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Abstract

This paper is concerned with the inverse medium scattering problem of deter-
mining the location and shape of penetrable scattering objects from measurements
of the scattered field. We study a sampling indicator function for recovering the
scattering object in a fast and robust way. A flexibility of this indicator function is
that it is applicable to data measured in near-field regime or far-field regime. The
implementation of the function is simple and does not involve solving any ill-posed
problems. The resolution analysis and stability estimate of the indicator function
are investigated using the factorization analysis of the far-field operator along with
the Funk-Hecke formula. The performance of the method is verified on both simu-
lated and experimental data.
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1 Introduction

We consider the inverse medium scattering problem for the Helmholtz equation in Rn

(n = 2 or 3). This inverse problem can be considered as a model problem for the inverse
scattering of time-harmonic acoustic waves or time-harmonic TE-polarized electromag-
netic waves from bounded inhomogeneous media. It has been one of the central problems
in inverse scattering theory and has a wide range of applications including nondestructive
testing, radar imaging, medical imaging, and geophysical exploration [8]. Needless to say,
there has been a large body of literature on both theoretical and numerical studies on
this inverse problem, see [6, 8] and references therein.
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In the present paper, we are interested in determining the location and shape of
scattering objects from (near-field or far-field) multi-static data of the scattered field.
Since we study sampling methods to numerically solve this inverse problem, we will mainly
discuss related results in this direction. The Linear Sampling Method (LSM) can be
considered as the first sampling method developed to solve the inverse problem under
consideration [7]. The LSM aims to construct an indicator function for unknown scattering
objects. This indicator function is evaluated on sampling points obtained by discretizing
some domain in which the unknown target is searched for. The evaluation of the indicator
function is typically fast, non-iterative and its construction does not require advanced a
priori information about the unknown target. These are also the main advantages of the
LSM over nonlinear optimization-based methods in solving inverse scattering problems.
Shortly after the finding of the LSM, other sampling type methods for inverse problems
including the point source method [25], the Factorization method (FM) [18], the probe
method [13] were also developed. We refer to [26] for a discussion on sampling and probe
methods studied until 2006. These methods have been later extended to solve various
inverse problems, see [5, 19,26] and references therein.

Our work in this paper is inspired by a class of sampling methods that have been stud-
ied more recently. We are particularly interested in the orthogonality sampling method
(OSM) proposed in [27]. While inheriting the advantages of the classical sampling meth-
ods mentioned above, the OSM is particularly attractive thanks to its simplicity and
efficiency. For instance, the implementation of the OSM only involves an evaluation of
an inner product or some double integral (no need to solve an ill-posed problem). The
method is extremely robust with respect to noise in the data and its stability can be easily
justified. However, the theoretical analysis of the OSM is far less developed compared
with that of the classical sampling methods, especially the FM and LSM. We also refer
to [10,12,14,15,17,22,24] for studies on direct sampling methods (DSM) which are closely
related to the OSM.

Most of the published results on the OSM and DSM deal with the case of far-field data,
see, e.g., [9, 10, 14, 22, 27] for results on the scalar Helmholtz equation and [11, 15, 20, 23]
for results on the Maxwell’s equations. There have been only a few results on the OSM
and DSM concerning the case of near-field data. The near-field OSM studied in [1] is
only applicable to the 2D case with circular measurement boundaries. The 3D case was
studied in [16] under the small volume hypothesis of well-separated inhomogeneities. The
flexibility of the sampling indicator function studied in this paper is that it works for near-
field data (and also far-field data) and is not limited to small scatterers or 2D circular
measurement boundaries. However, the method requires Cauchy data instead of only
scattered field data in the near-field regime.

We analyze the sampling indicator function using the factorization analysis of the far-
field operator and the Funk-Hecke formula. The idea is to relate the indicator function to
‖Fϕz‖2 where F is the far-field operator and ϕz is some special test function. Then the
resolution analysis is investigated using a factorization of F , analytical properties of the
operators in the factorization and the Funk-Hecke formula. To our knowledge, the idea
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of combining the factorization analysis and the Funk-Hecke formula to analyze sampling
indicator functions was initially introduced in [28].

The paper is organized as follows. We will formulate the inverse medium scattering
problem of interest and the factorization analysis in Section 2. The analysis and stability
of the sampling indicator function is presented in Section 3. Section 4 is dedicated to a
numerical study of the sampling method.

