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of the Landau equation, we regularize the collision operator to make sense of the particle
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important properties of the Landau operator, namely the conservation of mass, momentum
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Deterministic particle methods interaction. The comparison to the exact solution and the spectral method is strikingly
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method when coupled with the classical PIC method for the Vlasov equation.
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1. Introduction

The Landau equation is one of the fundamental kinetic equations describing the evolution of the distribution of charged
particles in a collisional plasma [41] where grazing collisions are predominant [20,54]. It is considered one of the most
important equations in kinetic theory together with the Boltzmann equation, and it is of renewed interest in computational
plasma physics due to the important applications related to fusion reactors and the ITER project. The Landau equation
governs the evolution of the charged particles mass distribution function f(t,x, v) in phase space (x,v) € 2 x R? and is
given by

f+v-Vif+E-Vif=0Q(f, f):==Vy- /A(V —v) (FVIVy f(v) = W)V, f(vi))dva t (11)
R4

where E is the acceleration due to external or self-consistent forces, the collision kernel takes the form A(z) =
|z|” (121?14 — z® z) = |z|Y T2T1(z) with I4 being the identity matrix, I1(z) the projection matrix into {z}*, —d —1<y <1,
and d > 2. The most interesting case corresponds to d =3 with y = —3 associated with the physical interaction in plasmas.
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This case is usually called the Coulomb case not because of the analogy of the singularity of the matrix ||A(2)| ~ |z|~! at
zero but because it can be derived from the Boltzmann equation in the grazing collision limit when particles interact via
Coulomb forces [20]. The case y =0 is usually referred to as the Maxwellian case since the equation is reduced to a sort of
degenerate linear Fokker-Planck equation preserving the same moments as the Landau equation [55].

This paper considers the numerical approximation of the Landau equation where the main focus is on the collision
operator. Hence, for the rest of the paper, we shall consider exclusively the spatially homogeneous Landau equation

of=9f, ). (1.2)

The main formal properties of Q rely on the following reformulation

Qf. fH=Vv- / AW —v.) ffi(Vvlog f — Vy, log fi) dvs ¢ (13)
Rd
where f = f(v), f« = f(v,) are used; and its weak form acting on appropriate test functions ¢ = ¢ (v)

/ o(f. fipdv =1 // (Vod = Vo) - AV — v) (Vy log f — Yy, log ) ff, dvdv,. (14)
]Rd RZd

Then choosing ¢ (v) =1, v, |v|?, one achieves conservation of mass, momentum and energy. Inserting ¢ (v) = log f(v), one
obtains the formal entropy decay with dissipation given by

% /flogfdv =-D(f(, )= —% //Bv,v* “A(v —Vy)By v, ffidvdv, <0, (15)
Rd R2d

since A is symmetric and semipositive definite, with By ,, := V, log f — V,_ log f.. The equilibrium distribution is given by
the Maxwellian

Mo P v —ul
Pl = o yd2 P A

for some constants p, T determining the density and the temperature of the particle ensemble, and mean velocity vector u.
We refer to [54,34] for its proof that we will recall in a regularized setting in Section 2.

Besides the applications to physics, the Landau equation presents interesting mathematical challenges. The correspond-
ing homogeneous equation arising from so-called hard potential cases (y > 0) is by now very well understood in terms of
existence, uniqueness, smoothing, decay, and moment/L? propagation owing primarily to the work of Desvillettes and Vil-
lani [27,28] and the references therein. One of the key ingredients is taking advantage of the finite entropy dissipation (1.5)
which gives rise to the robust notion of ‘H-solution’ as introduced by Villani [54]. Less can be said at the moment about
the soft potentials (y < 0). The first major breakthrough in this direction was a global existence and uniqueness result
by Guo [36]. Of course, the result by Guo relied on many assumptions such as closeness to a Maxwellian for the initial
data, high regularity, and small entropy. However, it remains difficult to weaken these assumptions while maintaining local
existence or uniqueness. In the soft potential setting, there is even a dichotomy between the moderately soft potentials
(=2 <y < 0) and the extremely soft potentials (y < —2). For example, Fournier and Guérin were able to prove unique-
ness of weak solutions using probabilistic techniques, yet additional initial moment and LP assumptions are needed as y
becomes more negative with the result becoming only locally guaranteed when y is sufficiently negative [31]. Inciden-
tally, while their approach involved heavy probability machinery, they proved uniqueness through estimates involving the
2-Wasserstein distance, the fundamental quantity in the theory of gradient flows which is the perspective we adopt. An in-
complete selection of contributions in the soft potential case that illustrate these difficulties is [25,26,1,10,9,56,34,35,32,49].
A cursory glance at some of these references highlights the variety of techniques needed to tackle the difficulties with
soft potentials. Gualdani and her colleagues favor the degenerate parabolic perspective when viewing the Landau equation
with radial symmetry [33,35]. The main issues of this approach are the quadratic non-linearity coming from the quadratic
collision operator as well as the degeneracy of the diffusion matrix which depends on the solution. In [25,26], Desvillettes
obtains weighted Fisher information estimates depending on the dissipation (1.5). More precisely, Desvillettes proved the
estimate

/(1 + P EIVYFRdy <€A+ DU ).
Rd

where C is a constant depending on the initial entropy, energy, and mass of f. For the soft potential case, y < 0, this
estimate suggests the unavailability of an unweighted Fisher information bound. This hampers the standard methods pass-
ing through the Csiszar-Kullback and logarithmic Sobolev inequalities to obtain rates of convergence to the Maxwellian
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equilibrium [50,51]. Exponential convergence in the hard potential case is known [8] however, it seems that the analogous
statement in the soft potential case currently holds only for the linearized collision operator [34,11,12].

We now turn to a new interpretation of the homogeneous Landau equation as a formal gradient flow on the set of
probability measures. Following recent works in nonlinear Fokker-Planck equations [15,2,14] and the Boltzmann equation
[29], we rewrite the homogeneous Landau equation as a nonlinear continuity equation where the velocity field is deter-
mined by the variational derivative of the entropy functional. More precisely, denoting by E(f) = fRd flog f dv the entropy
functional, we can rewrite (1.3) as the nonlinear continuity equation

oE SE
Qf, fH=Vy- /A(V_V*) (Vvﬁ_vv*m> fdve | ft,
d

and (1.4) as

E E.
[au podv==-3} [[ o~V a0 - v (vg—f —V.. %) ffodvdv,.
R4 R2d *

Here % =log f is the variational derivative, modulo constants, of the entropy functional in the set of nonnegative densities
with a fixed mass. Therefore, one can write a formal gradient flow structure relative to a distance defined by a different
action functional to the Boltzmann equation [29]. The theoretical approach using this action functional will be pursued
elsewhere. For our purposes, the crucial point is to realize that the homogeneous Landau equation can now be formally
regularized without changing its main conservation and dissipative properties by regularizing the entropy functional. This
strategy was recently used in the case of nonlinear Fokker-Planck equations with success [13] from both theoretical and
numerical viewpoints. Analogously to [13], consider a mollifier, Gaussian for simplicity, given by

———exp <—E> (1.6)
(27‘[8)% 2 ) .

for any € > 0, and the associated regularized entropy as

Ye(v) =

Eo(f) = [ b log(f gy dv. (17)
R

The corresponding homogeneous Landau equation is given by

f=0Qe(f, f):=—Vy - (Ue(f)f), (1.8)
with

SE¢ SE¢
Ueg(f) -:—/A(V—V*) <VVW—VV*W> fedvy. (1.9)
R

It is now easy to realize that the nonlinear nonlocal velocity field U, (f) associated to the homogeneous regularized Landau
equation makes sense even for f being a convex combination of a finite number of Dirac Deltas. This allows us to introduce
a particle method associated to the regularized kernel (1.9). We will show that the associated particle method keeps the
same conservation properties at the discrete level as the Landau equation (1.2) while it dissipates the regularized entropy
functional (1.7).

