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Abstract

Motivated by a service platform, we study a two-sided network where heterogeneous demand
(customers) and heterogeneous supply (workers) arrive randomly over time to get matched.
Customers and workers arrive with a randomly sampled patience time (also known as reneging
time in the literature), and are lost if forced to wait longer than that time to be matched. The
system dynamics depend on the matching policy, which determines when to match a particular
customer class with a particular worker class. Matches between classes use the head-of-line
customer and worker from each class. Since customer and worker arrival processes can be
very general counting processes, and the reneging times can be sampled from any finite mean
distribution that is absolutely continuous, the state descriptor must track the age-in-system for
every customer and worker waiting in order to be Markovian, as well as the time elapsed since
the last arrival for every class. We develop a measure-valued fluid model that approximates the
evolution of the discrete-event stochastic matching model, and prove its solution is unique under
a fixed matching policy. For a sequence of matching models, we establish a tightness result for
the associated sequence of fluid-scaled state descriptors, and show that any distributional limit
point is a fluid model solution almost surely. When arrival rates are constant, we characterize
the invariant states of the fluid model solution, and show convergence to these invariant states
as time becomes large. Finally, again when arrival rates are constant, we establish another
tightness result for the sequence of fluid-scaled state descriptors distributed according to a
stationary distribution, and show that any subsequence converges to an invariant state. As a
consequence, the fluid and time limits can be interchanged, which justifies regarding invariant
states as first order approximations to stationary distributions.

Keywords: service platforms; two-sided platform; reneging; fluid approximation; functional limit
theorems; measure-valued process

1 Introduction

Service platforms appear in many applications (e.g., ridesharing, online marketplaces, etc.) and
have to match demand (customers) and supply (workers) taking into account their heterogeneity,
the random arrival times, and the random impatience of customers and workers. The objective of
a platform is to consider a matching policy (i.e., when to make matches and between whom) to



optimize the performance of the system. For example, the platform may want to maximize the
cumulative value of matches made, minimize the loss of customers and workers, minimize possible
holding costs or a combination of the aforementioned objectives. For this, a platform needs to know
the demand and supply waiting to be matched (i.e., queue-lengths), and how that evolves over time.

We model a service platform as a two-sided graph where an arbitrary number of customer and
worker types arrive randomly to each side in order to be matched, according to arrival rates that
may vary over time. Each customer and worker arrives with a patience time randomly sampled
from a type-dependent distribution with finite mean, and is lost if not matched within the patience
time. A Markovian state descriptor must track the age-in-system for every customer and worker
waiting, and so is measure-valued. As a result, exact analysis of our model appears intractable.

Our focus in this work is to provide a fluid approximation for this system when matchings occur
between head-of-the-line (HL) customers and workers, to characterize the fluid invariant states
when arrival rates are constant, and to establish rigorous convergence results to support the fluid
approximation. The analytic tractability of the fluid approximation provides a framework that the
platform can use to choose the “correct” matching policy that optimizes the performance of the
system (but which is studied in the companion paper [6]).

The main contributions of this paper are:

(1) Non-policy-specific fluid limits. We provide a tightness result for a sequence of matching
models, that holds without the need to fully specify the matching policy (see Theorem 2).
Then, we prove that any subsequential limit is almost surely a fluid model solution (see
Theorem 3).

(2) Uniqueness of fluid limits. We establish that a fluid limit is unique under a fixed matching
policy (see Theorem 1).

(3) Convergence of stationary distributions. When arrival rates are constant, we show a tight-
ness result for a sequence of matching models operating in stationarity, and prove that any
subsequential limit is a fluid model invariant state (see Theorem 4).

(4) Interchange of Limits. Theorems 2 and 4, combined with results on stationary distribution
existence (Proposition 1), on characterization of fluid invariant states (Proposition 2), and on
convergence to fluid invariant states (Proposition 3), imply an interchange of limits (illustrated
in Figure 2) that justifies regarding invariant states as first order approximations to stationary
distributions.

Our proofs heavily leverage the methodology developed in |29] and [30] for a single-class many-server
queue with reneging, and in [5] and [43] for a multiclass many-server queue with reneging. All four
aforementioned papers make clever use of a what is termed a “potential queue measure”, that stores
the amount of time that has passed since each customer’s arrival time, up until the customer’s
patience time. The potential queue measure greatly facilitates analysis because the measure does
not depend on the policy for serving customers. Similarly, we use a potential queue measure that
does not depend on the policy for matching customers and workers, which allows us to leverage many
results in [29], [30] and [43] to prove item (1) above. Differently, because matching is instantaneous
in our model (so that there is no equivalent of service time in the queueing framework), the long-
time behavior of our fluid model is easier to analyze than the fluid model relevant to the multiclass
G/GI/N + GI queue in [5] and [43], which is key to some of the proofs for items (3) and (4) above.



Moreover, to prove item (2) above that a fluid model solution is unique under a specified matching
policy, we do not need to assume that the hazard rates associated with the reneging distributions are
bounded, as is needed in the scheduling policies for the multiclass G/GI/N + GI queues analyzed
in [5] and [43].

Some Related Literature

Queueing systems with primitive inputs that follow distributions that are not exponential have
complicated state descriptors that motivate the use of measure-valued processes. In addition to
the papers mentioned in the previous paragraph, some other examples of papers that use measure-
valued state descriptors to study many server queueing systems with reneging customers are [5, 47,
51]. Other queueing situations in which measure-valued state descriptors are used include LIFO
queues [35], SRPT queues |7, 19, 23, 42|, many-server retrial queues with nonpersistent customers
[28], processor-sharing queues in [44, 48], processor-sharing queues with impatient customers [21],
load-balancing algorithms |2, 3|, and bandwidth-sharing networks |22, 45].

Our work is related to work that studies service platforms. These platforms fit into the sharing
economy; see |9, 16, 24, 25| for perspectives and research opportunities in this area through the lens
of operations management. From that perspective, our two-sided matching model with reneging
can be viewed as a model of a service platform. There are many works on two-sided matching
models, less on two-sided matching models with reneging. The works [1, 4, 8, 12, 13, 14, 15, 18,
27, 31, 33, 34, 36, 39, 40, 41, 46, 50] include reneging, but all assume that reneging times are either
deterministic or exponentially distributed. Like us, [13, 18, 33| allow for more general reneging
distributions; however, [13, 33] restricts to one demand and one supply type, and [18] focuses on
one specific policy class (an index policy class).

Organization of the Paper

The remainder of the paper is organized as follows. We end this section by summarizing our
mathematical notation. Section 2 specifies our detailed discrete-event stochastic matching model.
We provide the fluid model equations in Section 3, and establish a uniqueness result (Theorem 1).
We provide a non-policy specific tightness result (Theorem 2) and a convergence result (Theorem 3)
in Section 4. Finally, in Section 5, under the assumption that arrival rates are constant, we provide
a convergence result for a sequence of matching models operating in stationarity (Theorem 4).

Notation

We use the following notational conventions. All vectors and matrices are denoted by bold letters.
Further, R is the set of real numbers, R is the set of nonnegative real numbers, N is the set of strictly
positive integers, and Z; = Nu {0}. The sets R and R are endowed with the Euclidean topology,
and Z . with the discrete topology. Moreover, for m € N and a vector € R™, ||« := maxi<i<m | i
is the maximum norm.

For a measurable space (S, F) and a measurable set A € F, 14 is the indicator function of the
set A, which is one when its argument is a member of the set A and is zero otherwise. In addition,
when A is S, we use the shorthand notation 1 to mean 1g. Also, for A ¢ F, o(A) denotes the
o-algebra generated by A.



Let H € (0,00]. Then, C.([0,H)) (resp. Cp(]|0, H))) denotes the set of continuous, compactly
supported (resp. bounded) functions f : [0, H) — R, and C}([0, H)) denotes the set of continuous,
compactly supported functions f : [0, H) — R for which the derivative f’ exists for all x € [0, H)
and ¢ > 0, and lies in C.([0, H)). Similarly, C.([0, H) x Ry) (resp. Cy([0, H) x Ry)) denotes the
set of continuous, compactly supported (resp. bounded) functions ¢ : [0,H) x Ry — R, and
Ce ([0, H) x Ry) denotes the set of continuous, compactly supported functions ¢ : [0, H) x R, — R
for which the directional derivative lim._,q w(gﬁﬁ’tf)_“’(w’t) exists for all x € [0, H) and ¢ > 0, and lies
in C.([0, H),R;). We shall abuse the notation by using ¢, +¢; to denote this directional derivative,
whether the partial derivatives exist or not. Finally, L'([0, H)) (resp. LL ([0, H))) denotes the set
of Borel measurable functions on [0, H) that are integrable (resp. locally integrable) with respect
to Lebesgue measure on [0, H).

Given a Polish space S, we use the notation C(S) (with no subscript) to denote the set of S valued
functions with domain Ry that are continuous, and the notation D(S) to denote the set of S valued
functions with domain R that are right continuous with finite left limits (rcll). We endow C(S)
and D(S) with the usual Skorokhod Ji-topology [10]. In contrast to the sets of functions defined in
the previous paragraph, we use the range rather than the domain as the argument. The domain is
always time, R,.

For L € [0,00], let MJO0,L) denote the set of finite, non-negative Borel measures on [0, L)
endowed with the topology of weak convergence, which is a Polish space. Given a measure v €
M]0, L) and a Borel measurable function f : [0, L] — R that is integrable with respect to v define
{f,v):= S[O’L) f(z)v(dx). Given z € [0, H), 0, € M[0, L) is the Dirac measure with unit atom at
x, i.e., for all Borel measurable A c [0, H),{14,0,) = 14(x).

Given a cumulative distribution function G defined on R, that is absolutely continuous with
respect to Lebesgue measure and having probability density function g, the right edge of its support
is given by

H =sup{z e Ry : G(z) < 1} € (0, 0]
Let h denote the associated hazard function; i.e., h(z) = 13(ch()x) with € [0, H). Then, h €
L .([0, H)). To see this, note that by assumption G is absolutely continuous on R and, since In is
Lipschitz continuous on [a, o) for any a > 0, it follows that —In(1 — G(x)), = € [0, H), is absolutely
continuous on [0, b] for any b < H.
Given a counting process A, i.e., a nondecreasing integer valued process such that A(0) = 0,
A(t) < oo for all ¢ > 0 and lim;_,o A(t) = 00, the jump times (e;);en are given by

e; = inf{t > 0: A(t) > i}, ieN.

