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Differential Equation—Constrained Optimization with Stochasticity*
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Abstract. Most inverse problems from physical sciences are formulated as PDE-constrained optimization prob-
lems. This involves identifying unknown parameters in equations by optimizing the model to gen-
erate PDE solutions that closely match measured data. The formulation is powerful and widely
used in many science and engineering fields. However, one crucial assumption is that the unknown
parameter must be deterministic. In reality, however, many problems are stochastic in nature, and
the unknown parameter is random. The challenge then becomes recovering the full distribution of
this unknown random parameter. It is a much more complex task. In this paper, we examine this
problem in a general setting. In particular, we conceptualize the PDE solver as a push-forward
map that pushes the parameter distribution to the generated data distribution. In this way, the
SDE-constrained optimization translates to minimizing the distance between the generated distri-
bution and the measurement distribution. We then formulate a gradient flow equation to seek the
ground-truth parameter probability distribution. This opens up a new paradigm for extending many
techniques in PDE-constrained optimization to optimization for systems with stochasticity.
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1. Introduction. We study the problem of inferring the random parameters in a differen-
tial equation. In particular, we ask,

How do we recover the distribution of an unknown random parameter in a differential
equation from that of measurements?

The problem comes from the fact that many differential equations are equipped with
parameters that are random in nature. Even with a fixed set of boundary/initial conditions
and measuring operators, the measurements are nevertheless random, with the randomness
coming from different realizations of the parameter. Aligned with other inverse problems that
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infer unknown parameters from measurements, we now aim to recover the distribution of the
parameters from the distribution of measurements. Therefore, the problem under study is the
stochastic extension of the deterministic inverse problems, particularly the PDE-constrained
optimization.

In the deterministic and finite-dimensional setting, many problems are formulated as

(1.1) y=Gu), G:ACR™=>RCR".

This is to feed a system, described by G, with an m-dimensional parameter u, to produce the
data y € R™. The set A stands for all the admissible parameters, and R is the range of G. The
inverse problem is to revert the process. The model G is still given, but the goal is to infer
the parameter u using the measured data y*. Potentially, y* contains measurement error.

Inverse problems present many challenges. To determine u uniquely from y*, one requires
G to be injective and y* to lie within the range of G. However, as elegantly summarized in [29],
this is not typically the case in practice. Therefore, various techniques have been introduced to
approximate the inference, and optimization is one of the most popular numerical strategies.
Specifically, the goal is to find the configuration of u that best matches the data y*. Denoting
D as the metric or divergence applied to the data range R, we search for u* such that

(1.2) uw*eargmin D(y*,G(u)) =: L(u) .

Although this minimization formulation solves the original inverse problem when y* falls
within the range of G, it leaves the problem of “invertibility” unresolved. This is because
this formulation may have many, or even infinitely many, minimum points. Furthermore,
this formulation introduces an additional layer of difficulty regarding “achievability”: even if
the landscape of the loss function guarantees a unique minimizer, conventional optimization
strategies may not be able to find it. Nonetheless, among the many optimization algorithms
available, it is common to use gradient descent (GD) or other first-order optimization methods
to search for the optimizer if a good initial guess is provided. In the continuous setting, the
iteration number in GD is transformed to the time variable s, and the corresponding gradient
flow is written as follows:

du
1. — =—aV,L,
(1.3) s aV

where « signifies the rate and can be adjusted according to the user’s preferences. When u is
a function, V, L denotes the functional derivative of L with respect to w.

Many real-world problems can be formulated using (1.2), such as PDE-constrained opti-
mization problems. In such problems, G is the map induced by the underlying PDE, which
maps the PDE parameter to the measurements. For instance, consider f; as the solution to a
PDE characterized by the PDE operator £(u) that is parameterized by the coefficient u with
the 7th source term S;, and let M denote its jth measurement operator, 1 <¢ <1, 1<j<J.
Then, the measurement is an I x J matrix with its ij-h entry as (G(u)),; = M;(f;). In this
case, (1.2) can be naturally represented as a PDE-constrained optimization problem:

* 1 2 :
(1.4) u*€argmin_— Z IM;(f;) —di;|*  subject to  L(u)[fi] =S;.
ij
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As with the more general formulation (1.2), the PDE-constrained optimization problem (1.4)
may not always be solvable. However, if we attempt to solve it using GD or its flow formulation
(1.3), the updating formula necessitates the computation of the gradient, which is typically
done by solving both the forward and the adjoint equations: L(u)[f;] =S; and L£*(u)[g;] = v},
with 9; determined by choice of the objective function. Over the years, this problem has
attracted significant interest from various scientific communities, and many aspects of gradient
computation have been investigated; see the book [14].

Building upon this framework, we are interested in a class of problems where the unknown
parameter v is stochastic. Since u is known to be random a priori, we aim to infer its
distribution, denoted by p,. Due to the inherent randomness in u, the measurement is also
random. By using (1.1), we can write the distribution of data by regarding G as a push-forward
map:

Py = G4Pu -

Consequently, the inverse problem is to infer the ground-truth distribution of u, denoted by pj;,
using the measured data distribution, denoted by py. Denoting D as the metric or divergence
used to measure data discrepancy in the space of probability measures, we aim to find p}, such
that its push-forward matches p; as closely as possible. Similar to (1.4), G can be induced by
a PDE, which leads to the following problem of differential equation—constrained optimization
with stochasticity:

(1.5) py, € argmin D(Gypu, py) -

As with the PDE-constrained optimization, whether the optimizer is unique and whether a,
simple gradient-based method can achieve the optimizer are unknown. The answers to these
questions are rather problem-specific, and this goal is beyond the scope of a single paper.
Instead, we strive to make the following contributions:

1. We will provide a recipe for a first-order gradient-based solver for (1.5). Using different
metrics to define the “gradient” for probability measures and different definitions of
the distance/divergence function D, we can generate the corresponding gradient flows
on this metric to move p, along.

2. When D is the Kullback-Leibler (KL) divergence, and the underlying metric for the
probability space is the 2-Wasserstein distance, we will provide a particle method
to simulate the gradient flow equation. The updating formula for the particle is a
combination of a forward and an adjoint solver pair.

3. In the linear case, we study the well-posedness in both underdetermined and overde-
termined scenarios and draw a relation to their counterparts in the deterministic
setting.

Our formulation appears to be closely related to several well-established research topics,
which we will discuss in section 2, including their connections and differences. This will be
followed by a gradient flow formulation using different metrics for various choices of distance or
divergence D in (1.5). In section 3, we also discuss the associated particle method, which solves
the Wasserstein gradient flow for the KL distance. Section 4 presents the available theoretical
results when the underlying map G is linear. We have discovered that the theoretical results
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correspond one-to-one to the over-/underdetermined linear system under the deterministic
scenario. Finally, numerical evidence is presented in section 5 to support our findings, followed
by the conclusion in section 6.

2. Comparisons with other subjects. Several other research fields in applied mathematics
are closely related to the problem we propose to study in the introduction. The Bayesian
inverse problem [29], for instance, is a field that uses probabilistic models to infer unknown
parameters of a system from observed data. Another related field is density estimation [27]
that focuses on estimating the probability density function of a random variable from a set of
observations. In the following subsections, we will conduct a comprehensive review of these
related fields, discuss how they are related to our problem, and point out some key differences
between them and our proposed approach.

