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Abstract
We establish a uniform-in-scaling error estimate for the asymptotic preserving scheme pro-

posed in [16] for the Lévy-Fokker-Planck (LFP) equation. The main difficulties stem from not
only the interplay between the scaling and numerical parameters but also the slow decay of the
tail of the equilibrium state. We tackle these problems by separating the parameter domain ac-
cording to the relative size of the scaling ε: in the regime where ε is large, we design a weighted
norm to mitigate the issue caused by the fat tail, while in the regime where ε is small, we prove
a strong convergence of LFP towards its fractional diffusion limit with an explicit convergence
rate. This method extends the traditional AP estimates to cases where uniform bounds are
unavailable. Our result applies to any dimension and to the whole span of the fractional power.

1 Introduction

Consider the Lévy-Fokker-Planck (LFP) equation{
∂tf + v · ∇xf = ∇v · (vf)− (−∆v)sf := Ls(f), s ∈ (0, 1),
f(0, x, v) = fin(x, v),

(1.1)

where f(t, x, v) : (0,∞)× Rd × Rd 7→ R+ is the distribution function of a large group of particles,
which undergoes a free transport dynamics along with an interaction with the background, described
by the Levy-Fokker-Planck operator. In contrast to the conventional Fokker-Planck operator, here
we have (−∆v)s in place of ∆v, which models the Lévy processes at the microscopic level instead
of Brownian motion. One way to understand (−∆v)s is via the Fourier transform. Namely, for any
φ(v) ∈ L1(Rd),

−(−∆v)sφ := F−1(|k|2sFφ) ,

where

φ̂(k) := F [φ](k) =
∫
Rd
φ(v)e−iv·kdv, F−1[φ](v) = 1

(2π)d
∫
Rd
φ̂(k)eiv·kdk

are the Fourier and inverse Fourier transforms. Formally, from this definition −(−∆v)s reduces to
∆v if s = 1. Another way of defining this operator is through the integral representation:

(−∆v)sf(v) := Cs,d P.V.
∫
Rd

f(v)− f(w)
|v − w|d+2s dw, (1.2)
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where P.V. denotes the Cauchy principal value and Cs,d = 4sΓ(d/2+s)
πd/2|Γ(−s)| . In principle, the fractional

Laplacian allows particles to make long jumps at the microscopic scale, which leads to the nonlocal
effect as written in (1.2) at the mesoscopic scale.
In the small mean free path regime with a long time, equation (1.1) can be rescaled as{

ε2s∂tf
ε + εv · ∇xf ε = Ls(f ε),

f ε(0, x, v) = fin(x, v).
(1.3)

Formally, f ε converges to ρ(t, x)M(v) as ε→ 0, whereM(v) is the unique normalized equilibrium
of (1.3) (see [5]) with the properties

Ls(M) = 0,
∫
Rd
M(v)dv = 1, M(v) ∼ C

|v|d+2s as |v| → ∞. (1.4)

Meanwhile, the limiting density ρ(t, x) solves{
∂tρ+ (−∆x)sρ = 0,
ρ(0, x) = ρin(x) :=

∫
Rd fin(x, v)dv.

(1.5)

A weak convergence from f ε to ρM has been established in [2]. In Section 2, we will strengthen
this result in two aspects: first, we will show that, this convergence is strong in L2

x,v. Second, we
will provide an explicit convergence rate in terms of ε. See Theorem 1 for details.
A notable difference between the anomalous scaling in (1.3) and classical diffusive scaling (i.e.,

s = 1 in (1.3)) is that the classical diffusion limit takes the form

∂tρ+∇x · (D∇xρ) = 0,

where D is the diffusion matrix

D =
∫
v ⊗ vMdv.

