . This reflects the relative
strength of the nuclear Zeeman term with respect to the rotational
Zeeman term—for N = 1, the first term in Eq. (8) is approximately
six times smaller than the second term. Within each group of states,
the order of states (starting from states with the largest energy) isMN
= −1, 0, and 1. At high fields, the top three low-field-seeking Zee-
man states, which are amenable to magnetic trapping, correspond
toMI = −1.

While we use theMI andMN quantum numbers to describe the
Zeeman states at high fields, it is important to acknowledge that at
lower fields, the eigenstates undergo significant mixing due to the
nuclear spin–rotation and nuclear spin–nuclear spin interactions.
This situation requires us to use a more general approach for label-
ing and referencing the Zeeman states throughout the entire range
of magnetic fields. To this end, we introduce a “state index” (SI) that
uniquely identifies each eigenstate, ranging from 1 to 9, as shown in
Fig. 3(a). The three trappable states thus have SI = 1, 2, and 3.

We perform quantum scattering calculations at magnetic field
strengths ranging from 10−4 to 1 T. As an example, we discuss the
kinetic energy dependence of the state-to-state cross sections for
H2–Li collisions at B = 0.3 T, which corresponds to a magnetic trap
depth of ∼0.8 mK for the SI = 1 state. We consider the collisions of
H2 and Li in their low-field seeking states (SI = 1, 2, and 3 for H2 and
MS = 1/2 for Li, respectively). Panels (b)–(d) in Fig. 3 show the cross
sections for elastic and all inelastic transitions in H2–Li collisions at
B = 0.3 T. The color of each curve matches that of the corresponding
Zeeman level plotted in Fig. 3(a).

The elastic cross sections are consistently larger than the total
inelastic cross sections by at least two orders of magnitude, except
in the vicinity of Ekin = 1.2 cm−1, where γ decreases to ∼3. For
the sake of discussion, we distinguish two specific regimes, namely,
the ultralow collision energy regime (Ekin < 10−5 cm−1), the low
collision energy regime (Ekin > 10−2 cm−1), and an intermediate
regime.

A. Ultralow collision energy regime
At ultralow collision energies, inelastic cross sections follow the

∼ E−1/2kin behavior predicted byWigner’s threshold law.74 For the low-
field-seeking state with the largest internal energy [SI = 1, panel
(b) in Fig. 3], two key events contribute to the total inelastic cross
section. The first is the ΔMI = ΔMN = 0,ΔMS = −1 transition, i.e.,
the relaxation of lithium’s electron spin, with H2 remaining in the
same Zeeman state. Although this process clearly does not lead to the
transition of H2 to an untrappable state, it involves the release of a

J. Chem. Phys. 160, 094304 (2024); doi: 10.1063/5.0193148 160, 094304-6

Published under an exclusive license by AIP Publishing

 12 M
arch 2024 20:10:57

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 3. Panel (a): Zeeman sublevels of the ν = 0, N = 1 rovibrational state of H2 as a function of magnetic field B. Panels (b)–(d): Cross sections for H2–Li collisions in an
external magnetic field B = 0.3 T. The three panels correspond to different initial levels of H2: the first [panel (b)], second [panel (c)], and third states [panel (d)], according to
the state labels in panel (a). The solid lines correspond to the collisional events, in which the electron spin of 6Li is conserved, and the dashed lines correspond to those, in
which the electron spin is flipped (MS = 1/2→ M′S = −1/2).

large amount of energy (gSμBBZ ≈ 0.4 K), which will induce H2 loss.
The second is a nuclear-spin-conserving ΔMI = 0, ΔMN = 2 transi-
tion (ΔMS = 0, see the solid red curve). While this process leads to
the loss of H2 population from the SI = 1 state, the molecule remains
in one of the low-field seeking states after the collision. The process
releases ∼0.1 mK of energy. The third most prominent contribution,
albeit smaller by a factor of 2.5, is the spin–exchange collision that
involves a simultaneous change in the nuclear spin of H2, ΔMI = +1,
and relaxation of lithium’s electron spin, ΔMS = −1, while conserv-
ing the projection of rotational angular momentum, ΔMN = 0; see
the olive dashed curve in Fig. 3(b). Note that this process is driven
directly by the spin-dependent H2–Li interaction [Eq. (3)].