Concerning deterministic particle methods for diffusive-type equations, there have been several strategies in the literature
by introducing suitable regularizations of the flux of the continuity equation [48]. The case of the heat equation %—t =Ap
was considered in [24,47] by interpreting the Laplacian as induced by a velocity field u, Ap =—-V - (up), u=—-Vp/p, and
regularizing the numerator and denominator separately by convolution with a mollifier. Well-posedness of the resulting
system of ordinary differential equations and a priori estimates relevant to the method were studied in [38] and extended
to nonlinear diffusions subsequently [44,42,43]. Variations of these methods allowing the weights to change in time were
also analyzed in [23,22]. The main disadvantage of these existing deterministic particle methods is that, with the exception
of [42] for the porous medium equation %—"t’ = Ap?, they do not preserve the gradient flow structure [42]. For further
background on deterministic particle methods, we refer to the review [16], and for particle methods applied to transport
equations, we refer to [18,17,19]. As mentioned earlier, we have followed here the strategy in [13] of regularizing the free
energy functional instead in order to keep the gradient flow structure at the particle method level.

To approximate the Landau operator, a popular method is to use the Fourier-Galerkin spectral method [45]. This method
takes advantage of the convolutional property of the collision integral so that the resulting method can be implemented

efficiently using fast Fourier transform (FFT). To be specific, the total complexity of one time evaluation of the collision
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operator requires O(Nﬁ log N,) complexity, where N, is the number of Fourier modes in each velocity dimension. We also
refer to [30,5,57,46] for additional properties of spectral methods and applications to inhomogeneous problems by time
splitting methods. As we shall see, the proposed particle method would require O(N?) complexity, where N is the total
number of particles. Hence in terms of efficiency, it may not be as fast as the spectral method. However, it is able to
preserve all the physical properties of the equation: positivity, conservation of mass, momentum, and energy, and entropy
decay. This is in contrast to the spectral method, wherein the truncated Fourier approximation destroys the structure of the
solution (only mass is conserved, no positivity, no conservation of momentum and energy, no entropy decay). Furthermore,
O(N?) is the direct cost of the particle method (a naive implementation). With the help of the fast summation technique
such as the treecode, this cost can be reduced to O(NlogN). We will explore this acceleration in the current paper while
an in-depth study will be deferred to future work.

It is important to mention that the particle-in-cell (PIC) method [4,37,52] is currently the dominant method to solve the
Vlasov-type equation (equation (1.1) without the collision term) which is essentially a particle method. Hence, our proposed
method is a natural candidate to be coupled with the PIC methodology to yield an efficient Lagrangian solver for the full
Landau equation. The numerical exploration of these ideas in inhomogeneous problems is certainly a research topic of great
interest, constituting a major future direction. For completeness, we finally mention that Eulerian methods based on mesh
discretizations in velocity have also been proposed preserving the main properties of the Landau operator in [21,39,6] and
the references therein. However, they are more difficult to incorporate within the PIC approach for spatially inhomogeneous
problems.

In the next section, we will analyze the properties of the regularized homogeneous Landau operator (1.9). Section 3 is
devoted to the introduction of the particle method and its properties. We end up in Section 4 with a thorough numerical
study of its performance, comparison to exact solutions, computable convergence order and simulations in cases of inter-
est for homogeneous problems. Appendix A gives a short summary of exact BKW solutions of the Landau equation as a
reference. Appendix B recalls the basic aspects of the treecode strategy and its application to our particle method.

2. Regularized Landau equation: basic properties and kernel

In this section, we explore some theoretical properties associated to the homogeneous Landau equation with a regu-
larized entropy functional. The nonlinearity of Q makes it difficult to directly regularize f in a structure preserving way.
Instead, the regularization is introduced at the level of the entropy functional which then modifies the homogeneous Landau
equation. As mentioned in the introduction, we define, for any given ¢ > 0, the regularized entropy as in (1.7) acting on
LL(Rd) functions. The functions ¥, (v) are mollifiers, fixed to be Gaussians with center of mass at the origin and variance-
covariance matrix equal to €I as in (1.6) for simplicity. Notice that the regularized entropy is well-defined and its first
variation with respect to constant mass densities f gives

e rlog(f ). VS = (V) slog(f ), 1)
after some computations, see [13] for details. Accordingly, this modifies the Landau equation in (1.2) to (1.8) with the
nonlocal nonlinear velocity field given by (1.9).

The aim of this section is to show that equation (1.8) preserves important structural properties as with the original
homogeneous Landau equation. To fix ideas, we introduce a preliminary notion of a weak solution which we can refine
after proving the standard conservation properties. For p > 0 we will say that g € L}, (RY) to mean

/(1 +v|P)|g(v)|dv < oo.
]Rd
Let us define
4+y, -2<y<0
K(y) = ’
6+5, —4<y<-2.

Definition 1 (Weak ¢-solution). We say that a nonnegative f € C([0, T]; L}{(y)(]Rd)) (denoted f(t, v) whenever a time deriva-
tive is involved or just f) is a weak ¢-solution to equation (1.8) if for every ¢ € C5°((0, T) x R%) we have

T T
1 SE, SEe.s B
/ / b F (€ v)dvde — / / (Vo — Vo, b) - AWV — V) (va - VF) ff.dvdv, dt=o. (22)

0 Rd 0 R2d

Let us investigate the meaning of the weighted L,l( requirement on f. We claim this is sufficient to make sense of the
triple integral in (2.2). Here, we are mainly concerned with the soft potentials given by —4 < y < 0. In particular, since
K > 2 we have
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sup /lvl ft,v)dv < oo,

telO, T]

which ensures the following bound
sup [logf(t, ) * Y] (V)| < C(&)(1 +|v[?), (2.3)
te[0,T]
where C = C(¢) > 0 is a uniform constant depending only on & > 0. Estimate (2.3) is obtained by computations similar
to [7, Lemma 2.6]. If more constants are introduced, we recycle C to absorb them. Now let us investigate Bf,’v* =V, % —
Vy ‘SEE Y= By (2.1), this has the form

5

B}, =C(e) / (V=)o (v = V') = (Vi = V)P (v — V) log(f * o) (v') dV".

Applying estimate (2.3) gives

B v, | C(S)/I(V—V’)ws(V—v/)—(v*—V’)we(v*—\/’)l(l+IV’|2)dV’-

Consider first the easier moderately soft potential case y > —2 and recall A(v — v,) = |v — v, | T2TI(v — v,) where T1(z) is
the projection into {z}1. For every test function, we have the bound

Ee _ vv*‘SE&*>
§f 3 fx

<Ce, ¢, d, y)(IV*TY + |v*|2+y>/(|<v — V)Y (V = V)| + (Ve — V)W (vie — V(A + V) dV'.
]Rd

‘(vv(f) — Vi, 0:) - A(V — vy) <Vv

By the change of variables v/ — v — v/ and v/ — v, — v/, we have the following estimate

/<|(v — V)Y (V = V)| + (Vi — V)P (v — VDA + VDAV < C@)(A + V2 + [val?).