It is clear that the fat tail equilibrium (1.4) renders D unbounded and therefore necessitates the
anomalous scaling. Similar scaling has also been investigated in the framework of linear Boltzmann
equation

ε2s∂tf + εv · ∇xf =
∫
φ(v, v′)(M(v)f(v′)−M(v′)f(v))dv′ , (1.6)

whereM(v) is a given heavy tailed equilibrium satisfies (1.4), and the diffusion limit is again (1.5)
(see [1, 13]).
From a computational perspective, it is desirable to design a method that performs uniformly

in ε. An asymptotic preserving (AP) scheme would suffice this purpose [9]. However, due to the
algebraic decay in the tail of the equilibrium, existing methods that work for exponential decay
equilibrium (i.e., Maxwellian) cannot be applied. The reason is that these methods always reside in
a truncated velocity domain as the tail information is negligible. By contrast, when the anomalous
scaling is considered, the tail carries the most important information that cannot be ignored. For
this reason, special treatment are needed to preserve the tail information along the dynamics. This
is the main idea behind the works [3, 4, 14, 15], which all deal with the linear Boltzmann type
equation in (1.6). Even though the LFP equation shares a similar equilibrium state and diffusion
limit with the linear Boltzmann equation (1.6), its structural differences from (1.6) prohibit a direct
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application of methods developed for (1.6). There are two main obstacles. The first one is because
of the differential operators involved in LFP. More specifically, the method used for (1.6) that
directly compensates the heavy tail using mass conservation does not apply to LFP since it will
violate the smoothness requirement for LFP’s differential operators. Second, the Hilbert expansion,
which is key to the design of many AP schemes [9, 14, 15], applies well to the linear Boltzmann
equation. Unfortunately we do not know how to make it work for LFP.
In [16], a new asymptotic preserving scheme was developed to alleviate the aforementioned diffi-

culties. The main idea is based on a novel type of micro-macro decomposition, with a unique macro
part that is inspired by the special choice of the test function in proving the weak convergence in
[2]. More specifically, decompose f as

f(t, x, v) = η(t, x, v)M(v) + g(t, x, v), (1.7)

where η(t, x, v) takes the form
η(t, x, v) = h(t, x+ εv) (1.8)

for some function h(t, x) andM is the equilibrium state satisfying

∂v(vM)− (−∆v)sM = 0,
∫
R
M(v)dv = 1. (1.9)

Note that although η depends on (x, v), intrinsically it lives on a lower dimensional manifold than
f does. Direct computation using (1.8) gives

ε∂xη = ∂vη, (−∆v)sη = ε2s(−∆x)sη. (1.10)

Inserting (1.7) into (1.3), we get

ε2s∂t(ηM+ g) + εv∂x(ηM+ g) = ∂v(v(ηM+ g))− (−∆v)s(ηM+ g).

By (1.9) and (1.10), it simplifies to

ε2s∂t(ηM+ g) + εv∂xg = Ls(g)− ε2s(−∆x)sηM− I(η,M), (1.11)

where

I(p, q) = (−∆v)s(p q)− q (−∆v)sp− p (−∆v)sq

= Cd,s

∫
Rd

(p(v)− p(w))(q(w)− q(v))
|v − w|d+2s dw.

Splitting (1.11), we introduce the following macro-micro model{
∂tη = −(−∆x)sη,
ε2s∂tg + εv∂xg = Ls(g)− I(η,M),

(1.12)

with the initial condition given as

ηin(x, v) = ρin(x+ εv), gin(x, v) = fin(x, v)− ηin(x, v)M(v). (1.13)

One can recover f in (1.3) by solving (1.12) and using (1.7).
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To numerically solving (1.12), we propose a semi-discrete scheme based on an operator splitting:

1
∆t(η

n+1 − ηn) = −(−∆x)sηn+1, (1.14a)

ε2s

∆t (g
n+ 1

2 − gn) = Ls(gn+ 1
2 )− γgn+ 1

2 − I(ηn+1,M), (1.14b)

ε2s

∆t (g
n+1 − gn+ 1

2 ) + εv∂xg
n+1 = γgn+1, (1.14c)

where γ is a positive constant. The choice of γ will be made explicit throughout the proof (see
(4.20), (4.29) and (4.55)). The spatial derivative will be treated via the Fourier-based spectral
method, and the velocity discretization will be done by using the mapped Chebyshev-polynomial-
based pseudo-spectral method. Note that the scheme in (1.14) is slightly different from that in [16]
as we treat η implicitly in (1.14a) and use ηn+1 to obtain gn+ 1

