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During transient instabilities in a 2 eV, highly-collisional MHD-driven plasma jet experi-

ment, evidence of a 6 keV electron tail was observed via x-ray measurements. The cause

for this unexpected high-energy tail is explored using numerical simulations of the Ruther-

ford scattering of a large number of electrons and ions in the presence of a uniform electric

field that is abruptly turned on as in the experiment. When the only active processes are

Rutherford scattering and acceleration by the electric field then, contrary to the classical

Fokker-Planck theory of plasma resistivity, it is found that no steady-state develops and

instead, the particle kinetic energy increases continuously. However, when a power loss

mechanism is introduced mimicking atomic line radiation, then a near steady-state can de-

velop and, in this case, an energetic electron tail similar to that observed in the experiment

can develop. The reasons underlying this behavior are analyzed and it is shown that an

important consideration is that Rutherford scattering is dominated by the cumulative effect

of grazing collisions whereas atomic line radiation requires an approximately direct rather

than a grazing collision.
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I. INTRODUCTION

A. Motivation

This paper is motivated by unexpected observations of short bursts of 6 keV X-rays1 in the Cal-

tech MHD plasma jet experiment. These bursts were unexpected because the combination of low

plasma temperature and high density made the plasma highly collisional so it seemed impossible

for an electron to accelerate to attain the 6 keV kinetic energy required to produce 6 keV X-rays.

A previous model2 sought to explain these observations, but while aspects of this previous model

were compelling, there were also serious shortcomings. This paper presents a new model which

has been constructed to overcome these shortcomings. Previous related literature was surveyed to

put the new model in context; the results of this survey will now be summarized with additional

details given in Appendix A. In addition, comparison to selected aspects of previous work will

be given throughout the body of the paper. While the model presented here was motivated by a

desire to explain the surprising observations in the Caltech jet experiment, it is expected that the

methodology and the results should have wider applicability than just the Caltech jet experiment.

This is because high energy tails and energetic particles are observed in many different plasma

contexts such as the solar corona3, the solar wind4, astrophysical situations5, and tokamaks6.

B. Comparison of collisions in neutral gas to collisions in plasma

In a neutral gas consisting of identical particles the situation is quite simple: collisions between

the particles cause the velocity distribution to become Maxwellian in the rest frame of the center

of mass and there is no interaction with an imposed electric field.

In contrast, the corresponding situation in a plasma with an imposed electric field is quite

complicated. Plasmas contain two types of particles, electrons and ions with very different masses.

The electrons and ions are accelerated in opposite directions at different rates by the electric field.

Furthermore, there are four types of collisions: electron-electron, electron-ion, ion-electron, and

ion-ion collisions (denoted e-e, e-i, i-e, and i-i) and the momentum and energy transfer rates for

these four types differ.

As a result of this complexity, unlike a neutral gas, plasmas frequently exhibit non-Maxwellian

distributions, most particularly high energy electron tails. Many models and mechanisms have

been proposed to explain these tails. Examples3 of proposed mechanisms are direct DC accel-
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eration, coherent wave acceleration, turbulent acceleration, and shock acceleration. Which of

these mechanisms dominates depends on the specific situation. Mechanisms other than direct DC

acceleration are typically based on the assumption that the plasma is collisionless whereas DC ac-

celeration models typically consider the competition between frictional drag from collisions and

the acceleration provided by the electric field.

Because the duration of the X-ray bursts observed in the Caltech experiment is very short com-

pared to the experiment duration, it is presumed that a transient analysis is required. Furthermore,

the burst duration is so short that there is insufficient time for either coherent or turbulent waves to

develop. Thus, it is assumed here that the X-ray bursts are a result of DC acceleration provided by

a very large, but short-lived electric field. A possible origin for this electric field is given in Zhou

and Bellan 7 where it is proposed that the short-duration, large electric field develops as a result of

the MHD-driven plasma jet developing a cascading sequence of qualitatively different instabilities

where each instability in the sequence destabilizes the next. The kinking of the MHD-driven jet8,9

is the primary instability and this involves a rapid lateral acceleration that produces an effective

gravity that enables a Rayleigh-Taylor instability which is the secondary instability10. The peri-

odic ripples of the Rayleigh Taylor instability constrict the jet current channel and this leads to the

tertiary instability7 which is a collisional version of the Buneman instability11. The Buneman-like

instability enables production of a large transient electric field which for the purposes of particle

acceleration can be considered as an abruptly-imposed large DC electric field.

Because frictional drag in a plasma decreases with particle kinetic energy, a sufficiently ener-

getic electron experiences negligible drag. Such an electron can run away and become effectively

collisionless, leaving behind the lower energy collisional electrons. All electrons run away for a

sufficiently large electric field, called the Dreicer12 field ED where

ED = 0.43
ne3

8πε2
0 κTe

lnΛ. (1)

Here lnΛ is called the Coulomb logarithm where Λ = λD/bπ/2, λD is the Debye length and bπ/2

is the 90 degree impact parameter for Rutherford scattering. These issues have been studied in

tokamak, solar, and astrophysical contexts for over seventy years and have resulted in thousands

of papers so it is only possible to cite a few. The models proposed in these papers inevitably invoke

assumptions, these models have different degrees of complexity, and several competing effects in-

teract. While it is generally straightforward to model how individual effects work, when all effects

are simultaneously active, synergistic interactions can develop that are not easily modeled. Ex-
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amples of the consequences of individual effects are: (1) e-e collisions tend to create Maxwellian

velocity distributions in the electron rest frame, (2) e-i collisions tend to make the electron velocity

distribution function isotropic with respect to the ion center of mass velocity – a different defini-

tion of isotropic from the definition associated with e-e collisions, (3) if collisions are unimportant,

the electric field shifts the entire electron velocity distribution in the acceleration direction with no

change in the profile of the velocity distribution, and (4) e-i collisions tend to heat both electrons

and ions with most of the heating going to the electrons. When these effects and some others are

all simultaneously occurring, it is not immediately obvious how they combine. In particular it is

not immediately obvious whether effect (1) or effect (2) dominates since these two effects have

different results. This is because when there is an electric current, an electron velocity distribution

being isotropic in the electron center of mass frame differs from being isotropic in the ion center

of mass frame.

Table I is a matrix summarizing how the new model relates to representative previous mod-

els. This table lists assumptions inherent in the previous models and, in the right-most column,

assumptions made in the new model. This right-most column indicates that the significant differ-

ences are:

1. the new model does not always assume that Debye shielding is operative,

2. the new model uses a more detailed description of binary encounters than does the conven-

tional approach involving differential cross-sections,

3. the nature of velocity distributions is not constrained so unlike previous models, the electron

velocity distribution is not assumed to be the sum of a Maxwellian and a perturbation nor to

be a shifted Maxwellian (definitions and discussions of these types of velocity distributions

are given in Appendix A),

4. individual discrete particle encounters are calculated rather than some analytic model of the

average effect of many encounters,

5. e-e, e-i, i-e, and i-i collisions are assumed to be interspersed rather than, for example, a large

number of e-e collisions followed by a large number of e-i collisions,

6. both grazing and large-angle collisions are taken into account,

7. the solution is time-dependent,
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8. there is no assumption of a heat bath13 imposing a constant electron temperature,

9. a realistic mechanism for shedding heat produced by Ohmic dissipation is discussed.

Appendix A provides a short review of both the "shifted Maxwellian" and "Maxwellian plus

perturbation" methods used in previous models and notes issues with both of these approaches.

Concepts discussed in Appendix A will be referred to in the main body of the paper.

Particle-in-cell codes14,15 typically use a collision model that is somewhat similar to the model

presented here, but critical important differences exist that will be highlighted in the main body

of the paper. Question marks have been placed in some of the entries for assumptions in Table I

because the model proposed in Takizuka and Abe 14 and in Arber et al. 15 makes these assumptions

in some parts of the development of their model but not in others; this will be discussed in the

main body of the present paper. The reason question marks have been placed for the Braginskii 16

assumptions in Table I will be discussed in Appendix A.

II. CALTECH JET EXPERIMENT AND PREVIOUS MODEL FOR OBSERVATION

OF X-RAYS IN THIS EXPERIMENT

The Caltech jet experiment and the model previously constructed to explain it will now be

summarized. These issues are believed to be of much wider relevance than just the Caltech jet

experiment, but referring to a specific experiment provides a tangible example.

A. Caltech Jet Experiment

Measured parameters for the Caltech experiment are listed in the top eight rows of Table II;

parameters of the model to be discussed are listed in rows nine and below. The salient observation

in the Caltech experiment is that a large, but sub-Dreicer, electric field accelerated a tiny fraction

of the electrons to an extremely high energy. This is surprising because, at first sight, the high

collisionality of the Caltech plasma would be expected to cause an electron to lose any directed

energy gained from the electric field so the electron could never attain high energy. The initial

electron temperature was 2 eV and the electron collision mean free path was lm f p = 1 µm, a

microscopic length compared to the several centimeter plasma dimensions. It was observed that

a sequence of MHD instabilities in a 10 cm long plasma segment led to a 1 µs burst of 6 keV

X-rays. Since an X-ray is generated by electron acceleration or deceleration, the presence of these
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Assumption C CSR SH Tr Br KT,Be N K CH LE TA pp

cutoff log integral at interparticle distance, n−1/3 Y

cutoff log integral at Debye length Y Y Y Y Y Y Y Y Y Y

differential cross section w/field particle flux Y Y Y Y Y Y Y Y Y ?

Maxwellian plus perturbation, fe = fMax + f1 n/a Y Y ? n/a Y Y ?

Shifted Maxwellian, fe = n(πvT )
−3/2e−(v−ue)

2/v2
Te n/a Y ? Y

electron-ion collisions only n/a Y

electron-electron and electron-ion collisions n/a Y Y Y Y Y Y Y Y Y

interspersed e-e, e-i, and i-e collisions n/a ? Y

both grazing and large angle collisions considered ? Y

time-dependent solution Y Y

electron, ion temperatures can vary Y Y

explicit power loss mechanism incorporated Y

individual discrete particle collisions evaluated ? Y

relativistic Y

TABLE I. List of assumptions that have been made in previous models compared to assumptions in present

paper model (right-most column). A "Y" denotes that the assumption has been made while a blank cell

denotes that the assumption has not been made. A question mark denotes that the assumption has been

made in some parts of the model but not in others. C=Chandrasekhar 17 , CSR=Cohen et al. 18 , SH=Spitzer

and Härm 19 , Tr=Trubnikov 20 , Br=Braginskii 16 , KT=Krall and Trivelpiece 21 , Be=Bellan 22 , N=Nanbu 23 ,

K=Kulsrud et al. 13 , CH=Connor and Hastie 24 , LE=Landreman and Ernst 25 , TA=Takizuka and Abe 14 , pp=

present paper

,

X-rays implied that a small fraction of electrons was accelerated to 6 keV in 10 cm, i.e., there

must have been a transient electric field E = 6×104 V/m. This transient electric field would have

a duration corresponding to the duration of the X-ray burst, i.e., about 1 µs. Since d = at2/2

where a = qeE/me = 1016 m s−2 is the acceleration, the duration of this acceleration would be

t =
√

2med/(qeE) = 4 ns. The electrons would have been accelerated in this time to a directed

velocity eEt/me = 4× 107 m/s, i.e., about 50 times larger than their initial thermal velocity of

8×105 m/s.
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symbol Caltech Jet Expt

density (m−3) n 1022

electron temperature (eV) Te 2

classical resistivity (Ohm-m) η0 2×10−4

electron Debye length (m) λDe 10−7

interparticle spacing (m) n−1/3 4.6×10−8

transient electric field (V/m) E 6×104

Dreicer electric field (V/m) ED 3×105

reference velocity (m s−1) v0 8.4×105

meta-Debye length (m) λ f 10−7

4πnλ 3
f Λ f 146

ne3

8πε2
0 µev2

0
(V/m) E0 6.5×104

normalized electric field Ēz 0.9

acceleration factor Ēz
2Λ2

f
2×10−5

TABLE II. Caltech MHD jet experiment parameters

Multiple X-ray bursts have been recently been observed by Zhang et al. 26 in an experiment

involving similar parameters but having the geometry of a braided solar corona loop. Zhou and

Bellan 7 proposed that the instability producing the transient electric field is a highly-collisional

variant of the two-stream (Buneman) instability.