This can be used to estimate the triple integral of (2.2) by

SEc.
/ // ‘(vm Vo, o) - AV —v,) <vv v )’ff*dvdv*dt

<C<e,¢,d,y)///<|v|2”+|v*|2+y><l+|v|2+|v*|2>ff*dvdv*dt.
0 R2d
In this case, the k(y) =4+ y weight becomes clear to ensure absolute integrability.
Let us now turn to the very soft potential case —4 < y < —2. The same trick above will not work because the weight

lv — v [2+7 is singular. Instead, we split [v — v, 2t = v — v,|"* 7 |v — v,|"* ¥ so that we have
SE; SE

Vv* £,%
§f 8 fi

/IV—V | (v = V)P (v = V) = (Ve = V)W (v — V)| (14 VP AV

‘(Vvd’ Vi, @) - A(V — vy) <Vv
Vv — Vy, ¢xl

[V — vyl (1+ )

<Ce,d)———F——

Splitting the weight allows us to see that —(1 + %) € (0, 1] in the very soft potential case so that

Vv — Vy, ¢yl
|v_v*|—<1+%>

can be estimated by the C!*~(0+%) norm of ¢. For the remaining |v — v4|'*% term within the integral over v/ we use the
mean value theorem with |(v — V)Y (V =V — (Vs — V)Y (V4 — v/)| to smother the singularity. Indeed, due to the form
of ¢, we have that
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b4 b2
V=Vl T = V)W (v = V) = (Ve = V)P (Vi = V)| SC@)IV = v PFZ (1 4 [E = V) |y (€ — V),
where £ € [v, v,]. Substitute this inequality back and use the change of variables v/ — & — v’ to obtain

(Vo — V A(v —v <V %—v 558’*)
vd’ v*¢*) ( *) v5f Vi (Sf*

<Cle.d, ¢)lv—v,|*tE / V20 (V)Y(1 4+ & = v/ |2)dv'.
Rd

The integral produces a term that has growth bounded by (1 + |&|*) depending on €. Since £ € [v, v,], we can estimate
[E|* < C(|v|* + |v4|*). Inserting this back into the triple integral of (2.2) finally yields

T
/// ‘(vm Vi) AW —vy) <v88£ —v,. 558**)’ fF.dvdv, dt
0 R

f 8 fs

T
<cedo) [ [fasmpt e ehsnavav.a,
0 R2d
Equation (2.2) can be tested against more general functions ¢. As in [2, Remark 8.1.1], an equivalent expression of (2.2)
is
d 1 € oo d
R oft,v)ydv= —3 (Vv — Vi, ¢5) - A(v = vy) By, ffidvdvy, Ve e (RY). (24)
Rd R2d

Furthermore, [2, Lemma 8.1.2] allows us to refine the solution to be weakly continuous t € [0, T]— f(t,-) € L,lc (RY) so that
whenever ¢ € C2((0, T) x R9),

ty o
//Mf(t, v)dvdt — %// (Vvp — Vi, @) - A(v — v,)By , ffedvdy,dt

t; Rd t1 R2d (2.5)

:/¢(t2,v)f(t2,v)dv—/¢(t1,v)f(t1,v)dv.
Rd R¢

Lemma 2. Let ¢ be an admissible test function and f be a weak &-solution to (1.8). Assume further that
Vyp(v) — Vy,d(vy) € ker A(v — vy),

then

%/qﬁ(v)f(t, vydv=0
R

holds, and therefore fRd ¢(v) f(t, v)dv is a conserved quantity.
Proof. We begin with the formal computations. Differentiating in time, we get

d 1
i /¢(V)f(t, v)dv = —5/ (Vyp(v) = Vy, (Vi) - A(v = vi)By , ffidvdv.=0.
R R2d
To justify these formal computations, we appeal to smooth cut-off arguments to approximate 1, v, |v|> by admissible test

functions using (2.5) to compare [q ¢ (V) f(0, v)dv with [ra @ (V) f(t, v)dv. O

Since the kernel of the matrix A(z) is spanned by z, a direct consequence of the previous result is that the mass,
momentum, and energy for weak ¢-solutions of (1.8) are conserved, i.e.,

% /f(t, v)dv,/vf(t, v)dv,/lvlzf(t, v)dv | =0. (2.6)
d Rd

Rd
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In this way, we define the mass, momentum, and energy of f for all times by the constants p,u, T related in the
following way

/f(t v)dv, ,ou_/vf(t v)dv, ,ou + pdT = /|v| f,vydv. (2.7)
R4

As promised, we can refine the notion of weak e-solution. We add a finite dissipation property which is a mild assump-
tion but yields theoretical and numerical advantages in the spirit of Villani's H-solution [54]. One example of the analytic
benefits is in [29, Proposition 4.2] where Erbar recovers a strong upper gradient notion for the Boltzmann equation.

Definition 3 (Dissipative e-solution). We say that f € C([0, T]; L}( (RY)) is a dissipative e-solution with moments (p,u, T) €
R, x R x Ry under the relation (2.7) to the regularized Landau equation (1.8) if it is a weak e-solution in the sense of
Definition 1 and

1. For every ¢ € C°(RY), equation (2.4) holds:
/¢f(t v)dv = ——/ (Vv =V, ¢:) - A(v —v)BS , ffedvdv,.
R2d

2. The initial entropy is finite

Ec(f(0,) = / (fo # Vo) 10g(fo % Yre)dv < oo,

3. The entropy-dissipation associated to the regularized equation is integrable in time

De(f(t, ") := %//Bf,’ -A(v —v,)B% , ffidvdv, eL'(0,T). (2.8)

R2

With the notion of a dissipative e¢-solution in hand, our next result displays the natural consequences of items 2 and 3.

Lemma 4. Let f be a dissipative g-solution of the regularized Landau equation (1.8) with the collision operator given by (1.9), then we
have:

t
1
Ec(f(t,)) —E<(f(0,) = _5 // ff*Bf/,v* AV — V*)Bi,v*dvdv*ds <0, (2.9)
0 R2d
forall timest > 0.

Proof. To begin, let us pretend that f satisfies (1.8) pointwise with sufficient smoothness in time. Formally, we differentiate
E¢(f(t,-)) in time to obtain

dE, d

o /f*lﬂa log(f * ¥re)dv :/(atf*lﬂg)(log(f*lffg)-‘r-])dv
d d

:/atf(‘/fa #log(f * ¥e) + Ddv = —/Vv “WUe(f) (e xlog(f = ¥re) + Ddv

Rd Rd

=/ /f*A(v *)Bv V*dv* (” )dv

1
/ ff*Vv . —v,)By , dvdv, = —5/ ff«By, - A(v —v,)BY , dvdv,.

R2d R2d
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In the last line we have used integration by parts as well as symmetrizing v <> v, to recover B} , from V%. Integrating
the ends of this equality in time gives (2.9). To obtain the full result with the minimal time regularity of dissipative &-
solutions, we appeal to a standard mollification in time argument. O

In the rest of this section, we follow the strategy of [34, Theorem 4] and [53, Lemma 3] to deduce that stationary states
of the homogeneous regularized Landau equation (1.8) can be characterized by Maxwellians. Since we are working with
weak e-solutions, let us be specific and define what we mean by stationary states.

