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1 Introduction

For more than two decades string theory compactifications with intersecting D-branes and
O-planes have played an important role in string phenomenology. On the one hand, inter-
secting D-brane models are used to obtain particle physics models that can resemble the
supersymmetric standard model and extension thereof, see for example the review article [1].
On the other hand, orientifold planes are needed in flux compactifications to partially break
supersymmmetry and to provide a source of negative energy in the scalar potential, see
for example [2, 3] for early review articles. For flux compactifications on toroidal orbifolds
the orientifold planes generically intersect in the internal space. So, both settings lead to
supergravity equations of motion that have localized sources that intersect in a non-trivial way.

For such intersecting sources one then has to solve the equations of motion for the
electromagnetic field strengths that are being sourced. This is rather simple since the
equations are linear and the field strengths for each individual source can simply be added up.
However, Einstein’s equations are non-linear and extremely hard to solve. This has led to
the often-employed simplification of a so-called smearing of the sources over their transverse
directions. Mathematically speaking one replaces the delta function sources with constants,
which dramatically simplifies the equations of motion. If one does that, one would then have
to try to understand how close such a smeared solution is to the actual localized solution
one started with, which is not an easy question to answer [4–6].

One can of course try to solve the equations of motions for intersecting objects without
smearing or by only partially smearing the sources. For example, one could smear only over
the mutual transverse directions of all sources, or one smears the sources only over directions
that are transverse to one and parallel to another, etc. This leads to a plethora of possibilities
that are discussed for example in the review article [7] (see also [8] for an earlier review
article). The upshot of this endeavor is that fully localized solutions are known essentially
only for parallel sources and in all other cases one has to do at least some partial smearing
in order to solve the equations of motion. One exception is the case of two intersecting
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NS5-branes extending along x0, x1, x2, x3, x4, x5 and x0, x1, x6, x7, x8, x9 respectively (without
any mutually transverse directions), see [9] for a discussion of this solution.

Within the swampland program [10] in string theory many flux compactifications have
recently been revisited and scrutinized. In particular, flux compactifications of massive type
IIA give rise to infinite families of weakly coupled 4d N = 1 AdS vacua [11, 12]. The viability
of these solution was questioned for example by the AdS swampland conjecture [13]. One
criticism pertaining to these type IIA flux compactifications is that they are using smeared
orientifolds planes, i.e., the full 10d supergravity equations of motion have not been explicitly
solved [14]. Two papers recently revisited this problem [15, 16] and found approximate
solution with localized sources (see also [17–32] for closely related recent work). These
approximate solutions in [15, 16] arose from an expansion in the large F4-flux quanta and
they capture the leading order backreaction of the localized orientifold planes. However, at
this order the actual effects of the intersection of the O-planes is not taken into account.
It would therefore be extremely important to extend these approximate solutions to higher
order. However, given the importance of intersecting sources in many parts of string theory,
a broader approach is also certainly warranted.

In this paper we study the equations of motion for two localized Dp-branes or Op-
planes in flat space. We take them to intersect perpendicular with four Neumann/Dirichlet
directions and (p − 2) common directions (often denoted Dp ⊥Dp (p − 2)). This means
the setup preserves 8 supercharges, which allows us study the SUSY transformations of
the fermions. Demanding that these vanish, as required for a supersymmetric solution, we
find that a fully localized solution cannot exist for a generic diagonal metric Ansatz, even
when allowing for fully generic fluxes. While this might come as a surprise, similar results
were previously obtained. For example, it was shown in [33] that no solution can exist for
localized, intersecting D3/D5-branes.

The outline of the paper is as follows: in section 2 we review the supergravity solution
for a single source. Then we discuss two perpendicularly intersecting objects in section 3 and
show that the corresponding equations of motion have no solution. In section 4 we discuss
our findings and provide an outlook on important open questions.

2 Review of a single source

In this section we will solve the equations of motion of type II supergravity coupled to a
stack of Dp-branes or an Op-plane in 10d flat space. Such a solution is textbook material [34]
but we review it here to set up our notation and to remind the reader of some features
that will be important in the next section.

2.1 Type II supergravity

We are using the notation and conventions of [4] but we will change to string frame. The
trace reversed Einstein equations are given by

Rab = −2∇a∂bϕ+ 1
4gab

(
2gcd∂cϕ∂dϕ−∇2ϕ

)
+ 1

2 |H|2ab −
1
8gab|H|2 (2.1)

+
∑
n≤5

e2ϕ
(

1
2(1+δn5) |Fn|2ab − n−1

16(1+δn5)gab|Fn|2
)
+ 1

2eϕ
(
T loc

ab − 1
8gabT

loc
)
.
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The sum over n includes all even/odd numbers from 0 to 5 for IIA/IIB. The δn5 is the
Kronecker delta, and squares of q-forms are defined via |A|2αβ = 1

(q−1)!Aαa2...aqAβ
a2...aq ,

|A|2 = 1
q!Aa1...aqA

a1...aq . We restrict to parallel (stacks) of Dp-branes or Op-planes so that
the local stress tensor is given by

T loc
µν = µp gµν δ(p) . (2.2)

Here µp is negative for Dp-branes and positive for an Op-plane.1 δ(p) denotes a delta function
that localizes us on the p+ 1 dimensional world volume of the source. For multiple parallel
Dp-branes or Op-planes δ(p) should be understood as a sum of δ-functions. µ, ν are denoting
the directions along the worldvolume of the source and gµν is the pullback of the spacetime
metric gab to the worldvolume of the source.