Then (e;)ien is a nondecreasing sequence such that lim; o e; = 00. If the counting process has
jumps of size one, (e;)en is strictly increasing. The associated age process a, also known as the
backward recurrence time process, is such that given v € R,

() = o+t t € [0,e1),
“= t —sup{s <t:A(t) —A(s) >0}, t=e.

Then, for each ¢ > 0, a(t) represents the age of (the time that has elapsed since) the most recent
jump event to occur at or before time ¢ happened. When the jumps are of size one, the age process
uniquely determines the counting process. Otherwise, some information about the jump sizes is
required. With a slight abuse of language, we will say that a counting process A is a Markov
counting process if the process (a, A) is a Markov process with respect to its own natural filtration.



2 Model description

There is a set of J demand buffers J := {1,...,J} (representing customer types) and a set of K
supply buffers K := {1,..., K} (representing worker types) as shown in Figure 1. Customers and
workers arrive randomly over time to the system, either individually or in batches, and are placed in
the buffer for their type to be matched. There, they wait in first come, first served (FCFS) order, so
that the head-of-the-line (HL) customer or worker of a given type is the one that has been waiting
the longest. Customers and workers arrive with a patience time of random length, and are lost
if not matched within their patience time. A matching policy specifies when to match customers
and workers of different types, and always matches the HL customer and worker within each type.
The set £ € J x K denotes the set of compatible matches between demand and supply nodes, i.e.,
demand type j € J can be matched with supply type k € K if and only if (j, k) € .
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Figure 1: The two-sided matching model with general reneging distributions.

In what follows, we give a detailed model description. Throughout, we regard all random
elements as being defined on a common probability space (€2, F,P) with expectation operator E.
Section 2.1 provides the model inputs. Section 2.2 specifies the state descriptor and the system
dynamics. Section 2.3 defines an admissible matching policy.

2.1 The Model Inputs

The model inputs consist of the arrival processes and stochastic primitives, which we define here.

2.1.1 The Arrival Processes

We assume that demand of type j € J and supply of type k € K arrive according to Markov counting
processes, denoted by AJD and Af with age processes denoted by a]D and af respectively. The arrival
time of the [th type j customer and the arrival time of the hth type k worker can respectively be
expressed as

el =inf{t >0: AP(t)>1},jel,leN and e, =inf{t>0:A47(t) > h},keK heN.



Customers and workers may arrive one at a time, in which case the jump sizes of the arrival
processes are one, or they may arrive in batches, in which case the jump sizes are positive integers.
The arrival processes AP and A® are assume to be mutually independent of one another, and so
are the coordinate processes. We further assume that for all a” € (0,0)7, a® € (0,00)% and t > 0

I?gHXE [A?(t) | aJD(O) =aP] <o and rileaﬂé(IE [Ak( ) | a3 (0) = af] < 0. (1)

2.1.2 The Stochastic Primitives

We denote the patience time of the [th type j customer and the patience time of the hth type k
worker by rﬁ and r,fh, respectively. If an arriving customer or worker is not matched within their
patience time, then that customer or worker reneges (abandons the system without being matched).
Upon arrival, each type j € J customer independently samples from the distribution determined by
cumulative distribution function (cdf) Gf to determine his patience time. Similarly, upon arrival,
each type k € K worker independently samples from the distribution determined by cdf Gf to
determine his patience time. We refer to Gf,j € J and Gf,k € K as the reneging distributions
(also known as patience time distributions). Further, for each j € J, G]’-:Z)/ (resp. for each ke K ny)
denotes the conditional cdf associated with Gf) (resp. G7) conditioned to exceed y € [0, H JD ) (resp.
y € [0, Hlf)), where HjD € [0, 0] (resp. H,f € [0, 00]) is the right edge of the support of the customer
class j reneging distribution (resp. supply class k). We assume the patience times are absolutely
continuous random variables with density functions gD for j € J and g for k € K that are mutually
independent of each other, and of the arrival processes A” and AS.

Finally, for each j € J and k € K, let {Uﬁ}leN and {Ulfh}heN be i.i.d sequences of uniform (0, 1)

random variables that are mutually independent of one another, the arrival processes AP and A%,
and the patience times {TJDZ} ,j €J, and {Tkh}heN ,k € K. These will be used to define various
residual times associated Wlth the initial condition.

We refer to the collection of sequences {Uﬁ}leN , JeJ, {Uksh}heN , keK, {rﬁ}leN, j €, and

{r,fh}heN , k €K, as the stochastic primitives.

2.2 State descriptor and system dynamics

In the following, we first discuss the state space, then discuss the system dynamics that are in-
dependent of the matching decisions, and, finally, provide the evolution equations for the system
processes that depend on the matching decisions.

2.2.1 System state

A state in our model is a vector y := (aD, a®.q",q¢° nP.n ) € Yo where

Vo im RY x RE x 72 x 78 x (x_,MI0, HP)) x (<K M0, 7))

It is known that the set Yo endowed with the topology of weak convergence is a Polish space; see
[11]. We now give an informal explanation of the state descriptor Suppose the system is in state
y € Yo. For j € J and k € K, the quantities oz] and O‘k denote the time that has elapsed since
the last type j batch of customers and last type k batch of workers arrived to the system. Further,



for j € J and k € K, q]D and q,f denote the number of customers and workers at queues j and
k, respectively. For each j € J, the measure nJD e M[0,H JD ) stores the amount of time that has
passed between each type j customer’s arrival time up until that customer’s potential abandonment
time (the arrival time plus the sampled patience time). More specifically, for every type j customer
that has arrived by a given time, and whose potential abandonment time is after that time, njD
has a unit atom supported at the potential waiting time of that class j customer (the time that
has elapsed since that class j customer arrived). For each k € K, the measure n,f e M[0,H ,f ) has
analogous interpretation. This is without regard for whether that customer or worker has been
matched, meaning these are the potential customers in queue. The FCFS matching assumption im-
plies that all potential customers that have waited longer than the customer at the head-of-the-line
have already been matched, and all potential customers that have waited less than that customer
are in queue.

The system state will be an element of Yy for all time, and will additionally be such that
the number of customers in queue never exceeds the number of customers potentially in queue.
Specifically, we are interested in the subset of Y of Yg consisting of all y € Y such that

q” <{1,nPy and ¢ < (1,7 for each je I, ke K. (2)

Note that in a slight abuse of notation we use n” and 1° to represent a component of the system
state but in what follows we use n” and 1° to represent a process whose value at time ¢t > 0 is a
component of the system state.

2.2.2 Potential queue measures and potential reneging processes

Here we define the potential queue measures more formally. We begin with their initial value
(nP(0),n°(0)) € x{le[O,HJD) x xI M0, H). For each j € J and k € K, there are <1777]D(0)> €
Zy type j potential customers and (1,77 (0)) € Z. type k potential workers that arrived at or
prior to time zero whose potential abandonment time is after time zero. Let 0 < wﬁ(O) < HjD
(resp. 0 < wy, (0) < HY) for | = —<1,77]-D(0)> +1,...,0 (resp. h = —{1,72(0)) +1,...,0) be the
amount of time that has elapsed since type j potential initial customer [ (type k potential initial
worker h) arrived. For each j € J and k € K, we assume that the sequences {wﬁ (0)

and {w;gh(O)}(l<17m§(0)>+1 are non-increasing in [ and h, respectively, and set eﬁ = —wﬁ(O) for
l = —<1,17JD(0)> +1,...,0 and €3, = —wy, (0) for h = —(1,77(0)) + 1,...,0. Then, for j € J and
keK,

0
he P o)y

0 0
1y (0) = > 0y () and 7 (0) = > OuP(0)-
1==(1mP(0))+1 h=—{1m5(0))+1

Next we define the patience times for the customers and workers in system at time 0. For
I = —<1,77JD(0)> +1,...,0 and h = —(1,77(0)) + 1,...,0, noting that any customer or worker
present at time 0 must have patience time exceeding the amount of time that has passed since his
or her arrival, the patience times of type j zero potential customer [ and type k zero potential
worker h are given by

D : . D D D
rB = inf {t >0: P, (1) > Uf } +wh(0)



and

=it {t>0:G5 o o) > U+ 0),

recalling that Uﬁ) and U, are uniform (0, 1) random variables.

Finally, we define (n?(t),n(t)) for t > 0. For this, we must define the potential waiting times.
For each | = {—<1,7]JD(O)> +1,...,0} uN and ¢t > 0, the potential waiting time of the Ith type j
potential customer at time ¢ > 0 is given by

D4 — i D1+ ..D
wj () = min {[t — et i}

In an analogous way for each h = {—(1,77(0))+1,...,0} UN, we define the potential waiting time
of the hth type k potential worker at time t > 0 as

w,fh(t) = min {[t — efh]Jr,r,fh} .
For any ¢t > 0, j € J and any Borel measurable B € [0, HJD), let

AP (1)

’]’]JD(t)(B) = Z (Swjjjl)(t) (B)l{Oét—eﬁ<'erl}’ (3)
I=—(1mP(0))+1

and, for any ¢t > 0, k € K and any Borel measurable B < [0, H}),

AZ(®)
OB = Y Gy (B loer s, <1,y (4)
h=—={1m5(0))+1

Then, for each ¢t > 0 and j € J, <1, njD(t)> is the number of type j potential customers in the queue
that arrived by time ¢ and whose potential waiting time is less than their patience time. Note that
at time ¢ such customers may be in queue waiting to be matched or may have been matched and
departed the system. For each t > 0 and k € K, (1,77 (t)) has an analogous meaning. By definition,
for all t > 0,

P (1) < AP O) + AP (1) for j e T, (5)

and
LR () < 1,m (0)) + A7 (¢) for ke K. (6)

Collections of marked point processes are used to characterize the dynamic evolution of the
potential queue processes n” and 1°. To this end, for each j € J, k € K, measurable function
¢ [0, HJD) x Ry — R4, and measurable function v : [0, H,f) x Ry — R, define the marked point
processes SJD(¢>, -) and S8 (1, ) for t > 0,

AP (1)
S‘f)(gb?t) = Z Z 1 dijl dijl ¢(wﬁ(s)78)7 (7)
I=—(1P (o)) +1sel0,g ar (57)>0 (s H)=0}
A5(0)
SSW = Y Y L s b(wdi(s).s). (®)

(s—=)>0,—F (s+)=0}

h=—(1,n5(0))+1s€[0,¢] "



When the functions ¢ and v are replaced by the indicator of R, we get the potential cumulative
reneging processes; i.e., for t > 0, SJD(t) = SJD(l,t),j € J and S,f(t) = S,f(l,t),k € K. The
following balance equations hold for each j e J, k € K, and t > 0,

nP0)y + AP () = (AP () + SP (1), (9)

and
(L (0)) + AZ () = (L, (1)) + SP (¢ (10)

The dynamic evolution of the potential queue measures are characterized using SP and 8%, as
shown in the following lemma, whose validity follows by [29, Theorem 2.1].