B. Summary of possible explanation by Marshall and Bellan2

The mean free path is the distance electrons must travel to scatter 90 degrees; this scattering

could be by any mechanism or combination of mechanisms. After traveling a mean free path,

electrons would thus lose the directed velocity gained from the electric field. Because the mean

free path resulting from Coulomb collisions is only 1 µm and the system characteristic length is

many orders of magnitude larger, electrons should never be able to attain the large velocity re-

quired to produce X-rays. Thus, the observation of X-rays in the Caltech experiment conflicts

with expectations. A possible explanation for how a tiny fraction of electrons attained this large

velocity was proposed by Marshall and Bellan2. This explanation combined cross-section con-
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cepts with the property that the classical plasma collision theory predicts that the mean free path

for collisions of superthermal electrons with ions lm f p scales as W 2 where W is the electron kinetic

energy (the reason for this W 2 scaling is given at the end of Sec.IV). According to this explanation,

an electron has a probability of 1− e−1 ' 0.63 for being scattered after traveling a distance lm f p

so the electron should have an e−1 = 0.37 probability of not being scattered on travelling lm f p.

Unscattered electrons would gain an energy ∆W = qeElm f p and their associated directed momen-

tum would not be lost. Because
(
lm f p +∆lm f p

)
/lm f p =

(
W +qeElm f p

)2
/W 2 the mean free path

would increase for these unscattered electrons so their mean free path on the next collision would

be slightly larger. In the next collision again a fraction e−1 would not scatter and gain energy. The

process would repeat, resulting in an increasing lm f p and W for an ever-decreasing fraction of the

electrons. Thus, there would be an e−N fraction of electrons that had made N progressively larger

mean free paths without scattering and these would have attained the required 6 keV energy after

going 10 cm without scattering. Eventually, some of these energetic electrons would undergo a

rapid deceleration via a large angle collision and so would generate X-rays via bremsstrahlung.

C. Shortcomings of the Marshall and Bellan explanation and of the Debye shielding

argument

The Marshall and Bellan explanation summarized above has two shortcomings.

First, the Marshall and Bellan explanation is based on cross-sections, the concept that a particle

either hits or misses a target. Here, e−1 constituted the fraction of electrons that missed hitting

another particle. However, Coulomb scattering is not a hit-or-miss process but rather the result of

a large number of binary interactions where each interaction produces a random deflection and the

statistics of these deflections is such that the cumulative effect of weak deflections dominates that

of occasional strong deflections. Thus, one cannot isolate a subset of electrons that do not scatter

because all electrons are continuously being deflected by various amounts.

The second problem of the Marshall and Bellan explanation was the use of the Coulomb loga-

rithm lnΛ where Λ= λD/bπ/2, λD is the Debye length, and bπ/2 is the 90 degree impact parameter.

Thus lnΛ depends on Debye shielding which in turn depends on the presumption that electrons

and ions have Maxwellian velocity distributions and an associated temperature. The problem is

that the derivation of Debye shielding assumes that the dynamics of the binary interaction under

consideration is sufficiently slow that enough time has elapsed for a Debye shielding cloud to be
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established. As noted on p. 109 of Trubnikov 20 and in Trofimovich and Krainov 27 , the time

required for a Debye shielding cloud to be established is 1/ωpe where ωpe is the electron plasma

frequency. The time for a particle having velocity v to traverse a Debye shielding cloud is λDe/v. If

this traversal time is shorter than the time for the Debye shielding cloud to become established, the

Debye shielding cloud will not exist. The condition for there being insufficient time for a Debye

shielding cloud to be established is thus λDe/v� 1/ωpe which can be re-arranged as

v� ωpeλDe =
√

κTe/me (2)

corresponding to the test particle being superthermal. Thus, the Coulomb logarithm lnΛ is not

applicable to superthermal particles.

This conclusion can be understood in an equivalent manner as follows. For each binary en-

counter between a given test particle T and a Debye-shielded specific field particle F , all particles

in the plasma other than T and F must have sufficient time to arrange themselves to form a Debye

shielding cloud around the field particle F. This is clearly impossible if the process occurs faster

than the time required for shielding particles to make the required displacement to come into posi-

tion to do their shielding job. A well-known example of this constraint is that ion shielding clouds

do not form around electrons because, being slow, ions cannot keep up with electrons. Another

example is a calculation by Nicholson28 who showed that a slow-moving particle has a Debye

shielding cloud but this disappears when the particle velocity becomes superthermal. This means

that the use of the Coulomb logarithm lnΛ, a quantity intrinsic to the classic theory and depending

on Debye shielding being operative, is inappropriate for describing test particles moving faster

than all other particles.

III. SUMMARY OF THE NEW MODEL

The first main result is to show via direct numerical calculation of all binary encounters of a

large number of electrons and ions in a suddenly-applied, macroscopic, uniform, constant electric

field that a steady-state does not develop. By "all" it is meant that both small-angle and large-

angle deflections are taken into account with no a-priori assumption about relative weighting; the

greater effect of small-angle collisions develops as a result of the numerical calculation rather than

from being imposed as a result of analytic arguments. The second main result is to show that a

quasi-steady-state can be achieved by modifying the system to have a power loss mechanism; this
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mechanism is related to the heat bath assumed by Kulsrud13, but involves a less constraining as-

sumption because the mechanism does not impose an arbitrary fixed temperature. The imposition

of a power loss mechanism leads to a non-uniqueness because different forms of power loss are

possible. A realistic loss mechanism that is explored in detail here invokes atomic line radiation.

This is accomplished by allowing for certain electrons to make inelastic collisions with ions. These

inelastic collisions occur if a suitably energetic electron makes a nearly head-on collision with an

ion and so it is important that the possibility of infrequent large-angle collisions has been allowed.

In such a near head-on collisions the ion is excited to a higher quantum energy state and then

nearly immediately emits a photon that carries away the energy the ion absorbed in the inelastic

collision. The inelastically colliding electron also transfers momentum to the ion in an amount

that conserves overall momentum. This atomic line radiation model provides insights regarding

how the power injected via Ohmic dissipation is balanced by a realistic power loss mechanism.

The details show that a tail of energetic electrons can be generated by this process.

IV. RELEVANT CONCEPTS IN CLASSICAL THEORY

Certain basic concepts of the classical theory are now summarized so that issues with these

familiar concepts can be identified and discussed:

1. A charged particle of species σ is surrounded by a Debye shielding cloud so that its electro-

static potential is given by

φ(r) =
qσ

4πε0r
e−r/λD (3)

where λD is the Debye length.

2. The Debye length is defined as

1
λ 2

D
=

1
λD2

i

+
1

λD2
e

(4)

where

λ
2
Dσ =

ε0κTσ

ne2 (5)

and the plasma is assumed to be macroscopically quasi-neutral so ni = ne = n.

3. There is a large number of particles in a Debye sphere, i.e., nλ 3
D� 1.

4. Collisions consist of encounters between two particles at a time; i.e., there are no encounters

where three or more particles mutually interact. These two-particle encounters, called binary
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encounters, are described in the center of mass frame of the two particles. The classical collision

theory considers a fictitious particle having reduced mass µ moving at the relative velocity

v = vT −vF (6)

where vT and vF are the respective initial velocities of the colliding test (T) and field (F) particles

and the reduced mass µ is defined as

1
µ
=

1
mT

+
1

mF
. (7)

The collision dynamics are mapped to that of a fictitious particle of mass µ scattering from a fixed

scattering center with a resulting deflection by an angle θ ; the scattering geometry is sketched in

Fig.1. The Rutherford scattering formula summarizes the solution to the dynamics and gives the

scattering angle θ via

tan
(

θ

2

)
=

qT qF

4πε0bµv2 . (8)

Here b is the impact parameter as sketched in Fig.1. The magnitude of v does not change during

the collision so the collision can be pictured as a rotation of v by the angle θ in the plane of the

sketch. Equation 8 defines a special impact parameter bπ/2, called the 90-degree impact parameter,

which is the impact parameter for which θ = π/2; thus bπ/2 = qT qF/(4πε0µv2) .

5. The number of binary encounters in a time ∆t for each differential scattering cross section

dσ = bdbdφ is calculated where φ is the azimuthal angle about the initial direction of the relative

velocity. The number of such binary encounters during the time ∆t is given by the volume swept

out by the relative velocity in the time ∆t times the density of field particles, i.e., the number of

these encounters is nFdσv∆t. This differential scattering cross section picture inherently assumes

that an electron makes a long sequence of binary encounters with either just ions or just electrons

where the impact parameter in each encounter of this sequence is the same, and that the electron

continues in the same direction after each binary encounter despite, in fact, being deflected. Thus,

the counting of binary encounters in the differential cross-section picture does not describe the

true situation that after an electron has had a binary encounter with another electron, the electron

may next have a binary encounter with an ion or with another electron, i.e., that the encounters

with electrons and ions are, in reality, interspersed. This is important because when an electron

collides with another electron, both the energy and momentum of the incident electron change but

when an electron collides with an ion, only momentum of the incident electron changes (to the

extent that the ion is infinitely heavy).
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6. The cumulative effect of small angle collisions dominates over the cumulative effect of large

angle collisions and for small angle collisions

θ =
qT qF

2πε0bµv2 . (9)

7. The reduction of velocity in the direction of v scales as θ 2 and so is proportional to 1/(b2v4).

8. Multiplying the reduction in velocity per encounter by the number of encounters in time ∆t

gives the reduction in velocity in time ∆t to scale as nF∆tdσ/(b2v3).

9. Integrating over all possible impact parameters dσ = bdbdφ results in a logarithmically

singular integral of the form
∫

b−1db which leads to an issue of how to choose the lower and

upper bounds of this integral. The issue is resolved by assuming that the lower bound is the

impact parameter at which θ = π/2 while the upper bound is the Debye length so that
∫

b−1db =

ln(λD/bπ/2). The lower limit is set on the grounds that collisions with θ ≥ π/2 are unimportant

relative to the cumulative effect of the much more numerous collisions having θ � π/2 while the

upper limit is chosen by invoking Eq.3 to state that the interaction electric field vanishes when the

test and field particles are separated by more than a Debye length.

For purposes of calculating electrical resistivity, it is assumed that the electron temperature

determines the Debye length and that µv2 = κTe in Eq.8 so

1
bπ/2

= 4πnλ
2
D (10)

and

ln

(
λD

bπ/2

)
= ln

(
4πnλ

3
D
)
. (11)

Because of the logarithmic dependence in Eq.11, it is presumed that the precision with which

nλ 3
D is calculated is not critical. Questions arise immediately regarding the physical meaning

of using Debye shielding together with Eq.8 because Eq.8 describes a fictitious reduced-mass

particle scattering from a scattering center fixed in the center of mass frame. It is not obvious how

the lab-frame motion of real electrons and ions as assumed in the screening argument applies to

the fictitious scattering center fixed in the center of mass frame; that is, it is not clear what real

particles are shielding the fictitious scattering center. The Debye shielding derivation involves a

test particle that is a real particle, not a fictitious particle.

If just electrons colliding with ions is considered, it is assumed that the electron temperature

determines the Debye length, and integration over impact parameters predicts an electron-ion col-

lision frequency νei =
ne4 lnΛ

4πε2
0 me2v3 (see Eq.11.16 of Goldston and Rutherford 29).
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Since the mean free path for an electron having velocity v is vτei, where τei = 1/νei, it is seen

that the mean free path scales as v4, that is as W 2 where W is the electron kinetic energy. This W 2

scaling was used in the Marshall and Bellan model summarized in Sec.II B.

A balance between acceleration from the E field and and collisional drag results in an electric

current density

J = ne(ui−ue) (12)

that is related to E by Ohm’s law

E = ηJ (13)

where for singly charged ions, the electrical resistivity η is

η =
e2m1/2

e

3
√

ππε2
0

lnΛ

(2κTe)
3/2 (14)

and lnΛ, the Coulomb logarithm, is of order 10.

The resistivity η is determined via a Fokker-Planck17 model that sums the consequence of

transient microscopic electric fields that particles experience when in close proximity to each other.

V. PROBLEMS WITH ASSUMING A STEADY-STATE

There is a logical inconsistency in the classical model assumption that an isolated system in

a constant uniform electric field develops a steady state. Resistivity causes dissipative heating

ηJ2 = E2/η . Kulsrud13 explicitly acknowledged this heating issue and in his modeling, stated that

the plasma was immersed in a heat bath that forced the temperature to remain constant. However,

if no heat bath is assumed, there will be heating of the plasma because of the resistive dissipation.

Initially, this dissipation mainly heats electrons so

d
dt

(
3
2

nκTe

)
=

E2

η
. (15)

Since the density n is assumed constant in time, Eq.15 shows that it is inconsistent to assume that

an isolated plasma (i.e., no heat bath) develops a constant Te in the presence of an electric field.