The equation of motion for the dilaton is given by

∇2ϕ = 2gab∂aϕ∂bϕ− 1
2 |H|2 +

∑
n<5

5−n
4 e2ϕ|Fn|2 − p−3

4 eϕµpδ(p) . (2.3)

Plugging the above into equation (2.1), we find that it simplifies to

Rab = −2∇a∂bϕ+ 1
2 |H|2ab +

∑
n≤5

e2ϕ
(

1
2(1+δn5) |Fn|2ab − 1

4(1+δn5)gab|Fn|2
)

+1
2eϕ

(
T loc

ab − 1
2gabµpδ(p)

)
. (2.4)

In the absence of NS5-branes, the Bianchi identities for the field strengths are

dH = 0 ,
dFn = H ∧ Fn−2 − µ8−nδn+1(8− n) , (2.5)

where δn+1(8 − n) is a shorthand notation for the delta function δ(8 − n) multiplied by a
normalized (n + 1) volume form transverse to the source.

The equations of motion for the gauge fields in the absence of NSNS sources are given by

d
(
e−2ϕ ⋆ H

)
= −1

2
∑

n≤10
⋆Fn ∧ Fn−2 ,

d (⋆Fn) = −H ∧ ⋆Fn+2 − (−1)
n(n−1)

2 µn−2δ11−n(n− 2) . (2.6)

The equations of motion for the RR fields can be obtained from the Bianchi identities in
equation (2.5) by using that Fn = (−1)

(n−1)(n−2)
2 ⋆ F10−n.

For supersymmetric solutions one has to require that the SUSY transformations of the
fermions vanish. This provides a simpler set of first order equations that often completely

1While we do not need the exact values, the charge and tension of a stack of Np Dp-branes is −Npµ̃p =
−Np(2π

√
α′)−p/

√
α′. The charge and tension of an Op-plane is −2p−5µ̃p in the quotient space. The

quantity appearing in our equations is µp = −Np2κ2
10µ̃p = −Np(2π

√
α′)7−p for a stack of Dp-branes and

µp = 2p−5(2π
√

α′)7−p for an Op-plane.
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fixes the system and thereby automatically solves the Einstein and dilaton equations. We use
the conventions of [2, 35] so that the transformations of the gravitino and gaugino are given by

δϵψa =
(
∂a + 1

4ωa + 1
4HaP

)
ϵ+ 1

8e
ϕ
∑

n

1
1 + δn5

FnΓaPnϵ ,

δϵλ =
(
∂ϕ+ 1

4HP
)
ϵ+ 1

4e
ϕ
∑

n

(−1)n(5− n)FnPnϵ . (2.7)

The sum over n includes all even/odd numbers from 0 to 5 for IIA/IIB. As above a =
0, 1, . . . , 9 is a curved space index and we denote the corresponding tangent space indices
as A,B = 0, 1, . . . , 9. The underlined quantities are given by

ωa = ωa
ABΓAB , Ha = 1

2HabcΓbc , H = 1
3!HabcΓabc ,

Fn = 1
n!Fa1...anΓa1...an , ∂ϕ = ∂aϕΓa , (2.8)

where Γa1a2...an = Γ[a1Γa2 . . .Γan], and we also define Γ10 = Γ012...9. Furthermore, we have that

P = Γ10 in IIA, P = −σ3 in IIB, (2.9)

Pn = (Γ10)
n
2 in IIA, Pn = σ1 for n+ 1

2 even, iσ2 for n+ 1
2 odd, in IIB .

The spinor ϵ in type IIA has 32 real components, which could be split into two 16 component
Majorana-Weyl spinors with opposite chiralities: Γ10ϵ1 = ϵ1, Γ10ϵ2 = −ϵ2. For IIB ϵ =
(ϵ1, ϵ2)T is a doublet of two 16 component Majorana-Weyl spinors with positive chirality so
that Γ10ϵi = ϵi. The Pauli matrices σi above act on this doublet.

In the presence of Dp-branes along the first p+1 directions or when doing the corresponding
orientifold projection we break half of the supersymmetry via the following projection
(involving the flat space Γ-matrices)

ϵ2 = Γ01...pϵ1 . (2.10)

2.2 A single p-dimensional source

We consider first a single Op-plane or a stack of Dp-branes. These localized objects are
magnetic sources for F8−p due to their Chern-Simons coupling to Cp+1. So, the only sourced
RR-field is F8−p = ⋆Fp+2. We can set all other RR-fields and the NSNS-flux H equal to zero.

We can choose our coordinates in such a way that the Op-plane or the stack of Dp-branes
extend along xµ with µ = 0, 1, . . . , p and are located at the origin in the transverse directions
xi = 0, for i = p + 1, p + 2, . . . , 9. This then preserves an SO(p, 1) × SO(9 − p) symmetry
group, where the first SO(p, 1) factor is enhanced to the full Poincaré group. The most
general metric Ansatz that is compatible with these symmetries is

g = e2A1(r)ηµνdx
µdxν + e2A2(r)δijdx

idxj . (2.11)

Here e2A1(r) and e2A2(r) can only depend on r =
√
(xp+1)2 + . . .+ (x9)2, the overall transverse

distance from the localized source.
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The solution to the equations above in subsection 2.1 can be found in the textbook [34,
(10.38)] and we write it as

e−4A1(r) = e4A2(r) = 1− µ̃p

r7−p
, (2.12)

eϕ(r) = eϕ0+(p−3)A1(r) , (2.13)

Cp+1(r) =
(
1− e4A1(r)

)
e−ϕ0 dx0 ∧ dx1 ∧ . . . ∧ dxp . (2.14)

Here eϕ0 is the asymptotic value of the dilaton infinitely far away from the source. We fixed
the metric to be asymptotically Minkowski and we chose Cp+1(r) to asymptotically vanish.
We also defined µ̃p = (−1)p+1eϕ0 Γ( 9−p

2 )

2(7−p)π
9−p

2
µp.