2.1. Bayesian inverse problem. We now draw the connection to the Bayesian inverse
problem [21, 29] and the associated sampling problem [12, 7, 35, 16]. Again starting from
(1.1), it considers the scenario where the measurement data is corrupted by noise. Most
commonly, the observed data y is assumed to be the sum of the true data and a random noise
term:

y=6Gu)+n, ueACR™,

where the additive noise is assumed to be Gaussian, i.e., n ~ N(0,T'). Additionally, a prior
distribution pP"°"(u) for the parameter u is given, often assumed to be Gaussian as well. Then
the goal is to find the most efficient way to sample from the posterior given by Bayes’ theorem:

(2.1) PP () oc P(ylu) P (u),

where P(y|u) is the likelihood function, whose concrete form is determined by the noise as-
sumption for the data y. Since n~ N(0,T), the likelihood function is given by

P(y|u) oc e~ 21y~ 9WIE

Although the ultimate objective in both the Bayesian inverse problem and our framework
(1.5) is to identify the distribution of the parameter u, the sources of randomness in our
formulation are fundamentally different from those in the Bayesian framework. Specifically,
in the Bayesian framework, uncertainty arises due to noise in the measurement process of
obtaining y while the true data G(u) is assumed to be deterministic. This means that if the
measurement is entirely precise and G is invertible, the posterior distribution would be a delta
measure, meaning that v would be deterministic.

In contrast, in our case, the true data is a probability distribution by itself. Under a
deterministic forward map G, the randomness of the parameter is an inherent feature of the
system being modeled, and even the precise “reading” y would nevertheless lead to a data
distribution.

With the prior pg = N(mg,Xg) and the noise assumption on the data, the posterior
distribution is of the form p(u) := £e™V® with V(u) = 1y — G(u)|% + L|u — mol3,, . One
way to sample from the posterior (2.1) is to use the Langevin dynamics [24], where a set of
particles {u()} are evolved by

du® (t) = —VV(u(j))dt + \/idW(t) , u(j)(o) ~ pPTOT (7).
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In the infinite time horizon, i.e., when ¢t — oo, {ul)(t)} will be samples from the posterior
ppost (u)

The Bayesian inverse problem also bares a variational formulation. The posterior p(u) can
be characterized as a distribution that minimizes the KL divergence [36], i.e.,

(2.2) PP (u) € argmin KL (m(u)[P(y|u)p” " (u)) .

m(u)

Therefore, pP°*(u) can be obtained by evolving the Wasserstein gradient flow of the divergence
in (2.2) to equilibrium. The Wasserstein metric and its corresponding energy function, such as
the KL divergence, can take different forms in the formulation [30]. It is apparent from both
Bayesian formulation (2.2) and our formulation (1.5) that, although both attempt to match
the target distribution, the target distribution and source distribution in each approach differ.

2.2. Density estimation. Another related field to our formulation is density estimation.
Density estimation is a statistical technique used to estimate the probability density function
of a random variable from observed samples [27, 26, 33]. It also finds great use in artificial
intelligence such as generative modeling [1, 28, 17, 6]. One common approach to density
estimation is to use kernel density estimation [8], which involves convolving a set of basis
functions (typically kernels) with the observed samples to estimate the underlying density
function. The choice of kernel function and bandwidth parameter can affect the accuracy and
smoothness of the resulting estimate. Other methods for density estimation include histogram-
based methods, parametric models (e.g., using a normal distribution), flow-matching type
methods, and nonparametric models (e.g., using a mixture of distributions).

Density estimation is mostly studied for a parameterized distribution where the goal is to
estimate the parameters of a specific distribution rather than the entire density function. This
is commonly done using maximum likelihood estimation, a variational approach [34]. Given
a set of observations yi,%2,...,yn, and a true but unknown probability density function p(y),
we seek to estimate the parameter 6 in the density function ¢(y;6) that minimizes the KL
divergence between ¢(y;6) and p(y). That is,

0" = arg min KL (p(y)la(y:0)) = argmin Ep(y) logp(y) —logq(y; 6)]
LN
=arg énax E, ) llogq(y)] = arg énax N Z log q(y;;0),
i=1

where the last two terms correspond to the so-called maximum log-likelihood estimation.

In our framework (1.5), when the push-forward map G = I, the identity map, then the
problem reduces to a classical density estimation problem. Otherwise, we are performing a
density estimation for u not from samples of u, but samples of p, = Giip, where u ~ p,.
The problem in (1.5) combines both the density estimation aspect (from samples of y to the
density of y) and the inversion part (from the density of y to the density of w).

3. Gradient flow formulation and particle methods. Denote P;(A) the collection of all
probability measures supported on A, the admissible set, with finite second-order moments.
We endow P2(.A) with a metric d,. Being confined to the set P2(.A) equipped with a metric dg,
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the variational formulation (1.5) for a differential equation—constrained optimization problem
becomes

(3.1) pi= argmin E(p) = Dlpy.p%) = D(Gspus ).
Pu€(P2(A),dg)

This is to find the optimal distribution p; € Pa2(A), which, upon being pushed forward
by G, is the closest to the probability distribution of the data: p;, measured by the data
discrepancy D. The map G is then given by the deterministic forward operator that maps a
fixed parameter configuration to the measurement.

Similar to the fact that the gradient flow (1.3) is used to solve the deterministic optimiza-
tion problem (1.2), one can run GD type algorithms on the space of probability measures
to solve a variational problem defined over the probability space such as (3.1). Since such
an optimization problem is over an infinite-dimensional space, gradient-based algorithms are
particularly attractive in terms of computational cost. Using gradient-based algorithms for
(3.1) amounts to updating p, based on the gradient direction of E(p,,). The precise definition
of the “gradient” here relies on the metric d, that the underlying probability space Pa(A) is
equipped with.

We want to address the fact that different pairs of (dg, F) yield different gradient flow
formulations to update p,. We will focus on a few concrete examples in the following subsec-
tions.

3.1. The Wasserstein gradient flow strategy. First, we consider d, as the quadratic
Wasserstein metric (Ws). We first define W5 using the Kantorovich formulation of the optimal
transportation problem.

Definition 3.1 (Kantorovich formulation). Let (M,d) be a metric space. The quadratic
Wasserstein metric between two probability measures p and v defined on M with finite second-
order moments is

1/2

wap) =t [ aeaPaen)
yel(pv) J M x M

where T'(u,v) is the set of all coupling for p and v. A coupling vy is a joint probability measure

on M x M whose marginal distributions are u and v, respectively. That is,

/v(w,y)dyzu(:r), /v(w,y)deV(y)-
M M

Throughout our paper, we set A C M =R™ with d being the Euclidean distance. Equipped
with the 2-Wasserstein metric, the Wasserstein gradient flow equation for E(p,) writes [2, 25]
as follows:

oF

(3.2) Oupu=—Vw,E(pu) =Vu- (Puvu(sp> :

This gradient flow is guaranteed to descend the energy. To see this, we multiply % on
both sides:

d 3 SE\ 0F SE |?

800 = [ongi= [ 9209, (5 ) frtu=- [ m|v.3 7|

Pu
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Immediately, we see from the fact that the right-hand side is negative, E(p,) decays in time,
which implies that the equilibrium pS° should satisfy

OF
dpP

u

(3.3) Vau =0 on the support of p;°.