Furthermore, if as predicted by the classical theory, the resistivity scales as η = η0 (T0/Te)
3/2,

then Eq.15 can be integrated to give

Te(t)
Te,0

=

(
1− E2/η0

3nκTe,0
t
)−2

(16)
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FIG. 1. Rutherford scattering geometry

which is a faster-than-exponential growth rate producing an infinite temperature in the finite time

t∞ = 3nκTe,0η0/E2. The time for the temperature to quadruple from its initial value is t4× =

3nκTe,0η0/2E2. Using Eqs. 1 and 14 and ignoring coefficients of order unity, the quadrupling

time can be expressed as

t4x ∼
(ED/E)2

νei
. (17)

where the electron-ion collision frequency νei is given by

νei ∼
ωpe

nλ 3
D

lnΛ. (18)

Since ν
−1
ei is typically a very small fraction of a plasma lifetime, the quadrupling time will be short

compared to the plasma lifetime if ED/E is not extremely large. The results in Eqs.16-17 are only

accurate to within a factor of order unity because the assumed η = η0 (T0/Te)
3/2 scaling does not

take into account that lnΛ depends on temperature.

For Caltech parameters t4× = 240 ps which is orders of magnitude shorter than the ∼ 1 µs

duration of the x-ray burst. The catastrophic temperature increase predicted by Eq.16 can be pre-

vented by introducing a power leakage to provide a balance between the energy entering the sys-

tem and the energy leaving the system. Possible forms of power leakage are atomic line radiation,

bremsstrahlung, thermal conductivity, and loss of fast particles at a material surface. Equation

1 shows that the rapid increase in temperature will cause a rapid reduction of ED so if initially

E < ED, unless there is a power leakage, the situation will quickly change to E > ED even though

E is constant. Thus, without a power leakage mechanism, runaway will eventually occur for any

finite electric field even if it is extremely small.
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VI. DERIVATION OF THE MODEL

Instead of working in the electron center of mass frame which is a non-inertial frame if there

is not a steady-state, all calculations are done in the plasma center of mass frame which is an

inertial frame even if there is not a steady state. Furthermore, unlike the classical theory, no as-

sumption is made regarding electron or ion velocity distribution functions being Maxwellians,

shifted Maxwellians, or Maxwellians plus a perturbation. Instead, these velocity distribution func-

tions are assumed to start as Maxwellians but then are allowed to evolve in a way dictated by the

combination of the binary encounters and an applied electric field. The evolution of the individ-

ual three-dimensional velocity vectors of a large number N of interacting particles is calculated

numerically from all possible binary encounters between N/2 electrons and N/2 ions. This cal-

culation is done first with no electric field to establish an initial condition where electrons and

ions have same-temperature Maxwellian velocity distributions. A spatially uniform electric field

E = Eẑ is then turned on and the time-dependent evolution of the velocity distributions is cal-

culated numerically. For binary interactions where the relative velocity is less than the electron

thermal velocity, the impact parameter ranges from infinitesimal to the electron Debye length.

For binary interactions where the relative velocity exceeds the electron thermal velocity, the im-

pact parameters range from infinitesimal to half of the inter-particle distance L = n−1/3. Half the

inter-particle distance is used as the upper bound for superthermal electrons because field particles

cannot move sufficiently fast to establish Debye shielding clouds around superthermal electrons.

The interparticle distance is used when there is no Debye shielding because if a test particle is less

than the interparticle distance from a given field particle, the forces from all other field particles

are in random directions and so cancel. Detailed justification for this is provided in Appendix B.

The distinction of whether to use the Debye length or the inter-particle distance as the upper bound

turns out to be of negligible importance. This is because if the interparticle distance L is used for

the upper bound, then the logarithmic integral
∫

db/b evaluates to

ln

(
L

bπ/2

)
= ln

(
4π
(
nλ

3
D
)2/3

)
. (19)

Thus, for nλ 3
D� 1 the ratio of the two types of logarithms is

ln
(

4π
(
nλ 3

D
)2/3

)
ln
(
4πnλ 3

D
) =

ln4π + 2
3 ln
(
nλ 3

D
)

ln4π + ln
(
nλ 3

D
) ' 2

3
(20)

where the approximation is made because nλ 3
D� 1.
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FIG. 2. Scattering cube with side dimension L = n−1/3 contains one field particle ‘F’ at a random position

b in the blue-shaded x′y′ plane which is at a random position z′. The impact parameter is thus b. The z′

axis is defined by the direction of the initial relative velocity. The test particle ‘T’ will experience a binary

encounter with the field particle if z′ < vrel∆t. The scattering is calculated in the center of mass frame of the

test and field particles and then transformed back to the lab frame. The green arrow describes the trajectory

the test particle T would make if there were no field particle.

To set up the numerical method, the plasma volume is conceptually subdivided into cubes

having side dimension equal to the inter-particle spacing distance L = n−1/3 and the change in

velocity of all particles is calculated for successive time increments ∆t. The orientation of each

cube depends on the binary encounter occurring in the cube. A typical cube is sketched in Fig.2.

There is a single field particle F at a random location inside the cube so a test particle T could have

a binary encounter with this field particle F when the test particle T is in the cube. As sketched

in Fig.2, each cube has a local Cartesian coordinate system {x′,y′,z′} with origin defined to be

where the test particle enters the cube. The cube orientation is such that the cube z′ axis is parallel

to the incident relative velocity of the test particle with respect to the field particle. The collision

occurs in an x′y′ plane located at some position z′; this plane is shaded blue in Fig.2. The field

particle is assumed to be at a random location in this x′y′ plane so (i) the scattering is in a random

direction perpendicular to the z′ axis and (ii) the impact parameter magnitude b can have any value

up to L/
√

2 if the velocity of the encounter exceeds the thermal velocity (no Debye shielding)

and up to λDe if the velocity of the encounter is less than the thermal velocity (Debye shielding

operative). Binary encounters can be electron-electron, electron-ion, or ion-ion. The term binary
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encounter is used rather than collision as collision has the implication of a π/2 deflection whereas

the deflection resulting from a binary encounter could be any angle 0 < θ ≤ π.

Consider a test particle T having a binary encounter with a field particle F in the presence of a

uniform, constant background electric field E=Ezẑ. The test and field particle equations of motion

are

dvT

dt
=

qT qF

4πε0mT r3 r+
qT

mT
Ezẑ (21a)

dvF

dt
=− qT qF

4πε0mFr3 r+
qF

mF
Ezẑ. (21b)

where

r = rT − rF . (22)

The relative velocity is

v = vT −vF (23)

and the center of mass velocity is

V =
mT vT +mFvF

mT +mF
(24)

with the inverse relations

vT = V+
µ

mT
v (25)

vF = V− µ

mF
v. (26)

The kinetic energy of the two particles can be decomposed into components associated with the

center of mass and kinetic energy associated with the relative velocity since

1
2

mFv2
F +

1
2

mT v2
T =

1
2
(mF +mT )V 2 +

µ

2
v2 . (27)

We introduce a reference velocity v0 to avoid assuming the existence of a Maxwellian ve-

locity distribution and its associated well-defined temperature. To make contact with the clas-

sical theory, the reference velocity is assumed to be the initial electron thermal velocity, i.e.,

v0 =
√

2κTe(0)/me. From Eq.8 the impact parameter for scattering by π/2 for a reduced mass

particle µ moving at the reference velocity v0 is

bπ/2,0 =
e2

4πε0µv2
0
. (28)
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We define a Debye-like length

λ f =

√
ε0µev2

0
ne2 (29)

where

µe =
me

2
(30)

is the reduced mass for electron-electron collisions. The definition of λ f introduces a Debye-

like length scale without having to assume that Debye shielding is operative. We further define a

Coulomb-like parameter

Λ f = 4πnλ
3
f (31)

and, motivated by the Dreicer runaway analysis12, define a reference electric field

E0 =
ne3

8πε2
0 µev2

0
=

nebπ/2,0

2ε0

µ

µe
. (32)

E0 is about an order of magnitude smaller than the Dreicer field since E0 does not contain the

ln
(
λD/bπ/2

)
factor in the Dreicer field. Because µev2

0 = κTe it is seen that E0 is one half the

electric field produced by a single electron where the field is measured at a distance λDe from the

electron, that is, E0 =
1
2

e
4πε0λ 2

De
.

Defining the drift velocity

ud = ui−ue (33)

so J = neud, defining the normalized electric field as Ē = E/E0, and defining the normalized drift

velocity as ūd = ud/v0, then Ohm’s law, Eq.13, becomes

Ē =
4lnΛ

3
√

π
ūd. (34)

We define a reference time

τ =
bπ/2,0

v0
(35)

so τ/v0 = bπ/2,0/v2
0 has units of inverse acceleration.

The Caltech experiment will be used as a tangible example. The Caltech experiment had n =

1022 m−3, T = 2 eV, and the transient electric field associated with x-ray production is 60 kV/m.

The reference velocity is v0 =
√

2κTe/me = 8×105 m/s, E0 = 70 kV/m, λ f = 10−7 m, and Λ f =

146 (see Table II).

The first and second terms on the right hand sides of Eqs. 21a and of Eq.21b will be respectively

called the Coulomb and macroscopic electric field accelerations. Each of these terms individually

conserves total particle momentum.

18



We normalize time to τ, lengths to bπ/2,0, velocity to v0, electric field to E0 and denote normal-

ized quantities by a bar. On multiplying Eqs. 21a and Eq.21b by τ/v0, we obtain the normalized

equations

dv̄T

dt̄
=

µ

mT

(
s

r̄
r̄3 +

qT

e
µ2

e
µ2

Ēz

2Λ2
f
ẑ

)
(36a)

dv̄F

dt̄
=

µ

mF

(
−s

r̄
r̄3 +

qF

e
µ2

e
µ2

Ēz

2Λ2
f
ẑ

)
(36b)

where s =+1 if qT qF is positive and s =−1 if qT qF is negative.

Subtracting Eq. 36b field from Eq.36a gives

dv̄
dt̄

= s
r̄
r̄3 +Fẑ (37)

where

F =

(
µ

mT

qT

e
− µ

mF

qF

e

)
µ2

e
µ2

Ēz

2Λ2
f
. (38)

We note that Eq.37 is called the Stark problem and that analytic solutions have been published

(e.g., see Lantoine and Russell30). However, these analytic solutions are exceedingly complex and

because F is very small, a much simpler approximate method suffices. It is seen that

F =


0 for like-particle binary encounters (ion-ion, electron-electron binary encounters)
qT

e
µ2

e
µ2

Ēz

2Λ2
f

for unlike-particle binary encounters (electron-ion, ion-electron binary encounters).

(39)

Adding mT times Eq.36a to mF times Eq. 36b gives

(mT +mF)
dV̄
dt̄

= µ

(qT

e
+

qF

e

)
µ2

e
µ2

Ēz

2Λ2
f
ẑ (40)

so

dV̄
dt̄

=


qT
2e

µ2
e

µ2
Ēz

2Λ2
f
ẑ for like-particle binary encounters (ion-ion, electron-electron binary encounters)

0 for unlike-particle binary encounters (electron-ion, ion-electron binary encounters).
.

(41)

Equations 36a and 36b show that two plasmas having the same Ēz and the same Λ f behave simi-

larly and, in general, Ēz/Λ2
f � 1. For the Caltech jet parameters Ēz/2Λ2

f = 2.2×10−5.
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We restrict consideration to situations where the electric field is sub-Dreicer and so consider

only Ēz < 1 since the behavior of a super-Dreicer electric field is known. The effect of the sub-

Dreicer electric field when the particle traverses a cube is thus small so the electric field does

not appreciably change the particle trajectory. This implies that the Coulomb collision and the

macroscopic electric field can be considered to be independent, additive effects.

The electric field accelerates electrons and ions in opposite z directions and so tends to make a

z-directed electric current. On the other hand, binary encounters tend to (i) attenuate this electric

current, (ii) isotropize the distribution functions, and (iii) equipartition energy between electrons

and ions so that electrons and ions develop the same temperature. Because power is being injected,

the system becomes hotter as time progresses as outlined in Eq.15. This contrasts with the classical

theory where the system is assumed to have a steady-state temperature despite being heated by

Ohmic dissipation (e.g., see Kulsrud et al. 13).

Depending on whether s = 1 or s = −1 in Eq.37, θ will be positive or negative. However, the

direction of b̄ also affects whether θ is positive or negative. Because b̄ has equal probability of

being in the positive or negative y′ direction, there is equal probability of scattering in the positive

or negative θ directions for each of the s = +1 and s = −1 situations. Thus, the ± sign for θ is

automatically taken into account by having random orientations of b̄ and so from now on s = 1

will be assumed.

Since lengths are normalized to bπ/2,0 which was prescribed by Eq.28, the normalized inter-

particle spacing is

L̄ = (4π)1/3 µ

µe
Λ

2/3
F . (42)

The length of a side of a normalized cube containing one nominal field particle is thus L̄. The

normalized electron Debye length is

λ̄De =
µ

µe
Λ f . (43)

The range of the normalized impact parameter b̄ is thus

0 < b̄ <
1
2

L̄ for superthermal particles (44)

0 < b̄ < λ̄De for subthermal particles. (45)

The new relative velocity v̄new is given by the Rutherford scattering formula Eq.8 as

v̄new = v̄cosθ +
b̄∣∣b̄∣∣ |v̄|sinθ (46)
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where b̄ is a randomly directed vector in the x′y′ plane starting from x′ = 0, y′ = 0 at some z′

position where 0 < z′ < L̄. Thus, the scattering is a rotation of v̄ by an angle θ about the x′ axis.