Definition 5 (Stationary states). We say that a dissipative ¢-solution f is a stationary state to the homogeneous regularized
Landau equation (1.8) if for every test function ¢ € CS"(Rd),

(Vo — Vi, 02) - AV = v,)BS , ffudvdv, =0, Vte[0,T].
R2d

We can use this definition with Lemma 4 to characterize the first variation of the entropy for a stationary state.

Lemma 6. If f is a stationary state of the regularized Landau equation (1.8) or equivalently f is in the kernel of (1.9), then the first
variation of E¢ is a quadratic polynomial in v, that is
SE¢

()] 1) A2 2
=AY+ AV v+ v|©. 210
5f 2 M ( )

The constants L@, 2@ e R and .V € RY (depending on &) can be determined by the conserved quantities (2.6) (see later in
Lemma 7).

Proof. This proof adopts the strategy of [34, Theorem 4]. Lemma 4 implies that the entropy-dissipation, the right-hand side
of (2.9), is zero. Moreover, the entropy-dissipation is zero if and only if the quadratic form in the integrand of the right-
hand side of (2.9) is zero. By definition of A(v — v,), we must have that B}, , belongs to the kernel of A(v — v.) which is
characterized by those vectors which are linearly dependent with v — v,. Thus, there exists A® : R x R¢ — R with the
property

SE¢

SE
- £ (v,) =2 -
Vy 5f (v) = Vy, 5f (Vi) = A7V, Vi) (v = V). (211)

At this point, we study A® and seek to show that the diagonal mapping is constant. Immediately from (2.11), we notice
that A@ (v, v,) =A@ (v,, v). For any i, j € {1, ...,d} when looking at the jth coordinate of (2.11) and then differentiating
with respect to v; (valid as the ¢ regularization grants arbitrary smoothness), we have

SE
O = Bnr D Vv (v = vag) + 2O W, 708y
Set v =v, in the above equation to deduce

S8E¢
MSE

Differentiating (2.12) again with respect to vy for k € {1, ..., d} yields

Ay, =21, v)8;. (212)

SE
By Dy, Dy, 8—; =3 AP (v, )55 .

The partial derivatives on the left hand side of the above may be freely permuted with no change to the expression. More
interesting is the permutation of the associated indices i, j, and k on the right hand side. One instance of this is the
following identity 9y, 2@ (v, v)8jj = d,,A@ (v, v)&;. For arbitrary indices k € {1,...,d}, simply take i = j e {1,...,d}\ {k}
and one sees from before that d,,A® (v, v) =0. Since k € {1,...,d} was arbitrary, this implies that A® (v, v) is actually a
constant which we shall refer to as A®. Equipped with this information, integrating (2.12) twice confirms the claim of the
le(g)lma that the first variation of the entropy is a quadratic polynomial given by (2.10) for some constants A()) ¢ R¢ and
AP eR. O

Our next step is to show that if f satisfies equation (2.10) then it is a Maxwellian with explicitly computable mass,
momentum, and energy.



J.A. Carrillo et al. / Journal of Computational Physics: X 7 (2020) 100066 9

Lemma7.If f € LL(Rd) \ {0} satisfies the following equation

SE 1@
— 2O Dy T )2,
57 + + vl

then it must be a Maxwellian, f(v) = M 1(v). We can deduce a restriction on 12, specifically, that &|1®| < 1. Furthermore, the
mass, momentum, and energy explicitly depend on &, 2@, A and A in the following way:

d
IO _ ( 2(7;) )j eXp {)\4(0) + 8|)\.(22)|d 8\)\“”2 n ‘)\(1)|2 ]
(A1)

T 20-en @) T 200112 @)

A0 213
u= 25 (213)
T= W]_zn —&.

Proof. We iteratively Fourier transform equation (2.10) recalling in particular the convolution and inversion theorems (es-
pecially that Maxwellians are Fourier transformed to Maxwellians) to deduce the identities

1@
We s log(f % We) = 2@ 42D Ly ¢ TIVIZ,

1

1 )
Fllog(f % ¥e)} = e)’ o (M‘”ao +iaM . vy — TA(SO) ,

and

A Ped A2
log(f * o) = 2@ — T+A(1)-V+T|v|2. (2.14)

At this point, we remark that the sign of A can be deduced. Specifically, we claim that A < 0. The significance of this

is to ensure that the exponential of the right-hand side of (2.14) is integrable, and therefore Fourier transformable. Firstly,

22 <0 because the Dominated Convergence Theorem yields lim|y|— oo f * ¥e(v) = 0. This means that the right-hand side

of (2.14) must decrease to —oo in the limit |v| — oo. Therefore, looking at the leading order contribution of the right-hand

side of (2.14) gives A(® < 0. Suppose for a contradiction that A®) =0, so the leading order contribution sending the right-

hand side of (2.14) to —oo is A(D) -1v. In other words, A1) - v must converge to —oo whenever |v| — co. However, we can
A

( L o
always choose a sequence v, = n i for ne N which is colinear to A() satisfying A1) - v;; = 0o and |vy| — 00 as n — co.

Taking exponentials of both sides of (2.14), we have

POR @ 5@ 2
—— texp

2D
Ne)

p— — v s
3 +

— 0 _

and one more Fourier transform (valid by the sign of A2 < 0 discussed in the previous paragraph) leads to

() M2
f{f}(»;f):(zn)d(l—s|x<2)|)—%exp{x<°’+'k ed e } (1

2 2(1—¢A@)) n® __p@) )(5),

1@ 1-en @)

after tedious algebra to collect terms. Here, we are using the convention that, for vectors x, y € R4, |x + iy|% := |x|? + 2ix -
y — |y|. By the Riemann-Lebesgue lemma, we know that | F{f}(&)| — 0 as || — co. With the expression for F{f} above,
this means that the variance of M (the third parameter in the subscript) must be strictly positive. Hence, 1 — |A®| > 0.
One final Fourier inversion gives an expression for f as

d
27 \? e[A@)d glA 2 A2
V=(——) exp{r©@+ - + M V).
) (M@l) p[ 2 20-en®) T 20\ —ep@) [ e

Reading off the constants, one confirms (2.13). Note that in the determination of p, u, T in equation (2.13), we have a one-
to-one correspondence between (p,u, T) and (A(Q, A 1) Indeed, 1@ is determined from T which then gives (1) in
the equation for u. Finally, (9 is determined from the equation for p. O

The previous lemmas give the following equivalence.

Theorem 8. f is a stationary state of the regularized Landau equation (1.8) if and only if f is a Maxwellian with parameters given
by (2.13) depending on the quadratic polynomial in equation (2.10).
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Proof. (= ) This direction combines Lemmas 6 and 7.

(<) This direction is a computation of ‘555; = xlog(f * ¥¢) when f is a Maxwellian. O

Remark 9. An alternative regularization for the entropy is

Eo(f) =/flog(f*we)dv. (2.15)
Lemma 6 is still true with this alternative regularized entropy where the first variation of E, and its gradient are given by,
see [13],

SE € f 8E8 F* Ve f

10g(f*1/f)+( ) Ve, Vy—0r= + * Ve . (2.16)

Sf TONfrye) T TS frve  \fxye) U

However, the characterization result of Lemma 7 as a Maxwellian is not true, even if one might expect the existence and
uniqueness of a stationary state being the conserved quantities fixed.