Lemma 1. For cach j€J, ke K, ¢ € Ce ([0, HP) xRy, v € C' ([0, HY) x RL), f e CL([0, HP)),
¢CeCl(0,HY)), andt =0

<¢("t)777jD(t)> = <¢(7 77] > + J <¢z , U + ¢t 77]D(u)>du - SJD(Qsat)

. (11)

+JO ¢(0, u)dAP (u),

o 1), S (1)) = (), 5 (0)) + f (o (er0) + b))y s — S ()
. (12)

" jo (0, u)dAS (u)
(P @) = (P (0)) + fo P )y du— SP(f.1) + F(0)AP(1), (13)
i) = (G mi ) + JO (¢ (w)y du — S(C, 1) + C(0)AF (1), (14)

2.2.3 Matching processes

Forjel], kekK, = {—<1,7]]D(0)>+ L,...,0} UN,and h = {1, 7 (0)) + 1,...,0} UN, let m,
denote the matching time of the /th type j customer with the hth type k& worker. We set m i, = 00
if the Ith type j customer and the hth type k worker are not matched. Then, mx;, may be finite or
infinite for (j, k) € £, and myy, is infinite for all (j, k) ¢ £. For fixed j and [ (resp. k and h), mjpy, is
finite only for at most one pair (k,h) (resp. (j,0)); i.e., one customer (resp. worker) can be matched
with at most one worker (resp. customer). Specifically, we require the following inequalities:

[e'e]
S 3 lpnuewy < 1foreach jeJand L€ {~(1,7P(0)) +1,...,0} UN,
RE h=—(1m (0))+1

and

a0
> > L un<co} < 1 for each k € K and h e {—(1,ng(0)) +1,...,0} UN.
J€11=—1P (0))+1



We assume that for each j € J,k € K,l € {—<1,77jD(0)>+ 1,...,0} UN, and h € {—(1,77(0)) +
.,O} u N, if Mk < 00, then

0 <myjgy < min (e} e + rﬂ,ekh + r,‘jh) , if I <0and h <0, (15)

max (eﬁ,efh) < Mgy < min (e e + rﬂ,ekh + rksh) , if either / >0or h > 0.  (16)

The inequalities in (15) enforce that a customer and a worker who are both in system at time zero
can only be matched after time zero and before either of them reneges. The inequalities in (16)
enforce that a customer and a worker, at least one of which arrived after time zero, can only be
matched once both have arrived to the system and strictly before either of them reneges the system.

For each j € J and [ € N, the matching time of the Ith type j customer can be expressed as follows,

9

. {mjklh, if ke K and ke {—(1,75(0))+1,...,0} UN are such that m, < o,
il=

0, otherwise.

Similarly, for each k € K and h € N, the matching time of the hth type k& worker can be written as
follows,

s {mjkm, if jeJandle {—<1,njD(O)> +1,...,0} U N are such that mjy;, < o,

0, otherwise.

We assume that matchings occur between HL customers, which requires that if —(1, 77]D 0))y<h<
lo < o0 and —(1,75(0)) < hy < hy < o0, then

mji, < mle,j € J, and Mkh,y < Mkhy, k e K. (17)
A matching process is a ZiXK valued stochastic process M defined from the matching times
defined in the previous paragraph. The components of M track the cumulative number of matches
between type j € J customers and type k € K workers in (0,t], as follows: for j € J, k € K, and
t>0,
AP (1) AZ )
M (t) = Z Z Lom <ty (18)

I=—1,nP(0))+1 h=—1,n; (0) )+1

Note that M;;(0) = 0 for all (j, k) € £, and that Mj,(t) = 0 for all ¢t > 0if (j, k) ¢ .

2.2.4 Reneging, queue-length, and HL waiting time processes

For each j € J and k € K, the cumulative number of type j customers R;-j (t) and type k workers
R (t) that renege by time t > 0 are given by

AP (1)

RP(t) = > D1 2D oD (19)

1==(1,P (0))+1 5€[0:t] o<m i (s~ 20,5 (54)=0)

and
A3 (1)

RY(t) := Z ! W5 (20)

h=— <1 n2( >+1s€[0,t] {S\mgh’ ar (s— )>07 & (5+) 0}

10



Note that type j € J customers and type k € K workers cannot be matched at the exact moment
their patience time expires.

The demand and supply queue lengths for each j € J and k£ € K at time ¢ > 0 are given
respectively by

Q7 (1) == Q7 (0) + AP (t) — Z (21)

and

QR (1) = Q7 (0) + A7 (¢) Z Mj(t) (22)

The restrictions on the matching process in the previous subsection ensure that QJD (t) = 0 and
Q7(t)=0forall jeJ, keK, and t > 0.
For each j € J and k € K, the waiting times of the HL customer and worker at time ¢t > 0 are

X7 (t) :=inf{z e Ry : (.0l () = QP (1)},
and

Xi (t) i=inf {w € Ry : (g mi (1) = QR (1)},
respectively. Then, for each 7 € J and ¢t > 0 such that Q-D (t) > 0, it follows

<[»X () n] ><QD <1OXD(t]n]()>7
and for each k € K and ¢ > 0 such that Q3 (t) > 0

(oo M@ ) < Q1) < (o g mE®) )

The HL assumption (17) implies that any type j € J customer (type k& € K worker) waiting in
queue at time ¢ > 0 has been waiting in the potential queue for less than or equal to Xf(t) whereas
any type j € J customer (type k € K worker) in the potential queue at time ¢ > 0 with potential
waiting time strictly greater than X?(t) (x7(t)) has been matched. Then, X?(t) and X7 (t) are
moving boundaries marking the waiting time at which potential customers and workers transition
from those in queue to those not in queue because they have been matched. Note that there can be

up to <1 0P O] 77] > <1[0 XP @) 77] > type j € J customers in queue at time ¢ > 0 that have

been waiting for time x; D(t); QD( )— < 0P @) s Dt )> are in queue, and <1[07X§)(t)]7’l’]j >—Q§7 (t)
were matched before reneging. A similar statement holds for type k € K workers in queue at time
t = 0.

Similar to [43, Inequalities 29 and 30], this implies the following upper and lower bounds for the
number of reneging customers and workers at time ¢ > 0:

AP(1)

RP()< )] 2l : (23)
l=—<1,7’]] (0)>+1 sSE Ot] {S<Xj (57)’ dt (s )>07 dt (S+) }

AP (1)

=~ (1P (O))+1 s€(0,4] 15X () g (57)= 0, (s =0}

11



for each j € J, and

A @)

Ry (t) < > Dt

h=—1,15 (0))+1 5€(0,¢]

(25)

dw? dw? )
{s<xG (5-), g (s—)>0,—2 (s+)=0}

A5)

= ! v wf : (26)
k h——<1%;(0)>+1 SE(ZOt] {S<X£(S_)’ddlgh (3_)>0,dd’;h (54)=0)
- Uk ’

for each k € K. The bound on the left-hand side in (23) includes customers that have waited the
same amount of time as the HL customer (because s < XjD(s—) in the indicator function) whereas
the bound on the left-hand side in (24) only includes customers that have waited strictly less than
the HL customer (because s < XJ-D (s—) in the indicator function), and similar holds true for the
bounds in (25) and (26).  Note that if the arrival processes have jumps of size one (meaning
customers and workers do not arrive in batches), then (23) and (25) hold with equality.

2.3 Admissible matching policies

The dynamic equations and conditions specified in Section 2.2 on the matching process M are
fundamental for an HL-matching model. For the analysis here, we consider matching processes that
render matching decisions based on past and current information, i.e., do not use information about
the future. For this, we note that the matching process may be such that the states that can be
achieved live in a strict subset of Y. For example, if the matching policy prioritizes matches between
type j € J customers and type k € K workers, then the matching policy will disallow states in which
both customer type j and worker type k are present, i.e., QjD(t)Qf(t) =0 for all t > 0. To account
for this, we introduce a subspace X of Y in the next definition.

Definition 1. A matching policy is a pair (X,{Py : y € X}) where X is a Polish subspace of Y
and {Py : y € X} is a collection of probability measures on (Q, F) such that the following hold:

1. For each y e X, Py(Y € D(X),Y (0) =y and Y satisfies (3) — (20)) = 1;

2. For any measurable B < D(X), the mapping y — Py(Y € B) from X to [0,1] is Borel
measurable.

Given a matching policy (X, {P, : y € X}) and y € X, we let £, denote the law of the state process
Y with Y(0) =y, i.e., Ly(B) = Py(Y € B) for all Borel measurable B < D(X).

For a matching policy (X, {Py : y € X}) to be admissible, we require the associated matching
process to be nonanticipating in the sense that it is adapted to the filtration determined by the his-
tory of the state process, which we define precisely here. Given a matching policy (X, {Py : y € X})
and y € X, we let Y = (aD,aS,QD,QS,nD,nS) denote the state process that has law L, and
define

Y(t) : (G’D(t)a G’S(t)a QD(t_)a Qs(t_)a nD(t)a ns(t)) ) for each ¢ = 0? (27)
where (QP(0—),Q%(0-)) = (QP(0),Q°%(0)). We further define the filtration {G}}¢=o such that

Gy =0 ({f’(s),o <s< t}) , for each ¢t > 0.