2 in (1.14c). This will not introduce
extra computational cost as the Fourier-based spectral is method used for x .
The goal of this paper is to provide a rigorous foundation to the above scheme. In particular, we

will show that the scheme is indeed asymptotic preserving. Hence the convergence of the scheme
is uniform with respect to both ε and ∆t. The general framework of AP schemes was laid out
in [6] and the main idea is illustrated in Fig. 1. Denote by f ε and f0 the exact solutions to the

Figure 1: Illustration of AP schemes.

kinetic equation (e.g., (1.1)) and macroscopic limit (e.g, (1.5)), respectively. The same notation
with subscript ∆ represents the associated numerical solution. The key idea is that to establish a
uniform bound for ‖f ε∆ − f ε‖ by optimizing between two routes: one is the direct error estimate in
the kinetic regimes satisfying

‖f ε∆ − f ε‖ ≤ C
∆p

ε
, (1.15)

where p is the order of the adopted numerical discretization. The other is through the asymptotic
relation

‖f ε∆ − f ε‖ ≤
∥∥∥f ε∆ − f0

∆

∥∥∥+
∥∥∥f0

∆ − f0
∥∥∥+

∥∥∥f0 − f ε
∥∥∥ , (1.16)

where
∥∥f0

∆ − f0∥∥ . ∆p as there is no ε dependence in the equation, while
∥∥f0 − f ε

∥∥ . ε is guar-
anteed by the asymptotic relation at the continuum level. If the scheme is asymptotic preserving,
then we have ∥∥∥f ε∆ − f0

∆

∥∥∥ ≤ Cε. (1.17)

Consequently, (1.16) becomes
‖f ε∆ − f ε‖ ≤ C(∆p + ε) . (1.18)
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Finally, an optimization between (1.15) and (1.18) gives us the uniform estimate

‖f ε∆ − f ε‖ ≤ C∆
1
2 . (1.19)

We emphasize that throughout the procedures above, C is a constant independent of both ε and
∆, a property that we view as a certain uniformity of the traditional AP estimates.
This framework, albeit universal, is not easy to carry out for specific problems. Oftentimes the

bottleneck is to obtain the estimate (1.17), which can be as difficult as obtaining the uniform error
estimate directly. For this reason, despite the large number of AP schemes designed, rigorous
justification of the uniformly accuracy of these schemes is very limited. To our best knowledge,
there are only a handful of works [6, 7, 8, 10, 11, 12] that provide a rigorous stability or error
estimate, and they all are restricted to linear transport or relaxation type equations.
In this paper, we prove a uniform error estimate for the first time for the fractional kinetic

equation. In our case, the strong non-locality, both in the Lévy Fokker Planck operator itself and
in the slow algebraic decay of the equilibrium, poses tremendous difficulties in the proof as the basic
energy estimate fails immediately. To solve this problem, we propose a novel domain decomposition
as denoted in Fig. 2, which can be viewed as a generalization of the general framework described
above. In particular, we divide the domain into two regimes—Regime I with ε2s ≥ ∆t2sβ and
Regime II with ε2s < ∆t2sβ , where the constant β ∈ (0, 1/4s) is specified in Theorem 2.
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Figure 2: Two regimes separated by the relation between ε2s and ∆t. Left: linear scale. Right: log scale.

Denote W k,p and Hk as the usual Sobolev spaces. Introduce the notation L2
M−1 such that

f ∈ L2
M−1 ⇐⇒ ‖f‖2M−1 =

∫ ∫
f2

M
dxdv <∞. (1.20)

Leaving out some details, our main result is to establish the following error estimate

Main Theorem. Suppose the initial data are smooth enough such that

vfin ∈W 1,1
x,v , ρin ∈ H2

x ∩W 1,∞
x , gin, ∂xjgin, ∂vjvkgin ∈ L

2
M−1

for all 1 ≤ j, k ≤ d. Then outside of an initial layer, there exist constants C, b, ζ > 0 independent
of ε and ∆t such that

‖ 〈v〉−b (f ε∆ − f ε)‖M−1 ≤ C∆tζ .

