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Recent developments in synthetic biology, next-generation sequencing, and machine
learning provide an unprecedented opportunity to rationally design new disease
treatments based on measured responses to gene perturbations and drugs to reprogram
cells. The main challenges to seizing this opportunity are the incomplete knowledge
of the cellular network and the combinatorial explosion of possible interventions,
both of which are insurmountable by experiments. To address these challenges, we
develop a transfer learning approach to control cell behavior that is pre-trained on
transcriptomic data associated with human cell fates, thereby generating a model
of the network dynamics that can be transferred to specific reprogramming goals.
The approach combines transcriptional responses to gene perturbations to minimize
the difference between a given pair of initial and target transcriptional states. We
demonstrate our approach’s versatility by applying it to a microarray dataset comprising
>9,000 microarrays across 54 cell types and 227 unique perturbations, and an
RNASeq dataset consisting of >10,000 sequencing runs across 36 cell types and 138
perturbations. Our approach reproduces known reprogramming protocols with an
AUROC of 0.91 while innovating over existing methods by pre-training an adaptable
model that can be tailored to specific reprogramming transitions. We show that the
number of gene perturbations required to steer from one fate to another increases with
decreasing developmental relatedness and that fewer genes are needed to progress along
developmental paths than to regress. These findings establish a proof-of-concept for
our approach to computationally design control strategies and provide insights into
how gene regulatory networks govern phenotype.

biological networks | data-driven control | nonlinear dynamics | cell reprogramming

The major bottleneck in designing protocols to control cell behavior no longer lies with
the availability of experimental tools to manipulate cellular dynamics, microenvironment,
or genetics, but in the ability to triage the combinatorial explosion of possible
interventions to rationally direct experimental efforts. Advances in synthetic biology
are steadily increasing the breadth and precision of possible intervention tools, whether
they be nanoparticles (1, 2) and minicells (3) for targeted drug delivery, CRISPR, and
its variants for targeted perturbation of the genetic code (4) and cellular dynamics (5, 6),
or immunotherapy-based approaches for cancer treatment (7-9).

The large corpus of potential interventions and combinations thereof make brute-
force trial and error approaches too expensive and time-consuming to be feasible. Unlike
engineered systems in which control theory provides an equation-based framework
to design interventions (10, 11), biological systems are only beginning to attain
genome-scale mathematical descriptions (12), while technical limitations constrain the
number of actuable degrees of freedom (genes) to be much smaller than number of
components to be controlled. These features present a challenge given that underactuated
control is onerous even in physical systems that admit a closed-form mathematical
description (13). As a result, the biological control problem is often relaxed to steering
between natively stable states (14-17), rather than stabilizing natively unstable ones.
Since transcriptomic measurements are the most frequently employed technique for
querying the cell state, the formulation of data-driven control presented here requires
only publicly available data and is robust against the high dimensionality, multi-cell
averaging, and low temporal resolution typical of these data. Our goal is to design a
general data-driven control approach tailored to these aspects of the data. Our approach
contrasts with related control-theoretic formulations in the literature, which cannot
be easily deployed as they usually require targeted experiments to design the con-
troller (18), temporally rich data (19), individually resolved system trajectories (20, 21),
and/or the availability of microscopic agent-based models (22). It also contrasts
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with existing heuristic approaches to manipulate cell behavior,
which can be categorized as network-based or annotation-based.

The network-based approaches require an explicit recon-
struction of network interactions (15-17, 23, 24) and may
additionally rely upon a description of the network dynamics
(25, 26). On the other hand, the annotation-based approaches
focus on whether specific transcription factors are highly ex-
pressed in the target state (27-29), without further considering
network interactions. While each type of approach successfully
addresses the problems for which they were conceived, they
possess specific attributes that preclude their direct application
to the present problem. Network-based approaches may be
structural or dynamical. The structural approaches assume com-
prehensive knowledge of the network structure and are valid
under a restricted set of dynamical relationships, whereas the
dynamical approaches require laborious experimental validation,
so they offer high reliability within a limited scope. In contrast,
the annotation-based approaches downplay the role of gene-gene
interactions and make qualitative predictions.

The control approach introduced here employs transfer
learning on transcriptomic data to retain the strengths of
both the network-based and the annotation-based approaches
while addressing their limitations. Transfer learning entails pre-
training on a broad-based dataset followed by the incorporation
of application-specific data (30). In our case, we use broad-
based gene expression and bulk RNA-seq datasets consisting of
observations across a range of unperturbed cell types to pre-
train a machine learning model that maps transcriptional states
to cell type. Pre-training consists of calculating the gene-gene
correlation matrix, decomposing the matrix into eigengenes—
combinations of genes that vary approximately independently
of one another (31, 32)—and selecting the eigengenes that best
distinguish cell types. The eigengene selection is implemented
by iteratively selecting the eigengene that minimizes the cross-
validation error of a distance weighted k-nearest neighbors
(KNN) model mapping gene expression to cell type, until the
error stops decreasing. The KNN model plays the role of an
objective function in our control approach, and the selected
eigengenes capture the functional network of regulatory interac-
tions between genes without the need to explicitly reconstruct the
underlying network of biochemical interactions. The functional
network of regulatory interactions stabilizes cell types, which can
be identified as attractors of the regulatory dynamics because
cells of a given type exhibit stable phenotypes with distinct
expression profiles (33). Naturally, the empirical evidence for
the existence of attractors does not require the specification of
a dynamical model, which is consistent with our data-driven
approach (11, 34, 35). Because the KNN model maps out regions
of the transcriptional state space associated with each cell type,
it can be interpreted as estimating the regions of this space
in the neighborhood of the corresponding cell type attractors.
These regions can extend beyond the attractors themselves
due to stochasticity while nevertheless remaining in each case
within the attraction basin of the cell type, which is the set of
transcriptional states that would deterministically converge to the
attractor.