For the given specific form of E(p,) in (3.1), we find an explicit formulation for 5E . This
can be done through the standard technique from the calculus of variation. Accordlng to the
definition of the Fréchet derivative, we perturb p, by dp, where [dp,du=0. Then we have

§E
3.4 lim  [E(py +0py) — E(py :/5 Ldu
(3.4) ||6puuﬁo[ (pu+6pu) — E(pu)] 5P

Since y = G(u), it follows that
py=Gypy and dp, = Giopy .
Substituting the definition E(py) = D(Gspu, pj), we find

E(pu +pu) — E(pu)
_D py+5py7py) D(ﬂyapgj)

/ 5 y)0py(y)dy + higher order terms

(3.5) (g( ))dpy(u)du + higher order terms,

6py
where the last equality uses the definition of a push-forward map. That is, if f = Thg by
y=T(x), then for any measurable function F' and 2 in the support of f,

[ rr@ueds= [ Foswa
z€T-1(Q)

yeN
Comparing (3.4) with (3.5), we have
OFE 0D
E( u) = 5py

This means the Fréchet derivative of E on p, is that of D on p, composing with the
push-forward map G. As a concrete example, we consider D in (3.1) to be the KL divergence,
namely,

(3.6) oG(u).

* P oD R
(3.7) D(py,p,) = /py log=%dy and 5= log py —logp, +1.
py Py

Combining this with (3.2) and (3.6), we finalize the evolution equation:

(33) o= (a9 (10220600 )

Y

Throughout the paper, it is the convention to use the quadratic Wasserstein metric (i.e.,
dg = W3) to equip P2(.A) if not specifically mentioned otherwise. Similarly, D = KL is used
as the convention to define the cost functional E(p,,).
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3.2. Other possible metrics. The probability space can be metricized in various ways,
and there exist several data misfit functions D to serve as the data discrepancy, used in place
of the KL divergence. In this subsection, we provide a few examples to demonstrate the
breadth and versatility of the proposed framework.

Wasserstein gradient flow of the Wasserstein-based objective function. One choice is
to set D based on the Wasserstein metric with the cost function ¢ while setting d, = Wh.
More precisely, let

3.9 D(py,pt):= inf / c(z,y)d,
(3.9) (py: py) . (2,y)dy

where T'(py, p;;) is the set of all coupling of p, and pj, and c is a cost function, e.g., c(z,y) =
|z — y|?. Then by the Kantorovich duality [31], it has the following equivalent form:

(3.10) D(py,py)=  sup /cb z)py(x dw+/¢ Y)py(y)dy,

(D )ED(pyp5)

where ®(p,, py) is the set of pairs (¢,) such that ¢(x)+(y) < c(x,y) for all (z,y) € M x M.
If we denote by (¢*,1*) the maximizing pairs, also referred to as the Kantorovich potentials,
then we have [31]

(3.11) =6 (2).

5y

Following (3.2) and (3.6), the corresponding Wasserstein gradient flow is

(3.12) Opu=Vu - (puVud* (G(u))) -

Hellinger gradient flow of the x? divergence. While the Wasserstein metric is typically
used for its simplicity in bridging particle systems and the underlying flows, one can also equip
Py (A) with other metrics (i.e., dg in (3.1)) over the probability space. Another example is the
Hellinger distance defined below.

Definition 3.2 (the Hellinger distance). Consider two probability measures P and @Q both
defined on a measure space M that are absolutely continuous with respect to an auziliary
measure (i, i.e.,

P(dr) = p(a)u(da),  Q(da) = q(x)u(de).

The Hellinger distance between P and Q is H*(P,Q) = vwVpE) — /4
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Following [19], we consider the gradient flow when D is the chi-squared (x?) divergence
and F(p,) is determined correspondingly. More specifically, we have

2
(3.13) D(py, ) = X*(Gzpus py) Z/(gﬁ*)dy— 1.

Y
Then the gradient flow of (3.13) with respect to the Hellinger distance can be derived via the
so-called JKO scheme [15]. That is,
£ _
e—0 €
where pf, € argmin 5 4,1 {D(G4pu, Py) + +H?(pu,pu)} - Then the optimality condition yields
the following relation:

2
(3.15) i e | 22(0(w) -
Py
where A is the Lagrangian multiplier to make sure that p, integrates to one. Hence, A\ =

i %(g(u))pudu. Plugging (3.15) into (3.14), we get

pu = [ 20 man— ()|

Y Y

Kernelized Wasserstein gradient flow. The so-called Stein variational gradient descent
(SVGD) can be seen as the kernelized Wasserstein gradient flow of the KL divergence [20].
Through an equivalent reformulation of the same dynamics, SVGD can also be regarded as
the kernelized Wasserstein gradient flow of the y? divergence but with a different kernel [9].
In [11], SVGD is formulated as the true gradient flow of the KL divergence under the newly
defined Stein geometry. That is, d, is a metric based on the Stein geometry, while F is decided
by setting D as the KL divergence in (3.1).

3.3. Particle method. One significant advantage of using the gradient flow formulation
(3.2) with the underlying metric being W is the ease of translating the produced PDE for-
mulation, such as (3.2) and (3.8), to a particle formulation. This feature allows an easy
implementation of numerical schemes. According to (3.8), each independent and identically
distributed (i.i.d.) particle drawn from p, should evolve by descending along its negative
velocity field:

d Wy

(u(t)) = =VuG uw(w(ult)))
pu(t)
where we used the definition of
(3.16) () = v, 22

Y S0 (y(u(t)))-

Gtpu(t)
When KL divergence is used, the expression for £ can be made more explicit, and thus

(3.17)

d py _ * _
Su=-V, (1og pz(g(“”> == VG|, Vylor (py/}) (u(t)) . where y(t) = Glu(t)) .
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where V,G|, @ € R™™ ig a Jacobian matrix of G. Multiplying the Jacobian g—z = V.G on

J

both sides, we have

d —
at?’ =

Note that in practice, these two formulas cannot be executed because p, and p, are
unknown. Therefore, one needs to replace them with their numerical approximation. To be
more precise, let u; be a list of particles drawn from p,; then we write prV as an empirical
distribution approximating p,, i.e.,

(3.18) — VauGluy VuGluw Vylog (py/p}) ,  where y~p,.

N N N
1 1 1
(3.19) purpN = N E 0y, , and thus pZ]/V = Qﬁpﬁf = g Gydu, = N g dy, -
j=1 j=1

=1
In this ensemble version, all the particles u; evolve according to

oFE

(uj) = =V [log p}) (G(u;)) — log piy(G(u;))]

Py
Vury(G(uy))  Vup) (G(u)))

PyGus)) Py (G(uy)

(3.20) .
_v,G" (Vyp;}(yj) Vypy (w))

0y (Y5) Py (y5)

-~

v D
'E] Y 5f’y

pN(yj)

where y; = G(u;) € R™ and they both evolve in time.

It is easy to see that when p, is the ensemble distribution pév defined in (3.19), &; is not
well defined. In particular, the singularity induced by the Dirac deltas can be numerically
inaccessible. In simulations, one has to approximate pz];V using probability density functions to
implement (3.20). One option is to use kernel density estimation with an isotropic Gaussian
kernel [8, 4]. That is,

N1 v 1 y?
Py %NZQSG(CU—%); ¢€(y):WeXP (—2€> .
j=1

This formulation leads to

Vypév( ) _ _EZ](y - yj)e_(y_yj)2/2€
PRI S TR

Yy,

and when plugged into (3.20), it gives the final particle method:
Vory(s) | 1305 = yi)e” Womu)*/2e
pi(y;) e e wimw)?/e

If the observed data py, is also an empirical distribution, we can apply kernel density estimation
to obtain an approximated reference density.