Note that due to the minus sign in equation (2.12) and the fact that µ̃p is positive for

an Op-plane, there is actually a singularity at a finite distance r = µ̃
1

7−p
p from the Op-plane.

This singularity is at a distance that is of the order of the string length, ls = 2π
√
α′. At this

point stringy corrections modify the equations of motion and remove this singularity.
Since we will need this later, we derive here explicitly the solution to the non-trivial

Bianchi identity (cf. equation (2.5)). We rewrite it using the transverse metric determinant
g9−p = e2(9−p)A2 as follows

dF8−p = −µp δ9−p(p)
= −µp δ9−p(p) ⋆9−p 1

= −µp
1

√
g9−p

δ(xp+1)δ(xp+2) . . . δ(x9)√g9−p dx
p+1 ∧ dxp+2 ∧ . . . ∧ dx9

= −µp δ(xp+1)δ(xp+2) . . . δ(x9) dxp+1 ∧ dxp+2 ∧ . . . ∧ dx9

= −µp δ̃(r⃗) ⋆̃9−p1 . (2.15)

The tilde indicates that we are working with the flat space metric so there is no warp factor
dependence anymore. The solution is given by

F8−p = ⋆̃9−p d

(
µ̃p

r7−p

)
, (2.16)

since

dF8−p = d⋆̃9−pd

(
µ̃p

r7−p

)
= (−1)p(⋆̃9−p1)∇̃2

(
µ̃p

r7−p

)

= (−1)p+1(⋆̃9−p1)µ̃p
2(7− p)π

9−p
2

Γ(9−p
2 )

δ̃(r⃗)

= (⋆̃9−p1)µp δ̃(r⃗) . (2.17)

Summarizing, we see that it is possible to solve the supergravity equations exactly for a
single source. Similarly, one can solve the equations of motion for parallel sources that are
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located not necessarily at r⃗ = 0 but at different positions r⃗ (α)0 , α = 1, 2, . . .. In this case we
can simply add up the individual solutions for each source and the solution is given by

e−4A1(r⃗) = e4A2(r⃗) = 1−
∑

α

µ̃
(α)
p∣∣r⃗ − r⃗
(α)
0
∣∣7−p

,

eϕ(r⃗) = eϕ0+(p−3)A1(r⃗) ,

Cp+1(r⃗) =
(
1− e4A1(r⃗)

)
e−ϕ0 dx0 ∧ dx1 ∧ . . . ∧ dxp . (2.18)

Note that the Bianchi identities in equation (2.5) are linear and we can always simply add
up the field strengths for any arbitrarily complicated configuration of sources. However, it
is highly unusual, and special to this case of parallel sources, that the non-linear general
relativity equation in (2.1) is also solved if we simply add up solutions.

3 Two perpendicularly intersecting sources

In this section we want to solve the equations of motion for two perpendicularly intersecting
p-dimensional sources in flat space. These could be either two Op-planes or two stacks of
Dp-branes or one of each. We restrict to 1 ≤ p ≤ 6 so that we can have four directions that are
along one of the objects and transverse to the other and there is at least one common transverse
direction. The configuration that preserves eight supercharges in flat space is shown below.

Spacetime directions 0 . . . p− 2 p− 1 p p+ 1 p+ 2 p+ 3 . . . 9
First source × × × × × - - - - -
Second source × × × - - × × - - -

The above intersecting sources respect an SO(p − 2, 1) × SO(2) × SO(2) × SO(7 − p)
symmetry.2 The first SO(p − 2, 1) group is actually enhanced to the full Poincaré group.
This symmetry group together with the specific source configuration shown above allows the
metric (warp factors) to only depend on ρ1 =

√
(xp+1)2 + (xp+2)2, ρ2 =

√
(xp−1)2 + (xp)2

and ρT =
√
(xp+3)2 + . . .+ (x9)2. We make the following diagonal metric Ansatz

ds2 = e2A1(ρ1,ρ2,ρT )ηµνdx
µdxν + e2A2(ρ1,ρ2,ρT )

(
(dxp−1)2 + (dxp)2

)
(3.1)

+ e2A3(ρ1,ρ2,ρT )
(
(dxp+1)2 + (dxp+2)2

)
+ e2A4(ρ1,ρ2,ρT )

(
(dxp+3)2 + . . .+ (dx9)2

)
,

with µ, ν = 0, 1, . . . , p − 2. Poincaré invariance ensures that the first part of the metric is
generic and there cannot be any off-diagonal terms like for example gµρ1dx

µdρ1 since there
are no invariant constant vectors of SO(p − 2, 1). Non-constant vectors like ηµνx

µdxν are
forbidden by translational invariance. However, in general there could be terms involving
dρ1dρT , etc. and also terms involving the corresponding angles dθ1 and dθ2 when going to
polar coordinates, (xp+1, xp+2) → (ρ1, θ1) and (xp−1, xp) → (ρ2, θ2). Here we are restricting
to a diagonal metric to make the problem tractable. Since the source setup is invariant
under the exchanges xp−1 ↔ xp and xp+1 ↔ xp+2 we can impose the same symmetry on the

2For the special case of p = 1 there are no directions common to both sources and therefore no SO(p − 2, 1)
factor. However, this does not affect our reasoning.
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metric Ansatz, making equation (3.1) the most general diagonal metric Ansatz compatible
with the source configuration.