Equipped with the pre-trained KNN model, we incorporate
transcriptomic data associated with gene perturbations, which
constitutes our application-specific data. Each gene perturbation
is either a knockdown or an overexpression (typically of a
single gene), and the transcriptomic data include associated
mock-treated experiments serving as negative controls. Fig. 14
illustrates the mock-treated (filled symbols) and perturbed states
(open symbols) for an overexpression (green) and a knockdown
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(blue). Arrows indicate the transcriptional response to the per-
turbation, defined as the mean difference in expression between
the perturbed and mock-treated experiments. To identify which
perturbations can predictively alter the transcriptional state from
one cell type to another, we start from unperturbed states of
an initial cell type and add the corresponding transcriptional
perturbation responses until reaching the basin of attraction of
the target cell type as inferred by the KNN model (Fig. 1B).
In these predictions, the selected eigengenes are the same for
all reprogramming tasks, and the selection of perturbations is
made application-specific by scaling the projections of the initial-
target state distance in the eigengene basis according to the
transcriptional variance of the target cell type.

Results

Data Description. We apply our approach to human cells using
a gene expression microarray dataset (“GeneExp”) and an RNA-
sequencing dataset (“RNASeq”), which are described in Table 1.
Each dataset has a fixed set of measured genes Gp and a fixed set
of selected eigengenes F};, where D labels the dataset. These
datasets are partitioned into unperturbed cell states used for
training the KNN model, perturbed states used for defining the
transcriptional response matrix, and (in the case of the GeneExp
dataset) reprogrammed states used for validating the predictions.
The summary statistics for the partitions include the number of
experiments Np, the number of experimental series Ep, the set
of cell types Cp, and the set of perturbations Pp.

Each partition serves a distinct role in our approach. In both
datasets, the unperturbed partition consists of cells free from
exogenous stimulation, drug treatment, and genetic knockdown
or overexpression. These data are used for training our recently
developed machine learning method, previously used to distin-
guish cell type (36), which selects the optimal set of eigengenes
F}. This method produces a distance-weighted KNN model
that maps the latent space to a vector indicating the probability
of belonging to each of the Cp cell types. Here, cell type refers
to the phenotypic characterization assigned to the cell sample
based on histological and morphological characteristics. Thus,
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Fig. 1. Schematic overview of the data-driven control approach. (4) Con-
struction of the library of transcriptional responses to gene perturbations in
the latent space, which is defined as the subspace of selected eigengenes
J*. The pink and teal arrows indicate the experimentally measured shift
in transcription from a mock-treated state to a perturbed state (filled and
empty drcles, respectively) in different cell types (green and blue colors).
(B) Perturbation optimization algorithm, where the goal is to drive the initial
statex® (orange filled circle, “5" for starting) to the target state x* (open purple
circle, “A” for attractor), which is the average of the individual states of the
target cell type (filled purple drcles). This is achieved by linearly combining
the transcriptional responses to steer the system to a state (open teal circle)
that minimizes the distance to the target. Within the algorithm, perturbation
responses are added incrementally until the state is predicted to crossthecell
type boundary (marked by the patterned surface) as determined by the KNN
model. The order in which the incremental perturbations are selected within
the algorithm does not imply a temporal ordering in the implementation of
the perturbations.
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Table 1. Statistics of the GeneExp and RNASeq datasets
Genes, [Gp|  Eigengenes, |Fj| Category Profiles, Np  Series, Ep  Cell types, |Cp|  Perturbations, |Pp|
Unperturbed 3,103 136 91 0
GeneExp 17,525 4 Perturbed 5,735 356 368 207
Reprogrammed 296 24 13 10
Unperturbed 9,851 1 36 0
RNASeq 17,361 10 Perturbed 1,348 24 20 138

each transcriptomic measurement in this partition is identified
with one cell type, implying that the aspects of the transcriptional
state associated with this phenotype are sufficiently long-lived to
be considered stable over the timescale of the experiment. Our
KNN method can successfully infer cell type without explicitly
reconstructing the regulatory network or the dynamical equations
of the system (SI Appendix, Fig. S1). The ability of the KNN
model to infer the behavior of high-dimensional regulatory
networks using a latent space of much lower dimension without
losing the relevant biological features may be interpreted as a by-
product of the minimal frustration recently recognized in these
networks (37).

The perturbed partition also applies to both datasets and
consists of experimental series, which are sets of experiments
associated with the same series-accession number in the Gene
Expression Omnibus (GEO) database and are usually associated
with a single study or publication. These series have transcrip-
tional measurements of one or more gene knockdowns or over-
expressions in addition to associated mock-treated experiments.
The elements of the set Pp are metadata identifying the gene
and kind of perturbation and are associated with a transcriptional
response to that perturbation. The transcriptional states of genetic
perturbations are regarded as steady states that generally persist
only as long as the perturbation is induced, implying that the cell
type remains unchanged. The final transcriptomic measurements
of these states are usually taken 24 to 96 h after the initiation
of the induction. The transcriptional responses derived from
this partition are central to our data-driven control approach
described in the next subsection.

The reprogrammed partition in the GeneExp dataset consists
of experimental series associated with cell reprogramming
experiments. Since reprogramming is used to refer to several
processes in the literature, we clarify that in the remainder of the
paper, we exclusively use the term reprogramming to refer to
the process of transforming differentiated cells into a pluri-
potent state (i.e., embryonic stem cell-like state capable of
redifferentiating into another cell lineage). When discussing
our results, we use transdifferentiation to refer to changing the
behavior of a differentiated cell without transitioning through
a pluripotent state. Compared to perturbation experiments,
reprogramming experiments involve more extensive passaging
and selection to remove nonresponding cells, and the remaining
cells do not generally return to their original cell type when the
perturbation is removed. The reprogramming experiments in
this partition serve as a validation set for our approach.