2 The inverse medium scattering problem and the

factorization analysis

In this section we formulate the inverse problem of interest and review some necessary
ingredients of the factorization analysis. This factorization analysis was initially studied
for the classical factorization method by Kirsch [18]. We refer to [19] for more results
about the factorization method. Consider a penetrable inhomogeneous medium that
occupies a bounded Lipschitz domain D ⊂ Rn (n = 2 or 3). Assume that this medium
is characterized by the bounded function η(y) and that η = 0 in Rn \ D. Consider the
incident plane wave

uin(x, d) = eikx·d, x ∈ Rn, d ∈ Sn−1 := {x ∈ Rn : |x| = 1},

where k > 0 is the wave number and d is the direction vector of propagation. We consider
the following model problem for the scattering of uin(x, d) by the inhomogeneous medium

∆u+ k2(1 + η(x))u = 0, x ∈ Rn, (1)

u = usc + uin, (2)

lim
r→∞

r
n−1
2

(
∂usc

∂r
− ikusc

)
= 0, r = |x|, (3)

where u(x, d) is the total field, usc(x, d) is the scattered field, and the Sommerfeld radiation
condition (3) holds uniformly for all directions x/|x| ∈ Sn−1. If Rn \ D is connected
and Im (η) ≥ 0, this scattering problem is known to have a unique weak solution usc ∈
H1

loc(Rn), see [8].
Inverse problem. Consider a Lipschitz domain Ω ⊂ Rn such that D ⊂ Ω and denote

by ν(x) the outward normal unit vector to ∂Ω at x. We aim to determine D from usc(x, d)
and ∂usc(x, d)/ν(x) for almost all (x, d) ∈ ∂Ω× Sn−1.

We denote by Φ(x, y) the free-space Green’s function of the scattering problem (1)–(3).
It is well known that

Φ(x, y) =

{
i
4
H

(1)
0 (k|x− y|), in R2,

eik|x−y|

4π|x−y| , in R3.
(4)
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It is also well known that problem (1)–(3) is equivalent to the Lippmann-Schwinger inte-
gral equation

usc(x) = k2

∫
D

Φ(x, y)η(y)u(y)dy, (5)

and that the scattered field has the asymptotic behavior

usc(x, d) =
eik|x|

|x|(n−1)/2

(
u∞(x̂, d) +O

(
1

|x|

))
, |x| → ∞,

for all (x̂, d) ∈ Sn−1×Sn−1. The function u∞(x̂, d) is called the scattering amplitude or the
far-field pattern of the scattered field usc. Let F : L2(Sn−1) → L2(Sn−1) be the far-field
operator defined by

Fg(x̂) =

∫
Sn−1

u∞(x̂, d)g(d)ds(d).

Thanks to the well-posedness of the scattering problem (1)–(3) we can define the solution
operator G : L2(D)→ L2(Sn−1) as

Gf = w∞, (6)

where w∞ is the scattering amplitude of the unique solution w to

∆w + k2(1 + η)w = −k2ηf, in Rn, (7)

lim
r→∞

r
n−1
2

(
∂w

∂r
− ikw

)
= 0, r = |x|. (8)

Note that this problem is just problem (1)–(3) rewritten for the scattered field with
incident field uin replaced by f . By linearity of problem (1)–(3), Fg is just the scattering
amplitude of solution w to problem (7)–(8) with f = vg, defined by

vg(x) =

∫
Sn−1

eikx·dg(d)ds(d), g ∈ L2(Sn−1), x ∈ Rn.

Now we define the compact operatorH : L2(Sn−1)→ L2(D) asHg = vg|D. Then obviously
the far-field operator can be factorized as

F = GH.

Let H∗ : L2(Sn−1)→ L2(Sn−1) be the adjoint of H given by

H∗g(x̂) =

∫
Sn−1

e−ikx̂·yg(y)ds(y),

and we define T : L2(D)→ L2(D) as

Tf = k2η(f + w), (9)
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where w solves problem (7)–(8). Since w solves the Lippmann-Schwinger equation w(x) =
k2
∫
D

Φ(x, y)η(y)(w(y) + f(y))dy, we can deduce from scattering amplitude of w that
(see [4])

G = H∗T, F = H∗TH.