Summarizing, the most general metric Ansatz compatible with the above two intersecting
sources has six off-diagonal components gijdx

idxj , for i ̸= j and i, j ∈ {p− 1, p, p+1, p+2}.3

Above we have chosen to set these six off-diagonal metric components to zero to make the
problem tractable. Below we will ultimately allow for the most generic flux configuration.
Thus, we make only restrictions on the form of the metric but not on the possible RR- or
NSNS-fluxes.

We choose to work with Cartesian coordinates that have the following property that
will be important below

∂xp−1e2An(ρ1,ρ2,ρT ) = xp−1

ρ2
∂ρ2e

2An(ρ1,ρ2,ρT ) ,

∂xpe2An(ρ1,ρ2,ρT ) = xp

ρ2
∂ρ2e

2An(ρ1,ρ2,ρT ) ,

∂xp+1e2An(ρ1,ρ2,ρT ) = xp+1

ρ1
∂ρ1e

2An(ρ1,ρ2,ρT ) ,

∂xp+2e2An(ρ1,ρ2,ρT ) = xp+2

ρ1
∂ρ1e

2An(ρ1,ρ2,ρT ) . (3.2)

For the dilaton the most general Ansatz is ϕ = ϕ(ρ1, ρ2, ρT ). We also define the transverse
coordinates for the two O-planes

r1 =
√
ρ21 + ρ2T =

√
(xp+1)2 + (xp+2)2 + (xp+3)2 + . . .+ (x9)2 ,

r2 =
√
ρ22 + ρ2T =

√
(xp−1)2 + (xp)2 + (xp+3)2 + . . .+ (x9)2 . (3.3)

Using the metric Ansatz as given in equation (3.1), we seek the solution for the above
source configuration. We first solve the linear Bianchi identity (cf. equation (2.5))

dF8−p = −µ(1)p δ
(1)
9−p(p1)− µ(2)p δ

(2)
9−p(p2) . (3.4)

We solve the above equation by writing F8−p = F
(1)
8−p + F

(2)
8−p + F

(c)
8−p, where dF

(c)
8−p = 0

is closed4 and

dF
(1)
8−p = −µ(1)p δ

(1)
9−p(p1) and dF

(2)
8−p = −µ(2)p δ

(2)
9−p(p2) . (3.5)

So, this manifests the linearity of the electromagnetic equations and allows us to simply add
up the two fields strengths for the two sources, i.e., we can add up the results for two single
sources in flat space. The solution for the first source is (cf. equation (2.16))

F
(1)
8−p = ⋆̃

(1)
9−pd

(
µ̃
(1)
p

r7−p
1

)
. (3.6)

3Off-diagonal entries of the form gim with m ∈ {p + 3, . . . , 9} that are compatible with the SO(7 − p)
symmetry can be removed by coordinate redefinitions.

4We are indebted to Daniel Junghans for pointing out this additional closed piece in F8−p.
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From equation (3.6) we can read off the non-zero components of F (1)
8−p

F
(1)
8−p =⋆̃(1)9−pd

(
µ̃
(1)
p

r7−p
1

)

=− µ̃
(1)
p (7− p)
r8−p
1

⋆̃
(1)
9−pdr1

=− µ̃
(1)
p (7− p)
r9−p
1

⋆̃
(1)
9−p

(
xp+1dxp+1 + xp+2dxp+2 + . . .+ x9dx9

)
= µ̃

(1)
p (7− p)
r9−p
1

(
xp+1dxp+2 ∧ dxp+3 ∧ . . . ∧ dx9

− xp+2dxp+1 ∧ dxp+3 ∧ . . . ∧ dx9

+ . . .

+ (−1)p
(
x9dxp+1 ∧ dxp+2 ∧ . . . ∧ dx8

))
. (3.7)

Explicitly we find the following component that we will use below

(
F

(1)
8−p

)
(p+1)(p+3)(p+4)...9

= − µ̃
(1)
p (7− p)
r9−p
1

xp+2 . (3.8)

F
(2)
2 can be obtained by exchanging xp+1, xp+2 with xp−1, xp in equation (3.7). In particular,

it has the component

(
F

(2)
8−p

)
(p−1)(p+3)(p+4)...9

= − µ̃
(2)
p (7− p)
r9−p
2

xp . (3.9)

Note that the above F8−p = F
(1)
8−p + F

(2)
8−p + F

(c)
8−p is the most generic and exact solution to

the Bianchi identity in equation (2.5). It is independent of our particular metric Ansatz
since the warp factors do not appear.

3.1 The Einstein and dilaton equations

Now we can look at Einstein’s equations from equation (2.1) that reduce to

Rab =− 2∇a∂bϕ+ 1
4gab(2gcd∂cϕ∂dϕ−∇2ϕ) (3.10)

e2ϕ

(
1

2(1 + δ(8−p))5)
|F8−p|2ab −

7− p

16(1 + δ(8−p)5)
gab|F8−p|2

)
+ 1

2e
ϕ
(
T loc

ab − 1
8gabT

loc
)
.