We define

δ =
1

b̄v̄2 (47)

where 0 < δ < ∞. Equation 8 can thus be expressed as

tan(θ/2) = δ (48)

where

cosθ =
1−δ 2

1+δ 2 (49)

sinθ =
2δ

1+δ 2 . (50)

These show that θ = π when δ → ∞, that θ = π/2 when δ = 1 and that θ → 2δ when δ � 1.

The definition of δ and the form of Eqs. 49 and 50 are the same as used in Eq.7 of Takizuka and

Abe 14 .

Equation 37 is solved numerically as follows:

1. A suitable time step ∆t̄ is defined in a manner that relates to item 5 in Sec.IV but is more

precise because the definition here takes into account that a particle is in fact scattered after

each binary encounter whereas item 5 in Sec.IV does not take this scattering into account.

The goal is to take into account that faster particles make more collisions per time. Here,

this is allowed for by considering what happens inside a single scattering cube rather than

averaging over many scattering cubes. This is done by noting that a field particle could be

located anywhere inside a scattering cube so a very slow test particle might not reach a field

particle if the field particle is at the far end of the scattering cube and the assumed time step

is very short.

Specifically we choose ∆t̄ to be the time for a superthermal particle with normalized velocity

β to travel the cube length L̄. This defines the time step ∆t̄ to be used for all particles as

∆t̄ =
L̄
β
. (51)
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The normalized time-steps ∆t̄ for ion-ion, electron-electron, and electron-ion encounters

differ because L̄ differs, but the un-normalized time step is the same for ion-ion, electron-

electron, and electron-ion encounters since the un-normalized time step is

∆t =
L̄
β

τ =
L̄
β

bπ/2,0

v0
=

1
β

n−1/3

v0
. (52)

Choosing β = 10 and using the Caltech parameters (n−1/3 = 4.6× 10−8 m, v0 = 8.4×

105 m/s) gives an un-normalized time step ∆t = 5.5× 10−15 s. Since 4 ns is required

to accelerate an electron to 6 keV, following the complete acceleration would require 106

time steps. Such a large number of time steps is impractical since ∼ 108 interactions are

calculated for each time step. Instead, a smaller number of time steps will be used to

examine the initial evolution of the distribution function. The value β = 10 is chosen as a

compromise because if a very large β is chosen, then thermal and subthermal particles could

only travel an infinitesimal distance into the cube during ∆t̄ and so would have negligible

chance of colliding with another particle. Thus β = 10 allows resolving what happens to

particles ranging from subthermal to ten times thermal velocity during the time ∆t̄ that they

are in a scattering cube.

2. The types of scattering can be decomposed into weak scattering (large impact parameter,

small deflection, cumulative effect dominates) and strong scattering (small impact parame-

ter, large deflection, so infrequent as to be relatively unimportant). The normalized electric

field is very small (Table II shows that Ēz/2Λ2
f = 2×10−5) and so for both weak and strong

scattering the electric field will make a small perturbation to the test particle trajectory.

Since this perturbation is small, it will be linear in the strength of the electric field. How-

ever, for the Coulomb force, there is a difference between the weak and strong scattering

cases. In the weak scattering case, the perturbation to the trajectory is small and so is also

linear in the strength of the Coulomb force. In this case, the effects of the electric field and

the Coulomb force can simply be added in any order since both are linear. However, in

the case of strong scattering, the particle trajectory is substantially altered by the Coulomb

force and so the change in trajectory is not a small perturbation. As an extreme example,

the Coulomb force might reverse the direction of a particle initially moving in the z direc-

tion. If the electric field is also in the z direction, then the electric field would accelerate the

particle before the encounter and then decelerate the particle after (or vice versa depending

on the signs). To encompass this possibility, the particle motion is decomposed into the
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interval before Coulomb scattering, the Coulomb scattering, and the interval after Coulomb

scattering. Thus, there would be electric field acceleration during an interval ∆t/2 before

Coulomb scattering and then additional electric field acceleration during an interval ∆t/2

after Coulomb scattering. This characterization will then encompass both weak and strong

scattering; the time decomposition does not matter for weak scattering but is important for

strong scattering.

However, as will be discussed below, it is also possible that during the entire ∆t there is

no Coulomb scattering and only electric field acceleration. Integration of Eq.37 for the

pre-Coulomb interval gives

v̄(t +∆t/2− ε)= v̄(t)+F∆t/2 (53)

where ε represents an infinitesimal time interval. The Coulomb scattering, if it occurs, is

calculated using v̄(t +∆t/2− ε) as the incident velocity. This gives

cosθ
∗ =

1− (δ ∗)2

1+(δ ∗)2 (54)

sinθ
∗ =

2δ ∗

1+(δ ∗)2 (55)

where

δ
∗ =

1

b̄ [v̄(t +∆t/2− ε)]2
. (56)

The relative velocity is updated in the event of a Coulomb scattering to be

v̄(t +∆t/2+ ε) = v̄(t +∆t/2− ε)cosθ
∗+

b̄∣∣b̄∣∣ |v̄(t +∆t/2− ε)|sinθ
∗. (57)

The post-Coulomb acceleration is then calculated to give

v̄(t +∆t) = v̄(t +∆t/2+ ε)+F∆t/2. (58)

3. The decision on whether or not there is a Coulomb scattering is determined as follows: The

field particle F is assumed to have an equal chance of being located anywhere in the cell sketched

in Fig.2. We consider a relative velocity v̄ with |v̄| < β and consider motion in the center of

mass frame where now there is a reduced-mass fictitious particle making an encounter with a fixed

scattering center. The particle spacing in the center of mass frame is the same as in the lab frame

so the fictitious particle with |v̄|< β will travel a distance less then L̄ in time ∆t̄. Its probability of
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having an encounter with the scattering center will be given as P= |v̄|∆t/L̄= |v̄|/β . Using β = 10

corresponds to an un-normalized speed 10v0, so a particle with un-normalized speed of 2v0 will

only traverse 20% of L̄. Because the field particle and hence the fixed scattering center have an

equal chance of being located anywhere in the cell, the fictitious reduced-mass particle moving at

2v0 has only a 20% chance of encountering the scattering center in time ∆t̄. The encounter will

thus only occur for 20% of possible encounters. Taking into account the different probabilities of

an encounter for different relative velocities corresponds to list item 5 in Section IV which showed

that fast particles make more binary encounters than do slow particles in a time ∆t. However, the

method used here should be more realistic than the method in list item 5 in Section IV because

this list item assumed that the impact parameter is the same for successive binary encounters by

the incident particle whereas in reality each successive binary encounter has a different impact

parameter. Also, list item 5 did not take into account that the direction of v̄ changes after each

binary encounter as list item 5 assumed that the particle always travels in the same direction

despite undergoing numerous binary encounters each of which is assumed to be changing the

direction of the particle. Furthermore, list item 5 did not allow for e-e and e-i binary interactions

to be interspersed as the calculation of the Coulomb logarithm assumed a large uninterrupted

sequence of e-e collisions or a large uninterrupted sequence of e-i collisions.

The probability P that a scattering occurs in ∆t is determined using random numbers. Using a

numerically generated random number ρ where 0 < ρ < 1, the quantity

ϒ = P−ρ (59)

is calculated. If ϒ ≥ 0 the binary encounter calculation proceeds, whereas if ϒ < 0 it is skipped.

For example, the particle moving at β = 10 will have ϒ > 0 for all ρ and so its scattering will be

calculated for all potential encounters, but a slower particle will have its scattering calculated only

for a proportionately smaller fraction of encounters.

The numerical calculation determines updated test and field particle velocities using

v̄T (t +∆t) = V̄(t +∆t)+
µ

mT
v̄(t +∆t) (60)

v̄F(t +∆t) = V̄(t +∆t)− µ

mF
v̄(t +∆t) (61)

where v̄(t+∆t) is the new relative velocity given by Eq.58 and V̄(t+∆t) is the new center of mass

velocity obtained by integration of Eq.41.
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To calculate v̄(t+∆t) it is necessary to determine the cube orientation and the impact parameter

b̄. The z′ direction is defined by the incident relative velocity direction so

ẑ′ =
v
|v|

. (62)

Thus, there will be a continuous re-definition of ẑ′ as the relative velocity is in a different direction

for each binary encounter. To determine the impact parameter b̄, two orthogonal unit vectors are

constructed that are perpendicular to ẑ′ and to each other. The first of these unit vectors is

ŷ′ =
(x̂+ ŷ+ pẑ)× ẑ′

|(x̂+ ŷ+ pẑ)× ẑ′|
(63)

where p is normally set to unity, but in the exceptional situation where ẑ′ happens to be parallel to

x̂+ ŷ+ ẑ, p is set to 2. Thus, ŷ′ is a unit vector orthogonal to ẑ′. To complete the triad,

x̂′ = ŷ′× ẑ′. (64)

Because the field particle is in the cube at a random point in the x′y′ plane at some arbitrary z′,

the field particle position is

r̄F = r̄T +
(
(ρ1−0.5) x̂′+(ρ2−0.5) ŷ′+ z′ẑ′

)
L̄ (65)

where ρ1,2 are independent random numbers having values between 0 and 1. This gives

r̄ =
(
(ρ1−0.5) x̂′+(ρ2−0.5) ŷ′+ z′ẑ′

)
L̄. (66)

Since the test particle incident velocity is at the origin of the x′− y′ plane and in the z′ direction,

the impact parameter is

b̄ = (ρ1−0.5) L̄x̂′+(ρ2−0.5) L̄ŷ′, (67)

i.e., anywhere in the x′y′ plane shown as blue in Fig. 2. If Debye shielding is operative, then λDe

would replace L̄ in Eq. 67 but as shown in Eq.20 this makes little difference.

The required initial conditions are the initial velocities of particles, Ē, Λ f , and mi/me. Each of

the N/2 electrons is labeled by the index i where 0 ≤ i ≤ N/2− 1 and each of the N/2 ions also

have indices i, but with N/2 < i < N−1. This scheme allows for the same index i to refer to both

electrons and ions.

The matrix in Eq.68 shows the counting procedure for all possible binary encounters of the N

particles with each other for the simplified case where N = 8. Here rows are numbered from i = 0
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to 7 and columns are numbered from j = 0 to 7. The indices i = 0,1,2,3 refer to electrons which

are labeled as e0,e1,e2, and e3 while the indices i = 4,5,6,7 refer to ions which are labeled as

i0, i1, i2 and i3. There are three types of binary encounters, namely electron-electron, electron-ion,

and ion-ion. For example, e1− e0 in the matrix denotes a binary encounter between electron #0

and electron #1. Binary encounters between unlike particles are shown in bold in the matrix.



∗

0 : e1− e0 ∗

1 : e2− e0 7 : e2− e1 ∗

2 : e3− e0 8 : e3− e1 13 : e3− e2 ∗

3 : i0− e0 9 : i0− e1 14 : i0− e2 18 : i0− e3 ∗

4 : i1− e0 10 : i1− e1 15 : i1− e2 19 : i1− e3 22 : i1− i0 ∗

5 : i2− e0 11 : i2− e1 16 : i2− e2 20 : i2− e3 23 : i2− i0 25 : i2− i1 ∗

6 : i3− e0 12 : i3− e1 17 : i3− e2 21 : i3− e3 24 : i3− i0 26 : i3− i1 27 : i3− i2 ∗


(68)

To calculate binary encounters, all elements i, j of the off-diagonal lower half of the matrix

are used; the set of all possible binary encounters indexed sequentially is given by the number

preceding the colon in the elements in the matrix in Eq.68. For each element i, j a binary encounter

is calculated according to Eqs.53 - 61. The procedure described with respect to Eq.59 can now be

seen more clearly by considering elements 3-6 in Eq.68 which is a list of all the binary encounters

that electron e0 makes with ions. Each element in Eq.68 describes what happens in a time ∆t̄

so the four elements 3-6 describe binary encounters in the time 4∆t̄. If electron e0 has velocity

with magnitude β it will collide with all four ions (i.e., with ions i0, i1, i2, i3) in the time 4∆t̄.

However, if electron e0 has a velocity with magnitude β/2 then it only has a chance of having

binary encounters with two of these ions. Which ion the electron has an encounter with is random,

so Eq.59 is used to determine whether or not the encounter takes place. Thus, only two of the

four possible Rutherford scatterings will be calculated. If the electron does not have a Rutherford

scattering with an ion during an interval ∆t̄, the electron nevertheless experiences the electric field

acceleration.