Data-Driven Control Approach. We now describe how we lever-
age the partitions of each dataset to arrive at our control
approach. Suppressing the dataset label D, we refer to the
transcriptional state in the full gene expression space and
eigengene space using primed X' = (x]) € RI9! and unprimed
x = (x;) € R¥"l symbols, respectively. Revisiting Fig. 14, each
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arrow corresponds to a column of the transcriptional response
matrix, B = (By,...,Byp|) = (B;) € R¥'IxIPI, represented
in the coordinates F* = {Fy,..., FjF+}. Our approach to
identify perturbations whose transcriptional responses facilitate
the transitions between cell types finds the sum of an initial tran-
scriptional state x° and transcriptional responses (i.e., columns
of B scaled by control inputs u) that is as close as possible to
the target x! (Fig. 1B). The distance-weighted KNN model
K(x) operates on transcriptional states to infer the probability
of cell type membership and assigns a transcriptional state to
the most probable cell type—as indicated by the orange and
purple background. The control inputs u = (1) € RIP! scale
the arrows to indicate the extent to which each perturbation is
applied. Specifically, #; = 0 means that the jth perturbation is
inactive, while #; = 1 means that this perturbation is active as in
the data used to determine B;.

The control problem in Fig. 1B can be framed as an
optimization problem:

u’ = argmin |[K(x* + Bu) — K(x*)||2, [1]

where || - ||2 is the Euclidean distance between the probability
vectors that are output by K. The element #; prescribes the
extent to which the jth perturbation B; is active. We consider
three increasingly restrictive scenarios for the control inputs #;:
—00 < #j < 00, |#| < 1,and 0 < %; < 1. In the first scenario,
the control input can alter the initial state to any point on the line
x/ + B,u;, while in the second and third scenarios, the range of
achievable states is bounded by the magnitude and magnitude and
direction of the measured transcriptional response, respectively.
Moreover, solutions to Eq. 1 that require fewer perturbations
are in principle easier to implement experimentally, suggesting a
constraintg = ||ul|p (g nonzero elements in u). These constraints
make solving Eq. 1 expensive due to calculating numerical
derivatives of K.

To facilitate the identification of experimentally feasible u*,
we approximate Eq. 1 as:

u* = argmin |[x° + Bu — x||. [2]

Egs. 1 and 2 yield the same solution whenever the nearest
neighbor to x5 + Bu* is substantially closer than the kth-nearest
neighbor (Matzerials and Merhods). Note that the approximation
in Eq. 2 has the advantage of transforming a nonlinear and
nonconvex optimization into one that is linear and convex. This is
achieved by approximating the impact of multiple perturbations
as their linear sum and by approximating differences in KNN-
estimated probabilities as differences in transcriptional states.
The former approximation implies that our approach does
not temporally order the constituent perturbations within a
combination. The latter approximation is consistent with the
observed stability of cell type states, which guarantees that small
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perturbations to the observed transcriptional states converge
to the same attractor because otherwise the cell type would
be unstable. Since measurements of a given cell type are in
the neighborhood of the same attractor, the convex hull of
the measurements tends to reside within the cell type basin
of attraction. Eq. 2 can also be expressed as a constrained
mixed-integer quadratic program, enabling us to take advantage
of specialized software. Once u* is obtained, K(x° 4+ Bu*) is
evaluated without approximations to determine whether the
target has been reached.

Comparisonwith Existing Approaches. We benchmark our data-
driven approach against existing approaches to identify candidate
reprogramming perturbations using the D = GeneExp dataset.
Approaches that rely on network structure or dynamics are
not applicable here due to the lack of a method to generate
predicted transcriptional response from a reconstruction of
the gene regulatory network. The remaining annotation-based
approaches select perturbation candidates by compiling lists
of genes that are significantly differentially expressed (DE)
between initial and final states (27-29). These lists are used to
identify statistically enriched annotations (38, 39), from which
differences in pathway regulation and/or transcription factor
binding are inferred. Annotation-based methods have shown
promise in attributing changes to single transcription factors,
but we demonstrate here that they have limited ability to predict
the impact of combinations of factors.

We emulate these methods by assigning RPE = .x}?{ — x}s for
all perturbations that are measured in the gene expression, i.e.,
j € PpNGp. Using d(x°,x*, u; B) to represent the Euclidean

distance on the right-hand side of Eq. 2, we compare uPF with

our method u®PT = argmin 4(x"%, x4, u; B') under the three

constraint scenarios described above. This is done using the
coefficient of determination

R (u;x5x4B) =1 —d(xX5x4u; B)/d(x'Sx10; B), [3]

where R — 1 as ¥ + B'u (the sum of the initial state and
perturbation responses) approaches the target X! and B> < 0
if it is farther away. For each x’ in the unperturbed GeneExp
partition, we obtain the uPF and u®PT using the mean expression
of each cell type (different from that of x°) as x*!. We then
calculate Eq. 3 for each uPE and u®?T and take the median over
all states in each initial cell type. Fig. 2 4 and B, respectively,
present these results as box-and-whisker plots across all target
cell types for uPF and u©PT. Surprised by the poor performance
of the annotation-based methods given their ubiquity in the
literature, we performed the same analysis for a single gene in S/
Appendix, Fig. S2, which shows much better agreement between
these methods and ours. We infer that the annotation-based
method tends to move the state farther away from the target (i.e.,
R? < 0) because they have no way to calibrate the contributions
of each individual perturbation in the sum, since off-target effects
are not quantitatively accounted for. Our optimization-based
approach, on the other hand, explicitly accounts for these effects,
and as a result, it reduces the initial transcriptional difference
by approximately 10% (when constraining 0 < % < 1) to
25% (in the remaining cases). This recovery is 10 to 25 times
larger than the fraction of perturbed genes (|Pp|/|Gp| = 0.01),
which would be the expected recovery for perturbations that are
randomly generated.
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We next investigate whether uPF agrees qualitatively with

u®PT, despite the poor performance of the former. This is
quantified using the sign alignment metric

S R T (%) s (477). 10

PpnGpl = / !

where sgn (x) is 1 if x > 0, —1 ifx < 0, and 0 if x = 0. Eq. 4

OPT i the first two constraint

DE _

is directly applied to uPF and u
scenarios (red and green in Fig. 2), but it is applied to 2u
and 2u9PT — 1inthe0 < u; < 1 scenario (blue in Fig. 2). This
transformation enables all three scenarios to have equal ranges.
Fig. 2C shows that the annotation-based perturbations fail to
agree with the optimization-based ones qualitatively in terms of
the perturbation direction (first two scenarios) or identity (third
scenario). Together, these results show that our approach can
identify candidate perturbation combinations when annotation-
based approaches cannot.