The specific definitions of b, ζ are prescribed in Theorem 2 and Theorem 3.
Compared with the general framework outlined in (1.15)–(1.19), the main novelty in our proof

lies in the relaxation of the two key inequalities (1.15) and (1.17). In fact, owing to the slow decay
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in the equilibrium which may not even have a finite first moment, we cannot obtain estimates like
(1.15) or (1.17) with a uniform constant C. Instead, we relax both upper bounds to a form of
∆taεb, wherein one of a and b can be negative while the product as a whole is a quantity with
positive power in ∆t. This underpins the relation between a and b and leads to the division of
the parameter domain. We expect that this generalization provides a new route for proving the
uniform accuracy for asymptotic preserving schemes.
The rest of the paper is organized as follows. In Section 2, we prove the strong asymptotic

limit from the kinetic to the macroscopic systems in the L2
x,v-norm with an explicit convergence

rate. This result will be used in obtaining the error estimate in Regime II. Section 3 consists of
two technical lemmas on commutator estimates They will appear in the error estimate in Regime
I. Finally, Section 4 is devoted to the proof of the main theorem.

2 Strong asymptotic limit

This section is devoted to establishing a strong convergence from (1.3) to (1.5) with an explicit
convergence rate. Our main tool is the Fourier transform, through which solutions are derived
explicitly. In particular, denote f̂(t, ξ, k) as the Fourier transform of f(t, x, v), i.e.,

f̂(t, ξ, k) =
∫
Rd

∫
Rd
f(t, x, v)e−i(x·ξ+v·k)dxdv.

Then (1.3) rewrites as {
ε2s∂tf̂ − εξ · ∇kf̂ = −k · ∇kf̂ − |k|2sf̂ ,
f̂(0, ξ, k) = f̂in(ξ, k).

By the method of characteristics, its solution is

f̂(t, ξ, k) = f̂in(ξ, εξ + e−ε
−2st(k − εξ)) e−

∫ ε−2st
0 |e−w(k−εξ)+εξ|2sdw. (2.1)

Similarly, if we denote ρ̂(t, ξ) as the Fourier transform of ρ(t, x), then from (1.5) we have

ρ̂(t, ξ) = f̂in(ξ, 0)e−|ξ|2st.

Thus the equilibrium state in the Fourier space is

ρ̂(t, ξ)M̂(k) = f̂in(ξ, 0)e−|ξ|2st−
1

2s |k|
2s
. (2.2)

The difference of the solutions in (2.1) and (2.2) is as follows.

Theorem 1. Let f and ρ be the solutions to (1.3) and (1.5) respectively. Let t0 be a fixed constant
greater than Cε2s. Then for any t ≥ t0, we have

‖f − ρM‖2L2
x,v
≤ Cs,t0ε2s ‖ρin‖2L1 + C

[
ε2 ‖v · ∇xfin‖2L1

x,v
+ Ct0ε

4s ‖vfin‖2L1
x,v

]
,

where Cs,t0, C and Ct0 are three constants that do not depend on ε.

Some preparations for proving Theorem 1 are in place. Frist we prove an elementary lemma that
will be used repeatedly.
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Lemma 1. For all s ∈ (0, 1) and a, b > 0, we have the following inequalities:

(a+ b)s ≤ as + bs; (2.3)
|(a+ b)2s − (a2s + b2s)| ≤ 2asbs. (2.4)

Proof. The first inequality follows from the concavity of the function x 7→ xs with x ≥ 0:
(

a

a+ b

)s
+
(

b

a+ b

)s
≥
(

a

a+ b
+ b

a+ b

)s
= 1.

To prove (2.4), by symmetry we can assume that a ≥ b. Denote z = b
a ∈ [0, 1]. Then (2.4) is

equivalent to ∣∣∣(1 + z)2s − (1 + z2s)
∣∣∣ ≤ 2zs,

or equivalently,

(1 + z)2s − (1 + z2s) ≤ 2zs and (1 + z2s)− (1 + z)2s ≤ 2zs. (2.5)

The first inequality in (2.5) holds since by (2.3),

(1 + z)2s ≤ (1 + zs)2 = (1 + z2s) + 2zs.