In order to randomize the calculation, the elements of the Eq.68 matrix are first re-indexed in

a linear fashion as shown by the number preceding the colon in each element, e.g. (2 : e3− e0) is

the linear element 2. This re-indexing is used to construct a 1D vector with
(
N2−N

)
/2 elements

26



which for this simplified example would be[
0 : e1− e0, 1 : e2− e0, 2 : e3− e0, 3 : i0− e0, .... 25 : i2− i1, 26 : i3− i1, 27 : i3− i2

]
.

(69)

Next, the elements of the vector in Eq.69 are shuffled to produce a 1D vector with
(
N2−N

)
/2

elements having a random order as, for example,[
3 : i0− e0, 24 : i3− i0, 4 : i1− e0, 3 : i0− e0, .... 1 : e2− e0, 26 : i3− i1, 0 : e1− e0

]
.

(70)

Binary encounters are numerically evaluated in the order of this shuffled vector to avoid patterns

that might develop using the unshuffled vector. If Ēz = 0, this procedure yields a Maxwellian

(thermal) distribution after a few sequences of Eq.70.

For the Caltech jet experiment Ē/2Λ2
f = 2.2× 10−5 which means that during the time a ref-

erence electron spends inside a cube, the fractional change in the z component of its velocity as

a result of the electric field is very small. If the particle is an ion, then the change in velocity is

even smaller. It is important to note that ẑ is a lab-frame unit vector so the electric field is always

pointing in the same direction in the lab frame whereas the continuously changing x̂′, ŷ′ and ẑ′ unit

vectors could be pointing in any direction.

VII. ORGANIZATION OF THE NUMERICAL COMPUTATION

Binary encounters between the N particles are calculated by sequencing through the elements

of Eq.70 using the values of Ēz and Λ f given in Table II. A ‘sequence’ corresponds to a single pass

through the
(
N2−N

)
/2 elements in the matrix in Eq.68. When N is larger than a few hundred

and Ēz = 0, the particles become Maxwellian in a few sequences and the total system energy and

total system momentum are both conserved. Using N = 1000 for code testing and N = 10,000 for

ultimate runs provided convenient run times on a desktop computer; for N = 10,000 a sequence

consists of calculating 49,995,000 potential binary encounters. An mi/me = 16 mass ratio is used

so that the effect of large mass ratio can be identified and yet electron and ion behavior can be

distinguished and plotted on the same scale.

The system is first run for four sequences with Ēz = 0 to construct electron and ion Maxwellians

having zero average velocity; this is labeled as configuration #0. Equipartition between the six de-

grees of freedom (electron x,y,z motion, ion x,y,z motion) is observed and conservation of total
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energy and momentum is also observed. The configuration #0 Maxwellian distributions are stored

and used as the initial condition for configurations with finite Ēz. Further sequences of Eq.70 are

then calculated with finite Ēz and particle velocity distribution functions are constructed from his-

tograms of the velocities. Configurations #1,2,3 have increasing values of Ēz/2Λ2
f with respective

relative scaling proportional to 1,
√

2,2. Configurations #4,5,6 are the same as configuration #2

except that a toy model of atomic line radiation is added to introduce a power leakage. Configu-

rations #1,2,3 show that total particle kinetic energy is no longer conserved when Ē/2Λ2
f is finite,

but overall momentum is conserved. To keep the presentation within length limitations, config-

urations #0, #2, #4, #5, and #6 which contain the essential results will be presented here while

configurations #1 and #3 which provide information on dependence on Ēz are presented in Ap-

pendix C with the result summarized here. As predicted by Eq.15, the total particle kinetic energy

continuously increases with time if there is no power loss mechanism. After a long time, the rate

of increase of electron kinetic energy is mi/me larger than that of ions. Although a steady-state

does not exist, the total system momentum is conserved because the electric field imparts equal

and opposite momentum changes to electrons and ions. However, in configurations #4,5,6 the sys-

tem can approach a steady-state as a result of the power leakage assumed for these configurations.

The electrons can develop a unidirectional tail with continuously increasing velocity. This system

is not in a steady-state although it may be in a quasi-steady state; the electron velocity distribution

deviates significantly from Maxwellian and so is more consistent with experimental observations

than a Maxwellian would be.

Electron and ion velocity distribution functions fσx(v), fσy(v), and fσz(v) are directly mea-

sured from normalized histograms of the numerically evolved velocity components of the N/2

electrons and the N/2 ions. In order to determine the extent to which the velocity distributions are

Maxwellian, the mean velocity uσ = 〈vσ 〉 and the mean square velocity
〈
ṽ2

σ

〉
=
〈
(vσ −uσ )

2
〉

are calculated for each species from the numerical velocity distribution functions fσ j(v). These

calculated mean velocities and mean square random velocities are

uσ j =
∫

∞

−∞

v fσ j(v)dv (71)

and 〈
ṽ2

σ j
〉
=
∫

∞

−∞

(
v−uσ j

)2 fσ j(v)dv. (72)

These calculated uσ and
〈

ṽ2
σ j

〉
are used to construct Gaussian functions for each component
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j = x,y,z of each species σ , namely

gσ j(v j) =
1√

2π

〈
v2

σ j

〉 exp

−(v j−uσ j
)2

2
〈

ṽ2
σ j

〉
 . (73)

Each Gaussian function gσ j(v j) has the properties that

uσ j =
∫

∞

−∞

vgσ j(v)dv (74)

and 〈
ṽ2

σ j
〉
=
∫

∞

−∞

(
v−uσ j

)2 gσ j(v)dv. (75)

The system is considered to have reached thermodynamic equilibrium if fσ j(v)→ gσ j(v); in

this case the particles are said to have thermalized. However, being thermalized does not mean

that the system is in a steady-state equilibrium as its temperature and its ion-electron relative

drift velocity ud could be continuously increasing with time. Comparing the histogram of parti-

cle velocities to g indicates whether the system has developed a shifted Maxwellian (histogram

coincident with g), a Maxwellian plus perturbation, or something else.

VIII. NUMERICAL RESULTS

The numerically calculated time-dependent velocity distribution functions are presented in an-

imations and as plots of the time dependence of energy, momenta, and velocity.

Configuration #0: This configuration produces the thermalization of opposing beams with no

macroscopic electric field and no radiative loss. The prescribed initial electron distribution has

v̄ = −v̄e0ẑ for half the electrons and v̄ = +v̄e0ẑ for the other half. For ions, the initial veloci-

ties are similarly prescribed as opposing beams with velocities v̄ = ±v̄i0ẑ . The initial velocities

v̄e0, v̄i0 are prescribed to have unit total kinetic energy per electron-ion pair and an ion initial ki-

netic energy that is twice the electron initial kinetic energy. The reason for this unequal initial

prescription is to enable verification that the numerical calculation produces energy equiparti-

tion between the electrons and ions. Specifically v̄e0 =
√

2/3 and v̄i0 =
(
2
√

3
)−1

so the initial

kinetic energy of an ion-electron pair is 1
2mev2

e0 +
1
2miv2

i0 = 1 and the initial kinetic energy ra-

tio is
(1

2miv2
i0
)
/
(1

2mev2
e0
)
= 2. Thus, the initial system has zero total momentum and velocity

distributions fσ (v̄) = (N/2)( δ (v̄x)δ (v̄y)δ (v̄z− v̄σ0)+δ (v̄x)δ (v̄y)δ (v̄z + v̄σ0)). Thermalization is

observed to have three time scales: electron-electron (fast) resulting in thermalized electrons,
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ion-ion (medium) resulting in thermalized ions, electron-ion (slow) resulting in equipartition of

energy between electrons and ions. The result is thermalized electrons and thermalized ions at

the same temperature. Figure 3(Multimedia view) is an animation showing the evolution of the

configuration #0 electron and ion distribution functions; the still image is the last image of the

animation and so shows the thermalized distributions. In Figs.3(a)-(f) (Multimedia view) the solid

blue lines are histograms of the numerically calculated particle velocities while the dashed red

lines are Maxwellians (Eq.73) having the same energy and mean velocity. The animation shows

the time progression – the dashed red lines denoting g from Eq.73 initially deviate from the solid

blue lines denoting f and then later overlay the fσ lines. Figure 4(b) shows the somewhat complex

evolution of the various quantities: at t = 0, the ion z kinetic energy is, as prescribed, twice that of

the electron z kinetic energy and both ion and electron x kinetic energies are zero. It is seen that

the electron kinetic energy in the z direction first decreases and then increases. This is because as

shown in Figure 4(b) the electrons thermalize first, then the ions, and then there is equipartition of

energy between electrons and ions. At t ' 3 ps, the electron x and z kinetic energies equalize so

the electron z kinetic energy decreases while the electron x kinetic energy increases; the electron y

kinetic energy (not shown) behaves the same as the x kinetic energy. This equipartitioning of the

three components of the electron kinetic energy at 3 ps means that the z component of the electron

kinetic energy drops to one third of its initial value at 3ps. By contrast, at t ' 3 ps the ion kinetic

energies have only slightly changed from their initial value. After 3 ps the electrons slowly receive

energy from the ions so all components of the electron kinetic energy slowly increase. On a slower

time scale the z and the x components of the ions equalize. By 200 ps there is equipartition of

kinetic energy between all directions of electrons and ions. This state at the end of the evolution

of configuration #0 serves as the starting point for configurations #1-#6.

Configurations #1-#3: These configurations start with the thermalized particles produced in

configuration #0 but now have finite Ēz. There is no radiation for these configurations. The results

of configuration #2 are shown in Figs.5 (Multimedia view) and 6. The results from configurations

#1 and #3 are shown in Appendix C and differ in that Ēz in configuration #1 is
√

2 times smaller

than in configuration #2 and Ēz in configuration #3 is
√

2 times larger; these provide information on

the scaling with Ēz and show that this scaling is consistent with the prediction of Eq. 16. Figure 6

demonstrates that, contrary to the conventional model, a steady-state does not result in a collisional

plasma having a uniform, constant electric field and no other effects. The time for the total kinetic

energy to quadruple as seen in Fig. 6(a) is approximately 100 ps which is the same order of
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FIG. 3. Initial thermalization starting with distribution functions fσ (v̄) ∼ δ (v̄x)δ (v̄y)δ (v̄z − v̄σ0) +

δ (v̄x)δ (v̄y)δ (v̄z + v̄σ0) and no electric field, no radiation. Blue lines in (a)-(f) are components of elec-

tron and ion velocity distributions. (g),(h) are contour plots of electron and ion velocity distributions with

horizontal axis being z direction, vertical axis being perpendicular to z. (i) is clock for animation running

time. Red dashed lines in (a)-(f) are Maxwellians with same energy and mean velocity. First 10 frames of

animation run slowly to provide temporal resolution of rapid electron thermalization. Still image in print

version is last frame of animation. (Multimedia view)
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FIG. 4. (a) Time evolution of total kinetic energy of ions, of electrons, and of sum of electrons and ions, (b)

time evolution of kinetic energy of z and x components (y component same as x from symmetry).

magnitude as the 240 ps estimate in Eq. 16; the reason for the discrepancy in these quadrupling

times is discussed in Sec.VIII A. The respective quadrupling times for configurations #1 and # 3

are respectively a factor of two slower and faster than that of configuration #2 consistent with the

t4x ∼ 1/Ē2
z scaling predicted by Eq. 16. The salient feature is the continuous electron acceleration

in the negative z direction. This continuous acceleration is not predicted by the classical Fokker-

Planck model for a sub-Dreicer electric field.

Configurations #4-#6: These configurations are the same as configuration #2 except that now,

in addition, a toy model radiative power loss mechanism has been added. This toy model modi-

fies selected electron-ion binary encounters when the relative kinetic energy exceeds a prescribed

threshold corresponding to the energy required to excite an ion from its initial quantum energy

state to a higher energy state. If this excitation occurs, then the electron-ion collision is inelastic

as there must be a conversion of electron kinetic energy into ion excitation energy. The excited

ion emits a photon containing energy corresponding to the difference between the higher and

lower quantum energy states. Not all binary encounters with relative kinetic energy exceeding the

threshold result in this excitation and associated photon emission because, for the ion excitation

to occur, the electron must be physically close to the ion; an extreme grazing collision with the

requisite relative kinetic energy would not cause ion excitation because the electron and ion are
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FIG. 5. Configuration #2. (still figure is last figure of animation). Ēz/2Λ2
f = 2.16×10−5 and no radiation.