To proceed further with the analysis of the Factorization method we need to briefly discuss
the interior transmission eigenvalues. We call k > 0 an interior transmission eigenvalue if
the problem

∆u+ k2(1 + η)u = 0, in D

∆v + k2v = 0, in D

u = v,
∂u

∂ν
=
∂v

∂ν
, on ∂D

has a nontrivial solution (u, v) ∈ L2(D)× L2(D) such that u− v ∈ H2(D).
We refer to [4] and the references therein for more details about transmission eigen-

values. For the next results, we assume that k is not an interior transmission eigenvalue.
The following assumption is also important for the factorization analysis.

Assumption 1. We assume that η ∈ L∞(Rn), Im (η) ≥ 0 and that there exists a constant
c > 0 such that Re (η) + Im (η) ≥ c almost everywhere in D.

The following theorem of the factorization analysis is important to the sampling
method studied in the next section, see [2] for a proof of the theorem.

Theorem 2. If Assumption 1 holds true, then operator T defined in (9) satisfies the
coercivity property. That means there exists a constant γ > 0 such that

|〈Tf, f〉| ≥ γ‖f‖2, for all f ∈ Range(H).

3 A sampling indicator function

In this section we introduce the sampling indicator function and analyze its properties.
We define the indicator function I(z) as

I(z) :=

∫
Sn−1

∣∣∣∣∫
Sn−1

∫
∂Ω

usc(y, d)
∂Φ∞(x̂, y)

∂ν(y)
− ∂usc(y, d)

∂ν(y)
Φ∞(x̂, y)ds(y)ϕz(d)ds(d)

∣∣∣∣2 ds(x̂)

(10)
where ϕz is given by

ϕz(d) = e−ikd·z, d ∈ Sn−1, z ∈ Rn, (11)

and Φ∞(x̂, y) is the scattering amplitude of the Green’s function Φ(x, y), given by

Φ∞(x̂, y) =

{
eiπ/4√

8πk
e−ikx̂·y, in R2,

1
4π
e−ikx̂·y, in R3.
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Recall that J0 and j0 are respectively a Bessel function and a spherical Bessel function of
the first kind. The behavior of I(z) is analyzed in the following theorem.

Theorem 3. Assume that k is not an interior transmission eigenvalue and that Assump-
tion 1 holds true. Then the indicator function I(z) satisfies

0 <
γ2

|Sn−1|

(∫
D

|αz(x)|2dx

)2

≤ I(z) ≤ ‖G‖2

∫
D

|αz(x)|2dx, z ∈ Rn, (12)

where γ is the positive constant in the coercivity of operator T in Theorem 2, G is the
solution operator defined in (6), and

αz(x) =

{
2πJ0(k|z − x|), in R2,

4πj0(k|z − x|), in R3.

Furthermore

I(z) = O

(
1

dist(z,D)n−1

)
as dist(z,D)→∞, (13)

where dist(z,D) is the distance from z to D.

Remark 4. From the behavior of the Bessel functions J0 and j0 we know that |αz(x)|2
peaks as sampling point z approaches point x in the scatterer D and that |αz(x)|2 decays as
z is away from x with the decay rate (13). We thus expect from the upper bound in (12)
that I(z) takes small values as z is outside D. From the lower bound in (12), I(z) is
bounded by a positive constant as z is inside D. This is not a rigorous justification for
the behavior of I(z). Such a justification is still an open problem.

Proof. From the Helmholtz integral representation for usc (see [8]) we have

usc(x, d) =

∫
∂Ω

usc(y, d)
∂Φ(x, y)

∂ν(y)
− ∂usc(y, d)

∂ν(y)
Φ(x, y)ds(y).

This deduces that

u∞(x̂, d) =

∫
∂Ω

usc(y, d)
∂Φ∞(x̂, y)

∂ν(y)
− ∂usc(y, d)

∂ν(y)
Φ∞(x̂, y)ds(y).

Then substituting this formula of u∞ in the far-field operator F implies that

Fϕz(x̂) =

∫
Sn−1

∫
∂Ω

usc(y, d)
∂Φ∞(x̂, y)

∂ν(y)
− ∂usc(y, d)

∂ν(y)
Φ∞(x̂, y)ds(y)ϕz(d)ds(d).