Data-Driven Reproduction of Existing Protocols. We next
validate our approach by confirming that it can reproduce
existing reprogramming protocols. A protocol consists of a set
of perturbations that have been experimentally observed to drive
a differentiated cell type to a pluripotent cell type. For this and
all subsequent analyses, we project the data onto eigengenes and
estimate cell type using the KNN models. Our validation dataset
contains a set of 63 successful reprogramming protocols R and
220 other perturbations (SI Appendix, Fig. S3). We order the
set of all perturbations Q according to the minimum distance
achieved by the optimal single-gene perturbation under the
three constraint scenarios averaged across initial-target pairs. The
initial states x° are drawn from a fixed differentiated cell type and
the x*! are drawn from a fixed pluripotent cell type in given GEO
series belonging to reprogrammed partition of the GeneExp
dataset. Using Q¢ to denote be the first £ elements of the set
of perturbations, the true positive rate is |[R N Q¢|/|R|, and
the false positive rate is |Q¢\R|/| Q¢ U QF¢|, where \ is the set

difference operator and Q? denotes the set complement. Fig. 3
plots the true positive rate as a function of the false positive rate
for £ € {1,...,283} (i.e., the receiver operator characteristic
curves) for each constraint case. As the constraints become more
restrictive, the area under the curve increases. This trend indicates
that the restriction of perturbation strengths to experimentally
realizable values improves the identification of viable reprogram-
ming strategies. Unlike in Fig. 2B, in which the unconstrained
and |#j| < 1 scenarios produced nearly identical results, the
l#jl < 1and 0 < #; < 1 scenarios produce broadly similar
results in Fig. 3. We attribute the difference between the first two
scenarios to our approach’s ability to quantitatively discriminate
between candidate reprogramming perturbations based on the
magnitude of their transcriptional response (i.e., ||B;||2). In other
words, while many single-gene perturbations have the potential
to move the cell state toward the target (pluripotency in this
case), they have more limited impacts on gene expression than
the overexpression of the Yamanka factors (KLF4, POU5F1,
MYC, SOX2) (27). The similarity of predictive performance
between the |#;| < 1 and 0 < #; < 1 scenarios suggests that the
|#j| < 1 case can be useful for hypothesis generation in spite of
the empirical observation that the impact of knocking down a
gene is not an exact additive inverse of overexpressing one (40).
Specifically, genes implicated in the |#j] < 1 case correspond
to portions of the gene regulatory network that may be targeted
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Fig. 2. Comparison of annotation-based methods, which do not account for off-target effects, with our control approach, which does. (4) Box-and-whisker

plots of the coefficient of determination (R2) of the perturbation predicted

using annotation-based methods over all initial cell types for the unconstrained

(red), size-constrained (green), and sign-constrained (blue) constraint scenarios applied to each target cell type. For each method, the left, center, and right of
each box represent the 25th, 50th (median), and 75th percentiles of the distribution, respectively; the whiskers mark the minimum and maximum, excluding
outliers, which are suppressed for clarity. (B) Results corresponding to those in A for our control approach. (C) Coefficient of determination of the sign of the

optimal u; in each method.

by new perturbation experiments to evaluate their utility for
reprogramming.

We also compare our approach against those of an existing
method, Mogrify (29). Unlike our approach, Mogrify does
not take the initial state into account and only provides a
ranked list of transcription factors, with the assumption that

PNAS 2024 Vol.121 No.11 e2312942121

all transcription factors are overexpressed. We calculate all
single-gene perturbations that facilitate reprogramming between
the 214 initial cell types in the GeneExp dataset to the 54
tissues considered by Mogrify. Using the set of 71 overlapping
transcription factors between knockouts in the GeneExp dataset
and those in Mogrify, we compare the set of transcription factors

https://doi.org/10.1073/pnas.2312942121  5of 12
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Fig. 3. Receiver operator characteristic (ROC) curves demonstrating the
ability of our approach to reproduce known reprogramming protocols. The
ROC curves are constructed by comparing single-perturbation strategies
identified by our approach (Q, upper diagonal hatching in the rectangle)
ranked in order oftheir distance to the target(Eq. 2) against 63 experimentally
confirmed reprogramming protocols from the literature (R, lower diagonal
hatching in the circle). The sizes of Q@ and R and their overlap are
characterized by the true positive rate and false positive rate as defined
in the vertical and horizontal axis labels, respectively. The color-coded curves
and backgrounds correspond to the median and interquartile range for the
constraints indicated in the legend, including the median area under the
curve (AUC).

predicted by our approach with those in the top 1% for the
same target cell type in Mogrify. In all cases, we find at least
one overlapping transcription factor between our predictions
and those of Mogrify. However, we additionally identify other
transcription factors in our predictions that reprogram a wider
range of initial states, demonstrating that taking the initial
state into account can generate more state-specific and broadly
effective reprogramming strategies.