-
(3.21) atuj:<vug\uj> &, with &=
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3.4. Adjoint solver simplification. When G is explicitly given, V, G in (3.21) is rather im-
mediate. However, in many situations, G is generated by the underlying differential equations,
and the explicit calculation of G relies on PDE solvers. Computing the associated gradient
would be even more complicated. In particular, recall G maps R™ to R™. The gradient is
stored in a Jacobian matrix of size n x m. As such, the preparation of the entire matrix
directly calls for mn partial derivatives computations, each of which, in turn, calls for a PDE
solver. The associated computational cost is prohibitive.

To simplify the computation, we note that in (3.21), the Jacobian matrix is applied to a
vector as the source term for updating u;(t). So instead of preparing for the whole Jacobian
matrix and then multiplying it on a vector, one can directly compute the matrix-vector product
on the equation level based on the adjoint approach [23, sect. 3.3], as summarized below.

For a fixed parameter u, instead of dealing with the explicit map y = G(u), we consider
the following implicit relation between u and y that encodes the PDE information:

(3.22) g(y,u)=0.

Here g is the PDE operator that maps u from parameter space and y from PDE solution space
to the right-hand side of the PDE. We assume g¢ is Fréchet differentiable in both arguments.
Based on the first-order variation of (3.22) in both v and y, we have

VygVuy+Vug=0 = V,gV,G=-V,g.
To compute V,G' ¢, we can set
(3.23) Vyg' A=¢,
which immediately translates to
(3.24) VuG €=—Vug'\.

We should note that in most PDE settings, g maps the function space of y and u to a function
space, and the notation of VygT)\ = ¢ really means the inner product taken on the function
space of g and its dual, where A is chosen from. This typically translates to the adjoint PDE
solver. Such adjoint solution then gets integrated in (3.24) for the final functional gradient.

An illustrative example is to consider the acoustic wave equation on a spatial domain 2
and time interval [0, 77,

(3.25) u(x)Ouy(x,t) — Ay(z,t) = s(z,t), y(z,t=0)=0wy(z,t=0)=0,

where y(z,t) is the wave equation solution, s(x,t) is the given source term, and u(x) is the
squared slowness representing the medium property for the wave propagation. Without loss
of generality, we consider @ = R?. For a fixed s, the solution y is determined by w, but in
general, we do not have an explicit formulation for the forward map G such that y = G(u).
Instead, the implicit relation (3.25) is used. We can write (3.25) as

g(u,y) =0, where g(u,y)=udyy—Ay—s.
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Algorithm 3.1 Particle method for (3.8) with g(u,y) =0, where y = G(u) is an implicit
forward map.

Input: pj(y), initial guess {Ug}é\[:p

for Iteration n=0,1,2,..., Nnax do
L. Set y? =G(u}), j=1,...,N.
2. Compute &; according to (3.21).
3. Solve for A; from the adjoint equation (3.23) for every &;.
4. Update u; according to (3.24).

end for

and step size At.

Output: Final particle locations {ujy‘"ax é\’: .

To compute the linear action of the adjoint Jacobian, & — V,G "¢, we need to solve the adjoint
equation. To this end, we first easily obtain V,g = 0xy. To compute VygT)\ = ¢, we realize
that

VygT)\ = Vy<uatty —Ay—s, )\>;r,t = Vy<y ) att(u/\) - A/\>:v,t =udyA — AN,

and A satisfies the zero final-time condition, i.e., A(z,t =T) = O A(z,t =T) =0. Here, (-, )z
represents integration in both x and ¢ domains, and we perform two levels of integration by
parts leading to the equation of

(3.26) u(z)OuA — AX=¢, with zero final condition.

Assembling the functional derivative according to (3.24), we have

T
V.G é=— /0 g Ay (z, t)\(z, t)dzdt .

Note that, as usual, y solves the forward wave equation, and A solves the adjoint equation
(3.26). For this particular problem, the wave equation PDE operator is self-adjoint, making
the forward and adjoint equations have the same form, except for the different source terms
and the boundary conditions in time.

Returning to (3.21), to update the values for u;, one can first compute

oD
and solve the adjoint equation (3.23) with respect to A\ before finally assembling the directional
derivative in (3.24). The algorithm is summarized in Algorithm 3.1.
3.5. Discussion on the particle method. In this subsection, we will examine the similar-

ities and differences between the particle method and other similar systems, highlighting the
shared features as well as the distinguishing characteristics.
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The first system we compare (3.17) with is the Langevin dynamics, the continuous version
of the classical Langevin Monte Carlo (LMC) algorithm [10] developed to perform Bayesian
sampling:

dyt = —Vyf(yt)dt + th ,

where W; denotes the Wiener process. It is a convention to denote by 7(¢,y) the associated
probability distribution along time ¢, and apply the It6 calculus to obtain the following Fokker—
Planck equation:

Oy —Vy - (Vyfr+Vym)=0,

which can be viewed as the Wasserstein gradient flow of energy F

oE

(3.27) Oy —Vy - <7TVy5> =0, with E(r)=KL(n|7"),
T

where 7* o< e~ is the target distribution. This shows that one interpretation of the Fokker—
Planck PDE is that the evolution represents a first-order descending scheme that pushes 7 to
the target 7* in the long time horizon when the distance/divergence and the metric d, are
set to be KL and Whs, respectively. Algorithmically, this means that LMC is the first-order
method to draw samples from a target distribution, justifying LMC’s validity (asymptotic
under some conditions).

While the original LMC requires samples from the Wiener process by adding Gaussian
random variables in the updating formula, the corresponding gradient flow equation (3.27)
admits a much more straightforward particle method. Namely, we directly let the particles
descend in the negative gradient direction:

d
—y=—Vylog(n/7*), where y~m.

(3.28) 5

As with (3.17), this method is not immediately feasible due to the lack of explicit form of ,
so in practice, we set m ~ 7V = % >, 0y, as the ensemble distribution and obtain the following

updating formula for the particle method:

%yi =—(Vlogn™ (y;) — Vleg7*(y:)) -
The same issue on the singularity of computing V7!V arises, and the blob method was con-
structed to mitigate such difficulties; see [5] for a reference.

We should note the strong similarity between the above formulation (3.28) and (3.18).
The main difference between our approach and LMC sampling is that, in our framework, the
sampler’s motion is presented in the © domain, and when translated to the y domain, must be
projected onto the space spanned by the V,GV,G ", whereas LMC sampling operates directly
on y without projection. In some sense, the new formulation can be viewed as a projected
gradient flow onto the tangent kernel space with the kernel spanned by columns of V,G.
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On the other hand, the connection to LMC also inspires the possibility of introducing
stochasticity, particularly the Brownian motion, to avoid dealing with Dirac delta functions.
Indeed, denoting C(u(t)) = VuGl,q Vug@(t), and assuming that G is invertible, we set
B(y) =C (G (y)). Then the evolution equation for p, is explicit from (3.18) or (3.8):

p
8tpy =Vy- <PyB(y) Vylog (;)) =Vy- (B Vypy + Pvayf) )
]

where we assume p; o e~ 7. As a consequence, we have the following stochastic particle
method:

(3.29) dye = —B(y(t)) Vy f(ye)dt + /2B (y(t))dWy .

In the most simplified case, consider a linear dependence by letting y = G(u) = Au. Then we
have V,G = A, and (3.29) becomes

dy; = —AAT V, fdt + V2AATdAW;,

a formulation that resembles the ensemble Kalman sampler developed in [12], where the matrix
in front of V, f is the data ensemble covariance matrix.