12



Then, for each t > 0, the o-algebra Qty includes information about customers and workers waiting
to be matched immediately before time ¢, and customers and workers arriving or reneging (actual
or virtual) at time ¢. This is the information that should naturally be used to determine if and
which customers and workers to match at time ¢.

Definition 2. A matching policy (X, {Py : y € X}) is said to be admissible if for each y € X, the

matching process M given in (18) for the state process with' Y with law Ly is {gf'}t>0—adapted.

2.4 Imitial Conditions

Here we introduce random initial conditions. For this we recall that all random elements are defined
on the common probability space (2, F,P). Let (X, {Py : y € X}) be a matching policy and define

=0 :={Yy : P(Yp € X) =1 and Y} is independent of the stochastic primitives} .

Note that =y depends on the matching policy through its dependence on the subspace X. Given
Ys € Ep, we let € denote the law of Y, i.e., {(B) = P(Yy € B) for all Borel measurable B — X, and,
with a slight abuse of notation, we will sometimes write £ € =y. Given & € 2y, we define the Borel
probability measure £¢ on D(X) such that for each Borel measurable B € D(X) satisfies

Le(B) = jx £,(B)¢(dy). (28)

Then L¢ denotes the law of the state process such the initial condition has distribution {. We let E¢
denote the expectation operator with respect to L¢. In our analysis, we restrict attention to random
initial conditions for which the expected number of potential customers and potential workers in
system at time zero are finite. In particular, we restrict attention to £ € =y such that

r?ngEg [<1,njD(0)>] < and I]glgﬂé(Eg [<1,n,§(0)>] < o0. (29)

We also restrict attention to initial conditions such that the expected number of exogenous arrivals
in to the system in the time interval (0,¢] is finite for all ¢ > 0. That is, we restrict attention to
& € =y such that for all t > 0,

S
rrj;gﬂng [Af(t)] < and I]I;lgﬂéiEg [A7 ()] < o0. (30)

Let
E:={{€Zp:(29) and (30) hold}.

Due to (1), 6y € = for all y € X.

For £ € Z, due to (5), (6), (28), (29) and (30), the processes in (7) and (8) that arise when starting
from the initial condition ¢ are bounded in expectation for every ¢t > 0 when ¢ and ¢ are bounded
functions. In particular, for all £ € Z, j € J,¢t = 0, and bounded measurable ¢ : [0, HJD) - R,

Ee [IS7 (. 6)]] < l0)Ee [(1,n/(0)) + AP(1)] < o0
and for all k € K, ¢ = 0, and bounded measurable 9 : [O, H,f) - R,

E¢ [|S7 (%, 0)[] < []looEe [{1,72(0)) + AZ ()] < 0.

Furthermore, the following lemma presents dynamic evolution equations in expectation, and it is a
consequence of [30, Proposition 2.2], noting the finiteness conditions in (29) and (30).

13



Lemma 2. Suppose that £ € 2. For j € J, any bounded measurable function f : [O,HJD) — R, and
t>0,

D D
H 1-Gj(z+1)

Eg[<fﬂ7jp(t)>]=Eg[0] [+t nf<o><dx>]

¢
TR U F(t—u)(1 - GP(t— u))dAj?(u)] ,
0
and, for k € K, any bounded Borel measurable function f : [0, HJS) —Randt >0,

1-GP(z+1)

g
E§[<fﬂ77§(t)>]=E£[0 flz+1) 1—G3(x)

nf(O)(drc)]
+E¢ UO ft—uw)(1 =Gyt — u))dAg(u)] .

3 A fluid model

In this section, we present a fluid model which can be seen as an approximation of the stochastic
model introduced in Section 2. Section 3.1 provides the fluid model equations and defines a fluid
model solution. Section 3.2 provides conditions for uniqueness of fluid model solutions.

3.1 Fluid model solutions

Recall that H ]D and H ,f are the right edges of the support of the cumulative reneging distribution
functions for any j € J and k € K. A fluid model solution takes values in

Yo :=R{ x RE x (x/_;M[0, HP)) x (xj2, M0, HY)) .

Roughly speaking, a fluid model solution is represented by a vector (QD,QS,ﬁD ,1°) € C(Y) that
is the analogue of the state descriptor. The first functions @D and @S represent the fluid queue
lengths and the measure-valued functions 7 and 7° represent the fluid potential queue measures
(the analogues of (3) and (4)). We consider a subset Y of Yy in which, analogous to (2), the fluid

queue lengths cannot exceed the fluid potential queues. Specifically, if (@D,Qs,ﬁD %) e C(Y),
then for all ¢t > 0

@f(t) < (1,77 (t)), forall jeJ, and Qr(t) <7 (), forall ke K.

A fluid model solution (@D,QS,ﬁD ,1°) € C(Y) satisfies finiteness conditions such that for all
t=

0
t t

J (WP 7P (u)ydu < oo, for all j € J, and J (hg 7 (u) Y du < oo, for all k € K, (31)
0 0

and has initial potential queue measures with no atoms; i.e.,

(14,12 (0)) = 0 for all z € [0, HP), j € J and (1,75 (0)) =0 for all 2 € [0, HR), ke K. (32)
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The fluid analogues of the cumulative reneging processes (19) and (20) are, for ¢ > 0 and each j € J
and k € K,

= Jot JOQj (u) hJD((F]’ = ( ))dydu nd Rk f JQk(u) hS Fk:u) ( ))dydu, (33)

where for each jeJ, ke K, ze R, ye R, and u = 0, we define

F][,L(x) = <1[O,x]>n] > and Fku <1Ow nk( )>
and
(FP)\(y) = inf{e € By < FD(2) > ), and (Ef,) " (y) = inf{a € Be : S, (2) > ).

noting that inf &f = co. The condition (31) ensures that the cumulative amount of fluid reneging in
(33) is finite for all time.

The input to the fluid model are componentwise non-decreasing functions A’ ec (RY) and
A°ec (RE) with ZD(O) = 0 and ZS(O) = 0 that we term arrival functions. For any continuous
and bounded function f € Cp(Ry) the following integral equations hold for each j € J, k € K, and
t =0,

HP 1—GD$ _
P ) = 0 f(:c+t)GjD(+)t)nf’(O )(dz) th—u)(l—GD( —w))dA; (u), (34)
and
_GS(x
oy = | fx+t)1f’é(g(;ﬂ RO+ [ 1= 00 - GEe— A ). (3

The equations (34) and (35) parallel the dynamic evolution equations presented for the stochastic
model in Lemma 2 (see equations (11)-(14) and marked point process definitions (7) and (8)).
Instead of (34) and (35), we could use similar integral equations as in (11) and (12) in Lemma 1.
However, both are equivalent as we state in the following remark.

Remark 1. By [32, Theorem 4.1] (see also [43, Remark 1), if A° and A° are arrival functions
and (qP, M%) satisfies (31), then (34) and (35) hold if and only if the following hold: for all j € J,
keK, peC'([0,HP) x Ry), e Co' ([0, HY) x Ry), and t >0

(6 0TPWY = (o(-0),7P(0)) + f (Ba () + $o( ), TP () du
- f (RS (YD), TP (1) i + j 6(0, u)dA? (u),

0 0
(), M)y = {W(,0),7,(0)) + f () + e (- u), 75 (w) ) du
- [t @) du+ [ v00dE w.

0 0
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The specification of a fluid model solution for given arrival functions A" and A4° and an initial
condition requires the specification of a matching function. The matching function can be thought
of as the fluid analogue to the matching policy for the stochastic system given in (18), and satisfying
restrictions (16) and (17).

Definition 3. A matching function M € C(RiXK) s a matriz of componentwise non-decreasing
functions such that M j;,(0) = 0 for all j € J and k € K.

For a given matching function M, M ;i (t) is interpreted as the amount of type j customer fluid and
type k worker fluid matched by time ¢, for j € J, k € K, and ¢ > 0. Then, the fluid queue-lengths
evolve as follows: for all j € J, ke K and ¢t > 0,

Q70 = Q7 0) + A7 (1) = B (1) = Y Mi(0), (36)
keK
and,
Qr(t) = QR (0) + A (1) )= > M(t) (37)
jel

The equations (36) and (37) are the fluid analogues of the queue-length evolution equations (21)
and (22) in the stochastic model.

Deﬁnition 4. Let A and A° be arrival functions. A fluid model solution for (ZD,ZS) is
(Q Q 7. m°%) € C(Y) that satisfies conditions (31) and (32), the integral equations (34) and
(35), and 1s such that there exists a matching function M for which (36) and (37) hold, with r”
and R® given by (33).

There is an alternative, potentially more intuitive, representation of the reneging process, given
in the following remark.

Remark 2. Suppose that A° and A° are arrival functions and (Q QS 7P, m%) e C(Y) satisfies
(31) and (32). Then, ﬁjD(t) and M7 (t) have no atoms for all j € J, k € K, t > 0, and the following
equations hold: for all j e J,k e K, andt > 0,

HD
J J {77] (u )[0,x]<@f(u)}ﬁ?(u)(d$)du (38)

and

HS
J J hk {77 (u)[o, $]<Qk(u)}nk( u)(dz)du. (39)

The inner integrals in (38) and (39) represent the instantaneous reneging rate, which is determined
by the hazard rate function and fluid age. Then, integrating over the instantaneous reneging rate
in [0,¢] gives the cumulative reneging up to time ¢.

A fluid model solution for arrival functions A~ and A" that arise as functional law of large
number limits of the arrival processes AP and A% in the stochastic model provides an approximation
for the mean queue-lengths at each time ¢ > 0. Fluid model solutions are more tractable than the
original stochastic model, yet they are still somewhat complicated because they involve measure-

valued functions. Even so, one could apply numerical methods to find the fluid model solutions as
in [37] and [38].
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3.2 Existence and uniqueness

A fundamental question is if a solution of the fluid model exists and if it is unique. Our first result
provides conditions for uniqueness when a fluid model solution exists.