3. A particle method for the homogeneous Landau equation

The main idea is analogous to the recent work [13] for aggregation-diffusion equations. In fact, the regularized Landau
equation (1.8) can be viewed as a convection in v with velocity field given by (1.9), and thus giving access to a particle
formulation. More specifically, denote

N
NEv)y =) wis(v —vi(©), (31)
i=1
with N being the total number of particles, v;(t) the velocity of particle i, and w; the weight of particle i. Plugging (3.1) as
a distributional solution to (1.8), we obtain that the evolution for the particle velocities v;(t), 1 <i < N is given by

dvi(t) N B SEY 55”
a =Us(f)(E,vi(D) = ZWJA(VI V])|: 5f ( i)— Sf (V])i|
=—) WjAVi—V)) /sz(vf —v)log (Z Wie (v — Vk)) dv
j Rd k
_ /wg(v,- ~v)log (Z Wi (v — vk)> vl (3.2)
R k
with 2 P o= Ve x log(fN % ¥,) and therefore,
5 N
f /Vlﬂe(vi —v)log (Z Wire (v — Vk)) dv. (33)
k

Rd
Let us show next that the semidiscrete particle method defined by (3.2) leads to a numerical particle approximation fN of
the solution to the regularized Landau equation (1.8) conserving mass, momentum and energy and enjoying the regularized
entropy dissipation (2.9).
Theorem 10. The semidiscrete particle method (3.2) satisfies the following properties:

1) Conservation of mass, momentum, and energy: % Zf’zl wip(vi) =0 for p(vi) =1, v;, |vi|%
2) Dissipation of entropy: let

=B = [N g log(F x yirdy (34)
be the discrete entropy, then %EN = —DN <0, where

Avi— v SEN SEN
wa,( —Lw)-V M(vﬂ)- (vl—v,)( 5=V M(v,))
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Proof. First, we notice from (3.2) that

Zw $(vi) = Zw Vi) - Ue(fN)(E, vi(t)

—ZWWA(V— )( EN( vi)—V S (V)>‘V¢(V‘)
AV =V sf Vi sf Vi i

SEN
=-3 ;WinA(Vi—Vj)< 5f (i) =V 5f (V1)> ~(Vo(vi) =V (v)))

which vanishes with ¢(v) =1, v, |v|2. Therefore, mass, momentum, and energy are preserved. Next, using (3.1), we rewrite
(3.4) as

EY = / (Z wire (v — vi(t))) log (Z wire (v — vk(t») dv,
Rd i k
then

d vi(t
S EL /zjwvwgv va» Ulg(§:WW%W—VMUO

Rd !

Y WiV e (v — vie(6)) 20
iVe — ,'t d
+R/d (ZW Ve (v —vi( ))) S W (v — vk(t)) v

=11+1.

i

Note that I, can be simplified to

v (t) d
/Zwkvwg(v—vk(t)) ; =—a2wk/w£<v—vk(t))dv=0
R¢ k k d

thanks to the fact that fRd Yo (v — vi(t))dv = 1. By virtue of (3.3), I1 has the following estimate

dv; afg
I1—Zw, /Vlﬁs (v —vi(t)) log ZWkl[/g v — vi(t)) E:ZWI‘ 57 (v l)

d k

Then using (3.2), it becomes

SEN SEN SEN
11=12wiva(vi) —ijA(vi—vj)( 5= Vs (v,))
N SE N

SE,
:_—Zwlw]< 8(1) af (V]))'A(Vi—vj)< af(z)— 5f (V1)>
and therefore, the entropy dissipation follows. O

Remark 11. A natural question is how to deal in practice with the cutoff of the initial data in a bounded domain. We will
restrict to a square domain [—L, L]¢ with L > 0 as the computational domain due to physical considerations of the Landau
equation since the variable is a velocity vector. Notice that the regularized equation (1.8) has the structure of a nonlinear
continuity equation in the velocity variable for the unknown density function f with velocity field Ug(f). Such continuity
equations are naturally posed in a bounded domain with no-flux boundary conditions U.(f) - v =0 at the boundary of the
domain where v is the outwards unit normal vector to the boundary. This no-flux boundary condition immediately leads to
mass conservation. In particular, we could solve (1.8) in the square domain [—L, L]¢ with no-flux boundary conditions. The
particle approximation in (3.1) remains valid and particles follow the same paths as written in (3.2) as long as the particles
do not touch the boundary of the domain. When touching the boundary, particles need to be reflected with respect to
the normal direction to impose the no-flux boundary conditions. In the case of the regularized Landau equation, this is
not physical since boundaries in the velocity variable do not make sense and because the conservations of mean velocity
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and energy would be lost when particles are reflected at the boundary of the velocity domain. Therefore, the solutions
constructed from particle approximations remain valid as an approximation of the Landau equation as soon as the particles
do not touch the boundary. In practice, we initialize with particles chosen in a square domain [—L, L]¢ and check that
particles do not escape from the domain for their time span to choose the right initialization domain size L > 0 for our
initial data.

In practical implementation of particle methods, the update of particle velocity via (3.2) will not be computed exactly,
but with the integral replaced by a quadrature rule. Therefore, we need to introduce a discrete-in-velocity particle method.
The computational domain in any dimension is the square domain [—L, L]¢ with L > 0. The mesh size is defined by h = 2L/n
and N =n? is the total chosen number of particles. Let us denote the squares of the mesh as Q; withi=1,..., nd, We will
always initialize our particle method by projecting the mass of the initial data on the computational domain to a sum of
Dirac Deltas located at the center of each Q; with mass given by the mass of the initial data in Q;, that is

N
FNO.v) =) wis(v —Vi(0)),  with ¥;(0) = v§ and w; = fo(v)h?,
i=1

with v{ denoting the center of the square Q;. Now, we can introduce the discrete in velocity particle method as

N
=) wis(v —i(t)

i=1

where v;(t) satisfies

dv; o . .
th(t) =-> ij(vf—vj)[Zhdes(vi—vl)log<§ Wi (Vf —Vk))
j i p

= Y hIVYe(V; - vf)log (Z Wi (Vf — m)}
1 k
= = Y WA= [FY @) - FY 0] = 0. P 70, (3.5)
J
Here, the function

F (@) =) h'Vye(vi — v)log (Z Wite (Vf — m) (36)
I k

is a discrete analogue of the first variation of the entropy functional (3.3). One can also define the fully discrete regularized
entropy as

EY=>"nt (Z wite (vf — m) log (Z Wiy (Vi — m) : (37)
I i k
Then we show that at this fully discrete level, some properties in Theorem 10 are inherited.
Theorem 12. The discrete-in-velocity particle method (3.5) satisfies the conservation of mass, momentum, and energy. Moreover, the

discrete entropy (3.7) almost decays in time, that is,
t
EN@t) - EN©0) = —/D{jds +0(h?),
0
where
pN = % > wiw; (FY ) = VEN () - A — vy (FY 0 - FY@p) > 0.
ij
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Proof. Indeed, for ¢(v) =1, v, |v|?, we have
d _ _ . - -
3 2 Wit (V) =3 wive @) - Ue(FY)(E, Vi)
i i

==Y wiw; A — 7 (FY @0 - FY@p) - Vo
i.j
1 - _ (=N,- N - - -
=—5 2 WA = 7)) (FYG) =Y @) (Vo) - V(@) =0, (3.8)
ij

hence the conversation of mass, momentum, and energy is guaranteed. A similar computation to the entropy dissipation in
the semidiscrete level leads to

—E”(t) = ZhdZwlwgw, —nen L

Y og (Z Wi (v — vk(t)))

oo | 2k Of — T O) T
+ h4 e (V6 — it ( t
; (Z Wit (V§ — Ui ))) TR =

=1L+1.