Finally, we draw the connection to the mirror descent method that the update formula
(3.21) for w carries [3, 18, 32]. The mirror descent performs GD on the mirror variable,
defined by taking the gradient of a convex function. For example, one can define a convex
function ¢ on R™ > z and the mirror variable z(x) = V;¢(x). The mirror descent in the
continuous-in-time limit represents

d d
ETi —Vf(x), or equivalently o= —delVf(az) ,
where Hy(x) is the Hessian term of ¢ evaluated at z. In our case shown in (3.18), if we view
y as x and u as z, the descending formula in (3.18) writes as follows:

ax = 7v2g|z(t) ngT|z(t) vxf(:l:) .

If V.G(z) is of full row rank for any fixed z, the matrix V.GV.G' is naturally strictly
positive definite. If one can view it as the Hessian of a convex function ¢, meaning H(;l(z) =
V.GV.GT, then our update formula (3.21) can be seen as a mirror descending procedure on
u using the mirror function ¢.

4. Well-posedness result for linear push-forward operators. Like deterministic PDE-
constrained optimization problems, when the differential equation has parameters that have
inherent randomness, the above formulated SDE-constrained optimization using the gradient
flow structure and the associated particle method for implementing the gradient flow are
rather generic: the dimensions m and n in (1.1) can be arbitrary in the execution of the
algorithm. However, the performance of the GD algorithm and its capability of capturing the
global minimum highly depend on the structure of the forward map G. This makes providing
a full-fledged convergence theory impossible.
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Nevertheless, we can pinpoint certain properties when the push-forward map G is linear.
Resonating the situation in the deterministic setting, we carry out the studies by separating
the discussion into overdetermined and underdetermined scenarios. In each scenario, we will
begin our discussion with the deterministic setup (1.2) with respect to the L? geometry and
proceed with the stochastic setup (1.5), emphasizing the similarity.

First, we fix the notation. Since G is linear, we denote it as

y=G(u)=Au, with AeR™™

throughout this section. We also assume that A is full-rank, in the sense that rank(A) =
min{m,n} =:r, so there are no redundant rows/columns, and the size of the matrix determines
with the system is under- or overdetermined. Additionally, we conduct the compact SVD for
A and write

(4.1) A=VSUT, with VER™", SecR™", UeR™".

To begin with, we realize that in this linear setting, the gradient flow equation (3.2) is
much more explicit:

oE

4.2 u— Vu’ u Vv u
42 ap- 9 (5 (5

))zo, E(pu) = D(pys) = D(Aspu. 7).

All discussions below extend this analysis to both underdetermined and overdetermined
scenarios. We use p to denote probability density and measure interchangeably.

4.1. Underdetermined scenario. The underdetermined scenario corresponds to the case
when n < m. That is, the number of the to-be-determined parameters is no fewer than
the collected data, and matrix A is short-wide. We incorporate the fully determined matrix
(n =m) in this regime as a special case. When n < m, in either deterministic or stochastic
settings, we expect infinitely many solutions to exist.

4.1.1. Deterministic case. The optimization (1.2) in the linear case becomes
(4.3) min ||Au — y*||%.
u

When A is fully determined, the solution is unique, but when n < m, there are infinitely
many possibilities to choose u so that the y* = Au exactly. In practice, to select a unique
parameter, one typical approach is to add a regularization term. This way, the selected
parameter configuration not only minimizes (4.3) but also satisfies certain properties known
a priori. One of the most classic examples is Tikhonov regularization: min,, ||Au —y*||? 4 |Ju —
ug||?. This ensures that the error term y— Au is small and that the optimizer is relatively close
to the suspected ground truth ug. Here we will take a different point of view. Instead of adding
a regularization, we run GD on the vanilla objective (4.3). As expected, the choice of the initial
guess u; plays the role of selecting a unique minimizer. In other words, the optimization
method itself, which, in our case, is the GD algorithm, has an implicit regularization effect on
the converging solution.
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To this end, we first augment A with A to form a rank-m matrix and correspondingly
define the augmented y*:

” o [A] wewman[A]2] 0],

Note the definition of A is not unique, but it does not affect the upcoming calculation. The
easiest choice is to set AT = UL, where UL is the orthogonal complement of U given in (4.1).
As a result, the right singular vector set for A is UL. Suppose u* € {u: Au=y*}. Then the
solution set can be written as

(4.5) S={u*+a: Au=0}={u*+spanUt}.

The particular solution chosen from the solution set S is uniquely determined by the
optimization process and the initial data. Suppose we perform GD on (4.3). Then in the
continuous-time limit, it amounts to solving the following ODE:

d
(4.6) d%‘ =—AT(Au—y"), with u(t=0)=u;.
The following result shows that the GD leads us to the solution that agrees with ug when
projected onto U™ and agrees with u* when projected onto U.

Proposition 4.1. The equilibrium solution to (4.6), denoted by uy, given the initial iterate
u;, can be written as

up=UU"u* + UL (U) T,
Moreover, y§* = A®uy as defined in (4.4) satisfies
(4.7) yr=vy" and gr= Au,; .

One aspect of this result is that the generated solution, when confined to the space spanned
by A, entirely agrees with the given data u*, and when confined to the augmented section,
purely agrees with the generated data from the initial guess ug. When n = m, UL only
contains the zero vector, so uf = u*. The proof of the proposition is rather standard and is
put in Appendix A for completeness.

4.1.2. Stochastic case. The situation in the stochastic setting is an analogy to that in the
deterministic setting. In the current underdetermined situation, the push-forward map G =A
has more degrees of freedom to pin in the parameter space than the data offers. Therefore, it
is guaranteed that one can find infinitely many p, that achieve the exact match:

Py = Aspu = py .

As with the deterministic case, the particular solution in the solution set S we obtain is
determined by the initial guess and the optimization algorithm in a combined manner. We
expect the same to hold in the stochastic case. Furthermore, we use the same notation as in
(4.4). The final conclusion is an analogy of Proposition 4.1.
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Theorem 4.2. Suppose (4.2) using the initial data p® has an equilibrium solution, and we
denote it to be py° and let pi%. be the push-forward density of pi° under the map A®, i.e.,

(4.8) Py = A"y -

Then we can uniquely determine the marginal distributions of pyex, in the sense that
e the marginal distribution on y of pye entirely recovers that of the data p;;
e the marginal distribution on § of pyex is uniquely determined by that of ,02.

A very natural corollary of Theorem 4.2, when A is fully determined, suggests the unique
recovery of the ground truth.

Corollary 4.3. When n=m, i.e., the matriz A is fully determined, under the same assump-
tions of Theorem 4.2, the equilibrium solution

Py =Aspa’ =Py

s unique and independent of the initial distribution.

To prove Theorem 4.2, we realize that since the system is underdetermined, there are
infinitely many solutions. The particular solution we get is the single distribution function
that falls at the intersection of the solution set, denoted by S, and defined in (4.10) and the
gradient flow dynamics (4.2). The proof is similar to what we had in the deterministic setting:
we first identify the class of functions on the gradient flow dynamics and then evaluate when
and how they intersect with S,.

The following lemma first characterizes its solution by following the flow trajectory.

Lemma 4.4. Suppose one starts the gradient flow equation (4.2) with the initial condition
pu(u,0) = pO. Then the solution lives in the following set:

(4.9) pu(t) € {p2+h, with /h(u)duzo, Aﬁhzo},

where A is defined in (4.4).

