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ABSTRACT

In this poster, we will show how to leverage NVidia’s Blue-
field Data Processing Unit (DPU) in geospatial systems.
Existing work in literature has explored DPUs in the con-
text of machine learning, compression and MPI acceleration.
We show our designs on how to integrate DPUs into exist-
ing high performance geospatial systems like MPI-GIS. The
workflow of a typical spatial computing workload consists of
two phases - filter and refine. First we used DPU as a tar-
get to offload spatial computations from the host CPU. We
show the performance improvements due to offload. Next we
used DPU for network I/O processing. In network I/O case,
the query data first comes to DPU for filtering and then the
query goes to CPU for refinement. DPU-based filter and re-
fine system can be useful in other domains like Physics where
an FPGA is used to perform the filter to handle Big Data.
We used Bluefield-2 and Bluefield-3 in our experiments. For
scalability study, we have used up to 16 DPUs.
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1. INTRODUCTION

In geospatial processing systems, polygons and polylines
are used to represent shapes in the real-world. Geospa-
tial applications need to combine two (or more) datasets
based on some spatial relationship between shapes in the
two datasets. In map overlay, superimposing one dataset
containing hurricane swath (polygonal area) and another
dataset with county boundaries, will help in determining
nearby rescue shelters. To combine shape datasets, we have
to find overlapping shapes from the two datasets. For effi-
ciency, these query operations are carried out in two phases.
The first phase is a filter phase where complex geometries
are approximated by their minimum bounding rectangle
(MBR). Geometries that could not possibly satisfy the query
condition are removed from further processing. The output
of filter phase goes to the refinement phase to remove false
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Figure 1: Query processing offload from CPU to DPU.

hits generated by the filter. Filter and refine computations
are used in many domains like geographic information sys-
tems (GIS) and Physics to handle the data deluge.

In the poster, we revisit spatial data analytics on hetero-
geneous systems comprised of data processing units (DPU)
as shown in Figure 1. Bluefield DPUs are a new class of
programmable processors made by NVidia (and other man-
ufacturers). Bluefield DPUs contain a multi-core ARM pro-
cessor and has its own memory. Similar to a modern smart
network interface card, DPUs can be used to filter unneces-
sary data from overwhelming the CPU and memory band-
width. SmartNICs and DPUs are geared towards offloading
computations from a host CPU in order to free up the com-
pute cycles in the CPU. The data can be transferred from
the CPU to DPU in offload mode to execute a compute-
intensive query. However, in streaming mode, the query
comes to the DPU first and so DPU can execute one or
more filters on the streaming data to reduce the query and
output data from being processed by the CPU. After pre-
processing the queries, a DPU then passes the queries to the
host CPU. Nvidia’s BlueField-2 and BlueField-3 DPUs are
recent hardware solution from NVidia. Performance evalu-
ation and benchmarking for an application domain like GIS
is crucial due to the hardware’s recent release and computa-
tional limitations in processing and memory. Therefore, we
created a benchmarking tool to measure the performance
BlueField-2 and BlueField-3 and compare it with an Intel
x86 processor.

Bluefield DPUs have been used in deep neural network
training [6], molecular dynamics [7], data compression [11],
MPI implementations [5, 12] and databases [13]. Current
GPU-based [9, 8] and MPI-based geospatial data processing
systems [2, 10, 3] do not leverage the heterogeneity presented
by DPUs. We show experimental results using a single filter
based on Rectangle tree (R-tree) data structure. We are
planning to experiment with further hierarchical filtering in



our future work.

2. EXPERIMENTAL RESULTS

Experimental Setup: The benchmark was tested on the
Thor cluster of the HPC Advisory Council [4], which has In-
tel Broadwell E5-2697A CPU node (32 cores) with 2.6 GHz
clock frequency. Thor cluster also has 32 BlueField-2 and
16 BleuField-3 devices as DPU nodes. Bluefield-2 DPU has
Arm Cortex-A72 processor with 8 cores (2.4 GHz) and 16
GB memory. Bluefield-3 DPU has Armv8.24+ A78 Hercules
processor with 16 cores (2.1 GHz) and 16 GB memory. For
internode communication, OpenMPI library was employed.
On the other hand, communication between CPU and DPU
was facilitated using gRPC library. GEOS library was used
for parsing shape data and for computational geometry al-
gorithms. Source code is available on GitHub [1].

In the benchmarking tool, the input consists of two files
containing geospatial data, Base and Query layers. Spa-
tial join queries are then executed on these data, and the
time taken for these operations is measured. The process
includes creating an R-tree using the Base Layer, perform-
ing queries for each geometry in the Query Layer using the
Minimum Bounding Rectangles (MBRs) from the R-tree,
and executing specific operations (e.g., intersection, over-
lap, touch, equality, covering) on the candidate geometries
obtained after filtering. The elapsed time encompasses all
these steps.

Table 1: Attributes of the geospatial datasets.

|| Name | Type | #Geometries | File size ||
cemetery Polygons 193 K 56 MB
sports Polygons 1.8 M 590 MB
lakes Polygons 8.4 M 9 GB

For benchmarking experiments, we utilized cemetery,
sports, and lakes data from the UCR-STAR dataset to run
spatial join queries. Information about these data is given
in Table 1. In a series of experiments, different approaches
were tested and compared.

The base layer data was divided into 128 equal partitions,
and the round robin method was used to test the spatial
join performance. The CPU consistently outperformed the
BlueField-2 DPU by approximately 2.7 times for the inter-
section operation. However, as the number of processes in-
creased, BlueField-3 showed greater performance improve-
ment, indicating better scalability for the DPU. The results
are shown in Figure 2. Also, using different dataset pairs for
the base and query layers, the CPU spatial join exhibited 1.9
times better performance than BlueField-3 for the Sports-
Cemetery file pair. This performance advantage slightly in-
creased with larger data pairs like lakes. In a similar ex-
periment, the base layer data was divided according to the
number of processes. The CPU-DPU performance ratio re-
mained the same, but the performance increase was limited
to 1.7 when doubling the number of processes. This limita-
tion was due to the larger R-tree generated with less data
splitting, leading to reduced query time. The results are
shown in Figure 3.

When the CPU and DPU were used together with dy-
namic load balancing, the processing time significantly im-
proved. While spatial join took about 76 seconds on

M BlueField-2 I BlueField-3 W crPu
Base Layer: Sports, Query Layer: Cemetery

80

Elapsed Time (sec)
IS 3
S 3

N
=3

# of Processes

Figure 2: Spatial join query performance of single node using
partitioned data (128 partitions).
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Figure 3: Spatial join query performance on different systems.

BlueField-2 and approximately 28 seconds on the CPU, us-
ing both together reduced the processing time to around
16 seconds. So, in the offload mode, we get 1.75X relative
speedup by using a DPU.

3. CONCLUSIONS

We show DPU benchmarking results from the domain of
geospatial data analytics. For spatial join queries, DPUs
can enhance performance by offloading filter and refine tasks
from CPU. However, it is important to consider workload
characteristics, data properties, and the capabilities of the
DPU when determining the effectiveness of offloading tasks.
Continued research and benchmarking will help optimize the
distribution of workloads and maximize the benefits of using
DPUs for geospatial operations. For higher performance, we
plan to use the network engines for streaming data and the
SIMD units on the ARM processor of the DPU.
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