(a)-(f) show as blue lines the components of numerically computed velocity distribution function f . Also

shown (red dashed lines) is the Maxwellian g defined by Eq.73 having same average kinetic energy and

same mean velocity. Also shown (dark green and dashed light green) are plots of 50 f and 50 g. Contours

in (g) and (h) are at 0.001, 0.01, 0.25 and 0.9. Red vertical line in (g) and (h) denote mean z velocity, i.e.,

uσz. (i) is clock for animation running time. (Multimedia view)
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FIG. 6. Configuration #2. (a) Lab-frame kinetic energies for sum of all direction components, (b) lab-frame

kinetic energy of z and x components (y same as x), (c) electron-frame kinetic energy z components in

positive and negative directions (note that these are not equal contrary to assumption in Eq.A.6 and also no

equilibrium is achieved), (d) shows that momentum is conserved, (e) shows that ui,z−ue,z increases without

bound (i.e., current density increases without bound), (f) shows that ui,z and ue,z increase without bound.

too far apart.

The photon emission provides a power loss mechanism and so provides the possibility for a

steady state to develop. The fact that only a fraction of energetic electrons having the requisite

energy make inelastic binary encounters corresponds to this process having an effective cross-

section. The numerical representation for this inelastic collision mechanism is that an electron

colliding with a relative velocity exceeding v̄crit = 2 and with parameter δ > δcrit defined by

Eq.56 will have its kinetic energy reduced by mev̄2
crit/2. Since here the energy is normalized such

that v̄ = 1 corresponds to 2 eV electron kinetic energy, then v̄crit = 2 corresponds to an electron

having four times as much energy, that is 8 eV. Thus, the numerical representation for the inelastic

collision is that an electron with energy exceeding 8 eV having a binary encounter with an ion

will lose 8 eV providing the encounter is such that δ > δcrit . After the inelastic collision, the

electron proceeds in the same direction as before but, to account for the energy loss, its velocity

is reduced such that v̄2 → v̄2− v̄2
crit . A corresponding loss of electron momentum is calculated

and the ion momentum is increased by this amount to maintain conservation of momentum. The
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FIG. 7. Configuration #4. (still figure is last figure of animation). Electric field same as Configuration #2

shown in Fig.5 but now the calculation includes a toy model with inelastic binary encounter for electrons

with relative velocity exceeding ¯vcrit = 2 and δ > δcrit where δcrit = 0.3. This inelastic binary encounter

models an electron exciting an ion to a higher energy state and the ion then emitting a photon containing

the energy transferred from the electron during the encounter. (Multimedia view)
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FIG. 8. Configuration #4. Electric field same as Configuration #2 but now calculation includes toy model

with inelastic binary encounter for electrons with velocity exceeding ¯vcrit = 2 and δ > δcrit where δcrit = 0.3.

This inelastic binary encounter models an electron exciting an ion to a higher energy state and the ion then

emitting a photon containing the energy transferred from the electron during the encounter.

δ > δcrit threshold can be expressed in terms of a critical impact parameter b̄crit since Eqs. 28 and

47 imply

δcrit =
1

bcrit

e2

4πε0mev2 . (76)

so

bcrit =
e2

4πε0mev2δcrit
. (77)

This gives an effective inelastic collision cross-section which can be evaluated to be

σinelastic = πb2
crit = π

(
e2

4πε0me (v̄critv0)
2

δcrit

)2

. (78)

Configuration #4 uses δcrit = 0.3 for which Eq.78 gives σ = 2.8× 10−19 m2. Configuration #5

has δcrit = 0.1 giving σ = 2.5×10−18 m2 and configuration #6 has δcrit = 0.03 giving σ = 2.8×

10−17 m2. Thus, the toy model excitation cross-section is about two to three orders of magnitude

larger than actual electron-ion excitation cross sections (e.g., see Fig. 7 of Boffard et al.31) and

so provides a qualitative representation of reality. Choosing large δcrit requires a more head-on

collision and so is more realistic, but this decreases the frequency of occurrence so that many more
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FIG. 9. Configuration #5. Same as Fig. 7 except δcrit = 0.2 (still figure is last figure of animation).

(Multimedia view)

numerical iterations are required to capture the effect. The demonstration of the energetic electron

tail in Fig. 7(e) and (g) (Multimedia view) and in Fig. 9(e) and (g) (Multimedia view) is the most

important result presented in this paper as this tail is qualitatively consistent with experimental

observations and not previously predicted.
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FIG. 10. Configuration #5. Same as Fig.8 except δcrit = 0.2

It is reasonable to conclude that the main energy loss channel is line radiation for the following

reasons. At 2 eV, the Ohmic heating power is E2/η ≈ 2×1013 W m−3 while the radiated power

in an Argon plasma32 is P/(nenAr) ≈ 5× 10−31 W m3 so for ne = nAr = 1022 m −3 the radiated

power is of order 1013 watts. Thus, the radiated power is the same order of magnitude as the

Ohmic power. In contrast, using Eq. 15.10 in Miyamoto 33 it is seen that the bremsstrahlung

power is 2× 106 W m−3, i.e., seven orders of magnitude smaller than the Ohmic heating power.

Furthermore, bremsstrahlung does not have the quantized nature of line radiation and so cannot

result in a distinction between particles that collide inelastically and those that do not.

The red lines in Figs. 8(c) and 10 (c) show electron z direction kinetic energy as measured in

the electron center of mass frame for vz− uez > 0 while the green lines show this electron frame

kinetic energy for vz− uez < 0. If the electron distribution were to be a shifted Maxwellian, the

green and red lines would be identical so any deviation between the red and green lines indicates

deviation from being a shifted Maxwellian. The green to red line ratio gives an indication of the

strength of the energetic electron tail as measured in the center of mass frame (lab frame). The

increase of the green line relative to the red line shows that the energy of the electron tail is rapidly

increasing. Electrons with v̄> v̄crit but having δ < δcrit do not have inelastic binary encounters and

will be accelerated into even higher energy by the electric field. Unlike Rutherford scattering, the

inelastic collision cross-section for ion excitation is a true hit-or-miss cross-section and so plays
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FIG. 11. Configuration #6. Same as Fig. 7 except δcrit = 0.03 (still figure is last figure of animation).

(Multimedia view)

the role of the collision cross-section proposed in Sec.II B. Thus, similar to what was proposed by

Marshall and Bellan2 there will be a small, decreasing in number, subset of ‘survivor’ electrons

that never lose energy because these ‘lucky’ subset electrons always have δ < δcrit . This subset

of ‘survivor’ electrons will be accelerated to very high energy and would explain the hard x-rays
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FIG. 12. Configuration #6. Same as Fig.8 except δcrit = 0.03

seen in the Caltech experiment. Configuration #5, shown in Figs. 9 (Multimedia view) and 10,

has an approximately 2× larger cross-section for inelastic collisions than configuration #4 so now

there are fewer ‘survivor’ electrons; the energetic electron tail is very clear in Fig.9 (e) and (g)

(Multimedia view). Configuration #6, shown in Figs. 11 (Multimedia view) and 12 has a 100×

larger cross-section than configuration #4 and so no ‘survivor’ electrons are evident and the rate

at which energy is lost by photon emission balances the rate at which energy is injected by the

electric field so what appears to be a steady-state develops; if a much larger number of particles

N had been used (e.g., N = 107), it is presumed that a very small number of ‘survivor’ electrons

would then exist and a tiny deviation from steady-state would be evident. The complete overlap of

the dashed red and solid blue lines in Figure 11 (e) (Multimedia view) indicates that the electron

velocity distribution is a shifted Maxwellian as prescribed by Eq.A.6 and not a Maxwellian plus

perturbation as prescribed by Eq.A.4; this conclusion is supported by Fig.12 (c) which shows

that the energies of the forward and reverse z-directed electrons relative to the electron center of

mass velocity are equal. A steady-state could develop for configuration #4 if an additional loss

mechanism were added that would remove very fast ‘survivor’ electrons and replace these fast

electrons with low-energy electrons. A possible scenario would be that the very fast ‘survivor’

electrons escape from the volume under consideration faster than the slow bulk electrons and are

replaced by a source of low-energy electrons.
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A. Time interpretation of numerical results

The un-normalized duration of a binary encounter of an electron moving at the reference ve-

locity is n−1/3/v0 = 5.53×10−14 s for the Caltech experiment. The time step for the numerical

integration is ∆t = n1/3/(βv0) where β = 10 has been used so as to enable calculation of the

probability that a binary encounter occurs in the time ∆t; this value of β has been chosen so that it

encompasses the maximum electron velocities in the plots of velocity distribution functions. Thus,

∆t = 5.53×10−15 s so a sequence of Eq.70 with N = 104 corresponds to each particle (electron or

ion) making N−1 time steps. For example, this would be electron e0 running down the left-most

column of the matrix in Eq.68 and so having encounters with each of the N− 1 other particles

Thus, the elapsed time for each sequence is tseq = Nn1/3/(βv0) = 55 ps so four sequences is 220

ps. The distance a reference electron travels in one sequence would be v0tseq = 44 µm.

B. Energy ratios

If there is no power loss mechanism, the total kinetic energy continuously increases and even-

tually the rate of electron kinetic energy is mi/me times that of ion kinetic energy. This is consistent

with the power inputs into electron and ion kinetic energies being

d
dt

(
1
2

miv2
i

)
= qiE ·ui (79)

d
dt

(
1
2

mev2
e

)
= qeE ·ue. (80)

The electric field does not change the total plasma momentum which was initially zero so miui +

meue = 0. Thus, using ue =−miui/me and qi =−qe it is seen that

d
dt

(
1
2

mev2
e

)
=−mi

me
qeE ·ui =

mi

me

d
dt

(
1
2

miv2
i

)
(81)

showing that the electron kinetic energy increases faster than the ion kinetic energy by mi/me as

observed in the numerical calculations when there is no radiation. This mi/me ratio of electron to

ion energy is observed when the calculation is run for very long times with no radiation. As seen

from configuration #3, at very long times most of the kinetic energy is in electron center of mass

motion in the z direction rather than in thermal motion so uez→ qeEzt/me and the kinetic energy

at long times will be mev2
e/2→ q2

eE2
z t2/2me. This t2 scaling of the z component kinetic energy

and the corresponding t scaling of uez are seen in Figs.20(b) and (f) in Appendix C. This meu2
ez/2
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kinetic energy is not accounted for in Eq.16 and this omission is presumably why the increase in

total kinetic energy with no power loss mechanism is faster than predicted by Eq.16.

IX. RELATION TO TOKAMAK RUNAWAY MODELS

Because runaway generation is an important concern for tokamaks, there is an extensive toka-

mak literature on this topic (e.g., review articles by Knoepfel and Spong 34 and by Breizman

et al. 35). However, the tokamak situation differs from the Caltech jet experiment in several impor-

tant ways: (i) because of the excellent confinement in tokamaks, tokamak electrons are accelerated

over a distance orders of magnitude longer than the characteristic device size whereas in the Cal-

tech jet experiment the electron acceleration is a single pass through the length of a portion of the

plasma; (ii) tokamak runaway electrons are relativistic, are a significant fraction of all the elec-

trons, and carry a significant fraction of the electric current whereas in the Caltech jet experiment

the energetic tail electrons are non-relativistic, are a tiny fraction of all the electrons, and carry

a negligible fraction of the current; (iii) a tokamak has a relatively constant or slowly changing

electric field whereas in the Caltech jet experiment the electric field abruptly turns on because

of a sequence of MHD instabilities. The model presented here describes the consequences of

an abruptly-created, very large electric field in a device with modest confinement and so differs

from the tokamak situation of a long-lasting small electric field in a device having near-perfect

confinement. The Caltech jet experiment may however have a relationship to the rapid generation

of energetic particles during tokamak reconnection instabilities such as a sawtooth crash since a

strong transient electric field is typically produced in these instabilities. The Caltech jet exper-

iment is also likely related to generation of energetic particles in a solar reconnection event as

discussed in Zhang et al. 26 , Marshall et al. 1 , and Marshall and Bellan 2 .

X. SUMMARY

This paper is motivated by experimental observations of 6 keV X-rays in a plasma that is so

cold (2 eV) and collisional that one would not expect any electron to be accelerated to 6 keV

and so produce an X-ray. These X-rays were short bursts at the end of a cascading sequence

of qualitatively different types of instabilities (kink, Rayleigh-Taylor, and presumed collisional

Buneman). A previous model attempted to explain the production of 6 keV electrons by proposing
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that, in analogy to a lucky soldier who goes through many battles without being wounded, there is

a tiny sub-group of “lucky” electrons that never collide and so attain a large directed kinetic energy

in the presence of an electric field. However, this previous model was discredited on the grounds

that all electrons are the same (no lucky subgroups) because electron collisions in a plasma involve

the cumulative effect of a large number of grazing collisions, rather than a hit or miss process. The

electric field was inferred to be smaller than the Dreicer field, which is the field for all electrons to

run away and attain high energy, so the experimentally observed process is not consistent with a

classic run-way situation as only a tiny number of electrons have high energy.