Analysis of Predicted Transdifferentiation Transitions. We next
apply our approach to the GeneExp dataset and the RNASeq
dataset and examine the transdifferentiation strategies it generates
in each case. The states x° from initial cell type 5 are drawn from
the unperturbed partition in each dataset, while each x* is the
mean of all states in the partition belonging to a target cell type
a # 5. Constraining 0 < # < 1, we determine the smallest
number of applied perturbations g that reaches the target basin of
attraction for each pair [xs, x/ }. We create a transdifferentiation
transition network from these results, in which the nodes are cell
types and edges indicate the transdifferentiation transitions from
5 to a that are possible with g or fewer genes for more than a
fraction f of the possible states x° in the dataset. Fig. 4 shows
the size of the largest strongly connected component (LSCC)
of each transdifferentiation transition network as a function of
g and f for the (4) RNASeq and (B) GeneExp datasets. For
each value of £, there is a number of applied perturbations g for
which g — g + 1 results in a rapid increase of the LSCC size,
indicating a jump from fragmented subnetworks to a single giant
component. Such a pattern is consistent with the hypothesis that
few genes are necessary to reprogram cells (14) (a similar trend
is observed for small increases in f for fixed g). The LSCC of
the GeneExp dataset, for example, contains all cell types for only
g = 2 and f = 0.5, meaning that it becomes possible to steer
from one cell type to any other with g < 2 genes.

6 of 12 https://doi.org/10.1073/pnas.2312942121

We illustrate the transdifferentiation transition network
obtained at ¢ = 5 and f = 0.5 in Fig. 5 (the circled instance
in Fig. 44), which is on the cusp of being fully connected.
Our approach finds that most transdifferentiation transitions
occur between related cell types, in accordance with observed
developmental patterns. Cardiac, circulatory, fatty, skin, and to
a lesser extent, neurological and digestive tissues illustrate this
pattern. The main exceptions to this are reproductive or secretory
tissues, which do not seem to preferentially transdifferentiate
within their group.

Prominent Genes in Transdifferentiation Transitions. In addi-
tion to examining the pattern of transitions, we statistically test
whether any gene perturbations are associated with reaching
particular cell types. For each pair, we test whether the first-
selected perturbation from a particular initial cell type to a
particular target occurs more frequently than would be expected
by chance. This expectation is set by the average of the observed
frequencies of perturbations from the initial cell type to all other
targets. Perturbations with frequencies exceeding this expectation
are associated with exiting the initial cell type. Conversely,
perturbations with frequencies exceeding the average frequencies
observed for transitions into the target cell type from all initial
cell types are associated with entering the target cell type (details
in Materials and Methods).

We present these perturbations and associated cell types in
SI Appendix, Fig. S4. While few perturbations appear to be
associated with specific cell types, we find that digestive cell
types share the long non-coding RNA (IncRNA) chromatin-
associated transcript 10 (CAT10) (41), SYNCRIP, SULT2B1,
and BEGAIN knockdowns between two digestive cell types.
Furthermore, fatty tissues shared the double knockdown of lysine
methyltransferases MLL1 (KMT2A) and MLL2 (KMT2D) and
arterial tissues shared the IncRNA LINCO00941. The prevalence
of IncRNAs associated with transdifferentiation is consistent
with recent experiments establishing the role of these factors in
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Fig. 4. Possible transdifferentiation transitions as a function of the number
of genes perturbed and the fraction of successful transitions. (4) Largest
strongly connected component sizes of the networks created when including
an edge for each initial-target pair in the RNASeq dataset for which at least
a fraction f of the initial states (vertical axis) are transdifferentiated using
at most g perturbations (horizontal axis). (B) Corresponding results for the
GeneExp dataset. The circled cases are considered further in subsequent
figures.
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Fig. 5. Network of transitions (edges) between cell types (nodes) for the parameters indicated by the circle in Fig. 44. The nodes and outgoing edges are color
coded by tissue type. The node size increases with the total number of edges (i.e., the sum of incoming and outgoing edges).

determining cell fate (42). Interestingly, the knockdown of the
translation initiation factor elF4A1, which has been suggested to
up-regulate expression of oncogenes (43), appears to facilitate the
departure from the lower-leg skin to the suprapubic skin, which
highlights the potential of using gene knockdowns to mitigate
tissues that have accumulated damage.

Fig. 6 diagrams the pattern of transdifferentiation transitions
in the GeneExp dataset, which contains a number of normal and
cancerous tissues. Specifically, we observe that cancerous states
tend to be reachable from normal states by a single gene, but
not vice-versa. Of the 25 normal states, only 5 lie downstream
of a cancerous cell type. In contrast, 12 of 29 cancerous cells are
downstream of normal cells. These results are consistent with the
observation that cancers tend to arise spontaneously but rarely
resolve spontaneously. In SI Appendix, Fig. S5, the equivalent
to SI Appendix, Fig. S4 for the GeneExp dataset, we find that
the Yamanka factors play a central role in transdifferentiating be-
tween cell types. In addition, the prominence of multiple micro-
RNA (MIR31*, MIR34A ™), mechanotransduction (CDHR2™,
TWST1*, VEGFC™), and metabolic (IDH1~, IDH27,
ALDHI1A1~,ALDH3A17) gene perturbations is consistent with
the observed interplay between cancer progression, mechanosen-

sitivity (44), and metabolic reprogramming (45).

PNAS 2024 Vol.121 No.11 e2312942121

Analysis of the Required Number of Gene Perturbations. Hav-
ing analyzed the networks of transdifferentiation transitions
under the most restrictive case, we consider the impact of
increasing ¢ and relaxing constraints on u. Fig. 7 A and B
shows the fraction of transitions possible as a function of g
for the three constraint scenarios. In the RNASeq (GeneExp)
dataset, the fraction of transitions requiring only a single gene
increases 3.5-fold (4.8-fold) when relaxing the sign constraint
and 38-fold (9.6-fold) when relaxing all constraints. The more
dramatic increase in Fig. 74 compared to Fig. 7B may reflect
the greater precision of the RNASeq data, which is also reflected
in the larger |F*|. Fig. 7C shows that the number of genes
needed to transdifferentiate from normal to cancerous states is
larger than for the reverse for the constraints 0 < #; < 1 in
GeneExp dataset, quantifying the pattern illustrated in Fig. 6.
These findings demonstrate that our control approach can not
only predict candidate genes but also offer a framework for
interpreting the relative stability of cell types on the basis of
their gene expression. Indeed, stability can be characterized by
the number genes that need to be perturbed to reach or to leave
a given cell state, forging a connection with studies of cell type
stability in the context of Boolean reconstructions of regulatory

networks (46).