Therefore we derive from the definition of I(z) that

I(z) =

∫
Sn−1

|Fϕz(x̂)|2ds(x̂) = ‖Fϕz‖2.
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Since ‖ϕz‖2 =
∫
Sn−1 |e−ikz·d|2ds(d) = |Sn−1| (the surface area of Sn−1), using the Cauchy-

Schwarz inequality and the factorization of the far-field operator F we obtain√
|Sn−1|‖Fϕz‖ ≥ 〈Fϕz, ϕz〉 = 〈H∗THϕz, ϕz〉 = 〈THϕz, Hϕz〉.

Using the coercivity of T in Theorem 2 and ‖Fϕz‖ ≤ ‖G‖‖Hϕz‖ implies that

γ2

|Sn−1|
‖Hϕz‖4 ≤ I(z) ≤ ‖G‖2‖Hϕz‖2,

where γ is the constant from the coercivity of T in Theorem 2.
Now using the Funk-Hecke formula (see [8]) we obtain

Hϕz(x) =

∫
Sn−1

e−ik(z−x)·dds(d) =

{
2πJ0(k|z − x|), in R2,

4πj0(k|z − x|), in R3,
(14)

which allows us to establish the estimate in (12). The strict positivity of the lower bound
in the estimate can be deduced from the fact that the operator H is an injective operator,
see [2]. Finally, using the asymptotic behavior of J0(r) = O(1/

√
r) and j0(r) = O(1/r)

as r →∞ we obtain that

‖Hϕz‖2 = O

(
1

dist(z,D)n−1

)
, as dist(z,D)→∞.

This completes the proof.

In practice the data are always perturbed with some noise. We assume the noisy data
uδsc and ∂uδsc/∂ν satisfy

‖usc − uδsc‖L2(∂Ω×Sn−1) ≤ δ1‖usc‖L2(∂Ω×Sn−1), (15)∥∥∥∥∂usc

∂ν
− ∂uδsc

∂ν

∥∥∥∥
L2(∂Ω×Sn−1)

≤ δ2

∥∥∥∥∂usc

∂ν

∥∥∥∥
L2(∂Ω×Sn−1)

, (16)

for some positive constants δ1, δ2. We now prove a stability estimate for the indicator
function I(z).

Theorem 5. Denote by Iδ(z) the indicator function corresponding to noisy data uδsc and
∂uδsc/∂ν. Then

|I(z)− Iδ(z)| ≤ C
(
2 max(δ1, δ2) + max(δ2

1, δ
2
2)
)
, for all z ∈ R3,

where

C = |Sn−1|2
(
‖Φ∞‖2

L2(Sn−1×∂Ω) +

∥∥∥∥∂Φ∞

∂ν

∥∥∥∥2

L2(Sn−1×∂Ω)

)(
‖usc‖2

L2(∂Ω×Sn−1) +

∥∥∥∥∂usc

∂ν

∥∥∥∥2

L2(∂Ω×Sn−1)

)
.

7



Proof. Let u∞,δ(x̂, d) and F δ be the scattering amplitude and the far-field operator for
noisy Cauchy data. That means

u∞,δ(x̂, d) =

∫
∂Ω

uδsc(y, d)
∂Φ∞(x̂, y)

∂ν(y)
− ∂uδsc(y, d)

∂ν(y)
Φ∞(x̂, y)ds(y) (17)

F δϕz(x̂) =

∫
Sn−1

u∞,δ(x̂, d)ϕz(d)ds(d). (18)

Using the Cauchy-Schwarz inequality we have

|u∞(x̂, d)− u∞,δ(x̂, d)| ≤ ‖(usc − uδsc)(·, d)‖
∥∥∥∥∂Φ∞(x̂, ·)

∂ν(·)

∥∥∥∥+

∥∥∥∥∂(usc − uδsc)(·, d)

∂ν(·)

∥∥∥∥ ‖Φ∞(x̂, ·)‖,

and hence

|u∞(x̂, d)− u∞,δ(x̂, d)|2

≤

(
‖(usc − uδsc)(·, d)‖2 +

∥∥∥∥∂(usc − uδsc)(·, d)

∂ν(·)

∥∥∥∥2
)(
‖Φ∞(x̂, ·)‖2 +

∥∥∥∥∂Φ∞(x̂, ·)
∂ν(·)

∥∥∥∥2
)
.