The paper presents a numerical model that differs from prior work because, unlike prior work,

there is no explicit analytic averaging over impact parameters, that is, there is no explicit invocation

of a Coulomb logarithm. Instead, a large number of encounters between particles is evaluated with

varied impact parameters, interspersion of e-e, e-i, and i-i encounters, and use of the continuously

changing direction of the trajectory of particles rather than the traditional assumption that a particle

has an unchanged direction while summing up the consequences of a large number of encounters.

The analysis takes into account that superthermal particles are not Debye shielded because they

move too fast for Debye shielding to be established. Instead it is shown (with detailed argument

in Appendix B) that for superthermal particles the effective cutoff for an averaging over impact

parameters is the interparticle distance rather than the Debye length. It is further shown that this

leads to a Coulomb logarithm scaling as ln
(

4π
(
nλ 3

D
)2/3

)
instead of ln

(
4π
(
nλ 3

D
))

which makes

little difference since the ratio of these quantities is 2/3 when nλ 3
D is very large. The numerical

code divides space into scattering cubes having side dimensions equal to n−1/3, the interparticle

spacing. A field particle is assumed to be at a random location in each scattering cube so the density

of field particles is n. The scattering calculation is done for a small time interval ∆t defined by

the time it takes for a particle having ten times thermal velocity to traverse a scattering cube. This

means that a particle with velocity 10 vT will traverse the scattering cube in the time interval ∆t and

so always encounters a field particle, but a particle with velocity vT , will only traverse one tenth

the length of the scattering cube and so only has a 10% chance of encountering a field particle.

This procedure is analogous to the classic differential cross-section argument where the number

of encounters in a time ∆t is presumed to be proportional to a distance v∆t multiplied by a cross

section dσ multiplied by a density of field particles. However, this procedure is more accurate

because it takes into account the changing of the direction of the test particle after each encounter

and the interspersion of different types (e-e, e-i, etc.) of encounters. The numerical results show
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that when there is no electric field, a classic 3D Maxwellian thermalized velocity distribution

is established on an expected time scale such that electrons thermalize first, then ions, and then

electrons and ions come to the same temperature. A simple analytic argument shows that if there

is no power loss mechanism, then when an electric field is applied to a plasma, no equilibrium

can result and instead the plasma rapidly heats up to very high temperature and runs away as the

condition for runaway goes inversely with temperature. It is then shown that equilibria can occur if

there is a heat loss mechanism but the equilibrium will depend on the type of loss mechanism and

so will not be unique. A specific type of loss mechanism is considered, namely optical radiation,

as would occur when an energetic electron comes very close to an ion and so excites a bound

electron attached to the ion to a sufficiently high energy state for a photon to be radiated. It is

shown that this mechanism corresponds to a well-defined cross-section so it is now possible for

there to be a subset of lucky electrons that never come close enough to an ion with sufficient

energy to cause photon emission. These lucky electrons will be continuously accelerated in the

presence of an electric field and will attain sufficient energy to generate x-rays when they finally

make an exceedingly rare large angle collision. The numerical calculation also shows that when

radiation is allowed but the electric field is weak, then a near-equilibrium can be established and

that this equilibrium is such that the electron distribution function is a shifted Maxwellian. This is

an important point because typical analytic models of collisions are based on the postulate that the

electron distribution function is not a shifted Maxwellian but instead is an unshifted Maxwellian

plus a small perturbation.

XI. CONCLUSION

There is a logical inconsistency in assuming that an isolated plasma can be in a steady-state

when there are collisions and a finite electric field because the plasma will continuously heat up as

there is no place for the injected energy to go. To have a steady state there must be a mechanism

for removing energy at the rate it is being injected. Several different types of loss mechanism are

possible but the likely loss mechanism for the Caltech jet experiment and probably many other

situations is atomic line radiation. This is consistent with the experimental observation by Chai

et al36 of ion excitation and higher ionization states during the same kink-driven Rayleigh-Taylor

instability that exhibited x-ray emission. For low-strength electric fields competing with this ra-

diative loss mechanism, an equilibrium can develop and this equilibrium has the form of a shifted
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Maxwellian. However, higher strength electric fields that are still sub-Dreicer will produce en-

ergetic electron tails and distribution functions very different from a shifted Maxwellian. These

energetic tails are more consistent with experimental observations than the predictions of a shifted

Maxwellian and cannot be modeled by a Maxwellian plus perturbation because the assumption

that the perturbation is small compared to an unshifted Maxwellian is invalid for a high-energy

non-Maxwellian tail. It is the quantum hit-or-miss nature of the electron excitation of ions that

produces a true cross-section so that it is possible to have an electron that continuously fails to

excite ions while simultaneously gaining more and more energy from the electric field. Such “sur-

vivor" electrons will be few in number, but they will exist and so will constitute a highly energetic

tail that could produce x-rays. This model suggests that if there is no heat conduction or particle

loss (two other possible ways to balance the power input from the electric field) then radiation

provides the temperature limit so if there is very little radiation, then a very high temperature re-

sults. This is of course well known for tokamaks where the emphasis on vacuum cleanliness is

to reduce radiative loss that would limit the temperature. The radiation model presented here is a

toy model that demonstrates the essential dynamics in a semi-quantitative manner; i.e., it captures

the order of magnitude of what is going on and reveals the competition between major effects but

it is not precise. In order to attain a precise quantitative description, account would have to be

taken of multiple levels of excitation, ionization, recombination, and the specific, detailed energy

dependence of excitation and ionization cross-sections.
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APPENDIX A. DIFFICULTIES WITH PREVIOUSLY USED MODELS OF

RESISTIVITY AND COLLISIONS

The concepts and assumptions underlying previously used models of plasma resistivity and col-

lisions satisfactorily describe many situations. However, there are difficulties with these traditional

models which will be scrutinized in this appendix.

The theory of plasma resistivity necessarily involves a competition between acceleration pro-

duced by an electric field and drag produced by collisions. As stated in the main text of this paper,

e-e collisions tend to make the electrons Maxwellian in the center of mass frame of the electrons

whereas e-i collisions tend to make the electrons isotropic in the ion frame. These tendencies are

in situations where there is no electric field. It is instructive to examine the complementary situa-

tion, namely what happens when there is an electric field, but no collisions. To do this, consider

the situation of a plasma that initially has no electric field and then an electric field is suddenly

applied and where the electric field is the only effect. The Vlasov equation is now collisionless

and time-dependent with the form

∂ fσ

∂ t
+

qσ

mσ

E·∂ fσ

∂v
= 0. (A.1)

This has the solution

fσ (v,t) = fσ

(
v− qσ

mσ

Et
)

(A.2)

since v− qσ

mσ
Et is the velocity at t = 0, a constant of the motion, and solutions of the Vlasov

equation are functions of the constants of the motion.

If the velocity distribution is Maxwellian at t = 0 then

fσ (v,t) =
n

π3/2v3
T σ

exp

−
(

v− qσ

mσ
Et
)2

v2
T

 (A.3)

which shows that to the extent that collisions are not important, the electric field produces a shifted

Maxwellian where the shift increases linearly with time.

However, classical models of resistivity assume the solution is time-independent and so, instead

of balancing the electric field with the time-dependent term in the Vlasov equation, the electric

field force is assumed to balance frictional drag. Two traditional models of plasma resistivity exist

and differ by their initial assumptions and by the level of detail at which averaging is done. Both

types of models calculate resistivity η via a steady-state Fokker-Planck17 model that averages the
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consequence of a large number of transient Rutherford scattering events. These events, called

binary encounters, occur when two charged particles are in close proximity.

The first and more widely used type of model is based on the Chapman-Enskog method and

assumes that an electric field E causes an electron velocity distribution to become the sum of a

Maxwellian fe,0(v) and a perturbation fe,1(v), i.e.,

fe(v) = fe,0(v)+ fe,1(v) (A.4)

where

fe,1(v)� fe,0(v) (A.5)

and fe,1(v) is proportional to the electric field. Here the Maxwellian is centered about the plasma

center of mass velocity which is essentially the ion center of mass velocity. This model has been

used by Cohen et al. 18 , by Spitzer and Härm 19 , by Landreman and Ernst 25 ,and in Sec.13.4 of the

text by Goldston and Rutherford 29 .

The second type of model starts by presuming that when there is an electric field, the electron

and ion velocity distributions are shifted Maxwellians, i.e.,

fσ (v) = n
(

m
2πκTσ

)3/2

exp

(
−mσ (v−uσ )

2

2κTσ

)
. (A.6)

This model has been used by Trubnikov 20 , by Krall and Trivelpiece 21 , and by Bellan 22 .

While these two types of models differ in important ways, they share the shortcoming that

both prescribe a specific mathematical structure for the electron velocity distribution rather than

leave this structure undetermined and to be solved for. The Maxwellian plus perturbation model

solves the collisional Vlasov equation for each velocity v whereas the shifted Maxwellian does

not do so and instead balances the acceleration produced by the electric field against a frictional

drag calculated by averaging over all electron velocities. While the Maxwellian plus perturba-

tion method appears to provide a velocity-by-velocity detailed balance between acceleration and

drag, this method suffers from its violating at large electron velocities the assumption given in

Eq.A.5. This violation is because the obtained solution predicts that fe,1(v)/ fe,0(v) scales as v4

and so diverges at large velocities (see Eq.13.21 of Goldston and Rutherford 29 and Eq.(47) of

Cohen et al. 18). A further issue is that the Maxwellian plus perturbation method refers to an

ambiguously-defined electron temperature. Electron temperature is proportional to a mean-square

random electron velocity where random velocity is defined as the velocity relative to a center of
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mass velocity. The ambiguity is in what is assumed for the center of mass velocity as two possible

choices exist, namely the plasma center of mass velocity and the electron center of mass veloc-

ity. This discrepancy is important because electron-electron collisions tend to make the electron

distribution function become a Maxwellian centered about the electron center of mass whereas

electron-ion collisions make the electron distribution function isotropic (but not Maxwellian) with

respect to the plasma center of mass velocity, essentially the ion center of mass velocity.

The shifted Maxwellian method presumes that electron-electron collisions make the distribu-

tion function Maxwellian in the electron center of mass frame but does not solve the collisional

Vlasov equation velocity by velocity. The shifted Maxwellian method is provided in Section 16 of

Trubnikov20 where it is used to construct a three-term equation (Eq.16.7 in Trubnikov 20) where

the respective terms are the bulk electron acceleration, the electric field force, and the drag force.

Because the drag force has a velocity-dependent maximum, Trubnikov shows that if the electric

field force exceeds this maximum, the time derivative of mean electron velocity cannot be zero.

This gives a condition for runaway. Krall and Trivelpiece21 and Bellan22 show that if the electric

field is much less than this maximum, then the electric field force and drag can balance to provide

a steady-state (no bulk electron acceleration). The ratio of electric force to mean relative velocity

gives the resistivity in Eq.14. The η calculation is conveniently done in a frame moving with the

electron mean velocity ue because in this frame, the ions can be considered to be a nearly mono-

energetic beam traversing a swarm of thermal electrons having zero mean velocity. This method

captures the fact that electrons with different velocities have different drag on ions without vio-

lating an assumption that a perturbation in the shape of the electron velocity distribution is small,

i.e., without asserting Eq.A.5. The mono-energetic ion assumption is a good assumption because,

being heavy, ions have a much smaller thermal velocity spread than electrons. The drag on the

ion beam resulting from its interaction with the swarm of thermal electrons takes into account all

possible binary ion-electron collisions weighted according to their probability.

Because the shifted Maxwellian method does not allow for alteration of the shape of the elec-

tron velocity distribution other than a shift, it cannot predict a tail because the method effectively

starts by prescribing that no tail exists. By comparison, the Maxwellian plus perturbation method

allows a tail but at large velocities the calculated tail violates the assumption given by Eq.A.5. To

see this, consider Eq.(47) in Cohen et al. 18 which is D = Ax4 where x is the normalized velocity,

D is the perturbation normalized to a Maxwellian and A = E/ED. Section II gives x = 50 and

A = 0.2 so D = 1.25×106 which violates Eq.A.5 by six orders of magnitude. Spitzer and Härm 19
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extend Cohen et al. 18 to take into account electron-electron collisions and arrive at a result that is

slightly different but similarly diverges at large velocities.

Question marks have been placed in Table I for Braginskii 16 because Braginskii appears to

assume shifted Maxwellians for the electrons and ions so the shift in mean velocities would cor-

respond to an electric current. There is no discussion in Braginskii 16 of an electric field driving

this shift (see second sentence after Braginskii’s Eq.2.1 and definitions in Braginskii’s Eq.1.3).