For the second low-field-seeking initial state of H2 [SI = 2, panel
(c) in Fig. 3], the two most significant contributions to the total
inelastic cross sections stem from lithium’s spin-flipping transitions
(ΔMS = −1), with either no change of the H2 quantum numbers
(ΔMI = ΔMN = 0) or a simultaneous change of ΔMI = +1 (with
ΔMN = 0); see the green and blue dashed lines in Fig. 3(c), respec-
tively.While the first transition is essentially elastic for H2, it releases
an energy of gSμBBZ ≈ 0.4 K. The second one is another example of
nuclear spin–electron spin exchange driven by the spin-dependent
interaction [Eq. (3)]. In both cases, the released energy will remove
the H2 molecule from the magnetic trap. The third most impor-
tant contribution (four-times smaller than the nuclear spin–electron
spin exchange) comes from a nuclear spin-conserving (ΔMI = 0)
relaxation to the SI = 3 state (with ΔMN = +1), with no change in
lithium’s electron spin (ΔMS = 0). Note that the transition to the
SI = 1 low-field-seeking state of H2 is only energetically accessible

through a simultaneous spin-flip of lithium and provides a negligible
(10−3) contribution to the total inelastic cross section.

For the third low-field-seeking initial state of H2 [SI = 3, panel
(d) in Fig. 3], two processes make up 99% of the total inelastic
cross section. The first process conserves the Zeeman state of H2
(ΔMN = ΔMI = 0) but involves a spin flip (ΔMS = −1) accom-
panied by an energy release. The second process is a nuclear
spin–electron spin exchange (ΔMS = −1,ΔMI = +1), which con-
serves MN . Note that MI-conserving transitions that do not involve
a simultaneous spin flip in lithium are not energetically accessible at
Ekin ≲ 10−4 cm−1.

In all three cases discussed so far, although the MI , MN , or
MS-changing processes lead to undesirable energy release and loss
of H2 population from the trap, the cross sections for these pro-
cesses are over four orders of magnitude smaller than the elastic
cross section at collision energies below 10−5 cm−1. This suggests
excellent prospects for sympathetic cooling of H2 in the low-field-
seeking states (SI = 1–3) via collisions with spin-polarized Li atoms
in a magnetic trap.

B. Low collision energy regime
The second regime involves kinetic energies larger than

10−2 cm−1. Interestingly, for all three initial low-field-seeking states
of H2, the cross sections fall into three distinct categories. The domi-
nant contribution (at the level of 99.9%) to the inelastic cross section
always comes from MI-conserving transitions. The second cate-
gory provides the contribution at the level of 10−3–10−5. For the
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SI = 1 low-field-seeking state [panel (b) in Fig. 3], the second
category involves two transitions that alter MI by +1 and either
conserve MN or change MN by +1 and one ΔMI = +2, ΔMN = 0
transition. For the SI = 2 low-field-seeking state [panel (c) in
Fig. 3], the second category involves three ΔMI = +1 transitions
(with ΔMN = −1, 0, 1) and one ΔMI = +2, ΔMN = −1 transition.
Finally, the second category for the SI = 3 trappable state [panel
(d) in Fig. 3] involves all ΔMI = +1,+2 transitions. In all three
cases, the third group encompasses all transitions, which affect
the electronic spin of lithium (ΔMS = −1). It additionally involves
the two MS-conserving transitions with ΔMI = +2 for the SI = 1
(1→ 8 and 1→ 9) and SI = 2 (2→ 8 and 2→ 9) low-field-seeking
states and a ΔMI = +1, ΔMN = +2 transition from the SI = 1 state
(1→ 6).