The second inequality in (2.5) holds since

1 + z2s − 2zs = (1− zs)2 ≤ (1 + z)2s, z ∈ [0, 1].

Thus (2.4) holds.

By Parseval’s identity, we will prove Theorem 1 in the Fourier space. Subtracting (2.2) from
(2.1), we have

f̂(t, ξ, k)− ρ̂(t, ξ)M̂(k).

= f̂in(ξ, 0)[e−
∫ ε−2st

0 |e−w(k−εξ)+εξ|2sdw − e−|ξ|2st−
1

2s |k|
2s ]

+ [f̂in(ξ, εξ + e−ε
−2st(k − εξ))− f̂in(ξ, 0)]e−

∫ ε−2st
0 |e−w(k−εξ)+εξ|2sdw

=: f̂in(ξ, 0)A1 +A2. (2.6)

The following lemma quantifies the difference in the exponents in A1.

Lemma 2. Suppose t0 is a fixed constant greater than Cε2s. Then for any fixed k and ξ, there
exists a constant Cs,t0 depending only on s and t0, such that

∣∣∣∣∣
∫ ε−2st

0
|e−w(k − εξ) + εξ|2sdw −

(
|ξ|2st+ |k|

2s

2s

)∣∣∣∣∣ ≤ Cs,t0εs (|ξ|2s + |k|2s
)
, ∀ t ≥ t0.
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Proof. First we reformulate the integral by decomposing ξ into the component in the direction of
k and the one perpendicular to it: ξk := ξ · k|k| and ξ

⊥ = ξ − ξk. Then

J :=
∫ ε−2st

0
|e−w(k − εξ) + εξ|2sdw

=
∫ ε−2st

0

[
|e−w|k|+ (1− e−w)εξk|2 + (1− e−w)2ε2|ξ⊥|2

]s
dw

=
∫ ε−2st

0

[
e−2w|k|2 + 2e−w(1− e−w)ε ξk |k|︸ ︷︷ ︸

a

+ (1− e−w)ε2|ξ|2︸ ︷︷ ︸
b

]sdw
=
∫ ε−2st

0
((a+ b)s − as − bs + as + bs) dw.

Hence, ∣∣∣∣∣J −
(
|ξ|2st+ |k|

2s

2s

)∣∣∣∣∣ ≤
∫ ε−2st

0
|(a+ b)s − as − bs| dw

+
∣∣∣∣∣
∫ ε−2st

0
asdw − |k|

2s

2s

∣∣∣∣∣+
∣∣∣∣∣
∫ ε−2st

0
bsdw − |ξ|2st

∣∣∣∣∣ .
We show that each term is of order εs. By (2.4),∫ ε−2st

0
|(a+ b)s − as − bs| dw ≤ 2

∫ ε−2st

0
a
s
2 b

s
2 dw

= 2
∫ ε−2st

0
[(e−w|k|)2 + 2e−w(1− e−w)εξk|k|]

s
2 (1− e−w)sεs|ξ|sdw

≤ 2
∫ ε−2st

0
[(e−w|k|)s + (2e−w(1− e−w)εξk|k|)

s
2 ](1− e−w)sεs|ξ|sdw

≤ Cεs[|k|2s + |ξ|2s], (2.7)

where the first inequality follows from (2.3). Next,∣∣∣∣∣
∫ ε−2st

0
bsdw − |ξ|2st

∣∣∣∣∣ = ε2s|ξ|2s
∫ −ε−2st

0

∣∣∣(1− e−w)2s − 1
∣∣∣ dw ≤ 2

s
ε2s|ξ|2s. (2.8)

Using (2.3) again, we have∫ ε−2st

0
(e−w|k|)2sdw ≤

∫ ε−2st

0
asdw ≤

∫ ε−2st

0
(e−w|k|)2s + (2e−w(1− e−w)εξk|k|)sdw

≤
∫ ε−2st

0
(e−w|k|)2sdw + Cεs

(
|ξk|2s + |k|2s

)
.