Calculating the Ricci scalar for the above metric Ansatz in equation (3.1) we find for a = p−1,
b = p+ 1 (essentially from equation (3.2) but also via an explicit computation) that

R(p−1)(p+1) = xp−1xp+1fR(ρ1, ρ2, ρT ) , (3.11)

where fR(ρ1, ρ2, ρ3) is a specific function that one can calculate from the above metric Ansatz
in equation (3.1). The important point is that the entire R(p−1)(p+1) component of the Ricci
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tensor is proportional to derivatives with respect to xp−1 and xp+1. This then leads (cf.
equation (3.2)) to the above prefactor xp−1xp+1 in front of fR(ρ1, ρ2, ρ3).

Likewise we find that the dilaton Ansatz ϕ = ϕ(ρ1, ρ2, ρT ) leads to

−2∇p−1∂p+1ϕ = xp−1xp+1fϕ(ρ1, ρ2, ρT ) . (3.12)

Let us assume first that the F8−p-flux is simply the superposition of the fluxes from the two
single sources as might be expected due to the linearity of the corresponding equation (3.4).
That means we are setting the closed piece F (c)

8−p to zero in the F8−p-flux. This also means
that neither the other RR-fluxes nor the H-flux are sourced.

All non-diagonal entries of the metric in equation (3.1) vanish and the source terms
vanish away from the sources as well. Therefore, the off-diagonal entry of the Einstein
equation (3.10) for (ab) = (p − 1 p + 1) is given by

Rp−1 p+1 = −2∇p−1∂p+1ϕ+ 1
2e

2ϕ|F8−p|2p−1 p+1

xp−1xp+1fR(ρ1, ρ2, ρT ) = xp−1xp+1fϕ(ρ1, ρ2, ρT )

+ e2ϕ 1
2(p− 1)!F8−p,p−1 a1...a7−pg

a1b1 . . . ga7−pb7−pF8−p,p+1 b1...b7−p

= xp−1xp+1fϕ(ρ1, ρ2, ρT )

+ e2ϕ 1
2F8−p,p−1 p+3...9g

p+3p+3 . . . g99F8−p,p+1 p+3...9

= xp−1xp+1fϕ(ρ1, ρ2, ρT )

+ e2ϕ 1
2 µ̃

(2)
p (7− p) xp

r29−p
e−2(7−p)A4 µ̃(1)p (7− p) x

p+2

r19−p
. (3.13)

We rewrite this as

xp−1xp+1(fR − fϕ) = xpxp+2
(
e2ϕ−2(7−p)A4

2
µ̃
(1)
p (7− p)
r19−p

µ̃
(2)
p (7− p)
r29−p

)
. (3.14)

The above equation has to be true for all xp−1, xp, xp+1, xp+2. In particular, the left-hand-side
is odd under the sign flips xp−1 → −xp−1 or xp+1 → −xp+1 and even under the sign flips
xp → −xp or xp+2 → −xp+2. Since ϕ, A4, r1 and r2 are all functions of (ρ1, ρ2, ρT ), we find
that the symmetry properties of the right-hand-side are exactly opposite. This means the
left- and right-hand-side have to vanish independently. Since the dilaton and the component
e2A4 of the diagonal metric cannot vanish everywhere we conclude that the vanishing of
the right-hand-side implies that

µ̃(1)p µ̃(2)p = 0 . (3.15)

The above equation implies that one of the two sources is absent. Or, if we insist that
both of the intersecting sources are present, we have shown that there is no solution to the
supergravity equations of motion for our two intersecting localized sources with our generic
diagonal metric Ansatz. To make this proof fully general, we have to allow for the closed
piece F (c)

8−p as solution to the Bianchi identity (3.4). Then this closed form piece can source
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the H-flux and other RR-fluxes via the equations of motion for the fluxes given above in (2.6).
Thus, in order to give a full proof we have to actually allow for all possible RR-fluxes and the
most generic H-flux compatible with our SO(p− 2, 1)×SO(2)×SO(2)×SO(7− p) symmetry
group. This makes the Einstein and dilaton equations too complicated to analyze directly.
Therefore, in the next subsection we study the spinor equations and show that there is indeed
no supersymmetric localized solution to the supergravity equations of motion.

3.2 Spinor equations for the most generic fluxes

Let us discuss the most generic forms that are invariant under the assumed symmetry group
SO(p − 2, 1) × SO(2) × SO(2) × SO(7 − p) for the backreacted solution. Since the first
factor SO(p− 2, 1) is enhanced to the full Poincaré group, the only invariant forms are the
always present 0-form and its Hodge dual which is the volume form that is proportional to
dx0∧dx1∧ . . .∧dxp−2. The other three spaces all have an SO(n) symmetry so we can discuss
them together: in addition to the 0-form and the dual volume form, there are two more forms.
There is one 1-form which is d acting on the radial coordinates, dρ1, dρ2, dρT in our case, and
then there is the dual (n−1)-form. For an SO(2) symmetry this would be another 1-form, which
we denote dθ1 and dθ2, where (ρi, θi) are simply polar coordinates. For the SO(7−p)-symmetry
we would go to spherical coordinates (ρT , θ

(1)
T , θ

(2)
T , . . . , θ

(6−p)
T ) and an invariant (6− p)-form

is given by sin(θ(1)T )5−p sin(θ(2)T )4−p . . . sin(θ(4−p)
T )2 sin(θ(5−p)