Our results indicate a clear tendency in favor of MI- and MS-
conserving transitions in an external magnetic field. Similar propen-
sity rules were observed for MS in cold collisions of 40CaH(X2Σ+, v
= 0,N = 1,MN = 1,MS = 1/2) molecules with 4He75 and for MI in
collisions of 13CO (X1Σ+, v = 0,N = 1) with 4He.51 The strong sup-
pression ofMI- andMS-changing collisions in the external magnetic
field can be compared to the electron and nuclear spin selection rules
in spectroscopy, ΔS = 0, and ΔI = 0.76

An intriguing feature of the H2–Li system is the presence of
ΔMI = 2 transitions in the second category (or “group-II” transi-
tions, as defined in Ref. 51). In the case of transitions from the
SI = 1 and 2 states, it is the ΔMI = 2 transition to the SI = 7
state. Its relative strength can be attributed to a slight contri-
bution of the ∣N = 1,MN = 1⟩∣I = 1,MI = −1⟩ bare state to the
SI = 7 state. The mixing of the ∣N = 1,MN = 1⟩∣I = 1,MI = −1⟩
and ∣N = 1,MN = −1⟩∣I = 1,MI = 1⟩ basis states is driven by the
nuclear spin–spin interactions between the two protons of the H2
molecule [Eq. (A7)]. We performed additional calculations, where
we excluded the intramolecular nuclear spin–nuclear spin interac-
tion from the asymptotic Hamiltonian [Eq. (5)], and we found that
the cross sections forΔMI = 2 transitions decreased by four orders of

magnitude. Note that this interaction is absent in the 13COmolecule,
studied in Ref. 51.

C. Magnetic field dependence of the cross sections
Here, we discuss the magnetic field dependence of the state-

to-state cross sections across three distinct collision energy regimes:
ultra-low (10−6 cm−1), intermediate (10−4 cm−1), and low (1 cm−1).
The discussion builds on the results in Sec. IV B, as we focus on
collisions of H2 in the three magnetically trappable states, SI = 1,
2, and 3, as shown in Fig. 4. In all panels, the color of each curve
corresponds directly to the color of the respective final Zeeman level
(see Fig. 3).

We observe that the elastic cross sections are field-independent
and by far exceed the inelastic cross sections. The dependence of
the inelastic cross sections on B varies with the kinetic energy and
the final Zeeman state. For instance, in the ultra-low energy regime
[panels (a)–(c) in Fig. 4], we observe a systematic increase in the val-
ues of the cross sections with B. However, two distinct deviations
from this pattern emerge. The first one is related to the observed
resonance-like features at 0.0025 and 0.5 T for the final Zeeman
states with SI = 7 and 5, respectively [see the pink and light blue
curves in panels (a), (b), (d), (e), (g), and (h) in Fig. 4]. These will be
discussed further in the next paragraph. The other exception is the
sharp decline for excitation transitions, such as SI = 2→ 1 at 0.008 T
[the blue curve in panel (b)]. This is due to the closure of inelas-
tic channels due to increasing spacing between the initial and final
Zeeman sublevels with increasing magnetic field. The sharp increase
in the cross sections [see, for instance, the orange, light blue, and
red curves in panel (a)] corresponds to the opening of the addi-
tional inelastic channels. As the kinetic energy increases [see panels
(d)–(f)], more channels become energetically accessible, even at low
B field values. Meanwhile, the fields at which some of the inelas-
tic channels become inaccessible are shifted toward larger values.
Finally, in the low energy regime [panels (g)–(i)], we can catego-
rize inelastic cross sections into two main classes. The cross sections

FIG. 4. State-to-state cross sections for cold H2–Li collisions in the three Zeeman states amenable to magnetic trapping (γH2
: SI = 1, 2, and 3), as a function of the external

magnetic field, B. The initial and final states of the lithium atom are fixed to MS = 1/2. The final Zeeman states in each panel are color-coded according to Fig. 3.
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from the first class exhibit a negligible field dependence. The cross
sections from the second class are field-independent at low B values
but decrease monotonically with increasing B for fields larger than
10−2 T. We explain this behavior in detail below, focusing on the
case of the scattering from the SI = 1 state [panel (g)].