Theorem 1 Let ZD and A° be arrival functions and let M be a matching function. Suppose
(@ 7Q ;P15 and (Q QS2 nP2,m52) are both fluid model solutions for (ZD,ZS>
that satisfy (;}6) and (37) for the matching function M, and

(@(0).Q7 (0),77(0),77(0) = (@7(0).Q

D1 S,1 D2 5,2

(0),772(0),7>%(0))-

Then,
@7, @™ a1 a5 = @72, Q% w2 m%?)

Proof. By (34) and (35), we directly have that 3! = B2 and %! = B2, and so, to ease
the notation in what follows, we define (Fﬁ)*l and (F/,fyt)*1 as in the display following (33) for all
jel, kekK, and ¢t = 0, without adding superscripts 1 and 2.

We shall argue by contradiction that the fluid queue lengths are also identical. Fix a j € J.

Assume that there exists t* such that @-D’l( t*) > QD2(7§*) and define u = sup{0 < s < t* :
@jD’l(s) < Q]D 2( )} v 0, where by convention sup @ = —oo. Due to continuity, QD’l(u) = QJDQ(U)

and @f’l(s) Qj ( ) for s € (u,t*]. If w =0, then define Qj ( -)= @f’l( 0) and the same hold
for all the functions. From (33), we have that

B - f* f P((FR) (w) ) dyds

f* f P((F2)" ) ) dyds
() - T <u>.

By (36), we obtain for s > 0,

D1

Q;

—=D,2

(s) + B (s) = @ " (s) + By (s).

By the continuity of Ef’i and the last two relations, we have that

D,1 D,2 D,2 D,1 D,2 D,1

Q; () —Qy (") =Ry"(t") = Ry (t") S Ry " (u) — Ry (u) = Q" (u) — Q5 " (u) = 0.

That is,
D,1 —D,2

Q; () < Q7 (),

which is a contradiction. Hence @f’l(t) < @?’2(15) for each t > 0. Using exactly the symmetric

arguments, we have that @J-D’l(t) > @jD’Q(t) for each t > 0, and hence @Jp’l(t) = QJD’Q(t) for each

t > 0. The uniqueness for the fluid supply queue lengths shares the same machinery. O

Having defined the fluid model and studied its properties, we move in the next section to show
how a fluid model arises. In particular, the existence of a fluid model solution follows from Theorem 3
below.
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4 Fluid limit points

In this section, we rigorously show that a fluid model solution arises as a limit point of a se-
quence of fluid-scaled state descriptors. Comnsider a family of systems indexed by n € N, that
are all defined on a common probability space (€2, F,P), and that share the patience time se-
quences {erl benyj € J, and {r,fh}heN,k € K. However, the arrival processes, admissible match-
ing policies and initial conditions depend on n € N. Then, for each n € N, there are arrival
processes AP and AS™ an admissible matching policy (X", {Py:ye€ X"}) and an initial condi-
tion Y"(0) € E", such that the state process Y™ with initial condition Y™ (0) has the associated
matching process M™ (see Definition 2 and Section 2.4). The fluid-scaled processes for the nth
system are as follows: for H" = AP ASn QPn Q5n nPn pSn RPn RS™ Mn P &%
let H' = H "/n. The only processes not scaled by n are the processes tracking the time elapsed
since the last arrival, so that @”” = aP™ and @®" = a®". Then, the fluid-scaled state process
sY" = (aD’”,aS’",a ,an nPm p%") for n € N. To avoid cluttering the notation for each
n € N, we will use P and E instead of IP)?,L and E’gn throughout.

The results proved in this section (see Theorems 2 and 3 below) hold under the assumptions
stated in the paragraphs that follow. These assumptions parallel Assumptions 1-5 in [43], but are
modified from their multiclass many-server queue with reneging setting to our matching setting
(which involves ignoring any assumptions on their service measure, and replacing assumptions on
their entry-into-service process with similar ones on our matching process). The assumptions are
consistent with those required in [29], where the single class many-server queue with reneging setting
is studied, with the same caveats. Another difference with the aforementioned papers is that we
require our fluid model solutions to be continuous (see Definition 4), and so enforce that the family
of fluid-scaled matching process is C-tight.

The first three assumptions below are used to prove that the sequence of fluid-scaled state
descriptors is tight. These assumptions ensure (1) that the arrival processes are convergent under
fluid-scaling, (2) that the oscillations of the matching process can be controlled, and (3) that the
initial conditions converge to a “good” state.

Assumption 1. There are processes A e D(RY) and A° e D(RE) such that for each j € J and
keK,

1. lim, o Z]-D’n = ZJD and limy, Zg’n = Zf, P-almost surely,

2. hmnHOOIE[Afn(t)] = E[Xf(t)] < o and limnHwE[ZkD’n(t)] = E[Z}j(t)] < o for all

t=0.

We remark that A" and A% asin Assumption 1 are necessarily componentwise non-decreasing and
satisfy ZjD(O) =0 for all j € J and Zi(O) = 0 for all k£ € K, P-almost surely. Hence, A" and A°
are arrival functions (as defined in Section 3) P-almost surely.

Assumption 2. We assume that for all n € N either M;Lk satisfies the second condition (K.2) of
Kurtz’ criteria for each j €J and k € K or for all 0 < s <t < o0,
D.n

max (M (1) — Mj(s) < YA (0) - AV () + DA - A" (). (40)

] K
jel.ke el keK
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Recall Kurtz’ Criteria for tightness (see, e.g., |20, Theorem 3.8.6 and Remark 3.8.7]). A sequence
of processes {H"} Nen With sample paths in D(R) is relatively compact if and only if the following
two properties hold:

(K.1) For all rational ¢ > 0, limp—,eo supy P (JHN ()] > M) = 0.
(K.2) For all rational ¢ > 0, there exists ¢ > 0 such that lim._,osupy E [[HY (t + ¢) — HY (¢)|7] = 0.

Assumption 3. There is a random element (Q(0),Q%(0),77(0),7°(0)) € Y, P-almost surely,
such that for each j € J and k € K,

1. limy, g @?’n(O) = Q]D(O) and lim,_,q @E’H(O) = Q7(0), P-almost surely,

Dmn

2. limy_o0 E [Q] Q )] —E [Qf(o)] < 0 and limp_,0 B [@f’”(o)] —E [Qf(o)] <o

w

3. ﬁjD’n(O) = ﬁ]D(O) and ﬁf’n(O) 5 772 (0), as n — oo, P-almost surely,

4. limp o E [<1 72" (0 >] ~E [<1,ﬁjD(o)>] < o0 and limy_,0 E [<1 72" (0 >] = E[(1,73(0))] <

The first main result of this section is related to the tightness of the fluid-scaled state descriptor.

Theorem 2. Suppose that Assumptions -3 are satisfied. Then, {(Q an nPn ns’”)} N 18
ne
tight.

Given the tightness result, the next two assumptions are used to prove that any subsequential
limit is a fluid model solution P-almost surely.

Assumption 4. For each j € J and k € K, there exist LJD < HjD and Lf < H,f such that hf and
hy are either bounded or lower-semicontinuous on (Lf,H]D) and (L3, HY), respectively.

Assumption 5. Assumptions 1-3 hold, and the following hold for each j € J and k € K,

D

— — . . —D — . .
1. A} and Ag are continuous P-almost surely, i.e., A; and Ag are arriwal functions P-almost

surely,
2. ﬁJD(O) and ﬁ,‘?(O) do not charge points P-almost surely, i.e., for any x € Ry, <1{x}, ﬁjD(0)> =0
and <1{x}, f],‘j(())> = 0, P-almost surely,

3. {M?’f}neN is C-tight.

Theorem 3. If Assumptions / and 5 hold, then any distributional limit point {(@D,QS,ﬁD,ﬁS)}neN
of {(Q Sn,ﬁD” 5™ Inen is P-almost surely a fluid model solution for (ZD,ZS) such that
(QD(O),QS(O),ﬁD(O),ﬁS(O)) is equal in distribution to (QP(0), Q5(0), 7P (0), 55(0)) given in As-

sumption 5.

In the remainder of this section, we present the proofs of Theorems 2 and 3. Section 4.1 identifies
the compensator term that can be used to define martingales associated with the potential reneging
marked point processes SP™ and 8™ for each n € N, and provides some preliminary results. Then,
Section 4.2 contains the proof of Theorem 2, and Section 4.3 contains the proof of Theorem 3.
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4.1 Preliminaries: Martingales and radon measures

The development in this section heavily leverages the presentation of the martingales associated
with the potential reneging marked point processes in [43, Section 4.1] and is therefore kept concise,
with proof details omitted.

Fix n € N. We start the analysis by defining a filtration {F}'};>¢ such that for ¢ > 0

F =0 (Y"(0), (aD7”(s),0 <s<t), (as’"(s),O <s <), (wD’"(s),O <s <), (wS’”(s),O <s<t)),

where aP ™, a®", wP ™, and w>" are defined for the nth system as in Section 2. Note that FJ* € G
for each t > 0, where G* is given in Definition 2. Further, for each j € J, k € K, bounded measurable
function ¢ : [0, HJD) x Ry — R, bounded measurable function 9 : [0, H,f) xR, - R, and ¢t > 0, let

(1) = J<¢ SRP (s),n”"( >ds (41)
A0 = [ (o)) s, (42)
B]D’n(¢at) = Sij(qsvt) - A]'Dm(qﬁat)? (43)
By (,) = S (1, 1) — A" (1, 1), (44)

The following almost surely bounded and measurable functions will help us to bound the reneging
processes. For je J, y € [O,HjD), and ¢t > 0, let

Dn _ D,n —
9]‘ (y,t) = 1[O,xf’"(t—))(y) and @j (y, 1) = 1[0,xf’”(t—)] (y)- (45)
For keK, ye [O,H,f), and t > 0, let

gf’n(%t) = 1[0,X2’"(t—))(y) and Gf’n(y,t) = 1[0,Xf’”(t—)] (y)- (46)

Definitions (45) and (46) and (23)—(26) lead to the following bounds for the reneging processes:

D/ nDmn Dn Dmn,~Dn SnnSn Sn SnSn
SPnOP™ 1) < RP™ (1) < SP(OP™, 1) and SS™ (057, 1) < RS™(1) < SSM@©5" ). (47)

Recall the independence of the initial conditions from the primitive processes and that the
matching process M™ is {G'}+>0- adapted by Definition 2 for each n € N. By adapting the arguments
used to prove [32, Corollary 5.5], Part 1 of [29, Proposition 5.1], and [29, Lemma 5.4| exactly as is
mentioned in [43, Lemma 4|, the following lemma holds.