Braginskii 16 then goes on to assume that a solution to the collision problem is of the form of a

shifted Maxwellian with a perturbation to this shifted Maxwellian; this perturbation to the shifted

Maxwellian is calculated using the Chapman-Enskog method. Braginskii 16 does not calculate

resistivity but rather is concerned with viscosity and heat transport.

According to Arber et al. 15 , a method proposed by Takizuka and Abe 14 is commonly used in

Particle-in-Cell (PIC) codes to describe collisions and, at first sight, the Takizuka and Abe method

appears similar to that presented in this paper. However, the method prescribed by Eq.67 in this

paper for choosing impact parameter b which then determines δ is advocated as being physically

more realistic than the Takizuka and Abe method. This is because Takizuka and Abe do not

calculate individual binary encounters with a specified b but, instead, for each binary encounter

δ 2 is chosen arbitrarily with a Gaussian distribution that depends in a rather circular fashion on

analytic estimates of collision properties involving quantities such as lnΛ. The quantity δ is a

parameter characterizing a single binary encounter and so cannot depend, as was assumed by

Takizuka and Abe, on averaging over a large number of binary encounters. The quantity lnΛ

is calculated by averaging over a large number of impact parameters and so cannot be used to

describe what happens in single binary encounter where there is a single, specific, fixed impact

parameter.
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APPENDIX B. DETAILED JUSTIFICATION FOR WHY INTERPARTICLE DISTANCE

IS USED AS CUTOFF FOR SUPERTHERMAL PARTICLES

The traditional derivation of particle collisions in a plasma involves Debye shielding, a phe-

nomenon the derivation of which depends on assuming thermal equilibrium (e.g., see third sen-

tence of Sec.1.7 in Goldston and Rutherford 29). However, thermal equilibrium requires collisions

so the argument is circular as collisions are required to establish the conditions for collisions. This

circularity constitutes a logical weakness in the argument as circular arguments can be false. The

derivation of Debye shielding combines Poisson’s equation and Boltzmann solutions (the latter

a consequence of thermal equilibrium) to show that a particle "A" with charge qA located at the

origin has a Yukawa-type potential

φYuk(r) =
qAe−r/λD

4πε0r
. (B.1)

The assumptions of thermal equilibrium, slowness, and derivation of the Yukawa potential are

given in Sec.1.2 of Nicholson 28 .

The Rutherford scattering angle θ , given by Eq.8, is based on a computation involving a po-

tential having the form φ = qA/4πε0r and not that given by Eq.B.1. The analysis of collisions

does not use Eq.B.1 but, in the process of evaluating the range of impact parameters to use in the

Rutherford scattering computation, instead makes the "ad hoc" approximation that

φ(r) =


qA

4πε0r for r ≤ λD

0 for r > λD;
(B.2)

the potential is said to be "cut off" at r = λD. This potential is sketched in Fig.13. It is stated that

the vacuum potential (top line of Eq.B.2) is "cut off" at r = λD so that Rutherford scattering at

impact parameters larger than λD is discarded. The corresponding electric field is

E(r) =


qA

4πε0r2 r̂ for r ≤ λD

0 for r > λD.
(B.3)

According to electrostatic theory, Eq.B.2 corresponds to assuming that for r ≤ λD there are no

particles other than particle "A", i.e., it is assumed that there is perfect vacuum between particle

"A" at r = 0 and a shell of charge at r = λD; this is shown in Fig.14. The shielding cloud is, as

sketched in Fig.14, a shell at r = λD with a surface charge density σsc = −qA/4πλ 2
D. This shell
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r
λD

φ(r)

Cutoff at r = λD

1/r dependence

FIG. 13. Electrostatic potential with cutoff at Debye length plotted as function of radius.

Particle “A”, charge qA

Spherical shell with radius λD and 
 surface charge density σ= -qA/4πλD

2

Zero charge density
in region external to shell

Zero charge
density in region 
between particle
“A” and
spherical shell

Trajectory of incident 
particle “B” making grazing 
collision with particle “A”

Particle “B”, charge qB

FIG. 14. Charge distribution corresponding to particle "A" electrostatic potential with cutoff and trajectory

of particle "B" making a grazing collision with particle "A".

surface charge is presumed to correspond to the time-average of motions of non-"A" particles in

the vicinity of particle "A". Since the total charge on this surface is equal and opposite to that of

particle "A", each small segment of the surface is thus assumed to have a small fraction of a charge,

an assumption which is non-physical if time averaging is not invoked, since fractional charges do

not exist.
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Particle “A”, charge qA

Particle “B”, charge qB

Cube with side
 equal to 
interparticle 
spacing distance

Imaginary sphere
with radius λD 

Particle “D”, charge qD

Particle “C”, charge qC

Particle “E”, charge qE

FIG. 15. Randomly located particles with Debye length shown as dotted circle. Fast particle "B" makes

close encounters with discrete particles "C", "D" and "E" as well as with particle "A".

Consider now a binary encounter between some other particle, labeled "B", and particle "A"

where the Debye shielding of particle "A" is approximated by Eq.B.2. For simplicity, we assume

that particle "A" is much heavier than particle "B" so it is not necessary to transform to center of

mass coordinates. The trajectory of particle "B" is shown by the blue slanted line in Fig.14; the

slant angle changes slightly as the result of the encounter and this change is a grazing or small-

angle encounter. When particle "B" is at a radius r > λD, the electric field it experiences is zero

and so it experiences no force. When particle "B" is at r < λD it experiences only the vacuum

electric field from particle "A", i.e., the situation is modeled as if particle "A" is surrounded by

vacuum up to r = λD. In neither the case r < λD nor the case r > λD can it be said that particle

"B" simultaneously interacts with all of the millions of particles that on time-averaging form the

shielding cloud. The effect of the shielding particles is simply to cut off the potential of particle

"A". One might argue that particle "B" is interacting with both particle "A" and the shielding

cloud in such a way that the net interaction is zero. However, this would be contrary to the usual

meaning of the word ‘interact’, because one does not usually use this word to describe an electron

passing a neutral particle; that is, one does not state that the electron feels both a force from the

nucleus of the neutral particle and a force from the electrons surrounding this nucleus and that

these forces happen to cancel each other.

It takes a time ω−1
pe to establish a Debye shielding cloud so as discussed in Sec.II C, if particle
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"B" is superthermal there is insufficient time for a Debye shielding cloud to be established. In this

case, particles other than particle "A" will be randomly located. This randomness means that the

other particles do not form a thin uniformly charged shell as sketched in Fig.14. This real situation

is instead as sketched in Fig.15 where it is seen that fast particle "B" comes within an interparticle

spacing (denoted by small box) of particles "C","D" and "E" as well as coming close to particle

"A". When particle "B" is much less than the interparticle separation distance from particles "C",

"D" and "E", particle "B" will experience a very strong electric field from each of "C", "D" and

"E". Of course, particle "B" will also experience electric fields from all the other particles but these

other particles are randomly located in all directions from particle "B" so the force produced by

each of these other particles will be in a random direction. When these randomly directed forces

are summed, the result will be zero. As an intuitive example, consider a comet being deflected by

the sun. The nearest other star is five light years away and assume that this is the typical interstellar

distance. Each of the multitude of stars in the universe produces a gravitational force on the comet

so the comet experiences the gravitational force of the sun plus the gravitational forces of all other

stars in the universe. Gravitational force is an inverse square force like the Coulomb force. The

forces from the other stars are weak because the other stars are far way. Each distant star produces

a force in a different random direction so that when these distant star forces are summed, the

result is negligible compared to the gravitational force of the sun. Thus, the comet only feels

the gravitational force of the sun. Whether the comet makes a grazing or a large angle collision

depends on how fast the comet is going and its impact parameter. The interaction between the

comet and the sun can thus be considered to be a binary interaction as the forces from the other

stars have negligible effect.

In a plasma with randomly located particles (process too fast for Debye shielding to be estab-

lished), a test particle experiences a force from the particle that is less than an interparticle distance

away but not from particles at greater distances. This means that Debye shielding with the cutoff

approximation specified by Eq.B.2 results in a force field having a greater extent than when there

is no Debye shielding. The interparticle spacing distance n−1/3 is less than the Debye length λD

since nλ 3
D� 1 is presumed. Consequently, the conventional Coulomb logarithm derivation with

its Debye shielding cutoff argument effectively extends the range of the potential of particle "A"

compared to when there is no Debye shielding. This is contrary to the commonly held presump-

tion that Debye shielding shortens the range of the potential. Debye shielding shortens the range

relative to that of a single particle in vacuum but extends the range compared to the range of the

54



FIG. 16. Plot of potential of 25 randomly located ions and 25 randomly located electrons in a 2D plane. This

potential is calculated numerically using Eq.B.4. A fast particle traversing this system would experience

the electric field of each spike one at at time when it is in the vicinity of each spike. The potential in the

regions between spikes is flat so there is no electric field in the region between the spikes.

potential of a single particle surrounded by a large number of randomly located other particles.

Figure 16 shows the numerically evaluated electrostatic potential of 25 randomly located pos-

itive and 25 randomly located negative charges located in an x-y plane at fixed positions {x j,y j};

this potential is given by

φ(x,y) =
N

∑
j=1

q j√
(x− x j)2 +(y− y j)2

(B.4)

where q j =+1 for positive particles and q j =−1 for negative particles. This figure shows that the

potential is a sharp spike when {x,y} is close to {x j,y j} and is near zero elsewhere because away

from a spike, the contributions from the various positive and negative particles nearly cancel (the

figure is done in a 2D system so the potential can be plotted in the vertical direction; potentials in a

3D system would be similarly spiky but would not be so easily visualized since a fourth dimension

would be needed for plotting). The electric field is the gradient of the potential and so is very large

near each spike but is near zero elsewhere. A fast charged particle traveling through this potential

system would only experience an electric force when near a spike and so would only be deflected

when near a spike. This would be a binary encounter. If nλ 3
D� 1, then λD� n−1/3 so the Debye

length is much larger than the interparticle spacing.
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The impossibility of Debye shielding of a superthermal particle will now be shown using a re-

ductio ad absurdum argument where it is initially assumed that a superthermal particle "B" passes

through a Debye sphere shielding a particle "A". The fast incident particle "B" traveling a De-

bye length would pass many fixed spikes in Fig.16 and because particle "B" is superthermal, the

field particles are in fixed positions during the time particle "B" traverses the Debye sphere. If

one spike was selected as being the potential of particle "A", it seen that particle "B" would be

deflected by many of the non-"A" spikes before it reached the spike of particle "A". If there

were indeed millions of particles within a Debye sphere, then on traversing the Debye sphere,

and so traversing a Debye length, particle "B" would come close to some significant number of

these millions of particles. To estimate how many particles particle "B" comes close to, consider

a cylinder with axis given by the trajectory of particle "B" (slanted blue line in Fig.15) and with

radius equal to the interparticle spacing n−1/3. Any field particle within this cylinder would be less

than an interparticle spacing from the trajectory of particle "B" while particle "B" is in the Debye

sphere. The volume of this cylinder is λDπn−2/3 so the number of field particles in this cylinder

is λDπn1/3 ≈ (nλ 3
D)

1/3. This means that if there are millions of field particles in a Debye sphere,

particle "B" will come within the interparticle distance of the spikes of hundreds of non-"A" par-

ticles before encountering the spike of particle "A". Thus, particle "B" encounters the spikes of

hundreds of stationary non-"A" particles which contradicts the assumption that particle "B" travels

in a straight line without deflection through the Debye shielding cloud except for being deflected

by the spike of particle "A". This contradiction indicates that for superthermal particles the cutoff

should be at the interparticle spacing rather than at the Debye length. However, Eq.20, shows that

this makes little difference because of the logarithmic dependence.
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APPENDIX C. DEPENDENCE ON ELECTRIC FIELD STRENGTH

These additional figures referred to in the main text have different Ēz/2Λ2
f from related figures

in the main text and show the scaling with Ēz.
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FIG. 17. Configuration #1. Velocity distribution evolutions (still figure is last figure of animation).

Ēz/2Λ2
f = 1.53×10−5 and no radiation. (Multimedia view)
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FIG. 18. Configuration #1. (a) Lab-frame kinetic energies for sum of all direction components, (b) lab-

frame kinetic energy of z and x components (y same as x), (c) electron-frame kinetic energy z components

in positive and negative directions (note that these are not equal contrary to assumption in Eq.A.6 and also

no equilibrium is achieved), (d) shows that momentum is conserved, (e) shows that ui,z− ue,z increases

without bound (i.e., current density increases without bound), (f) shows that ui,z and ue,z increase without

bound.
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FIG. 19. Configuration #3 evolution of velocity distributions (Multimedia view).
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FIG. 20. Configuration #3 energies and momenta. (a) and (b) show that electron energy is mainly in the z

direction and increases as t2. (f) shows that uez increases linearly with time.
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