As discussed in Sec. IV B, we observe a clear propensity for
ΔMI = 0 transitions. This propensity rule is evident here too, as
emphasized by the green and red curves across the considered field
ranges: the cross sections for transitions to the SI = 2 and 3 states
are notably larger than others. Furthermore, they exhibit a weak field
dependence. Transitions to the weakly coupled (ΔMI = 2) SI = 8 and
9 states [grey and dark red lines in panel (g)] are orders of magnitude
smaller. Interestingly, they are also field-independent, suggesting
that the lack of strong coupling makes them less susceptible to the
variations in B. Apart from these two cases, the same observation
holds for the transition to the SI = 6 state (orange curve): the rel-
ative weakness of this cross section is related to the admixture of
the ∣N = 1,MN = 0⟩∣I = 1,MI = 1⟩ basis state. A completely different
behavior of the cross sections as a function of B is observed for three
other final Zeeman states. The transition to the SI = 4 state (olive
line) is one of the most important inelastic processes at low values
of B. This is because of the admixture of the ∣N = 1,MN = −1⟩∣I = 1,
MI = 0⟩ state through the nuclear spin–rotation interaction. As the
field increases, so does the energy spacing between the two states,
and the mixing becomes less significant. The pronounced magnetic-
field dependence of the cross sections to the Zeeman eigenstates
composed of stronglymixed bare states ∣NMN⟩∣IMI⟩was observed in
Ref. 51 for the 13C16O–He system and explained in the framework of
the Born approximation. For the transitions to the SI = 5 and 7 states
(denoted by the light blue and pink lines), the dynamics are influ-
enced by the fact that they are composed of three stronglymixed bare
states ∣NMN⟩∣IMI⟩ with MN +MI = 0. This mixing stems from the
interplay of the nuclear spin–rotation and nuclear spin–nuclear spin
interactions (the three states constitute a 3 × 3 matrix of states with
MF = 0). The mixing becomes less pronounced as the field increases,
although there exists a resonant-like feature at 0.002 45 T for the
SI = 1 → SI = 7 transition. We note that this feature is inde-
pendent of the relative kinetic energy of the collision. The nature
of this resonant-like feature and the potential for identifying such
resonances in other systems will be explored in a forthcoming
publication.

We note similar patterns for inelastic collisions originating
from the SI = 2 and 3 states. The majority of significant inelastic
processes favor the ΔMI = 0 propensity rule, showing only minor
variations with increasing fields. For the SI = 2 state, five distinct
transitions exhibit a linear decrease with the field. This pattern traces
back to the admixture of the ∣N = 1,MN = 1⟩∣I = 1,MI = −1⟩ basis
state, primarily responsible for the elevatedmagnitudes of the inelas-
tic cross sections at lower fields. As B increases, the mixing becomes
less pronounced, leading to the decreasing magnitude of the cross
sections at higher B values. Finally, the SI = 3 state is somewhat spe-
cial: 6 out of 9 cross sections exhibit a systematic decrease with the
field. All of these are “group-II” transitions identified in Sec. IV B.
Their decrease with increasing B can be understood by the decreas-
ing admixture of the ∣N = 1,MN = 1⟩∣I = 1,MI = −1⟩ bare state to
the SI = 5 and 7 states (light blue and pink curves, respectively), the
decreasing admixture of the ∣N = 1,MN = 0⟩∣I = 1,MI = −1⟩ bare
state to the SI = 4 state (olive curve), or the increasing energy
separation from the rest of the Zeeman states.

D. Elastic-to-inelastic scattering ratio
Here, we explore the potential of atomic lithium as a sympa-

thetic coolant for the H2 molecule. While the mismatch between
Zeeman splittings of H2 and 6Li presents a challenge for the experi-
mental realization of a two-species trap, here, we focus on estimating
the efficiency of the cooling mechanism. Specifically, we determine
the elastic-to-inelastic ratio and estimate the optimal lithium density
that yields the most effective thermalization during collisions.

To this end, we calculate the average state-to-state cross sec-
tions for Li–H2 collisions for the three initial trappable states
(SI = 1, 2, and 3) of H2 [see Eq. (14)] and the corresponding rate
coefficients k, given by Eq. (15). Note that the initial state of lithium
is fixed to the trappableMS = 1/2 state.