https://doi.org/10.1073/pnas.2312942121
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ALTL: acute lymphoblastic T cell leuk.  LUA:  lung adenocarcin.
AML: acute myeloid leuk. LULC: lung large cell carcin.
BPCML: blast phase chronic myeloid leuk. LUNSC: lung non small cell carcin.
BC: breast carcin. LUSC: lung small cell carcin.
BDC: breast ductal carcin. MM: malignant melanoma
CRC: clear cell renal carcin. OA: ovary adenocarcin.
DLBL: diffuse large B cell lymphoma 0cC: ovary carcin.
EA: endometrium adenocarcin. FDC: pancreas ductal carcin.
GBM: glioblastoma PCM:  plasma cell myeloma
GMA: glioma PRA:  prostate adenocarcin.
HC: hepatocellular carcin. PRC:  prostate carcin.
LIA: large intestine adenocarcin. RC: renal carcin.
LIC: large intestine carcin. STA: stomach adenocarcin.
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AMD:  activated myeloid dendritic cell KID:  kidney
ASC: adipose tissue subcutaneous LIV:  liver tissue
ALM:  alveolar macrophage MCS: mesenchymal stem cell
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c: colon MD:  myeloid dendritic cell
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ES: embryonic stem cell SAE: small airway epithelial cell
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HC: hepatocyte WVE: vein endothelial cell
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Fig. 6. Network of transitions (edges) between cell types (nodes) for the parameters indicated by the circle in Fig. 48. The number of upstream cell types for a
given node increases from left to right, so that nodes with zero incoming edges appear on the left. The node size increases with the number of incoming edges

and the node color encodes normal (teal) and cancerous (orange) cell types.

Discussion

The results show that our control approach offers advantages
over both annotation-based approaches and network-based ap-
proaches because it improves the quantitative predictive power
of the former and reduces the effort required by the latter to
adapt to new systems. In particular, the approach has the ability
to circumvent the problem of combinatorial explosion in the
number of multi-target interventions. This is achieved by using
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the transcriptional difference between states to computationally
triage the combinations of single-target perturbations that are
best suited to achieve a particular biological goal, whether that be
inducing multipotency and pluripotency in differentiated tissues,
driving transitions between differentiated cell types, or mitigating
the progression of cancer.

The approach makes two central assumptions: i) The tran-
scriptional state is the main determinant of cell behavior, and ii)
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Fig. 7. Comparison of transdifferentiation transitions based on the number
of genes required. (A) Color-coded fraction of directed cell type pairs in the
RNASeq dataset that are able to be transdifferentiated as a function of the
number of genes perturbed for all three constraint scenarios. (B) Same as (A4)
but for the GeneExp dataset. (C) Number of genes required for transitions
as a function of the cell type class of the initial state (rows) and target state
(columns) for the size-and-sign constrained case in (B).

the transcriptional responses to perturbations add approximately
linearly to the transcriptional state. An important quality of the
resulting model is that it can be trained on single-perturbation
transcriptional data, which facilitates convergence due to its
abundance and coverage of the space of potential perturbations.
Support for (i) follows from our demonstration that it is
possible to construct an accurate mapping from transcription
to cell behavior (SI Appendix, Fig. S1). Since the approach is
based on genome-wide data, it necessarily relies on destructive
measurements (47). This fact imposes a tradeoft between the
depth and time-resolution of the data required for any machine
learning method and motivates our focus on long-term dynamics.

Concerning assumption (ii), our approach also serves as a
starting point to investigate the role of nonlinearity at the scale
of the whole cell, since it evaluates a linear approximation of
known responses, and thus strong deviations from it would be
evidence that nonlinear mechanisms are at work. Comparison
of our approach with deep learning models based on variational
autoencoders (VAEs) (48, 49) reveals that both offer comparable
estimates of the mean expression of the final transcriptional state
after application of a perturbation (SI Appendix, Table S1). This
similarity in performance is surprising given that VAEs can in
principle learn nonlinear behavior. One interpretation of this
result is that cells are organized into mostly independent modules
whose responses to disparate perturbations are independent and
thus combine mostly linearly as proposed for E. coli (50). Indeed,
the prevalence of pairwise nonlinear interactions as indicated by
statistically significant epistasis is about 7% in E. coli (51) and
4% in S. cerevisiae (52), with most interactions organized by their
genes” functional modules (53). If these trends apply to human

PNAS 2024 Vol.121 No.11 e2312942121

cells, it could explain the limited amount of nonlinearity seen in
previous applications of VAEs (48, 49). Moreover, nonlinearity
is expected to be less pronounced in bulk averages over many
cells than in the phenotype of individual cells.

Bulk transcriptomic data have the advantages that rare tran-
scripts can be detected and that histological and morphological
observations can be used to supervise the learning of cell
type from transcriptional data. While this limits the ability
to detect single-cell heterogeneity (47), we highlight potential
applications of the approach that minimize or account for the
impact of cell heterogeneity. In particular, the approach is
suitable for identifying candidate gene perturbations to substitute
for potentially oncogenic transgenes when creating naive stem
cells (54, 55). It can also be relevant for the management of
diseases in which healthy tissues can be treated with gene and/or
drug perturbations in ex vivo culture before autologous re-
transplantation (7). The interventions designed by the approach
need not be permanent if the target cell state is stable, and
they need not be applied to all cells if the modified cells can
be selected to out-compete unmodified ones (8). Moreover,
the approach can be tailored to precision medicine applications
by incorporating transcriptional data from individual patients’
healthy and diseased tissues to identify treatments that account
for differences between individuals. These examples illustrate the
potential of the approach to computationally screen for effective
regenerative therapies (56).