Let C = ‖Φ∞‖2
L2(Sn−1×∂Ω) + ‖∂Φ∞/∂ν‖2

L2(Sn−1×∂Ω). This leads to

‖u∞ − u∞,δ‖2
L2(Sn−1×Sn−1) ≤ C

(
‖(usc − uδsc)‖2

L2(∂Ω×Sn−1) +

∥∥∥∥∂(usc − uδsc)
∂ν

∥∥∥∥2

L2(∂Ω×Sn−1)

)

≤ C

(
δ2

1‖usc‖2
L2(∂Ω×Sn−1) + δ2

2

∥∥∥∥∂usc

∂ν

∥∥∥∥2

L2(∂Ω×Sn−1)

)
,

which implies that

‖Fϕz − F δϕz‖2 ≤ C|Sn−1|2 max(δ2
1, δ

2
2)

(
‖usc‖2

L2(∂Ω×Sn−1) +

∥∥∥∥∂usc

∂ν

∥∥∥∥2

L2(∂Ω×Sn−1)

)
.

Similarly we also have

‖Fϕz‖2 ≤ C|Sn−1|2
(
‖usc‖2

L2(∂Ω×Sn−1) +

∥∥∥∥∂usc

∂ν

∥∥∥∥2

L2(∂Ω×Sn−1)

)
.

Using I(z) = ‖Fϕz‖2 and the triangle inequality we have

|I(z)− Iδ(z)| = |‖Fϕz‖2 − ‖F δϕz‖2| ≤ ‖Fϕz − F δϕz‖
(
‖Fϕz‖+ ‖F δϕz‖

)
≤ 2‖Fϕz‖‖Fϕz − F δϕz‖+ ‖Fϕz − F δϕz‖2

≤ C|Sn−1|2
(
‖usc‖2

L2(∂Ω×Sn−1) +

∥∥∥∥∂usc

∂ν

∥∥∥∥2

L2(∂Ω×Sn−1)

)(
2
√

max(δ2
1, δ

2
2) + max(δ2

1, δ
2
2)

)
.

This proves the theorem.
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Remark 6. We note that if the far-field measurements are taken on the boundary of the
ball of large radius R, by the radiation condition we can approximate ∂usc/∂ν by ikusc in
I(z). Then the modified indicator function

Ifar(z) :=

∫
Sn−1

∣∣∣∣∫
Sn−1

∫
∂Ω

usc(y, d)
∂Φ∞(x̂, y)

∂ν(y)
− ikusc(y, d)Φ∞(x̂, y)ds(y)ϕz(d)ds(d)

∣∣∣∣2 ds(x̂)

(19)
only needs the scattered field data usc(x, d) and approximates the indicator function I(z).

4 Numerical study

In this section we study the numerical performance of the sampling method for both
simulated and experimental data in two dimensions. More precisely, for simulated data,
we will examine the performance of the method for data with different wave numbers
(Figure 1), highly noisy data (Figure 2), far-field data (Figure 3), limited aperture data
(Figure 4), and inhomogeneous scatterers (Figure 5). Reconstruction results using the
indicator function Ifar(z) are also presented in the case of far-field data. For experimental
data, we apply the indicator function Ifar(z) to three data sets of dielectric and metallic
objects from the Fresnel Institute (Figure 6). For the pictures in this section, the indicator
functions are scaled by dividing by their maximal values.

The following common parameters and notations are used in the numerical examples
of simulated data

Sampling domain = (−2, 2)× (−2, 2),

Number of sampling points = 962,

∂Ω = {(x1, x2)> ∈ R2 : x2
1 + x2

2 = R2},
Near-field data: R = 3,

Far-field data: R = 100,

Number of data points on ∂Ω: Nx,

Number of incident plane waves: Nd.