The rate coefficients are presented in Fig. 5. The elastic scatter-
ing rates for the three trappable states of H2 are nearly identical to
the corresponding rate coefficients calculated without the hyperfine
structure and external magnetic field, kel.N=1 (black solid line in Fig. 5).
The largest difference between kel.N=1 and kel.γH2

is ∼3%. The solid lines
in Fig. 5 correspond to the total inelastic rate coefficients. To check
whether the sympathetic cooling of H2 by 6Li is feasible, we plot in
Fig. 5 the elastic rate coefficient multiplied by 1

100 (efficient cooling
requires kel./kinel. ≥ 100). At first sight, it seems that this condition
is fulfilled for temperatures below 50 mK. We recall that the pro-
posed trap depth is ∼0.8 mK for the SI = 1 state of H2. However,
the total inelastic cross section is dominated by transitions to other
trappable states (transitions with ΔMI = 0). Thus, the rate of inelas-
tic scattering to states that are not amenable to magnetic trapping
is several orders of magnitude lower (see the dashed lines in Fig. 5),
and the corresponding elastic-to-inelastic scattering ratio is always
larger than 104. Transitions to other trappable states release energy
(∼10 times lower than the trap depth), which could result in heating,
but not trap loss, being of minor concern for sympathetic cooling
experiments.

We also estimate the rate of thermalizing collisions (in s−1) as

R = kel.γH2
n0. (18)

FIG. 5. Rate coefficients for elastic and inelastic transitions in Li–H2 collisions for
the three trappable Zeeman sublevels of H2 (v = 0, N = 1) at 0.3 T. The elastic
rates are almost identical to the field- and hyperfine-free elastic rate coefficients
for the v = 0, N = 1 state (black solid line). The total inelastic rate coefficients and
the inelastic rate coefficients to the untrappable states are presented as solid and
dashed lines, respectively. The gray solid line presents the elastic rate coefficient
multiplied by 1

100
.
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Taking the elastic rate coefficient for the SI = 1 state of H2 at 1 mK
(3.2 × 10−13 cm3 s−1) and the density of 6Li atoms in the UVMOT47

operating at 59 μK (n0 = 2.9 × 1010 cm−3), we obtain R ≈ 10−2 s−1.
For efficient sympathetic cooling, the rate of thermalizing collisions
should be higher by at least two orders of magnitude. This can be
achieved by increasing the density of the lithium MOT, either by
using higher magnetic field gradients or larger detunings of the UV
light. The increased density is then achieved with a trade-off for an
increased temperature of the Li atoms.

V. CONCLUSIONS
We performed a rigorous quantum dynamical analysis of the

effects of hyperfine and Zeeman interactions on cold and ultracold
atom–H2 collisions. We investigated the cold collisions of molecular
hydrogen in the ν = 0,N = 1 rovibrational state with 6Li atoms using
CC quantum scattering calculations based on an accurate ab initio
PES. In the field-free case, we found that the three hyperfine levels
of the ν = 0,N = 1 state in H2 predominantly undergo elastic colli-
sions. The magnetic dipolar interaction between the electronic spin
in lithium and the total nuclear spin of H2 exerts a pronounced
inference on ultracold Li–H2 collisions, enhancing the F = 0→ F′

= 1 transitions.
We found that the collisional dynamics of H2 in low-field-

seeking states in the presence of an external magnetic field is dom-
inated by elastic, rather than inelastic, collisions. Inelastic collisions
tend to conserve the space-fixed projection of the nuclear spin in H2.
Themagnetic dipolar interaction between the nuclear spin of H2 and
the electronic spin of Li drives the electron spin relaxation and the
nuclear spin–electron spin exchange, two key inelastic processes in
the ultracold regime.