Proof. Let p, be the solution to (4.2) and pQ be the initial distribution. Then py(u,T)
differs from p by

pul) = () =i = [ 9. (pu<t>v <Au>) .

b 6py(t)
a function of u parameterized by 7. Essentially, to demonstrate that [ h(u)du =0 and Aﬁh =0,
we only need to establish the validity of these two equations for any function g(u) in the form
of

q(u) =V, - <puvu§Z(Au)> .

The mean-zero property Jq(u)du = 0 is easy to show given that ¢ has a divergence form.
To show Ayq = 0, we recall that for any ¢ that is integrable with respect to ¢ upon being
composed with A, by performing integration by parts, we have
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/ ¥(Au)g / Vuto(Au) - ( (Au)> W (w)du

~ oD

- [ATY00), 4, AT ( ! <y>> [y Pl
Py

&1

&2

Note that the row spaces of A and A are U and U+, respectively, so &1 and & belong to these
two perpendicular spaces. We then have f P( Au ( )du = 0, yielding Aﬁq = 0. Since at each
infinitesimal time, ¢ satisfies these two conditions, we prove (4.9). |

Next, we study the steady state of the gradient flow system (4.10).

Lemma 4.5. When D is the KL divergence, and if we let p; be a reference probability
measure (i.e., Ayp;, = py,), then all equilibria of (4.2) are in the following set:

(4.10) Sp:{pZ—FQ: /g(u)du:O,Aﬁg:O}.

Here, Ayg =0 can also be interpreted as [1)(Au)g(u)du =0, which means that for all i, when
composed with A, it s g-integrable to 0.

Proof. Recalling (4.2) and the discussion leading to (3.3), we have that the equilibrium
set consists of the states p;° at which the Fréchet derivative is trivial on the support. This,
combined with (3.6), gives

0FE 0D 0D
Viu—| W)=V, — (Au)= ATV, — (Au) =
0Pu P 0py Allp? 0py Allp®
Since A is a flat matrix with full rank,
oD
(4.11) ATV, — (Au)=0 on the support of p;° .
0py Allpee

In the case when D is the KL divergence, based on (3.7), we have that pj° o p;. Since they
both are probability measures, we can conclude that pg° = py. Since py° = Agpi°, this means
that pg° is in S, defined in (4.10). [ |

Remark 1. To show that py° = py from (4.11), D only needs to be strictly displacement
convex with respect to p, (see section 5.2.1 in [31] for its definition). Indeed, note that if
we view D( s Py *) as a functional of py°, the equilibrium set of its Wasserstein gradient flow

is (4.11). Then under the convexity condition mentioned above, the equilibrium set has one
element [22], which is the unique minimizer of D(py°, p;)-

These two lemmas prepare us to investigate the specific solution by following (4.2) from
an initial p. We are ready to prove the main theorem.

Proof of Theorem 4.2. From (4.9)-(4.10) we see that the equilibrium pS° admits the
following expression:

P =po+h=pi+g,

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 06/20/24 to 134.84.0.1 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

CONSTRAINED OPTIMIZATION WITH STOCHASTICITY 567
where [hdu= [ gdu=0 and Ayg =0, Ayh = 0. Therefore
Ao = Al Appl = Ay
That is, for any integrable test function
@2 [oeuprdi= [s@agede, [ oEsd= [odudwd.

From (4.8), we have that ppe.(A®u)det (A®™) = pi°(u). Using the notation in (4.4), the two
equations above become

/ Y(y)py (y)dy = / V(y) pyex (y)dy™ = / V() pyyex (y*)dy™ = / Y(y)py,(v)dy,

from (4.12)

where we used py. = Af*p;, and the definition of the marginal distributions pj,(y) = S ppes (™ =
[y, 9])dg, and py°(y) = 1l P (Y™ = [y,9])dy for the first and last equal signs. Similarly the
second equation in (4.12) becomes

/ () pyex (™) dy™ = / (§)pex (y™)dy™,  where p) = AF*py, .

Considering that vy can be chosen as any function, we obtain all the moments, and thus the
marginal distribution pge. on y and g, finishing the proof. |

4.2. Overdetermined scenario. The overdetermined scenario corresponds to the case
when n > m, so there are more data to fit than the to-be-determined parameters. It is
often unlikely to find a solution that satisfies the equation exactly, but one can nevertheless
find the best approximation that minimizes a chosen misfit function.

4.2.1. Deterministic case. As an example, we look for the configuration that provides
the minimum misfit under the vector 2-norm. That is,

min _ [Au— "3
For a linear system like this, the minimizer is explicit:
(4.13) w = (ATA)TIAT Y = ATy"
and hence, calling (4.1)
(4.14) y=Au*=AATy* =VVTy*  or equivalently y=1yi = Projyy*.

In other words, y is y* projected onto the column space of V (also the column space of A),

and thus V'y =VTy* and (VL)—r y=0.

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 06/20/24 to 134.84.0.1 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

568 QIN LI, LI WANG, AND YUNAN YANG

4.2.2. Stochastic case. In the stochastic case, we expect to obtain a similar result that
suggests py° is a “projection” of pj onto the column space of A. More specifically, we have the
following theorem that characterizes the equilibrium pg° when pj has a separable structure.

Theorem 4.6. Let p° be the equilibrium solution to (4.2). Consider D to be KL, i.e.,
D(py,py) = [ pylog ﬁ—fdy, and py has the separable form

P (y) = efiwn) ef2(uar)

where ya = VV Ty, with V being the column space of A, and yar = y—ya being the perpendicular
component. Then

P (y) = AAgPZ o ef1(un)

This theorem is the counterpart of its deterministic version stated in (4.14), showing
that we can identify partial information of py°—the part that is in the column space of A
(or equivalently V). The perpendicular direction information is projected out.

Proof. To start off, we assume pzo(y) o e9W) and we will show that g is the same as f;
up to a constant addition. It is safe to assume pg° (y) has no yar component because it is
pushed forward by A, so its support is confined to the range of A.

Recall the argument leading to (3.3), and combine it with the calculation (3.6). We have
that the equilibrium of (4.2) in this case satisfies

oF 0D oD oD
Vie| =Vu-—| Au)=ATV,——| (Au)=0 = V,—| (Au)cA’.
0pu | poo 0Py | e 0Py | poo 0Py | poc
Considering V, = VVTVyA +V+ (VL)TVyAU we should have, for all u,
0D
Voo | (Au)=0
Opy =
Noting VyAgTDyLDy =Vy, log py° — Vy, log pj;, we then have
Vy9=Vy fi on Range(A).
Thus, g = f1 up to a constant, finishing the proof. |

4.3. Setting data discrepancy D to be W 5. Most results developed in this paper so far
set D as the KL divergence. We switch gears and adopt (3.9) in this subsection, by setting
D to be the quadratic Wasserstein metric Ws. In this case, the variational formulation (1.5)
becomes

4.15 in  Wo(Gipu, pt),
(4.15) nin 2(Gspu, 0y)

with P(A) denoting all probability distributions over the parameter domain A as usual.
In the fully determined case where A is invertible, the minimizer will be uniquely given
by A_lﬁpz. In the underdetermined case, the same argument in section 4.1 still holds and no
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uniqueness can be obtained. However, when A is overdetermined with full column rank and
py, is absolutely continuous with respect to the Lebesgue measure, we claim that the unique
minimizer to (4.15) is ATﬁp?’;.