Finally, we note that the approach can readily incorporate
forthcoming transcriptomic data, be applied to modalities other
than transcriptional, and take advantage of rapidly advancing
innovations in machine learning. The algorithms are designed
to incorporate new transcriptomic data without recalculating the
latent space, which enables them to capitalize on the exponen-
tially increasing abundance of sequencing data (57, 58)—another
advantage over knowledge-based control approaches that require
a specific dynamical model. The versatility of the approach with
respect to data modalities is important because recent research
shows the effectiveness of data on complementary attributes
of cell state, such as chromatin accessibility, in identifying key
transcription factors for reprogramming (59). In particular, the
approach is amenable to the incorporation of deep transfer
learning (60), in which deep neural networks could be used to
transfer knowledge across data modalities. Given its many uses
and possible extensions, our approach has the potential to become
a standard tool to translate bioinformatic data into biomedical
applications.

Materials and Methods

Acquisition of the Training Data. The summary statistics for each dataset
whose acquisition described below are provided in Fig. 1. The RNASeq dataset
consists of i) unperturbed cell type data and ii) gene perturbation data. Part
(i) was obtained from the GTEx consortium https://www.gtexportal.org/home/
(access date: 09/24/2019), while part (i) was curated by searching BioProjects
from the Sequencing Read Archive (SRA) (57) using the search terms "crispri”
and "knockdown" and retaining the top 40 largest projects (in terms of number
of sequencing runs). Specific details regarding each profile in this dataset,
including the accession numbers, are provided in Dataset S1.

We constructed the GeneExp dataset using human gene expression data
from the GEQ repository (58), restricting to the most common platform,
Affymetrix HG-U133+2 microarray (platform accession: GPL570), to facilitate
the comparison of transcriptomic data from different GEQ Series of Experiments
(GSEs). The GeneExp dataset comprises three parts: i) unperturbed cell type
data to train the KNN classifier, ii) gene perturbation data to characterize
the corresponding transcriptional response, and iii) cell reprogramming data

https://doi.org/10.1073/pnas.2312942121

9of 12


https://www.pnas.org/lookup/doi/10.1073/pnas.2312942121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2312942121#supplementary-materials
https://www.gtexportal.org/home/
https://www.pnas.org/lookup/doi/10.1073/pnas.2312942121#supplementary-materials

Downloaded from https://www.pnas.org by "NORTHWESTERN UNIVERSITY, SERIALS DEPARTMENT" on June 19, 2024 from IP address 165.124.167 4.

used to validate our method. We obtained part (i) by searching GEO for the
names of the NCI-60 cell lines and obtaining the relevant data from the GSEs,
while supplementing this with data from the Cancer Cell Line Encyclopedia
(GSE36139)(61)and the Human Body Index (GSE7307) to gain a representation
of normal and cancerous cells. We curated part (ii) by querying GEO for
"overexpression,” "knockdown,” and "RNA-interference” followed by selecting
GSEsthat measured gene perturbations. Finally, part (iii) was found by searching
for "reprogramming,” yielding 52 different protocols to de-differentiate cells
toward a pluripotent state across 18 different GSEs. Specific details relating to
each expression profilein this dataset, including the relevant accession numbers,
are provided in Dataset 52.

Processing of the Expression and Sequencing Data. We perfcrmed batch
correction on the gene expression data using covariates based on experimental
series, cell line, and experimental treatment to remove systematic variation
betweenseries(62), as described in ref. 36. The data and covariates are described
in Dataset 51 for the RNASeq data and Dataset S2 for the gene expression data.
We used a custom Chip Definition File (CDF) that best maps the probes to
the genes (63). For the RNASeq data, we used the Ensembl gene identifiers
(version: GRCh38.p13) for protein-coding genes that overlapped with those in
the GeneExp dataset.

Defining Perturbation Responses. T0 facilitate discussion of the calculation
of the cellular response to perturbations, let Xj; be the data matrix of gene
expression or transcript measurements, where i € {1,..., |G|} is an index
over genes, and j € {1,..., N} is an index over experiments. The dataset
label D is suppressed to simplify notation. Let k be an index over GSEs, let
m be an index over cell types and culture conditions, let p be an index over
perturbation conditions, and let = be the time the sample was collected. Then,
R(k,m,p,r) c {1,..., N}isthe set of columns that shares these experimental
conditions, and we will refer to the submatrix that shares these covariates using
X(k,m,p,r)- The data will be averaged over these experimental covariates in the

following four steps:
1. Average the expression over replicates,
)_((k,m,p,r) = Ex(k,m,p,r) / IR (km,p,r) - (5]
JER (kmp,r)
2. Average over time points,

Kmp) = 2K mp) / )32 (6]

€T (ymp) €Tk mp)

where T(kmp) s the set of time points for the experimental conditions
indicated by (k, m, p).

3. Restricting to genetic perturbations p € P and their controls 0, calculate
differences

B(k,m,p) = (x(k,m,p)) — (x(k,m,(]')" [?]
4. Average over GSEs, cell types, and culture conditions,
By =B(p) = 2 Bmp)%e / > o (8]
qeP qgeP

wheref € {1,. .., |P|}isanindexoverperturbationsand § isthe Kronecker
delta.

Eq. 6 weights later time-points more heavily so as to better estimate the long-
term response to the gene perturbation. The responses By are likelyto be causal,
because they are the outcome of a controlled experiment, rather than merely
correlative.