Finally, we discussed the results in the context of the experi-
mental realization of sympathetic cooling of H2 by ultracold spin-
polarized Li atoms. Given the predominance of elastic collisions
and the propensity of inelastic scattering to retain H2 in its low-
field-seeking states, the elastic-to-inelastic collision ratio for Li–H2
is favorable for sympathetic cooling (γ > 100). However, to realize
efficient sympathetic cooling, the current densities of Li in a MOT
must be increased by at least two orders of magnitude.
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APPENDIX A: MATRIX ELEMENTS
IN EQ. (11)—THE UNCOUPLED BASIS

Here, we present a derivation of the matrix elements that enter
the CC equations [Eq. (11)]. Following the standard approach,49 we
expand the H2–Li interaction potential in Legendre polynomials,

V(R, r) =
λmax

∑
λ=0

Vλ(R, r)Pλ(cos θ). (A1)

Since H2 is a homonuclear molecule, λ takes only even values.
We truncate the expansion at λmax = 4. The interaction potential
is diagonal in all spin projections (MI ,MS, and MILi ) with matrix
elements,49

⟨NMN ∣⟨IMI ∣⟨SMS∣⟨lMl∣V̂(R, r)∣N′M′N⟩∣IM′I ⟩∣SM′S⟩∣l′M′l ⟩

= δMSM′SδMIM′I (−1)
M′l−MN

√
[N,N′, l, l′]

λmax

∑
λ=0

vN,N′
λ,v=0(R)

⎛
⎜
⎝

l λ l′

0 0 0

⎞
⎟
⎠

×
⎛
⎜
⎝

l λ l′

−Ml ΔMl M′l

⎞
⎟
⎠

⎛
⎜
⎝

N λ N′

0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

N λ N′

−MN ΔMN M′N

⎞
⎟
⎠
. (A2)

Here, ΔMx =Mx −M′x for all angular momentum projections
(x = l,N, S, I) and [x1, x2, . . . , xN] = (2x1 + 1)(2x2 + 1) . . . (2xN
+ 1). We note that the interaction potential mixes states with
different Ml and MN . At the same time, the interaction conserves
the sumMl +MN and, as a result, the projection of the total angular
momentum, M. The coefficients vN,N′

λ,v=0(R) are obtained by taking
the matrix elements of the Legendre moments in Eq. (A1), Vλ(R, r),
between the rovibrational wave functions of the H2 molecule in the
v = 0 state,

vN,N′
λ,v=0(R) = ∫

∞

0
drχv=0,N(r)Vλ(R, r)χv=0,N′(r). (A3)

J. Chem. Phys. 160, 094304 (2024); doi: 10.1063/5.0193148 160, 094304-10

Published under an exclusive license by AIP Publishing

 12 M
arch 2024 20:10:57

https://pubs.aip.org/aip/jcp
http://wcss.pl


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Rovibrational wave functions of H2, χv,N , are obtained by
solving the Schrödinger equation for the nuclear motion of H2 with
the potential energy curve of Schwenke77 using the discrete variable
representation–finite basis representation method. Due to a weak
dependence of the vN,N′

λ,v=0(R) terms on N, we use N = N′ = 1 in
scattering calculations.

The magnetic dipolar interaction between the nuclear spin of
H2 and the electron spin of Li [see Eq. (3)] is diagonal in N andMN ,

⟨NMN ∣⟨IMI ∣⟨SMS∣⟨lMl∣V̂SD(R, r, Î, Ŝ)∣N′M′N⟩∣IM′I⟩∣SM′S⟩∣l′M′l ⟩

= −δNN′δMNM′N gSμBgHμN(
α2

R3 )
√
30(−1)−Ml+I−MH2+S−MS

×
√
[l, l′]
⎛
⎜
⎝
l 2 l′

0 0 0

⎞
⎟
⎠

√
I(I + 1)(2I + 1)

√
S(S + 1)(2S + 1)

×
⎛
⎜
⎝

1 1 2

ΔMS ΔMI ΔMl

⎞
⎟
⎠

⎛
⎜
⎝

I 1 I′

−MI ΔMI M′I

⎞
⎟
⎠

×
⎛
⎜
⎝

S 1 S′

−MS ΔMS M′S

⎞
⎟
⎠

⎛
⎜
⎝

l 2 l′

−Ml ΔMl M′l

⎞
⎟
⎠
. (A4)

This interaction mixes basis states with different MS,MI , and Ml,
but it conserves the sum MS +MI +Ml. Thus, the total angular
momentum,M, is also conserved.