T ) dθ(1)T ∧ θ(2)T ∧ . . .∧ θ(6−p)
T . Lastly,

we note that all functions like the metric, the warp factors, the dilaton or the prefactors
that appear in front of the forms when spelling out the fluxes, can only depend on ρ1, ρ2, ρT

due to the preserved symmetry.
Let us give a concrete example to clarify the above discussion. We choose p = 6 and

want to find a localized solution that describes two O6-planes (or D6-branes) that extend
along the directions (x0, x1, x2, x3, x4, x5, x6) and (x0, x1, x2, x3, x4, x7, x8), respectively. We
take them to be localized at the origin in their transverse spaces. We assume that the metric
is given by equation (3.1) above for p = 6. We take all warp factors and the dilaton to
be functions of the three variables

ρ1 =
√
(x5)2 + (x6)2 , ρ2 =

√
(x7)2 + (x8)2 , ρT = x9 . (3.16)

We then make the most generic flux Ansatz that is compatible with an SO(4, 1)×SO(2)×SO(2)
symmetry group

F2 = F
(1)
2 + F

(2)
2 + F

(c)
2 ,

F
(1)
2 = ⋆̃

(1)
3 d

 µ̃
(1)
6√

ρ21 + ρ2T

 ,

F
(2)
2 = ⋆̃

(2)
3 d

 µ̃
(2)
6√

ρ22 + ρ2T

 ,

F
(c)
2 =

10∑
i=1

f
(i)
2 (ρ1, ρ2, ρT )Y 2

i ,
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F4 =
5∑

i=1
f
(i)
4 (ρ1, ρ2, ρT )Y 4

i ,

H =
10∑

i=1
h(i)(ρ1, ρ2, ρT )Y 3

i . (3.17)

Here the f (i)2 , f (i)4 , h(i) are unknown functions and the Y 2
i , Y 3

i , Y 4
i denote the invariant

and closed forms that form a basis of invariant forms. Since the f (i)2 (ρ1, ρ2, ρT ) are generic
functions and the Y 2

i include for example dθ1∧dθ2, this Ansatz does not yet satisfy dF (c)
2 = 0.

We furthermore allow for a constant and non-zero F0. The two 16 component spinors
that are present in 10d flat space are constrained due to the presence of the O6-planes (or
D6-branes) and have to satisfy5

ϵ2 = Γ0123456ϵ1 ,

ϵ2 = Γ0123478ϵ1 . (3.18)

This breaks one quarter of the supersymmetry and leaves us with 8 real independent spinor
components. The fully backreacted solution should preserve these eight supercharges. We
therefore assume that these eight spinors are independent (and also functions of (ρ1, ρ2, ρT )).

We now demand that there is a supersymmetric solution and therefore demand that
the spinor transformations in equation (2.7) satisfy δϵψa = δϵλ = 0. The latter condition
δϵλ = 0 fixes the first derivatives of the dilaton in terms of the warp factors and components
of the F2 flux f (i)2 . It also sets two of the f (i)2 to zero and relates four others via two linear
relations. Furthermore, it imposes some constraints on the h(i) and fixes some f (i)4 in terms
of the h(i), F0, the warp factors and the dilaton. However, the condition δϵψa = 0 is far
more constraining. It sets all the first derivatives of the spinors ϵ1 and ϵ2 either to zero or to
functions involving the sources µ̃(i)6 , f (i)2 as well as the dilaton and warp factors. However,
there are also additional constraints that require F0 = F4 = H = 0. Combining all the
constraints, the only non-vanishing flux F2 has to be of the following form

F2= ⋆̃(1)3 d

 µ̃
(1)
6√

ρ21+ρ2T

+⋆̃(2)3 d

 µ̃
(2)
6√

ρ22+ρ2T

+f (3)2 (ρ1,ρ2,ρT )dθ1∧dρ1

+f (8)2 (ρ1,ρ2,ρT )dθ1∧dρT +f (7)2 (ρ1,ρ2,ρT )dθ2∧dρ2+f (9)2 (ρ1,ρ2,ρT )dθ2∧dρT

=
(
f
(3)
2 (ρ1,ρ2,ρT )+

µ6,1ρ1ρT

(ρ21+ρ2T )
3
2

)
dθ1∧dρ1+

(
f
(8)
2 (ρ1,ρ2,ρT )−

µ6,1ρ
2
1

(ρ22+ρ2T )
3
2

)
dθ1∧dρT

+
(
f
(7)
2 (ρ1,ρ2,ρT )+

µ6,2ρ2ρT

(ρ21+ρ2T )
3
2

)
dθ2∧dρ2+

(
f
(9)
2 (ρ1,ρ2,ρT )−

µ6,2ρ
2
2

(ρ22+ρ2T )
3
2

)
dθ2∧dρT .

(3.19)
5We assume that these projection conditions imposed on the tangent space Γ-matrices and tangent space

spinors ϵi are unchanged in the backreacted solution, as is the case for a single source. If this is not true
for the backreacted solutions for intersecting sources, then the backreacted solutions would be dramatically
different from the setup in the probe limit, with potentially far reaching consequences for all string theory
setups that use intersecting sources. We do not allow for such a possibility here.

– 11 –



J
H
E
P
0
6
(
2
0
2
4
)
0
8
3

Recall that we have made a fully generic Ansatz for the closed piece in F2 and we have
not yet imposed that it is actually closed.