By the definition of (3.6) and similarly to (3.8), I1 can be written as
o dv; 1 . f=N.- N N - N -
h=Y wiFl @)t = =3 Y wiwiAGi - (FN @) - B ) - BN @) - B ) <0
i i
As before I, can be written as
d dv (t) d ¢ -
L= h"Y wiVye(vf — ¥i(t) tZwiZh Ye (V) — Vi)
1 i i 1

We are reduced to showing that

D owi Y R (vf — Vi) =) wi+ 0(h?)
I i

i

which is true thanks to the fact that fRd Ye(v — Vi (t))dv =1 and that the mid-point composite quadrature rule is of order
2 for smooth functions. Note that the constant in the error depends on & but not on the location of the particles. Therefore,
we conclude that

t
[ 12ds = 37w St v - i) — 3w YR — 510 = O(h?)
0 i I i I
in the time interval [0,t]. O

Remark 13. The particle method for the alternative regularization for the entropy (2.15) has the advantage of not needing a
continuous convolution and it also has the conservation and dissipative properties. The particle method reads as

dvi(t) SEN
o ——Zw]A(v, v,)[ 5=V <v,>} (39)
with
SEY WiV (v — i) Ve (v — V)
V—( )= -‘rzwkzm W G — o) ,

sf 2k Wie (v — Vi)

according to (2.16). One can show that the semidiscrete particle method (3.9) satisfies the conservation of mass, momentum,
and energy and the dissipation of entropy defined as

= Zwi log Zleﬁs(f/i -vpl,
i j
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then $EN =DV <0, where

DN_lz - VaE‘Q’ . vai:{!(_) A7 V(SE{?V(. Vaég\’(_)
E_Eijw,wj F(Vl_ Wv] AV —Vj WV,)— WV] .

This alternative regularization will be explored elsewhere.
4. Numerical implementation and simulation

In order to visualize our particle solution and compare it to the exact solutions in smoother norms, we construct a blob
solution, as in [13], obtained by convolving the particle solution with the mollifier,

N
PNV = e FOE V) =) wige (v = Vi), (41)

i=1

with ¥;(t) given by (3.5) for all t > 0. We measure the accuracy of our numerical method with respect to the L'- and
L*®-norms. To compute the L!- and L*-errors, we take the difference between the exact or reference solution and the blob
solution (4.1) and evaluate discrete LP- and L*°-norms in a grid. The norms will be computed in this computational mesh
using the centers of the squares Q; as

N
d
lghfy =D _hIgvI”, ligl~ =max|gv,
i=1
for any function g defined on the computational mesh, and 1 < p < oo. The quantities of interest will be computed as
follows: the discrete mass, momentum and energy are defined as

N N N
dowio Y wivp oand Y wilvl,
i=1 i=1 i=1

respectively. The discrete entropy is defined by EQ in (3.7).

Let us now comment on the practical implementation of the method. The time discretization of the system of ODEs
defined by the particle method (3.5) is done by the simple explicit Euler method. This choice is motivated by our main
purpose: we want to illustrate the performance of this particle method by focusing on the basic properties and its capa-
bilities even with the lowest order in time discretization. Note that the fully discrete-in-time method conserves mass and
momentum exactly, but the energy conservation is satisfied up to a first order error in time. Indeed, mass is automatically
conserved. To see the momentum conservation, note that a time discrete version of (3.2) yields

1 SEN SEN
E("?H —v = —ZW]'A(V? v [V 8}5 vh—-v 5; (vg)]. (4.2)
J

Multiplying both hand sides by w; and sum over i, we obtain

l(Zw-v’”] —ZW-V”):—ZWW-A(V'?—V”-) V@(v“)—vﬁ(v’?)

At i o i o ij o ' ! 8f l 8f !
=Y wiw AV} =V vaEg](v”)—v‘SEg(v") =0 (4.3)
IR i Y I VA i '

where in the second equality, we switched i and j and used symmetry of matrix A. However, the same trick does not
work in the energy case, hence the energy is only conserved up to O (At). The numerical example in the next section (in
particular, Fig. 2 (left)) also confirms this fact.

We will check these issues later on in the examples. One can obviously improve some of the time discretization errors
committed by choosing higher order time approximations of the ODE system with adaptive time stepping. We leave this
for future work in the scientific computing direction focusing here on the convergence analysis and error in velocity of the
particle approximation (3.5).

As usual in particle methods, the regularization parameter has to be chosen very carefully. This regularization was already
used for nonlinear diffusion and aggregation-diffusion equations in [13]. It was proven in [13, Theorem 6.1] that, for the
porous medium equation with exponent larger than or equal to 2, a particle method using the regularization strategy
presented in this work is convergent by choosing h?> = o(¢) as & — 0. By choosing hP ~ g, the previous constraint is
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Fig. 1. Left: Time evolution of || f™™ — fe|| /|| f®||,2 with respect to different number of particles. Right: Relative L>, L', and L? norms of the error at
time t =5 with respect to different h.

satisfied for 0 < p < 2. Then, it was checked heuristically that with & ~ h!-%8 the numerical particle scheme is a second
order approximation to the solutions of all nonlinear degenerate diffusion equations of porous medium type and also for
the heat equation. Notice it is more convenient to choose the largest possible h to have the least number of particles
since h = 2L/n. For these reasons, the regularizing parameter for the Landau equation is chosen as & = 0.64h!-%8, Here the
prefactor is empirical and is found by trial and error.

Finally, let us comment that this error estimate is different for transport equations as studied in [17,19]. For the transport
equation, depending on the regularity of the initial data, one gets hP ~ ¢ for 0 < p < 1, that is h = o(¢) meaning that for
transport equations one needs typically smaller meshes and therefore more particles than for diffusion-type equations.

4.1. Example 1: 2D BKW solution for Maxwell molecules
In this and next subsections, we use the BKW solution in 2D and 3D to validate the accuracy of our method. This is
one of the few analytical solutions one can construct for the Landau equation. For the reader’s convenience, we give the

derivation in Appendix A.
Consider the collision kernel

1
A = — (|22l — 2 ® 2),
(2) ]6(||d ®2)

and an exact solution given by

fext(rv)—Lex P 2K_1+1_K|v|2 K =1—exp(—t/8)/2
V= ork P\ Tk K 2K2 ’ - P '

We choose tg = 0 and compute the solution until t = 5. The number of particles are chosen as N =n? with n =

60, 80, 100, 120, 150. The computational domain is [—L, L]? with L =4, so the initial mesh size is h = 2L/n. The forward
Euler method with At =0.01 is used for time discretization.

We first track the relative L? error of the solution, see Fig. 1 (left), from which we observe the errors remain stable over
time and decrease with higher number of particles. To check the decay rate, we generate the loglog plot of the errors at a
fixed time t = 5, see Fig. 1 (right). Here the x-axis is h, i.e., the initial mesh size. Using the least square fitting, we can find
the approximate slope of the errors which exhibits almost second order convergence.