The following scattering objects are considered in the numerical examples.
a) Kite-shaped object

∂D = {x ∈ R2 : x = ((cos(t) + 0.65 cos(2t)− 0.65)/2, 1.5 sin(t)/2.5)>, 0 ≤ t ≤ 2π},
η(x) = 0.5 + 0.1i in D.

b) Disk-and-rectangle object

disk = {(x1, x2)> ∈ R2 : (x1 + 0.6)2 + (x2 − 0.6)2 < 0.42},
rectangle = {(x1, x2)> ∈ R2 : |x1 − 0.6| < 0.45, |x2 + 0.6| < 0.25},

D = disk ∪ rectangle,

η(x) = 0.5 in D.
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c) Square-shaped object with cavity

cavity = {(x1, x2)> ∈ R2 : x2
1 + x2

2 < 0.32},
square = {(x1, x2)> ∈ R2 : |x1| < 0.5, |x2| < 0.5},

D = square \ cavity,

η(x) = 1 in D.

To generate the scattering data for the numerical examples, we solve the Lippmann-
Schwinger equation (5) using a spectral Galerkin method developed in [21]. Using Nd

incident plane waves and measuring the data at Nx points on ∂Ω, the Cauchy data
usc(x, d), ∂usc/∂ν(x, d), where (x, d) ∈ ∂Ω× S, are then Nd ×Nx matrices. The artificial
noise is added to the data as follows. Two complex-valued noise matrices N1,2 containing
random numbers that are uniformly distributed in the complex square

{a+ ib : |a| ≤ 1, |b| ≤ 1} ⊂ C

are added to the data matrices. For simplicity we consider the same noise level δ for both
usc and ∂usc/∂ν. The noisy data uδsc and ∂uδsc/∂ν are given by

uδsc := usc + δ
N1

‖N1‖F
‖usc‖F ,

∂uδsc
∂ν

:=
∂usc

∂ν
+ δ

N2

‖N2‖F

∥∥∥∥∂usc

∂ν

∥∥∥∥
F

,

where ‖ · ‖F is the Frobenius matrix norm.

4.1 Reconstruction with different wave numbers (Figure 1)

We present in Figure 2 reconstruction results for the wave numbers k = 4 (wavelength ≈
1.57) and k = 8 (wavelength ≈ 0.78). The data are near-field Cauchy data with 30% noise.
We use Nx×Nd = 64×64 for the kite-shaped object and disk-and-rectangle object, while
the square-shaped object with cavity is examined with Nx×Nd = 96× 96. It can be seen
from the Figure 1 that the reconstruction results are improved with a larger value of k.
We also see that the two imaging functionals can image very well the square-shaped object
with cavity. It is interesting that this object violates the assumption that Rn \ D must
be connected when studying the well-posedness of the direct scattering problem (1)–(3).

4.2 Reconstruction with highly noisy data (Figure 2)

We present in Figure 2 reconstruction results for near-field Cauchy data perturbed by
60% and 90% noise. The wave number k = 8 and again we use Nx × Nd = 64 × 64 for
the kite-shaped object and disk-and-rectangle object, and Nx × Nd = 96 × 96 for the
square-shaped object with cavity. Although we can notice some deterioration in the case
of 90% noise, the reconstructions are still pretty reasonable. These results show that the
sampling method is extremely robust with respect to noise in the data. We have also
observed this robustness in the orthogonality sampling method for Maxwell’s equations,
see [11].
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(a) True geometry (b) k = 4 (c) k = 8

(d) True geometry (e) k = 4 (f) k = 8

(g) True geometry (h) k = 4 (i) k = 8

Figure 1: Reconstruction with near-field Cauchy data for different wave numbers. There
is 30% noise added to the data (δ = 0.3). First column (a, d, g): true geometry. Second
column (b, e, h): reconstruction with k = 4. Third column (c, f, i): reconstruction with
k = 8.

4.3 Reconstruction with far-field data (Figure 3)

The focus of this example is to examine the performance of the sampling methods asso-
ciated with I(z) and Ifar(z), defined by (19), in the case of far-field data with 30% noise.
We recall that Ifar(z) uses only usc instead of the Cauchy data. Again we consider k = 8
and the size Nx ×Nd of the data matrices are the same as in the previous examples. As
mentioned at the beginning of this section the far-field data are measured on ∂Ω that is
the circle of radius R = 100 (about 125 wavelengths away from the scattering objects).
We can see in Figure 3 that the reconstruction results with far-field data are as good

11



(a) True geometry (b) 60% noise (c) 90% noise

(d) True geometry (e) 60% noise (f) 90% noise

(g) True geometry (h) 60% noise (i) 90% noise

Figure 2: Reconstruction with highly noisy near-field data. Wave number k = 8. First
column (a, d, g): true geometry. Second column (b, e, h): reconstruction with 60% noise.
Third column (c, f, i): reconstruction with 90% noise.

as those with the near-field data. The two imaging functionals I(z) and Ifar(z) provide
similar results as expected.