Let us briefly discuss the above solution in equation (3.19). We see that without imposing
the Bianchi identities and equations of motions for the fluxes we can only have a very limited
number of flux components f (i)2 (ρ1, ρ2, ρT ) in addition to the source terms. These extra
flux components actually combine with the source terms which makes perfect sense. For
example, we know that there are solutions for a single source and we can for example use the
f
(i)
2 (ρ1, ρ2, ρT ) to remove one of the sources and then we actually reproduce the result for a

single source discussed above in subsection 2.2. Here however, we are interested in solutions
that describe two intersecting sources and we therefore do not want to cancel any source
terms. We therefore proceed to study the remaining equations of motion.

We want that the source terms containing µ6,1 and µ6,2 give rise to the delta function
sources and that the rest is closed (see the discussion around equation (3.4) above). Thus,
we have to demand that dF2 = 0 away from the source and therefore we find that

∂ρ2f
(3)
2 (ρ1, ρ2, ρT ) = 0 ,

∂ρ1f
(7)
2 (ρ1, ρ2, ρT ) = 0 ,

∂ρ2f
(8)
2 (ρ1, ρ2, ρT ) = 0 ,

∂ρ1f
(9)
2 (ρ1, ρ2, ρT ) = 0 . (3.20)

Additionally, the spinor equations in (2.7) did not only set most of the flux components
to zero but they also fixed the first derivatives of the warp factors via the spin connection
term in δϵψa = 0 and the first derivatives of the dilaton via δϵλ = 0. Concretely, they
fix ∂ρ1e

A2(ρ1,ρ2,ρT ) and ∂ρ2e
A2(ρ1,ρ2,ρT ) to be two different functions of the warp factors, the

dilaton, the f (i)2 (ρ1, ρ2, ρT ) and the source terms

∂ρ1e
A2(ρ1,ρ2,ρT ) = F1(eAi , eϕ, f

(i)
2 , ρ1, ρ2, ρT ) ,

∂ρ2e
A2(ρ1,ρ2,ρT ) = F2(eAi , eϕ, f

(i)
2 , ρ1, ρ2, ρT ) . (3.21)

Now we can impose the conditions above in equation (3.20) and the following consistency
condition

0 = ∂ρ2∂ρ1e
A2(ρ1,ρ2,ρT ) − ∂ρ1∂ρ2e

A2(ρ1,ρ2,ρT )

= ∂ρ2F1(eAi , eϕ, f
(i)
2 , ρ1, ρ2, ρT )− ∂ρ1F2(eAi , eϕ, f

(i)
2 , ρ1, ρ2, ρT )

= eA2−2A4+2ϕ

2ρ1ρ2

f (8)2 (ρ1, ρT )−
µ6,1ρ

2
1(

ρ21 + ρ2T
) 3

2

f (9)2 (ρ2, ρT )−
µ6,2ρ

2
2(

ρ22 + ρ2T
) 3

2

 . (3.22)

Since the prefactor in the above equation cannot vanish everywhere, we see thatf (8)2 (ρ1, ρT )−
µ6,1ρ

2
1(

ρ21 + ρ2T
) 3

2

f (9)2 (ρ2, ρT )−
µ6,2ρ

2
2(

ρ22 + ρ2T
) 3

2

 = 0 . (3.23)

This shows that there is no fully localized solution with our generic diagonal metric Ansatz.
The above equation requires us to at least partially remove (or smear) one of the sources.
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Let us pursue the above further by setting without loss of generality

f
(9)
2 (ρ2, ρT ) =

µ6,2ρ
2
2(

ρ22 + ρ2T
) 3

2
. (3.24)

This cancels the last term in F2 above in equation (3.19) and the closure dF2 = 0 then
imposes the additional constraint that

f
(7)
2 (ρ1, ρ2, ρT ) =

µ6,2ρ
2
2

(ρ22 + ρ2T )
3
2
+ f(ρ2) , (3.25)

where f(ρ2) is an undetermined function. With that F2 becomes

F2 =
(
f
(3)
2 (ρ1, ρT ) +

µ6,1ρ1ρT

(ρ21 + ρ2T )
3
2

)
dθ1 ∧ dρ1

+
(
f
(8)
2 (ρ1, ρT )−

µ6,1ρ
2
1

(ρ22 + ρ2T )
3
2

)
dθ1 ∧ dρT

+f(ρ2)dθ2 ∧ dρT . (3.26)

So, we have effectively removed the second source completely. Actually the equations of motion
for F2 fix f(ρ2) = cρ2 and using that in the solution to the spinor equations, we find that all
derivatives of the warp factors and the dilaton with respect to ρ2 vanish: ∂ρ2e

Ai = ∂ρ2e
ϕ = 0.

This is indicative of a smeared source and we indeed see from

dF2 ⊃ d(f(ρ2)dθ2 ∧ dρT ) = c dρ2 ∧ dθ2 ∧ dρT , (3.27)

that we can have at best a smeared second source in which the delta function source (see
equation (3.4)) is replaced with the constant c. Thus, in addition to proving the absence of a
solution with two fully localized sources, our equations pass consistency checks and do not
forbid solutions with partially smeared sources.

We have repeated the above analysis for two intersecting sources with p = 1, 2, 3, 4, 5 and
explicitly reproduced the same absence of localized solutions. This might have been expected
from T-duality invariance of type II string theory, however, there is an important subtlety: if
we have an Op-plane (or a Dp-brane) in flat space, then we can T-dualize along any of its
worldvolume directions. The reason is that the dilaton, metric and everything else does not
depend on these coordinates. This leads to an O(p− 1)-plane (or a D(p− 1)-brane) that is
actually smeared over the direction we T-dualized. Similarly, we cannot T-dualize along a
transverse direction since these are not isometries. We would have to first smear the source
along this transverse direction and then we can T-dualize to get a (p+ 1)-dimensional source.
So, strictly speaking we cannot use T-duality invariance in the strict sense and therefore we
checked the equations for each p = 1, 2, 3, 4, 5, 6 explicitly.