Theorem 4.7. Consider D to be Wy, A=R"™, and set G = A, an overdetermined matrix with
full column rank. Moreover, assume the reference data distribution py, is absolutely continuous
with respect to the Lebesgue measure, and is supported on R, the closure of a bounded connected
open set. Then we have that

e the variational problem (4.15) has a unique minimizer A;rpz’;;
o the Wasserstein gradient flow of (3.1) with D being the Wo metric, as given in (3.12),
has a unique equilibrium, which is also the unique minimizer py° = Agp;;.

Proof. First, we show that Agpz is the global minimizer. Define a set S = {p : p =
Ay py for p, € P(A)} collecting all probability measures pushed by A. Then for any p € S, we
have supp(p) C col(A). Furthermore,

(4.16) WHo.0) = [ IT0) ~ Pojw)dy
)

(4.17) Z/IAATy—yI%Z(y)dy

(4.18) > W3 (AN, 07)

In the derivation, (4.16) holds by definition where we denote by T}, the optimal transport map
from pj, to p. The existence of the optimal map is guaranteed since pj; is absolutely continuous
[25, Thm. 1.17]. Inequality (4.17) holds because of the pointwise inequality:

argmin |z — y|2 = AATy = |AAT?J - y|2 <|Tp(y) - Z/|2 )
x€col(A)

where we deployed the fact that supp(p) C col(A) and thus range(7,) C col(A). Inequality
(4.18) comes from the definition of the Wasserstein distance (note that we do not necessarily
claim AAT is the optimal map from py, to (AAT)jj py)- Consequent to this derivation, we have

A; (Agp;'}) = (AAT> py= argmin  Wa(p,p}),
: p=Aspu, Yo, EP(A)

or equivalently

(4.19) A;rpy =argmin Wa(Aypu, o),
pu€P(A)

finishing the proof that Agp;j is the global minimizer.

Next, we show that Agp; is also the unique equilibrium of the corresponding Wasserstein
gradient flow equation (3.12). That is, the equilibrium of the gradient flow equation is the
global minimizer of (3.1). At equilibrium, we have

V- (P Vu¢*(Au)) =0 on the support of py°,
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where ¢* is the Kantorovich potential associated with pi® = Aypp; see (3.10)—(3.11). This
implies that

(4.20) ATV,¢*(y)=0 on the support of Py -
Based on (4.20), we deduce that
Vy¢" :supp(p;”) C col(A) — col(A),

where col(A)* denotes the orthogonal complement of the linear subspace col(A).
On the other hand, one can express the Kantorovich potential with respect to pj;, denoted
by *, using the c-transform:

) 1

w@=@ )= mn Gl -sw}, aer.
yecol(A) | 2

For any x € R, we denote by y, the minimizer of the above c-transform. Since the minimization

problem is strictly convex, the first-order optimality condition is also sufficient:

(4.21) & — Yy — Vyo* (yz) L col(A).

Based on (4.20), we know V,¢*(y,) € col(A)+. Moreover, y, € col(A). Therefore, (4.21) is
equivalent to the following orthogonal decomposition of x:

T=y,+2, z€col(A)",

Since orthogonal decomposition with respect to col(A) is unique, we obtain that y, = AAfz
Vx € R. Based on the optimal transportation theory [25, 31], y, = AAfz = T(z), where T is
the optimal transport map from pj, to py°. That is,

Py = (AAT)py

which implies that p3° = Alpf. ]

Equation (4.19) shows that we have a simple form for the minimizer of the variational
problem (1.5) and the equilibrium of the gradient flow equation (3.1) if D is Wy and A is
tall-skinny with full column rank. Just as Afy* provides the optimizer in the deterministic
case (see (4.13)), the minimizer in the stochastic context is its vanilla extension Agpz under
the Ws case, also the only equilibrium of the Wasserstein gradient flow under conditions.

5. Numerical examples. This section presents a few numerical inversion examples using
the proposed particle method (3.20). Throughout the section, we use the KL divergence (3.7)
as the objective function and the Wy metric to determine the geometry. In all examples in this
section, we set e = 0.5 as the hyperparameter in the density estimation step (3.21). The time
step size to discretize the gradient dynamics (3.21) is chosen using the Armijo backtracking
line search.
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initial parameter final parameter true parameter

0 0
-10 -10 -10 -10 0 -10 -10 0
Uz Uy Uz U Uz Uy

initial data final data true data

Figure 1. Parameter and data distributions in the fully determined case with the map T(x) = Az, where
A =diag([2,0.75]).

5.1. Linear push-forward map. We first present examples with the linear push-forward
map y = G(u) = Au, which we theoretically studied in section 4. Given the matrix A is fully,
under-, or overdetermined, we show that there are different phenomena in inversion using the
gradient flow approach (3.2).

5.1.1. Fully determined case. First, we consider a fully determined case. We let A =
diag([2,0.75]), and the true parameter u ~ N(0,I). As a result, the reference data y ~
N(0,AAT), represented by an empirical distribution with 1000 i.i.d. particles. The initial
guess for the parameter is the uniform distribution 2[—3,3]%, which is also represented by
1000 i.i.d. samples. We then follow the particle method (3.20) to implement the gradient flow
equation (3.2). The convergence results after 30 iterations are shown in Figure 1. We have
recovered both the parameter distribution and the data distribution well.

5.1.2. Underdetermined case. Next, we consider that A = [2,0.75], which is underde-
termined. The true parameter distribution is N(0,I) and the reference data distribution
y ~ N(0,AAT = 4.5625), which we use 3000 i.i.d. samples to represent. Since A is underde-
termined, based on our analysis in section 4, there are infinitely many solutions u, the same
as the deterministic case. Since we use the gradient flow formulation (3.2), the algorithm
can only find one of the solutions, which is determined by the initial condition. We then
demonstrate this through numerical examples.

We consider two different initial distributions u' and u?, as shown in Figure 2. We also
use 3000 particles to implement the Wasserstein gradient flow of minimizing the KL diver-
gence between the reference and the data distribution computed from the current iterate of
the parameter distribution. Although neither of the gradient flows started from the initial
distributions converges to the true parameter distribution from which we generate the data,
their corresponding data distributions match the reference and successfully achieve data fit-
ting. This again demonstrates the intrinsic nonuniqueness of the inverse problem when the
linear push-forward map A is underdetermined.
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final parameter

initial parameter true parameter

10

0 0
-10 -10 -10 -10 -10 -10
%] Uy Uz Uy ] U1

(a) Parameter distribution with initial guess u'

initial parameter final parameter true parameter

0 0 0
-10 -10 -10 -10 -10 -10
] U1 Uz Uy Uz U1

(b) Parameter distribution with initial guess u>

0.3 : 0.3 .
—initial data —initial data
0.251 —--final data 0.25 —--final data
ref data ref data
0.2+ 0.2+
0.15) ‘e 0.15|
0.1+t 0.1+
0.05¢+ \ 0.05 ¢
\‘
0= . ‘ - ] 0l— = -
-10 -5 0 5 10 -10 10
u

(c) Data with initial guess u?

(d) Data with initial guess u2

Figure 2. Underdetermined case under two initial distributions, u' and u?, where the map G(u) = Au,
A =[2,0.75]. The reference data distribution is computed using the true parameter distribution.