Lemma 3. Let n € N. For each j € J, k € K, bounded measurable function ¢ : |0, H]D) xR, - R,
such that t — qﬁ(w].:l)’n(t),t) is left continuous on [0, 0) for eachl € {— <1 77D’” > +1,... ,0} uN,
and bounded measurable function 1) : [ x Ry — R such that t — w(wkl (t),t) is left continu-
ous on [0,00) for each l € {— <1,77 > +1,. } U N, the processes ADn(¢, -) and .AS’"(@ZJ, )
are the {F}}q-compensators of Sjpn(cb, -) and S,f”(l/}, \), respectively. Further, .A (@Dn, -) and
Af’n(Gf’n,-) are the {Fi}jsq-compensators of Sjp’n(@p’",-) and Sf”(@f",-). In particular, the

J

processes Bf’”((b, ), Bf’”(z/z, ), le-)’n(@f’n, 1), and B}j’”(@f’", -) are local {F}'}1=0-martingales.

20



For n € N a local {F]'};>o-martingale L™, we denote by <fn> the quadratic variation process of
the fluid-scaled process L" = L"/n. The following result is the analogue of [43, Lemma 5].

Lemma 4. Suppose that Assumptions 1 and 3 hold. For each ] elJ, ke K, t =0, bounded
measurable function ¢ : [0, HD x Ry — R such that u — ¢( " (w),u) is left continuous on

[0, 0) for each i € {— <1 >+ 1,. } u N and n € N, and bounded measurable function

x Ry — R such that u — w(w,‘in(u),u) is left continuous on [0,00) for each i €

{:<177 >+1 }uNandneN,

limsup E [ﬁn(t)] < 0,

n—aoo

Dn 'y, s2m@n ), AP P ),

J J J

where H"(-) = A7 (6, ), A" (0,), 877 (9,), S (¢, ), §;7"(©
and Aﬁ’"(@f’”, -). Moreover, for each j€J, ke K andt >0

limsup E [ﬁf’n(t)] < o and limsupE [Ein(t)] < 0.

n—a0 n—0

Furthermore, for L"(-) = Ef’n(qﬁ, Y, By (W, 4, BjD’n(@?’n, -), and Bﬁ’”(@f’”, ), for jel, keK,
and n € N, we have that for allt >0

lim E[<L> ]ZO,

n—oo

-n d
and hence L — 0, as n — oo.

We next provide alternative representations for the compensators of SD "(GD Y, S,f’n(ﬂ;j’", ),
S]D"(@]D”,-) and 8" (©",.), for j € J, k€ K, and n € N. For n e N, xeR+, and t > 0, define
Sn S,n
Also for n € N and t > 0 define
5éJDm( ) ll’lf{fL‘E[O HD <1 D”t ))777j (t)>}7]EJ7
and
5(57”@) ::inf{xE[O,H]f” . <1 Sin )777k "(t )>},kEK.

The following result is the analogue of [43, Lemma 6].

Lemma 5. For eachneN, jel, keK, t >0, x € [O,HjD), and y € [O,H,f), we have that

D D Fft’ (z)
Lioghy,ny " (t) ) = f h < ) ds.
< [0,2]75 »7j > 0
kt "(y) s Sn 1
<1[Oy hkﬂnk > J hk‘ F ds.

21



In particular, for eachneN, jeJ, ke K, andt >0,

AP (gPa, ff“(x "

e[ ) o
AST (65 1) ff A (u))h;j <<F,f;j)l(s)> dsdu,
aresna = [ [ (m) )

For each n € N, j € J, k € K, and ¢t > 0, the measures SjD’”(-,t) and S,?’n(-,t) are finite
Radon measures on [0, H jD ) x Ry and [0, H ,f ) x Ry, respectively. The next lemma shows that the
corresponding compensators are bounded and its validity follows by the definition of the potential
measures, (41), and (42), as in [43, Lemma 7.

Lemma 6. ForeachneN,jEJ,keK,0<m<Hf),0<u<H,§,t>0, bounded
measurable ¢ : [O,Hj) x Ry — R, such that supp(¢) < [0,m] x Ry, and bounded measurable
¥ : [0, HY) x Ry — R such that supp(¥) S [0,u] x Ry, we have that

A7 0,0)] < lolle (1077 0)) + 427 0) [ 12w

A5 )] < oo ((1030) + 4570)) [ 1§ (@)
0

We remark that Lemmas 3, 5, and 6 all hold for fixed n € N, and, in particular, hold for the
system model presented in Section 2. In contrast, Lemma 4 is an asymptotic result.

4.2 Proof of Theorem 2

Theorem 2 follows by Lemmas 7 and 8 below.

Lemma 7. Suppose that Assumptions 1-5 hold. For any j € J, k € K, f; € Ccl([O,HjD)),
hk € Ccl([ov Hk;S))7 ¢j € Cb([ov HJD) XR+); 1/114 € Cb([ov H]f) XR+); the sequences {ZD’n}neN; {Zim}neN;

B Y, (B Y, (57" bnett. (58 huew, Mhuere, {(LnP")) AQA O}
{<fny” D) AT O] QT e, (@ e, {87 (%-)}n BRI

eN neN
"¢, - , and Xsn Yk, * , are relatively compact in D(Ry), and are therefore tight.
J neN k neN

If Assumptzon 5 also holds, then cach of these processes is C-tight.

Proof. Fix j e l, ke K, f; € CX([0,HP)), hy € CX[0,H})), ¢; € Co([0, HP) x R), ¢y, €
Co([0, HY) x Ry.).
The arrival processes {Z]-D’n} N and {ZJSH} are relatively compact by the first condition of
ne ne

Assumption 1. Relative compactness of {Sf’n}neN, {gi’n}neN, {Zf’n(qu, -)}HEN, {Xf’nwk, .)}n€N7
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{SJD’”(@.’ .)}HEN’ { " (g, - }HEN {<1 7o >}n6N and {<1 7" )>}nEN follows using Lemma 4

and the same arguments as in [29, Lemma 6.3]. For the reneging process {Ep’n . observe by (23)

J
—=Dn —Dmn
that R} " (t) < 4

we have that

(t) for each t > 0 and n € N. Furthermore, for each n € N and 0 < s <t < o0,

—=Dmn —=Dn —Dn
[By () — Ry (s) < |5

Dn

(t) =577 (s)]-

} follows by relative compactness of {?f’n} , and by
neN neN

D
Now, relative compactness of {RJ "

exactly the same arguments {Rk’ is relatively compact.
neN

The matchlng process is relatively compact by Assumption 2, the fact that M () < mm(QJD’n(O) +
( )s Qk "(0) + Ak "(t)) for each t = 0 and n € N, and relative compactness of the arrival pro-
cesses. By (21), observe that for n € N and 0 < s <t < 0,

Dn

Q;

(6) = Q)" ()] < JA]"(6) — A" ()| + [ (1) — B ™ ()| + Y. [M i (t) — M(s)].

keK

—D . . . . .
Hence, {Qj n} N is relatively compact by relative compactness of the arrival, reneging, and match-
ne

ing processes. Using (21), relative compactness of {@fn} also follows.
ne

Next, {<f],*D ( >} N and {<¢k,ﬁg’"(-)>} , are relatively compact by applying Lemma, |
ne ne
and following arguments similar to those in [29, Lemma 6.4].
Finally, the sequences {jﬁ)’n(qu, )} . and {Zf’n(@[]k, )} . axe C-tight because each process
ne ne

. . . —D - . .
in the sequence is continuous. The sequences {Rj n} and {an} are C-tight because in

neN neN
the nth system each process in the sequence has jumps of size 1/n due to the continuity of the

patience time distributions. If Assumption 5 holds, then parts 1 and 2 of Assumption 5 guarantee

{ZjD’n}neN, {AS”}HEN {<1 7o )>}neN’ and {<1,ﬁ£’n(-)>}neN are C-tight. Part 3 of Assump-

. . —D,n —=Sn . .

tion 5 guarantees {Mjk}neN is C-tight. Then {Qj }nGN and {Qk }nEN are C-tight from this and

(21) and (22). C-tightness of {3?’"(@7-)} and {gf’n(qpk,.)} follows when ¢, and vy, are
neN neN

. =D =5 . . . . .
continuous, and so {Sj n} and {Sk’n , are C-tight (since the constant function 1 is contin-
ne

neN

uous). Then, from (13) and (14) in Lemma 1, since f; and hy are continuous {<f],*Dn( )>}

b
neN

and {<hk, s -)>}n€N are C-tight. O

Lemma 8. Suppose that Assumptions -3 hold. For each j € J and k € K the sequences {ﬁ]p’n}neN,

{ﬁf’n}neN, {jjp’n}neN, {Xf’n}neN, {ng’n}neN, and {SS’n}neN, are relatively compact in D(M|O0, Hf)),
DM[O, HF)), DIMI[0, HP) x.,)), DIM([0, H) <)), DIM([0, HP)xR.,)), and DIM([0, HF) x
Ry)), respectively.

Proof. Lemma 8 follows by Jabukbowski’s criteria (see, e.g., [26, Theorem 4.6]) and using the
same arguments as in |43, Lemma 9. O
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4.3 Proof of Theorem 3
For n e N, let

W:(ZD’”,ZS’",Q " Qo mPr s RPN RO M, 8P, 80" AP A ) (48)
We use the following lemma to prove Theorem 3.