4.4 Reconstruction with limited aperture data (Figure 4)

In this example we consider near-field data for a half-circle aperture (30% noise). More
precisely, the incident point sources are located on the upper half the measurement circle
∂Ω, and the Cauchy data are given on the bottom half of ∂Ω. Moreover, the number of
data points Nx and incident plane waves Nd are also half of those of the full data case,
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(a) True geometry (b) I(z) (c) Ifar(z)

(d) True geometry (e) I(z) (f) Ifar(z)

(g) True geometry (h) I(z) (i) Ifar(z)

Figure 3: Reconstruction with far-field data. There is 30% noise added to the data, k = 8.
First column (a, d, g): true geometry. Second column (b, e, h): reconstruction using I(z).
Third column (c, f, i): reconstruction using Ifar(z).

that means Nx ×Nd = 32× 32 for the kite-shaped object and disk-and-rectangle object,
and Nx ×Nd = 48× 48 for the square-shaped object with cavity. As it can be seen from
Figure 4, the reconstruction results for the the first two objects are still pretty reasonable.
However, the shape of the reconstructed square-shaped object with cavity is no longer
accurate. This object is certainly more difficult to image compared with the first two
objects.
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(a) True geometry (b) True geometry (c) True geometry

(d) (e) (f)

Figure 4: Reconstruction with partial limited aperture near-field data. There is 30% noise
added to the data and k = 8.

4.5 Reconstruction of inhomogeneous scatterers (Figure 5)

We consider the kite-shaped object and the disk-and-rectangle object in which the contrast
function η is a piece-wise constant function as in Figures 5(a)-(b). For these inhomoge-
neous scatterers we consider near-field data with 30% noise, Nx × Nd = 64 × 64, and
k = 8. The sampling method is able to provide reasonable reconstructions of the shape of
these inhomogeneous scatterers. Furthermore, we can see that it seems to be able to re-
construct the discontinuities of the contrast function η although the theory we established
in Section 3 does not reflect this feature of the method.

4.6 Reconstruction with experimental data (Figure 6)

In this section we verify the performance of the indicator function with experimental data
provided by Institut Fresnel (France). We used the data sets of homogeneous objects.
Three data sets were investigated: the first one named dielTM dec4f.exp is associated
with a dielectric target that is a de-centered circular cross section of radius 15 mm,
and the second one is rectTM cent.exp concerning a centered rectangular cross section
(dielectric material) of dimensions 25.4×12.7 mm2. The last one named uTM shaped.exp
is associated with a metallic U-shaped object of size 50 × 80 mm2. A detailed description
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(a) True geometry (b) True geometry

(c) (d)

Figure 5: Reconstruction of inhomogeneous scatterers from near-field data. There is 30%
noise added to the data and k = 8.

of the experimental setup can be found in [3].
We rescaled 40 mm to be 1 unit of length in our MATLAB simulations. Measurement

distance from the origin is about 0.76 m which is close to 19 in our simulation. The data
are clearly measured in a far-field regime. The data matrix size is 72 (receivers) × 36
(incident sources), where 72 receivers are distributed at the angular range from 60◦ to
300◦ in steps of 5◦ and the rotation of the target for the source is from 0◦ to 350◦ in
steps of 10◦. For the convenience of the readers we create the geometry of these targets
in Figures 6(a, b, c) so that we can compare with the reconstruction results.

We consider the wave frequency 8 GHz for the data sets (wave number k is about 6.7
which means the wavelength is about 0.93). Since we only have the scattered wave data on
a circle in a far field regime, we use Ifar(z) to reconstruct the targets. We compute Ifar(z)
at 64 × 64 sampling points in the search domain (−2.5, 2.5)2. There is no need for any
regularization or any further processing for the experimental data. In Figures 6 we can

15



see that the indicator function Ifar(z) is able to reconstruct the targets with reasonable
accuracy.

(a) True geometry (b) True geometry (c) True geometry

(d) (e) (f)

Figure 6: Reconstruction with experimental data from the Fresnel Institute using Ifar(z).
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