Approximating K with Transcriptional Distance. Qur goal is to find the
optimal perturbations u that steer from the initial state x° belonging to cell type
s to the target state x* belonging to cell type a, as stated in Eq. 1. We recall
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that K is the KNN mapping from transcriptional states to cell types, and we have
suppressed the dataset labels to simplify notation. Direct solution of Eq. 11is
challenging because K is poorly behaved far from the data used to train it (as
discussed below), making methods based on numerical derivatives too slow to
employ due to the computational expense of evaluating K. Here, we show that
Eq.2isanappropriate approximation of Eq. 1underthe conditionthatdy, > d,
where dj, and dq are the distances to the kth-nearest and nearest neighborin the
training data to a test point, respectively. Let Bg(xA) be a ball of radius £ > 0
centeredatx” and define P(1B¢ (x*)) tobe the probability thatarg max K(3*) =
argmax K(x*) overall ¥ B, (x*). Then, lim,_, o P(B¢ (x")) = 1 because
in this neighborhood, the magnitude of the possible discontinuity in K (caused
by the change in the kth neighbor) is sdﬂ;‘ (‘I +e ZLZ dj_1), which
vanishes in this limit. As a result, both Eqs. 1 and 2 provide the same answer
at infinitesimal distances. To extend this approximation to finite distances, we
note that (i) the method used to select eigengenes ensures that points within
the convex hull of the H = [xA KO = 8ja} belong to target cell type a
with a high probability (36) and (ii) the target states we consider are averages
of all expression profiles of target cell type a, ¥*, which is contained within the
convex hull. Thus, there is a finite distance dy; to the nearest boundary of the
hull for which P(By,, (¥*)) ~ 1.

Calculating Transdifferentiation Transitions. The solution of Eq. 2 is
underdetermined if the number of control inputs |Bp| is less than the number
of features [Fp|. In the underdetermined case, if the control variables are
unconstrained, Eq. 2 is solvable by using the Moore-Penrose pseudoinverse
of B. If |Bpl > |Fpl, we impose that the £3 norm of the solution [[ul; is
minimized to obtain a unique solution. The constrained problems reduce to the
following program

arg min d(xs, xA, u; B),
u [9]

st L=up <1,

where [ = —1 for the size-constrained case and [ = 0 for the size-and-sign-
constrained case, which is solved using IBM ILOG CPLEX(12.10.0.0).

Limiting the Number of Genes Perturbed. Since it is experimentally
infeasible to target more than a few genes simultaneously, we employ a
forward selection approach to construct the perturbations. Let Vi = {{j}, j €
{1,...,|Bpl}} bethe set of all single-gene perturbations. Using ujl to denote
the input that minimizes d for the transcriptional response of column matrix
By,. we compute Eq. 2 by evaluating d(xs, A, uy,; By, ) foreach vy e Vy,
and identify the column for which d is minimized, v;'. We proceed iteratively by
constructing the set of all g-gene perturbations that include the best g-1-gene
perturbation, denoted Vy = {1.r;‘_1 ufjje {‘I,...,|BD|}\v;_1}. We
again evaluate d(x>, x*, u:g; By,) for all elements vy € Vg and identify the
element vy that minimizes d. We note that uy, is now a vector (as indicated by
the bold typeface) of control elements associated with v, which corresponds to
the input values that minimize d. Accordingly, By, is a matrix given by the g
columns of the transcriptional response matrix associated with the elements of
vg. We continue this process, incrementing g until the target cell type is reached,
i.e., arg max K(xs + B"Eu*ﬁ) = arg max K(xA).

Identifying Significant Genes. We identify significantly overrepresented
genes by comparing the frequency of a gene's participation in a specific
transdifferentiation transition with its frequency across all transitions for a given
initial cell type s or target cell type a. For the RNASeq dataset, let N and |C|
be the numbers of states and cell types in the unperturbed partition, consider
set of optimal control inputs u(), where j e {1, .. .,ﬁ(l(?l — 1)}, that are
obtained for all pairs of initial states to all target cell types in this partition. The
functions /(j) and T(j) map the index j to the initial cell type and target cell
type, respectively. Furthermore, the number of solutions u associated with each
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initial cell type is H(S) = Zfz(lfl_nﬁmls, the number associated with each

target cell type is H(2) = Zfz(lfl_ném)ra, and the number associated with
each pair of cell types is H(52) = Z}Elf |_1)5FU),55TU),a'

Then, the average inputs are

! NcCi-1)
ﬁ(S,a) _ M E u(})é;(j)’saru)ra [10]
j=1

for each pair of initial cell types s and target cell types a. The gene most

strongly associated with each transition is v(5) = arg max; Efs'a), where
i e {1,...,|PI}. Defining e(i) = (ex(i)) = (&7 1/ € {1,...,IPI})
to be the unit (i.e., one-hot) vector associated with the ith perturbation,
we determine the genes most strongly associated with each initial cell

type and target cell type as v(5) = D arts e(v(5@))/(1C] — 1) and
v@ = 2 os£a e(v¥2))/(IC| — 1), respectively. From v(5), we determine
the probability that the observed number of occurrences h(2) of each

perturbation within H(2) states among a target cell type a exceeds the
multinomial distribution null hypothesis

H@ Pl €&

Pz = 3 STT(7) ()" o

n
n=h(@ {ng} s#a ¢

where the middle sum is taken over all combinations {ng} such that
2@1 ng = n. Exchanging s <> a in Eq. 11 yields the probability that the
numberof occurrences of a perturbation among aniinitial cell type is explained by
the frequencies among the target cell types. We apply the two-stage Benjamini-
Hochberg multiple hypothesis correction to the P-values obtained from Eq. 11
at an false discovery rate of 1% to obtain the significant genes associated with
transdifferentiation transitions out of and into each cell type that are represented
in SI Appendix, Figs. 54 and S5.

Comparison with Recent VAE Methods. Recent methods use VAEs to recon-
struct the transcriptional states of perturbations applied to cell types when the
post-perturbation transcriptional state is absent from the training data (48, 49).
We compare the performance of these methods in S/ Appendix, Table S1
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using a single-cell RNASeq dataset of interferon-g stimulated and unstimulated
peripheral blood mononuclear cells (64). This dataset was previously used to
demonstrate the efficacy of the VAE approach for the purpose of reconstructing
transcriptional states in ref. 48. We acquired the data and trained the VAE
according to the documentation at https://scgen.readthedocs.io/en/stable/
installation.html. We obtained the R? VAE estimates from the notebook file
"scgen_perturbation_prediction.ipynb,” available at hitps://scgen.readthedocs.
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