Since ∣∣∣∣∣
∫ ε−2st

0
(e−w|k|)2sdw − |k|

2s

2s

∣∣∣∣∣ =
∫ ∞
ε−2st

(e−|w||k|)2sdw ≤ |k|2se−
2st
ε2s ,

we have, for t ≥ t0, ∣∣∣∣∣
∫ ε−2st

0
asdw − |k|

2s

2s

∣∣∣∣∣ ≤ Cs,t0εs (|ξ|2s + |k|2s
)
. (2.9)

The desired bound follows from (2.7), (2.8) and (2.9).
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A corollary follows immediately from Lemma 2.

Corollary 1. Consider t > t0 where t0 is a fixed constant larger than Cε2s. Then for any fixed k
and ξ, there exists a constant Cs,t0 that only depends on s and t0 such that

(1− Cs,t0εs)
(
|ξ|2st+ 1

2s |k|
2s
)
≤
∫ ε−2st

0
|e−w(k − εξ) + εξ|2sdw ≤ (1 + Cs,t0ε

s)
(
|ξ|2st+ 1

2s |k|
2s
)
.

Then for ε sufficiently small, we have∫ ε−2st

0
|e−w(k − εξ) + εξ|2sdw ≥ 1

2

(
|ξ|2st+ 1

2s |k|
2s
)
. (2.10)

In addition,∣∣∣∣∣e−
∫ ε−2st

0 |e−w(k−εξ)+εξ|2sdw − e−|ξ|2st−
1

2s |k|
2s

∣∣∣∣∣ ≤ e− 1
2 (|ξ|2st+ 1

2s |k|
2s)Cs,t0εs[|ξ|2s + |k|2s].

We are now ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 2 and Corollary 1, the A1-term in (2.6) satisfies∫
Rd

∫
Rd
|f̂in(ξ, 0)A1|2dkdξ

≤ Cs,t0ε2s
∫
Rd

∫
Rd
|f̂in(ξ, 0)|2e−(|ξ|2st+ |k|

2s
2s )[|ξ|2s + |k|2s]2dkdξ ≤ Cs,t0ε2s ‖ρin‖2L1 . (2.11)

We bound A2 as follows.

‖A2‖2L2
k,ξ

=
∫ ∫ ∣∣∣∣∣ 1

〈k〉
[f̂in(ξ, εξ + e−ε

−2st(k − εξ))− f̂in(ξ, 0)] 〈k〉 e−
∫ ε−2st

0 |e−w(k−εξ)+εξ|2sdw
∣∣∣∣∣
2

dkdξ

≤
∥∥∥∥ 1
〈k〉

[f̂in(ξ, εξ + e−ε
−2st(k − εξ))− f̂in(ξ, 0)]

∥∥∥∥2

L∞
k,ξ

∥∥∥∥∥〈k〉 e−
∫ ε−2st

0 |e−w(k−εξ)+εξ|2sdw
∥∥∥∥∥

2

L2
k,ξ

≤
∥∥∥(εξ + Ct0ε

2s)∂kf̂in
∥∥∥2

L∞
k,ξ

∥∥∥∥∥〈k〉 e−
∫ ε−2st

0 |e−w(k−εξ)+εξ|2sdw
∥∥∥∥∥

2

L2
k,ξ

≤
[
ε ‖v · ∇xfin‖L1

x,v
+ Ct0ε

2s ‖vfin‖L1
x,v

]2 ∥∥∥∥〈k〉 e− 1
2 (|ξ|2st+ |k|

2s
2s )

∥∥∥∥2

L2
k,ξ

≤ C
[
ε2 ‖v · ∇xfin‖2L1

x,v
+ Ct0ε

4s ‖vfin‖2L1
x,v

]
, (2.12)

where we have used that for ε sufficiently small and t > t0, it holds that e−ε
−2st ≤ Ct0ε2s. The second

last inequality follows from (2.10). Combining (2.11) and (2.12) leads to the desired result.

At the end of this section, we prove a useful property regarding the decay of the derivatives of
the equilibrium stateM(v).