In the next step, we consider the asymptotic Hamiltonian,
Eq. (4), and we begin with the part of this operator associated with
H2. The rotational term is diagonal in all quantum numbers,

⟨NMN ∣⟨IMI ∣⟨SMS∣⟨lMl∣Ĥrot∣N′M′N⟩∣IM′I⟩∣SM′S⟩∣l′M′l ⟩
= δNN′δMNM′N δMIM′I δMSM′SδMlM′l

× [BeN(N + 1) −DvN2(N + 1)2], (A5)

and the matrix elements of the nuclear spin–rotation interaction are
given as

− cnsr⟨NMN ∣⟨IMI ∣⟨SMS∣⟨lMl∣N̂ ⋅ Î∣N′M′N⟩∣IM′I⟩∣SM′S⟩∣l′M′l ⟩

= −δNN′δMSM′Sδll′δMlM′l
[δMIM′I δMNM′N cnsrMNMI

+ δMNM′N±1δMIM′I∓1
cnsr
2
(N(N + 1) −M′N(M′N ± 1))

1/2

× (I(I + 1) −M′I(M′I ∓ 1))
1/2]. (A6)

The intramolecular spin–spin interaction couples (very weakly)
states with different rotational angular momenta,

g2Hμ
2
Nα

2⟨NMN ∣⟨IMI ∣⟨SMS∣⟨lMl∣(
Î1 ⋅ Î2
r3
− 3(Î1 ⋅ r)(Î2 ⋅ r)

r5
)∣N′M′N⟩∣IM′I⟩∣SM′S⟩∣l′M′l ⟩

= δMSM′Sδll′δMlM′l
(−1)I−MI−M′N

√
30cdip[I]

√
[N,N′]

⎛
⎜
⎝
N 2 N′

0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

N 2 N′

−MN ΔMN M′N

⎞
⎟
⎠

×
⎛
⎜
⎝

I 2 I

−MI ΔMI M′I

⎞
⎟
⎠

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

I1 I1 1

I2 I2 1

I I 2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

√
I1(I1 + 1)(2I1 + 1)I2(I2 + 1)(2I2 + 1). (A7)

Here,
⎧⎪⎪⎨⎪⎪⎩

. . .

. . .

. . .

⎫⎪⎪⎬⎪⎪⎭
denotes the Wigner 9-j symbol. Both of the Zee-

man terms in the asymptotic Hamiltonian of H2 are diagonal in all
quantum numbers,

⟨NMN ∣⟨IMI ∣⟨SMS∣⟨lMl∣ĤZeeman∣N′M′N⟩∣IM′I⟩∣SM′S⟩∣l′M′l ⟩
= −δNN′δMNM′N δMIM′I δMSM′SδMlM′l

μNBZ(1 − σ)
× (grMN + gHMI). (A8)

The same applies to the asymptotic Hamiltonian of lithium from
Eq. (9),

⟨NMN ∣⟨IMI ∣⟨SMS∣⟨lMl∣ĤLi∣N′M′N⟩∣IM′I⟩∣SM′S⟩∣l′M′l ⟩
= −δNN′δMNM′N δMIM′I δMSM′SδMlM′l

gSμBBZMS. (A9)

APPENDIX B: MATRIX ELEMENTS IN EQ. (11)—THE
BASIS WITH COUPLED H2 VECTORS

Similarly to the uncoupled case, the H2–Li interaction is
diagonal inMS,

⟨(NI)FMF ∣⟨SMS∣⟨lMl∣V̂(R, r)∣(N′I)F′M′F⟩∣SM′S⟩∣l′M′l ⟩

= δMSM′S(−1)
M′l−MF+I+F+F′

√
[N,N′, l, l′,F,F′]

×
λmax

∑
λ=0

vN,N′
λ,v=0(R)

⎛
⎜
⎝
l λ l′

0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

l λ l′

−Ml ΔMl M′l

⎞
⎟
⎠

⎛
⎜
⎝
N λ N′

0 0 0

⎞
⎟
⎠

×
⎛
⎜
⎝

F λ F′

−MF ΔMF M′F

⎞
⎟
⎠

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N′ F′ I

F N λ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (B1)
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The spin-dependent interaction is diagonal in N,