Lemma 9. Suppose that Assumptions / and 5 hold, and that

V(AAQQ*DSRRMSSAA>

15 a distributional limit point of {7”} where V' is gwen in (/8) for each n € N. Then, the

following hold almost surely:

neN’

1. for each j € J, ke K, T >0, u € [0, HD), and m € [0, HS) there exists L?(u,T) <
LY (m,T) < oo such that for each (P € L} [O,HjD) and (% € L} [0, HY)

loc loc

T
f <€D, n; ( (s))ds < (u T) J ‘ED(x)‘ dz,
0 [0,HHP)

T
j {65, nf (5)) ds < LY (m, T) f 165 (2)] de;
0 [OvHIf)

7

2. foralljel, keK, ¢ € Cy([0,HP) x Ry ), ¢ € Co([0, HY) x Ry), and t = 0

t
SP0n1) = AP(0.0) = [ (o2 ) du <
SP(h,t) = A7 (1, 1) f Py u)hg (), mi (u) Y du < oo,
and, in particular, (31) holds;

3. foralljelJ, keK, t >0, and v € R, <1{I},77]D(t)> =0 and <1{x},n,f(t)> = 0, and, in
particular, (32) holds;

4. R” and R’ satisfy (95);

5' (Q 7Q 7,’7D7 ’rlS) e C(Y);

6. M e C(RiXK) 18 a matching function;

7. (A A% 9P, 0° 7. 75 RV R° M, AV A ) satisfy (34)-(35) and (36)-(37).

Proof. The proof of parts 1, 2, 3, and 4 follows analogously to the proof of |43, Lemma 10, parts
1,2,6,7] for the reneging measure 7 in that paper (and ignoring the service measure v in that paper).
Part 5 follows from the following:

e The restriction (2) for each system n in the sequence;
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e The C-tightness of the sequences {@f’n}neN, j € J and {@f’"}neN,k € K established in
Lemma 7;

e The fact that 7;(¢) and 7(t) do not charge points for each t > 0 and j € J and k € K by part
3 above.

Part 6 follows from part 3 of Assumption 5 and the fact that M}, are non-decreasing for each j € J,
k€ K, and n € N from their definition in (18). To obtain part 7 we note the following:

e Arguments very similar to those used to establish [29, (3.11) for Theorem 7.1 (see page 51)|
also show that the equations (34) and (35) hold, using Remark 1;

e The relations (36)-(37) follow by (21)-(22), and the convergence of the fluid-scaled processes.
U

Proof of Theorem 3. Let (QD,QS,ﬁD, 77°) be a distributional limit point of {(Q ,@ P gon

Then there exists N' = {n'} < N such that
(GDWL’?—S,n’?ﬁD,n — ,n) (Q Q fD S)’ as nl — 0.

For each n € N, let V" be as given in (48) and consider the subsequence {W,}nreN/. Let V be

a limit point of {Vn }wenv. Since {Vn }wen is tight from Lemma 7 and Lemma ;\ there exists a

further subsequence N’ = {n} such that V"© = V as n” — 0. Since (Q ,Q P sy
are coordinates of Vn” for each n”, it follows that (QD QS,ﬁD ﬁS) is equal in dlstrlbutlon to
(@D Qs 7", m°). Furthermore, by Lemma 9, (QP,Q%, 7P, 7°) is almost surely a fluid model
solution. Hence the same is true for (Q Q *D,ﬁs ). O

5 Stationarity

Here, we study the behavior of the stochastic model in stationarity. To ensure the existence of a
stationary distribution, we make the following assumption.

Assumption 6. The components of the arrival processes AP and A® are delayed renewal pro-
cesses with absolutely continuous interarrival distributions that have finite means and the admissible
matching policy (X, {Py : y € X}) is such that {Py : y € X} is a time homogeneous Feller Markov
process.

As a consequence of Assumption 6, (1) holds. We also make the following assumption on the
reneging distributions.

Assumption 7. The reneging distributions satisfy the following conditions:
1§57 (1= GP(x))dx = 1/6P € (0,), j €I, and §; (1 — G7(x))dz = 1/0}] € (0,0), k € K;

2. GJD, jel, and GY, k e K are strictly increasing.
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Part 1 of Assumption 7 ensures that the reneging distributions have finite positive mean and
—1 _
Part 2 of Assumption 7 ensures that the inverse functions (G?) :[0,1) — [0, HJD) and (Gf) L.

[0,1) — [0, H,f) are well-defined for each 7 € J and k € K. When Part 1 of Assumption 7 holds the
excess life distributions of the reneging distributions are as follows:

GP(x) = L 6P(1 — GP(w))du, for j € J and z € R,

and
G2 (x) = fo 02 (1 — G5 (u))du, for ke K and z € R, .

Under Assumptions 6 and 7, in Section 5.1, we show that the stochastic model admits at least
one stationary distribution (see Proposition 1). Next, in Sections 5.2 and 5.3, we show that fixed
points, also called invariant states, of the fluid model with suitable arrival functions are valid
first order approximations for the stationary distributions of the stochastic system. Here suitable
arrival functions are those with component functions that are absolutely continuous with constant
densities. In Section 5.2, we restate two results from [6] that concern the invariant states of such a
fluid model. The first (Proposition 2) gives a characterization of the invariant states. The second
(Proposition 3) concerns the behavior of fluid model solutions as time becomes large and provides
sufficient conditions for convergence to an invariant state. Then, in Section 5.3, we consider a
sequence of stochastic systems in stationarity under fluid scaling. Under mild asymptotic conditions,
we prove convergence of this sequence to an invariant state of the fluid model (see Theorem 4).
The combination of these results establishes an interchange of limits result that justifies regarding
invariant states as first order approximations to stationary distributions. This is illustrated in Figure
2 at the beginning of Section 5.3 after establishing the necessary notation.

5.1 Existence of a Stationary Distribution

In this section, we determine conditions under which the stochastic model admits a stationary
distribution, although we make no claim about uniqueness of such a distribution.

Proposition 1. Suppose that Assumption 0 and Part 1 of Assumption 7 hold. There exists £ € =

such that the state process Y is stationary when Y (0) has distribution &. In particular, & is such
that for all t =0

E¢ [AJD(t)] = )\ft and E¢ [<1,ﬁf(0)>] = )\JD/GJD, for each j €], (49)

E¢ [A;?(t)] = A\t and E¢ [<1,ﬁ2(0)>] =\ /6%, for each k € K. (50)

Proof. Fix y € X. Let Y denote the state process with law £,. For any Borel subset B of X, let
Ly(B) =Py (Y (0) € B) and for t > 0 let

t
Ly(B) = ”0 P, (Y (s) € B)ds.

Then L; is a Borel probability measure on X for each ¢ > 0. From Assumption 6, the state process
Y is a time homogeneous Feller Markov process. Also, since y € X, maxjej <1,7]JD(0)> < o0 and

maXgeK <1,n,§(0)> < o since y € X < Y. Then, upon recalling (1), we can argue very similarly
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to the proof of |30, Lemma 4.8] (ignoring the service measure) to find that the family of measures
{Li}4=0 is tight. Finally, the Krylov—Bogoliubov theorem (see [17, Corollary 3.1.2]) implies that any
limit point £ of {L:}+>0 is a stationary distribution. The equations in (49) and (50) follow since the
marginal distributions of the arrival processes and total mass of the potential queue measures must
be stationary processes when the the initial condition is £ and the total mass of the potential queue
measures is equal in distribution to that of an infinite server queue. O

5.2 Invariant States and Long Time Behavior of Fluid Model Solutions.

We restrict attention to fluid model solutions given in Definition 4 for which the arrival functions
D

A" and A° are linear. Specifically, we suppose that for some AP € (0,00)7 and A% € (0,0)% we
have that for each j e J, ke K, and ¢t > 0,

—D —S

A7 (t)=APt  and  AL(t) = At (51)

With this, we define invariant states as follows.

Definition 5. Let AP € (0,00)7 and X° € (0,00)%. A tuple (¢*, q¢”>*,nP* n%*) € Y is an
invariant state for (AP, X\°) if the constant function (§D7§S,ﬁD,ﬁS) given by

@"®),Q°),n° 1), 75 (1)) = (@°*, q%*, ", n>*), for all t >0 (52)

1s a fluid model solution for (ZD,ZS) given in (51). The invariant manifold for (AP, \%) is

the set of all invariant states for (AP, X%), which we denote by Ty.

To build some intuition, fix AP € (0,00)7 and A% € (0,00)% and suppose that an invariant
state (gP*, q%*,nP*,n5*) for (AP, %) exists. We begin by looking at the invariant potential
queue measures since their evolution is independent of the matching function. By substituting the
components of nP* (resp. n°*) into dynamic equation (34) (resp. (35)) and letting ¢ tend to infinity,
one can show that the term corresponding to the initial condition tends to zero and conclude that
for each j € J (resp. k € K), njD’* (resp. 77,”3’*) is absolutely continuous with density )\JD (1— Gf())
(resp. A7 (1 — G (1)))- o

Next, we look at the invariant fluid queue masses, which depend on the matching function M.
By (33), for each j € J (resp. k € K), EJD (resp. Ef) is absolutely continuous with a constant
density function. This together with (36) (resp. (37)) implies that for each j € J (resp. k € K),
Mf = > ex Mk (resp. MS = 2eg M ji,) is absolutely continuous with constant density function
m]’? e [0, X}] (vesp. my € [0,A7]). It follows that My, j € J and k € K, are absolutely continuous,
although their density functions aren’t necessarily constant. However, it is straightforward to check
that M can be replaced with a matching function that has coordinate functions that are absolutely
continuous with constant density. Let

M := {meRiXK:ijké)\jD, jeJand ijkéx\f, ke K, and m;, = 0 for all (j,k)aéf,'}.
keK jel

These observations implies that in order to characterize invariant states it suffices to restrict atten-
tion to matching functions M such that M (t) = mt for all ¢ > 0, for some m € M.
The following results are proved in [6], and re-stated here for the reader’s convenience.
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Proposition 2 (Proposition 3 in [6]) Let AP € (0,00)7 and A% € (0,00)% and suppose that

Assumption 7 holds. A tuple (gP*,q>*,nP*,n%*) € Y is in the invariant manifold Iy if and
only if it satisfies the following relations for some m e M: For jeJ, ke K, and x € Ry,
) (dw) = AP (1 = G (v))da, (53)
" (dr) = A{ (1 - G («))de, (54)
AP .
Dx 9D if ZkeK mjk = 0,
q " (m) = P p Dy-1 Dk Mk , D (55)
@G e ((Gj ) (1 - T))a if 2kex Mk € (07)‘j I,
i if Dlegm 0
. 05 jeJ ik =
g, (m) = { )4 (56)

02 (@0 (1= 2572) ). o Sy 0

When a matching policy arising from some m € M is fixed, a fluid model solution approaches a
unique invariant point, assuming “good” initial conditions.