4 Discussion and outlook

The above surprising result, that shows the absence of localized supergravity solutions for
intersecting objects in flat space, raises many important questions: does the result also
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hold for a generic non-diagonal metric? Can such setups be described explicitly in the full
string theory? Does our result carry over to compactifications? In this section we will
briefly discuss these questions. However, we will not be able to answer them and leave
many avenues for further research.

First it seems clear that intersecting sources can arise in string theory and corresponding
solutions will exist. Our two intersecting Op-planes can arise from a single orientifold
projection combined with a Z2 orbifold of flat space. For example, we can do an orientifold
involution consisting of the worldsheet parity operator Ωp and a spatial involution that flips
the signs of x7, x8, x9. This leads to a single O6-plane localized at x7 = x8 = x9 = 0. Doing
a Z2 orbifold that flips the signs of x5, x6, x7, x8 then introduces a second O6-plane localized
at x5 = x6 = x9 = 0. In principle one should be able to study the full string theory on such
an orientifolded orbifold of flat space. Supergravity as a low energy approximation of the
full string theory might simply not allow for a solution because we neglect higher derivative
corrections, string loop corrections and/or did not include the full spectrum of the string states.

For the case of intersecting stacks of D-branes in particular we neglected all the open
strings on the D-branes. These open strings give rise to gauge theories and one can study
the dynamics of these gauge theories. It is possible that the gauge dynamics leads to a
(partial) smearing of the D-branes and partially smeared solutions do certainly exist, see for
example [36–39]. Some of these papers also discuss the near core (near horizon) limit of these
brane setups and manage to find localized solutions in this limit. For the particular case of two
intersecting D6-branes or O6-planes one can also try to lift things to M-theory and try to find
a solution in 11d supergravity. Such a lift of two intersecting D6-branes was discussed in [40].

Let us mention that it is known that multiplying together the two harmonic functions
(warp-factors) for the two sources cannot solve the localized equations of motion but rather
requires smearing (see for example [36, eqs. (1)-(2)] and references therein). We reproduce
the same result with a generic diagonal metric Ansatz. A loophole to our findings is exploited
by the only (to us) known fully localized supergravity solution of two intersecting branes [9].
The two intersecting NS5 branes in this setup have no mutually transverse direction since
they extend along 012345 and 016789. In our equations we crucially use the fact that there
are 7− p > 0 transverse directions.6 It would be interesting to study further brane setups
without mutually transverse directions.

We crucially assumed here that there is an unbroken SO(p−2, 1)×SO(2)×SO(2)×SO(7−p)
symmetry group. This seems to be justified for static objects or in the probe limit but it is
possible that the dynamics of the D-branes (or the dynamics of O-planes at strong coupling)
could break this symmetry group. It would therefore be interesting to see whether one can
relax the requirement of this large unbroken symmetry group. Here let us note that [33]
discusses the D3/D5-brane intersection, where the D5 brane extends along x0, x1, x2, x3, x4, x5

and the D3-brane along x0, x1, x2, x6. In this case the authors only assume the presence
of an SO(2, 1) Poincaré group and an SO(3)-symmetry group in the mutually transverse
x7, x8, x9 directions. While solving the equations of motion they discover the necessary
presence of an extra SO(3)-symmetry acting on the x3, x4, x5 directions, before they find that

6Recall that here we restrict ourselves to 1 ≤ p ≤ 6. It thus might be possible to write down fully localized
solutions for p = 7 but such setups are better described in F-theory [41].
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no localized solution exists. Thus, it is conceivable that our result might still hold even if we
were to give up the SO(2)× SO(2) symmetry and/or allow for a non-diagonal metric along
the corresponding directions. It would be interesting to check this explicitly in particular
given that the orbifold blow ups discussed recently in [31] would break this SO(2)× SO(2)
symmetry. In our setup one could glue in a P1 to remove the orbifold singularity and this
would correspond to giving a non-zero vev to the Kähler modulus that controls its size.
However, it is unclear to us that this would happen dynamically and what could fix the
scale of a non-zero vev for the Kähler modulus.

A different approach to solving the equations of motion for intersecting sources was
pursued in [42, 43]. In those papers it is required that the sources preserve a certain amount
of supersymmetry and then the constraints from the equations of motion and the vanishing
of the supersymmetry transformations is being studied. The sources are then derived from
the equations of motion rather than being specified from the outset. This seems to allow
for localized solutions that asymptotically become flat space, but not for our specific set
of two perpendicularly intersecting sources.7

It is a far stretch to go from our setup of two intersecting sources in flat space to a full
compactification of 10d supergravity like the massive type IIA flux compactifications discussed
in [11, 12]. However, we note here that the two papers [15, 16] only worked to first order in
the sources, i.e., in our language to the first order in the µ̃p. This means that contradictions
like equations (3.15) or (3.23) above that are quadratic would not be visible when working at
linear order. It would be therefore of great importance to extend the work of [15, 16] to higher
order. Already in the simplest case of a toroidal compactification we note that the preserved
symmetry group gets dramatically reduced and it is conceivable that then localized solutions
exist. We plan to study this as well as a generic off-diagonal metric Ansatz in the future.
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