To further check the conservation and entropy decay properties of the method, we plot the time evolution of the total
energy and relative entropy of the system in Fig. 2. The energy is conserved up to a very small error (this error decays when
the time step decreases) while the entropy decays monotonically as expected. Analogously to equation (3.7), we define the
relative entropy as

N N
_ _ 1
> oht (Z Wi (V] — Vk)) (log (Z Wi (Vi — Vk)) +log2m) + 5 IV,C|2> :
1

k=1 k=1
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Fig. 2. Time evolution of the total energy (left) and relative entropy (right) with respect to different time step. Particle number N = 602 is fixed.
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Fig. 3. Left: Time evolution of || f™™ — ||, /|| f¢|| > with respect to different number of particles. Right: Relative L*°, L', and L? norms of the error at
time t = 6.5 with respect to different h.

4.2. Example 2: 3D BKW solution for Maxwell molecules
Consider the collision kernel

1
AQz) = ﬁ(mzld -z®2),

and an exact solution given by

2 — _
FE(, v) = |V|)<5K 3+1 K|v|2>, K =1 —exp(—t/6).

2mK)3/2 exp( 2K 2K 2K?

We choose tg = 5.5 and compute the solution until t = 6. The number of particles are chosen as N =n® with n =
20, 30, 40, 50, 60. The computational domain is [=L,L]® with L =4, so the initial mesh size is h = 2L/n. The forward
Euler method with At =0.01 is used for time discretization.

Here we plot similar figures as in the 2D case. We mention that the direct computation in 3D is computationally costly
so that we cannot afford too many particles and the errors are generally larger than in 2D. Remarkably, even with a small
number of particles, up to 603, we are still able to observe the second order convergence in L' and L? norms (L norm is
not very reliable due to the limited number of particles), see Fig. 3.
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Fig. 4. Comparison of the particle method (particle number N = 120?) with the spectral method (N, = 1282). Slices of the solutions at different times.
4.3. Example 3: 2D anisotropic solution with Coulomb potential

Consider the collision kernel

A(z)—1 ! (121214 —z2®2)
T16)z3 ’

and the initial condition

_ 2 _ 2
f(o,v>=i[exp(—w>+exp(—w>}, W= (=2,1), uz=(0, —1).
4 2 2

For this example, we do not have the exact solution to compare with. Therefore, we compare the particle method with
the Fourier spectral method in [45]. For the particle method, we choose the following parameters: the number of parti-
cles is N = 1202 and the computational domain is [—10, 10]2. The forward Euler method with At = 0.1 is used for time
discretization.

For the spectral method, we choose the following parameters: the number of Fourier modes in each velocity dimension
is N, = 128; the computational domain is [—10, 10]2. The second order Heun’s method with At =0.1 is used for time
discretization.

The results are shown in Fig. 4. The results of the two methods match very well.

To better check the convergence of the particle method, we use the spectral method solution with N, =128 as a
reference solution. For the particle method, we test N = 602, 80%, 1002, 1202, and for each of them reconstruct the solution
on the same mesh as the spectral method (so that we can directly compare the error). The results are shown in Fig. 5 where
we can observe better match as N increases. We also compute the convergence order similarly as in example 1. Strikingly,
we can still obtain almost second order convergence, see Fig. 6.

4.4. Example 4: 3D Rosenbluth problem with Coulomb potential

Consider the collision kernel
1 1

Az) = 7121y — 2 ® 2),
@ = 37 el —292)

and the initial condition

2
S(IVI 20")
o

f(O,v):éexp(— ) o=0.3, S=10.
A similar test has been considered in other papers [45]. For the particle method, we choose the following parameters: the
number of particles is N = 503; the computational domain is [—1, 1]>. The forward Euler method with At =0.2 is used for
time discretization.

For the spectral method, we choose the following parameters: the number of Fourier modes in each velocity dimen-
sion is N, = 64; the computational domain is [—1, 1]3. The second order Heun’s method with At = 0.2 is used for time
discretization.
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Fig. 5. Comparison of the particle method (using different particle numbers) with the spectral method (N, = 128). Slices of the solutions at time t = 20.
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Fig. 6. Relative L>, L', and L? norms of the error at time t = 20 with respect to different h.

The cost of computing the particle method in 3D becomes very heavy if the right-hand side of (3.5) is performed by
direct sums. We resort to efficient methods for computing large sums involving convolution kernels. One possible choice
is to make use of the treecode strategy as in [3,40] for instance. We give a brief account of its application to the particle
method (3.5) in Appendix B. In Fig. 7 left, we show the comparison of the direct sum solver to the trecode solver by
plotting their solutions at t =20, N =503 or N =403. The error committed is negligible. In Fig. 7 right, we illustrate the
speed-up of the treecode solver with respect to the direct sum solver. The efficiency of the treecode solver is significant
with larger number of particles N as expected. The results are obtained using Matlab code on Minnesota Supercomputer
Institute Mesabi machine with 12 nodes, further speed up is anticipated with C++ code.

The result is shown in Fig. 8 which we observe good agreement between the spectral method and the particle method
using the treecode acceleration, especially for short time. For longer time, the discrepancy is due to the limited resolution
of the garticle method. Note that we do get better convergence when increasing the number of particles from N = 503 to
N =60°.
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Appendix A. BKW solutions for Maxwell molecules

We derive the BKW solution to the Landau equation (1.2) in the Maxwell molecules case where A(z) = B(|z|*] —z ® z)
whose kernel is spanned by z. Looking for solutions with the ansatz

1 v2 )
ft,v)= W@(P <_ﬁ) (P +Qv?),

where K = K (t) is to be found, we require

p:/fdv:P+dKQ:l,
Rd

d
R¢

T:l/fvzdv:KP+(d+2)K2Q:1.

These conditions imply that
d+2)K —d 1-K
P = L n Q = —,
2K 2K2

and therefore,

1 v\ /d+2)K—-d 1-K ,
V)= —— - .
Jew) = G exP( 21<>< 2k k2! >

Direct differentiation yields

af 1 v2 ) 5 411-K
g exp(—2 ) [dd+2)K? —2d +2)K L' Al
ot~ 2rKk)iz EXP( 21<>[( +2) @+ kv +V] 4K4 (A1)

It is easy to check that

1 v2 P+Qv?
Vof=—— —— (20 - ==
v (mK)dr? exP( 21<)< ¢ K )V’

and hence
\ i . 2Q 1

F TP+’ K

Therefore, we conclude that

Vylog f =

v—v)+Qvi(v—v)+Qi—v)v 1

Vylog f — Vy_ log fo=2Q © -
v Og Vi Og * — (P+QV2)(P+QV£) I<(v V*)'

Using A(z)z =0, we have

(V2 —v2)A(V — vy

_ 2
A(v —v,)[Vylog f -V, log f,]=2Q POV (PTOvD

and then

. 2Q? vy o,
A(v —vy)[Vylog f— Vy, log fi] ffi = k) P (— 9K ) (v = VHAW — vV

2BQ? ( v2 +v2

= — 2,2 _ 27 _ _
_(an()deXp 2K )(V* V)[(V V)T —(V—v,) Qv v*)]v,

Hence we deduce that

_ 2BQ? v? )
/A(V — Vi) ff« [Vv log f —Vy, 10gf*] dv, = WEXD <_ﬁ> (I —v7Iy),
R¢

where
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1 v\ 5
I =/Wexp (—ﬁ) vy [(v—v*) v—(v—v*)®(v—v*)v]dv*,
Rd

I = 1 Vi 2 d
2—/WEXP(_R> [(V—V*) V_(V_V*)®(V—V*)v] Vi
R

It can be checked that

I = (dKv? 4 (d® + 2d)K*)v — (dKVv? + (d + 2)K*)v = (d + 2)(d — 1)K?v,
I = (v +dK)v — (V> + K)v = (d — DKV,
and therefore, we conclude that

2BQ?2

—— X
QrK)i2

v2 5
p (‘ﬁ) (d - DK[(d+2)K — v*]v.