Proposition 3 (Theorem 2 in [6]). For each j € J and k € K, assume th and hf are bounded
functions. Suppose that Assumption 7 is satisfied, A° and A° are arrival functions that satisfy
(51), and (Q QS 7", 7% e C(Y) is a fluid model solution for (ZD,ZS) such that ﬁjD(O), jelb,
and 7y, 2(0), k € K, do not charge points and the matching function M is such that M (t) = mt,
t >0 for some m € M. Then

im (@”().@

t—0o0

(). 7°0,7° 1)) = (¢”*(m), a** (m),n"*,n**) .

Remark 3. The requirement in Proposition 5 that the matching function has constant matching
rate is restrictive, and is of interest to relax. However, that is beyond the scope of the present paper.

5.3 Convergence of fluid scaled stationary states to the invariant manifold

In this section, we consider a sequence of stationary stochastic systems indexed by n € N.

Assumption 8. For each n € N, there is a stochastic system indexed by n such that the arrival
processes AP and AS™ and admissible matching policy (X", {IP’Z :y € X"}) satisfy Assumption 0,
while the stochastic primitives do not depend on n and the reneging distributions satisfy Assump-

r

tion 7.

If Assumption 8 holds, then, by Proposition 1, a stationary distribution ¢" € =" exists for

each n € N and we let Y™ (o0) = (aP™(x0), a”"(0), QP (), Q5™ (0),n”"(0), n%"(0)) denote a
stationary state for the n'" system that has distribution ¢". We apply fluid scaling to this sequence
of stochastic stationary states and provide conditions under which the fluid scaled sequence of
stationary states converges to an invariant state, as shown in Theorem 4 below. As a consequence
under suitable conditions that in particular imply ergodicity for the stochastic systems, the fluid
(n — o) and stationary (¢t — o0) limits can be interchanged as illustrated in Figure 2.
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11—

{(@°"(6),@5"(®), " A1)z t = 0} ——————  ((@°(1).@5 (O 7P (.7 (@®): ¢ = 0}
t—> t— o

(@P(00), G5(0), TP (@0), 5 (e0)) —————— (@ (m), q>* (m), 1P (m), 05" (m))

n— oo

Figure 2: When Assumption 9 holds, the arrival functions A" and A® for the fluid model are such
that ZJD(t) = )\ft, j € J, and Z,f(t) = \t, k € K, for all t > 0, and the sequence of matching
functions is well behaved (see condition in Theorem 4), Propositions | and 3 and Theorems 3 and
4, ensure that when the limits exists, the limits ¢ — o0 and n — oo can be taken in either order, as
illustrated in the figure, where m € M.

In order to prove Theorem 4 below, we consider a sequence of systems indexed by n € N as in Sec-
tion 4 such that the initial condition Y"(0) for the n'" system has distribution ", i.e., has a station-
ary distribution. Henceforth for each n € N, Y"'(:) = (a”(-),a®"(:), QP"(:), Q%™ (-),n”"(-), " ("))
denotes the state process with initial condition Y™(0) that has distribution ¢", i.e., Y"(0) has a
stationary distribution so that Y™ is a stationary process. We aim to apply Theorem 3 to the

—Dmn —= . . .
sequence of {(Q ’n,QS’n,ﬁD’”,ﬁS’”)} of fluid scaled stationary processes. To this end, we

neN
require the sequence of arrival processes to satisfy the following assumption.

Assumption 9. Suppose that Assumption S holds and for some AP € (0,00)7 and A% € (0,0)K

we have b S
. AT
lim =AP  and lim =9,
n—ao n n— N

where for each n € N, 1/)\?’” denotes the mean interarrival time of Af’n, jeld, and 1//\5’” denotes

the mean interarrival time of AkD’n, ke K.

When Assumption 9 holds, it follows that Assumption 1 and Part 1 of Assumption 5 hold for the
arrival functions A~ and A° such that ZjD(t) = )\]Dt, jeJ, and Zi(t) =\t keK, for all t > 0.

In preparation for proving Theorem 4, we establish a tightness result. Our proofs leverage
results for a many-server queue with reneging in [30], which were also leveraged in [49], to prove
convergence of stationary distributions. The key observation is that the potential queue measure in
[30] does not depend on the service process, and so results on that measure can be carried over to
this paper since the potential queue measures here do not depend on the matching process. As in
Section 4 for each n € N, we will use P and E in place of P7. and K. respectively to simplify the
notation.

Lemma 10. Suppose Assumption 9 holds (which implies that Assumptions 0, 7 and 8 hold). Then,
{(éD’n(oo),és’n(oo),ﬁD’”(oo),ﬁs’”(oo))} N is tight. In addition, as n — o0,
ne

(@ (), 75" (20)) S (0P, n%), (57)
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and, for each j€J and k e K,

)‘jD D, _Sn Af S, *
Jim B[(1,77"(@0)| = 25 = ™) and lim B |7 @)] = 28 = it (58)
J k
Finally, if {n;}ien is a strictly increasing subsequence of N and
(@7 (). @7 (e0). 7 (20), 7 (0)) 5 (@7 (), Q7 (), n”* 0 ), asl—ec,
then D N S,n -5
IE%JE[ (o0 )] ~E[QP(0)] and limE [Q (o0 )] —E [Qk(oo)]. (59)

Proof. The same arguments used to prove the tightness of the scaled potential queue measure
in [30, Theorem 6.2] establish that the families {*]Dn(oo)} N and {*S"(oo)} y are tight since
the potential queue measures are independent of the match?relg policy. The argéﬁment to see that
(57) holds is identical to the argument in the proof of [30, Theorem 3.3, the paragraph surrounding
(6.15)] that shows the measure 7, satisfies (6.15). Then (58) follows from (57), (49), (50) and the
definitions of n?* and n>*

The tightness of {@f”(oo)} , j € J, follows by first observing that (2) implies
neN

B|Q)" )] < B[ (L7 6))]

Dmn

n A
E
B[] <o <

Hence, for each j € J,

by recalling from Assumption 9 that lim, e )\f’n/n = /\jD . Further, by Markov’s inequality, for
each j € J, we find that

—D,
E|Q)" ()] AP
hmIP(Q " (o0 )>c> < lim ——4 < lim <2 —= =0,
c—0 c—>0 C c—>0 mn C

which shows the desired result. The tightness of {@gn(oo)} N k € K, follows by the exact same
ne

argument. Tightness of {(QD’n(oo),Qs’n(oo),ﬁDvn(oo),ﬁsvn(oo))} y how follows. Finally, (59)
ne

follows from the dominated convergence theorem.

In what follows, 2 denotes equality in distribution and < denotes convergence in distribution.
Also, for each n € N, let M™ denote the matching process given by (21) and (22) for the stationary
process Y™ with initial condition Y™ (0) that has stationary initial distribution ¢".

Theorem 4. For each j € J and k € K, assume hf and hg are bounded functions. Suppose that
Assumptions / and 9 hold (which implies that Assumptions 6, 7 and 8 hold) and P-almost surely

lim Mjk = My, for each j€J and k € K, (60)

n—aoo

where for some m € M, M jx(t) = mjgt for allt >0, j€J and k € K. Then, as n — o0,

(@), Q

S, — — d * * * *
" (00), 7" (0), 75" (20) ) 5 (a7 (m), g5 (m), nP* 5" € T,
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Proof We begin by verifying that the conditions in Theorem 3 hold along subsequences of
Q ,an aln psn } such that the sequence of initial conditions is convergent. For this,

neN
recall that Assumption 9 is sufficient to ensure that Assumption 1 and Part 1 of Assumption 5 are

satisfied. In addition, by (60), Part 3 of Assumption 5 holds, which implies that Assumption 2 holds
as well. Also, for each n € N,

Dn Dn

(@""©.@7"0). 7" (0),7%"(0)) £ (@"" (), Q" (e0), 7" (e0), 7" (w0) ) . (61)

Hence, by (61) and Lemma 10, there exists a strictly increasing subsequence {n;};exy € N and
<§D(w)7 QS(OO)a T’D’*, 775’*) € Y such that

(@""(0.@°" (.70, 75"(0) > (@ (). Q") n”*n**),  asiow  (62)

Without loss of generality, we may assume that this convergence is P-almost sure. Then, also by (61)
and Lemma 10, { (QD’M (0), QSM (0), 771 (0), 7™ (0)> }l N satisfies Assumption 3 and (n?*, n°*)
(S

satisfies Part 2 of Assumption 5. In summary, Assumption 5 holds. Thus, when considering that
Assumption 4 holds by the statement of Theorem 4, Theorem 3 implies that

(QDm,QSTLZ —Dnl Snl) (Q Q ), as | — oo,

where the limit point (@D,Qs,ﬁD ,ﬁs> is P-almost surely a fluid model solution for (ZD, ZS)

such that
D —=S d

@0, Q°),7°(0).75(0) £ (Q" (), Q” (). n"*,m**). (63)

Moreover, due to (60), the matching function M satisfies M (t) = mt with m € M for each t > 0,
P-almost surely. Then, by Proposition 3, P-almost surely,

lim (@ (1), Q% (1), 77 (1), 1 (1) = (¢ (m), g% (m), ", "), (64)

However, by stationarity, for each ¢ > 0,

D =S

@1, Q" .71, 7°®) £ (@7 (), @" (), ). (65)

Thus, combining (64) and (65) we see that

(@), @ (), n”*,n™*) £ (a"*(m), " (m),n"", ).

Combining this with (61) and (62), we see that

—Dmn —=S,n —_Dmn _Sn d * * * *
(Q "(0), Q7™ (a0), P (0), 7% l(OO)) 5 (g2 (m), g% (m),nP* %), asl— .

S,n

Since {(@D’n(oo),é (oo),ﬁD’”(oo),ﬁSﬂ(oo)) }nEN is tight, the proof is complete. O
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