5.1.3. Overdetermined case. Next, we show the overdetermined case with A = [2,1]T.
We set the true parameter distribution to be N'(0,1) and choose a reference data distribution
that is polluted by random noise and thus is not in the range of the forward push-forward
map. Inversion in this scenario is similar to the least-squares method in the deterministic
case; see section 4. We use 3000 samples to represent the reference data distribution and 3000
particles to implement the gradient flow method (3.2).

In Figure 3, we plot the initial and final converged parameter distributions and the corre-
sponding data distributions pushed forward by the forward map from those parameter distri-
butions. We also show the true parameter distribution and the reference data distribution for
comparison. The final data distribution from the recovered parameter distribution does not
fit the reference data entirely. However, their marginal distributions along ya (orthogonal pro-
jection of y over the column space of A) match exactly. This verifies our result in Theorem 4.6.
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Y4, y projected onto col(A)

Figure 3. Overdetermined case with the map T(x) = Az, where A = [2,1]7. Although the final recovered
data distribution does not fit the reference data distribution entirely, their marginal distributions on ya match
very well, as proved in Theorem 4.6.

5.2. An inverse problem example. Many inverse problems can be solved in our frame-
work. Let us first consider a one-dimensional (1D) elliptic boundary value problem, a test
case considered in [13, 12]:

(5.1) — (exp(ur)p'(z)) =1, z€[0,1],
p(0)=0, p(1)=us.

Its analytic solution can be written as

(5.2) p(x) = Uz + exp(—u) (—‘22 + ;)

which shows the log stability of this particular setup (parameter change in response to the
PDE solution change). In the setup of [12, eq. (4.4)], the authors consider the forward model
mapping the two independent scalar coefficients u; and ug to the observed data y; := p(z1)
and yo := p(z2), where x; =0.25 and = =0.75.

Following the same setup, considering u; and us are scalar-valued random variables, our
observations [y1,12] are also random in nature. We represent p;, using N = 5000 samples
in this test and run the gradient flow simulation using M = 5000 simulated particles. Two
settings are considered.

(1) The true parameters u; ~ N (0,0.5), and ugs ~ U([0,2]). The initial guess ugo),ug))

both follow A(0,2).
(2) ug ~N(—1.5,0.5), and ug ~U([0,2]). The initial guess ugo) ~U([-3,—1]) and ugo) ~
u([0,2)).
Since the analytic solution (5.2) suggests stronger sensitivity of data on the negative values
of uy, we expect a better stability of the inverse problem in setting (2), given its ground truth
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initial parameter final parameter true parameter

initial data final data

0.5 0.5,

Figure 4. Numerical inversion based on the 1D diffusion equation (5.1) with setting (1).

initial parameter final parameter true parameter

Figure 5. Numerical inversion based on the 1D diffusion equation (5.1) with setting (2).

taking on a negative value with high probability. This is indeed what we observe from the
experiments; see Figures 4 and 5. In both cases, the data distributions are matched very well.
The recovered parameter distribution, however, demonstrates different features: It is visually
far away from the truth in setting (1) but is in much better agreement with the ground truth
in setting (2).

The higher-dimensional version of (5.1) becomes

(53) Y - (a0 Vp(x)) = £(0), xeD,
p(x) =sin(2z17) cos(4xam), x = (z1,22) € 0D.

We consider D = [0,1]? and a(x) = exp (u1¢1(x) + uz2¢2(x)) where ¢1( x) = gi%cos(ﬂxl)
and ¢o(x) = QJS% cos(m(z1 + x2)), following a similar setup in [12, sect. 4.4]. Two observed
empirical distributions y; = p(x1) and ya = p(x2) are used to perform the inversion where
the receivers are located at x; = (0.25,1)T and x2 = (1,0.5)". The true distributions are

uy ~N(1,1) and ug ~U([0,1]), while the initial distribution ugo)’ ugo) ~U(]—2.5,2.5]). We use
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Figure 6. Numerical inversion based on the 2D diffusion equation (5.3).
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Figure 7. The objective function decay for the tests shown in Figures 4-6.

N = 5000 particles for the observed empirical distribution and M = 1000 for the simulation.
Both the parameter reconstruction and its generated data distribution are close to the truth.
The smooth-basis parameterization of a(x) significantly improves the well-posedness of the
problem. The top row of Figure 6 shows the initial parameter distribution, the inverted
parameter distribution, and the true parameter distribution that generates the data. The
bottom row of Figure 6 illustrates the respective data distributions. The convergence history
of the objective function (i.e., the KL divergence) for these three cases is plotted in Figure 7.

6. Conclusion and discussions. While most research in inverse problems focuses on deter-
ministic unknowns, many real-world problems are inherently stochastic, introducing random
variations in the parameters to be inferred. This necessitates a paradigm shift in research
from optimizing a single, deterministic value to characterizing the full probability distribution
that governs these parameters.

This paper presents a framework for conducting stochastic inverse problems. For linear
push-forward maps, we also discuss the well-posedness theory both for the formulation and
for the gradient flow algorithm. Particle-based solvers are designed to simulate the gradient
flow for finding the optimal probability measure.
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The proposed approach shares many traits with Bayesian inversion. While it is true
that both formulations return probability distributions of the unknown parameter, there is
a stark difference between the two: the sources of randomness are different. In Bayesian
inference, it is assumed there is randomness in the prior knowledge (encoded in the prior
distribution) and there is measurement error (encoded in the likelihood function). On the
contrary, our formulation assumes the data is devoid of any noise, attributing randomness
solely to the parameters. To incorporate the randomness in the measurement error, we need
to reformulate the problem as a probability distribution over a metric space consisting of
probability measures space, and seek for Law{p, }, instead of p,, itself. This would be a much
more intricate problem, and we leave it to future research.

The current paper is just the beginning of our research endeavor to explore stochastic
inverse problems. The rich geometries of probability spaces present a unique opportunity for
computational solver design. We expect different combinations of the data discrepancy and
the metric deployed to measure probability distances would present different features of the
problem.

Appendix A. Proof of Proposition 4.1.

Proof of Proposition 4.1. The proof is simple algebra. We note that the source term in
(4.6) is always in the column space of AT, hence the column space of U, which leads to the
fact that

(A1) u(t) € ug +span{U}.
Since the convergence of gradient descent is achieved when u(t) € S, we have
ug € {ug +span{U}} N {u* +span{UL}}.

Let U = [ul un] and UL = [Un+1 um], where the column vector u; € R™ and
|luill2=1, 1 <i<n. Then we have that

n m
Uf = ug + E )\iui =u* — E /\iui y
i=1 i=n+1

making \; =u, (u* — ug), which finalizes to

n m
uf=ug + Zu;r(u* —ug)u; =u* — Z uy (u* —uo)u; .
i=1 i=n+1

Equivalently, us =ug — UUT (ug — u*) = u* — U+ (UL) T (u* — ug). Then the result follows from
the following identity:

uu’ +utuh)T =1,

which follows from UTU+ =0 and (lNJL)TU = 0. Furthermore, given y and ¢ in (4.4), and the
fact that the row spaces for A and A are U and U+, respectively, we have yf = Aug = y* and
g]f = AUO. |
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The proof is rather straightforward. We quickly comment on its geometric interpretation.
The result essentially is looking for the intersection of two sets. One is defined by the trajectory
(A.1), and the other is defined by the equilibrium (4.5). The intersection point is unique, with
its U component determined by «* and the U™ component determined by the initial guess ug.
Note also that although «* is not unique, its projection to the column space of U is unique.
Indeed, since Au* = y*, we have UUTu* = US™!V Ty*, which is purely determined by A and
the given y*.
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