[ AW =vo[vlogf - V.. log ] fF.dv. =

Rd

Finally, we can write

AU V) =V, - / AW — v [Vy log f — Yy, log f,] FF. dv.
]Rd

2BQ? v2 1 4 )

=———expl—=—)d-1DK|=v*=2d+2)v"+d(d+2)K
2m K)d/2 p( ZK)( ) K @+ 2y +dd+2)

B 1 ox v2\ B(1—K)?

T @ K)dr2 Pl 2k 2K4

Comparing (A.1) and (A.2), we obtain K’ =2B(d — 1)(1 — K), which results in K =1 — Cexp(—2B(d — 1)t). In 2D, we choose

C=1/2 and B=1/16, then K =1 — exp(—t/8)/2. In 3D, we choose C =1 and B =1/24, then K =1 — exp(—t/6).

(d—1)[v“—2(d+2)1<v2+d(d+2)1<2]. (A2)

Appendix B. Treecode for computing (3.5) in 3D

In view of (3.5), the efficiency of the particle method is limited by five summations appearing on the right hand side.
Indeed, if the total number of particles is N, then each summation needs ()(N?) computations, which is prohibitively
expensive in 3D. To mitigate this issue, we developed a treecode method to accelerate the computation. The idea is that, first
one partitions the particles into a hierarchy of clusters that has a tree structure (hence the number of cluster is O(log N)),
then instead of using particle-particle interaction, one considers particle-cluster interaction, and therefore reduces the cost
to O(NlogN) in total [3].

In general, consider the summation of the form

N
Ui=) qj¢(viiwj)., i=1,2--- N, (B.1)
j=1

where v; and w; are in R3, and ¢ can be v, three components of Vi, or four components of A in our case. Assume
the particles have been divided into a hierarchy of clusters C, then the treecode evaluates the potential (B.1) as a sum of
particle-cluster interactions

Ui:ZUi,u where Ui,c: Z qjq&(v,-,wj). (B.Z)
ceC wjec

If particle v; and cluster ¢ are well separated (denoted below as MAC condition (B.5)), then the terms in (B.2) can be
expanded in Taylor series as:

o o0
Ue=)_4; Y, %Din,wc)(wj—wc)": > %D’;m(vi,wc) > gjwj—wo
wiec k=0 " lIkll=0 " wjec
p
~ Z a"(v,',wc)m’é, (B.3)

k(=0

where
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a“(vi, we) = ,:—,D’;m(v,-, we) (B.4)

is the k-th Taylor coefficient, and

mé= " qj(wj—we)
WjEC
is the k-th moment of cluster ¢ and the Taylor series has been truncated at order p.

Now let us specify the meaning of well-separated particle and cluster. Denote R = [v; — w¢/|, and rc = maXjec [We — Wjl,
then in order for the Taylor series in (B.3) to converge, we need r. < R. In theory, one can compute U; . either by direct
sum or via (B.3) depending on the accuracy and efficiency of (B.3). There is no standard way of choosing between the two
as the optimal way is often problem dependent and one may find it by trial and error. However, a practical choice would
be

<<, B.5
. (B5)

where 6 is a user-specified parameter for controlling the expansion error. This condition is called multipole acceptance
criterion (MAC).

Coming back to our case (3.5), it remains to compute a* from (B.4) for different functions ¢. When ¢ is a Gaussian (i.e.,
¥¢) or gradient of a Gaussian (i.e., Vi/¢), one can derive the recursive relation for a* similarly as that in [40], and here we
only derive the ones for each component of matrix A. From here on, we denote k = (k1, k2, k3), and let v = (v1, v2, v3),
w = (w1, wa, w3), then A has the form

Vi+vi o —vivy  —vqvs
A=WV | —viva vi+v3E —vovs
—vivy  —vav3 VI 4 v3
Let us first compute a¥; := % DX Ay1(v — w). Taking the derivative of Aq1 in wy, one has Dy, Ay = —y‘(“:/”_;‘vzl)An, and
hence
|w — v|*Dw, A11 = ¥ (W1 — v1)A11. (B.6)

Further differentiating the above equation k; — 1 times in wq, we obtain

lw — v2DY!, Ay + (w1 — v)[2(ki — 1) — ¥ 1D% A + (ki — (ki —2 — ) DY 2 A = 0.

Taking the derivative Dléﬁz Dkv33, the above relation becomes

lw —v| Dk A1+ (wy —v)[2(Kk —1) — J/]D" A 4k — 1) (kg —2 — J/)le,v_zelAn
+2(wz = v2)ke DYy 2 A1y +ka(ky — DY, 2 Ary
+2(w3 — v3)ky DY 3 Ayg 4+ ks(ks — 1)DY 3 Ay =0,

where eq, e and e3 are unit vectors in R3. Dividing by k! of the above equation, we have the following recursive relation
for aq1:

2 2
|W _v| a“ +2(W1 v1)ak er %(Wl V1)a;]e1 + (1 _ ;'y)al;]—Zm
1 1

12wy — va) + 1172 4 [2(ws — v3) + 1165722 =0, ky £0.
Note the above relation is valid when k1 # 0, and one needs to compute the case with k; = 0 separately. This can be done
similarly by taking D'f,&z Dk3 derivatives of (B.6) directly. Likewise, we have for a’éz = ,}—!D"‘,vAzz(v —w):
2 2 _
lw —v[2ds, + 2(w, — vz)ak 2 _ ﬂ(wz vz)a’< 41— =ty agzzez
ko ko
+[2(w1 — v1) + 155" + [2(ws — v3) + 1]d5, 7 =0, kp #0.
For a’§3 = HDWA33(V —Ww):
k—es 2+Y k— 247\ k2
lw — V| a33 +2(w3 —v3)dss b T(WB - V3)a1<1 “+ (1 - T) 33 <
+[2(wy — v) + 11a55° + [2(wa — v2) +11a55 72 =0, k3 #0.
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For a¥, := DX Apa(v — w):

k k—e k—2e k—e k—2e
ai, +2(W1 - V])a-lz ! +‘112 ! +2(W2 - VZ)a-lz 2 +(112 2

2+ _ 2+ -
+< —TJ/)(W3—V3)GI;263+< _Ty>all<2293=0’ ks #0.

lw — v[?

For a¥; := DX Ajs(v — w):

2k k—e k—2e k—es3 k—2es
lw —v| ajs +2(wg — V])a13 ! + a5 T4+ 2(ws — V3)a13 +ay3

2+ _ 2+ _
+< —Ty>(W2_V2)a’1<3ez+< _Ty>a’1<32e2:0’ ko #0.

For a¥; := ;DX Aos(v — w):

2 k k—e k—2e: k—es3 k—2es3
W —v|“ay; + 2(Wa — v2)ays > + 0557 % +2(W3 — v3)dys ° + a5

2+ _ 2+ -
+( ‘Ty)ml—v])a’;a“*( ‘Ty)a’éfﬁzo, ki #0.
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