⟨(NI)FMF ∣⟨SMS∣⟨lMl∣V̂SD(R, r, Î, Ŝ)∣(N′I)F′M′F⟩∣SM′S⟩∣l′M′l ⟩

= δNN′gSμBgHμN(
α2

R3 )
√
30(−1)Ml+I+N+F

√
[l, l′,F,F′]

×
⎛
⎜
⎝
l 2 l′

0 0 0

⎞
⎟
⎠

√
I(I + 1)(2I + 1)

√
S(S + 1)(2S + 1)

×
⎛
⎜
⎝

1 1 2

ΔMF ΔMS ΔMl

⎞
⎟
⎠

⎛
⎜
⎝

F 1 F′

−MF ΔMF M′F

⎞
⎟
⎠

×
⎛
⎜
⎝

S 1 S′

−MS ΔMS M′S

⎞
⎟
⎠

⎛
⎜
⎝

l 2 l′

−Ml ΔMl M′l

⎞
⎟
⎠

⎧⎪⎪⎪⎨⎪⎪⎪⎩

I F′ N

F I 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

(B2)

The rotational part of the Hamiltonian is diagonal in all quantum
numbers,

⟨(NI)FMF ∣⟨SMS∣⟨lMl∣Ĥrot∣(N′I)F′M′F⟩∣SM′S⟩∣l′M′l ⟩
= δNN′δFF′δMFM′FδMSM′SδMlM′l

× (BeN(N + 1) −DvN2(N + 1)2). (B3)

Both hyperfine interactions are diagonal in the total angular
momentum of H2 and its projection on the space-fixed Z-axis. The
nuclear spin–rotation interaction is additionally diagonal in all other
quantum numbers,

− cnsr⟨(NI)FMF ∣⟨SMS∣⟨lMl∣N̂ ⋅ Î∣(N′I)F′M′F⟩∣SM′S⟩∣l′M′l ⟩

= −δNN′δFF′δMFM′FδMSM′SδMlM′l

cnsr
2

× (F(F + 1) − I(I + 1) −N(N + 1)). (B4)

The spin–spin magnetic dipole interaction can, in principle, couple
states with differentN and I. This coupling is 11 orders of magnitude
smaller than the spacing between the N and N′ = N ± 2 rotational
states of H2, and we neglect it here. We additionally neglect any
ortho-/para-H2 coupling. Thematrix elements of this interaction are

g2Hμ
2
Nα

2⟨(NI)FMF ∣⟨SMS∣⟨lMl∣(
Î1 ⋅ Î2
r3
− 3(Î1 ⋅ r)(Î2 ⋅ r)

r5
)∣(N′I)F′M′F⟩∣SM′S⟩∣l′M′l ⟩

= −δMSM′Sδll′δFF′δMFM′F(−1)
N+N′+I+F√30cdip[I]

√
[N,N′]

×
⎛
⎜
⎝
N 2 N′

0 0 0

⎞
⎟
⎠

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N N′ 2

I I F

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

I1 I1 1

I2 I2 1

I I 2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

√
I1(I1 + 1)(2I1 + 1)I2(I2 + 1)(2I2 + 1). (B5)

The matrix elements of the Zeeman term of the lithium atom
are identical to those given by Eq. (A8). Finally, the Zeeman
Hamiltonian of H2 has the following matrix elements:

⟨(NI)FMF ∣⟨SMS∣⟨lMl∣ĤZeeman∣(N′I)F′M′F⟩∣SM′S⟩∣l′M′l ⟩

= δNN′δMSM′SδMlM′l
μNBZ(1 − σ)(−1)F

′
−mF+I+N′+F′

×
⎛
⎜
⎝

F 1 F′

−MF 0 M′F

⎞
⎟
⎠

√
[F,F′]

√
I(I + 1)(2I + 1)

×
⎛
⎜
⎝
δNN′gr

⎧⎪⎪⎪⎨⎪⎪⎪⎩

F F′ 1

I I N

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ gH
⎧⎪⎪⎪⎨⎪⎪⎪⎩

F F′ 1

N′ N I

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟
⎠
. (B6)
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