Proposition 1. Derivatives of the equilibrium state M(v) satisfies

|∇mvM(v)| ≤ Cd,m|M(v)|,

where ∇mvM = ∂α1
v1 · · · ∂

αd
vd
M(v), for αi ≥ 0 and

∑d
i=1 αi = m and the constant Cm only depends

on m and d.
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Proof. Let χ(k) ∈ C∞c be a cutoff function with

χ(k) =
{

1 for k ∈ B(0, 1),
0 for |k| > 2.

Recall that the equilibriumM(v) has the following Fourier transform

M̂(k) = Ce−
1

2s |k|
2s
, s ∈ (0, 1).

Thus its derivative in the Fourier space reads

∇̂mM(k) = C(ik)mχ(k) e−
1

2s |k|
2s + C(ik)m(1− χ(k)) e−

1
2s |k|

2s
, (ik)m = (ik1)α1 · · · (ikd)αd .

Taking the inverse Fourier transform, one arrives at

∇mM(v) = F−1(∇̂mM(k))

= F−1(C(ik)mχ(k)e−
1

2s |k|
2s) + F−1(C(ik)m(1− χ(k))e−

1
2s |k|

2s)
=: M1(v) +M2(v).

Since C(ik)m(1−χ(k))e−
1

2s |k|
2s is a Schwartz class function, M2(v) decays faster than any polyno-

mial. Thus |M2(v)| ≤ Cd,mM(v). For M1, let

ĝ(k) := C(ik)mχ(k), g(v) = F−1(ĝ).

Then

M1(v) = F−1(ĝ(k)M̂(k)) =
∫
Rd
g(v − w)M(w)dw

=
∫
|w|≥ 1

2 |v|
g(v − w)M(w)dw +

∫
|w|< 1

2 |v|
g(v − w)M(w)dw.

When |w| ≥ 1
2 |v|, we haveM(w) ≤ CM(v). Thus∫

|w|≥ 1
2 |v|

g(v − w)M(w)dw ≤ CM(v)
∫
Rd
|g|dw ≤ Cd,mM(v).

When |w| < 1
2 |v|, we have |v − w| > 1

2 |v|. Since ĝ is a Schwartz class function, in this subdomain
g(v − w) ≤ C` 〈v〉−l for any l. Therefore,∫

|w|< 1
2 |v|

g(v − w)M(w)dw ≤ C` 〈v〉−l
∫
Rd
M(v)dv, ∀ l.

The final result follows from combining the estimates for M1 and M2.

3 Two technical lemmas

In this section we group some technical commutator estimates that will appear in the error analysis
in the next section.
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Lemma 3. For any function ḡ(x, v) smooth enough, the commutator

[〈v〉p , (−∆v)s]ḡ =
∫ 〈w〉p − 〈v〉p
|v − w|d+2s ḡ(w)dw (3.1)

admits the following estimate for −2s < p < d
2 + 2s:

‖[〈v〉p , (−∆v)s]ḡ‖L2
x,v
≤ C‖ 〈v〉p ḡ‖L2

x,v
+ ‖ 〈v〉p−1 |∇v ḡ|‖L2

x,v
.

Proof. We divide the integral into four parts and estimate them separately:

[〈v〉p , (−∆v)s]ḡ

=
∫
|v−w|>1,|w|> 1

2 |v|
·dw +

∫
|v−w|>1,|w|< 1

2 |v|
·dw +

∫
|v−w|≤1,|w|> 1

2 |v|
·dw +

∫
|v−w|≤1,|w|< 1

2 |v|
·dw.

When |v − w| > 1 and |w| > 1
2 |v|, we have

∥∥∥∥∥
∫
|v−w|>1,|w|> 1

2 |v|

| 〈w〉p − 〈v〉p |
|v − w|d+2s |ḡ(w)|dw

∥∥∥∥∥
L2
x,v

≤


C
∥∥∥∫|v−w|>1,|w|> 1

2 |v|
〈v〉p|ḡ(w)|
|v−w|d+2sdw

∥∥∥
L2
x,v

if p < 0,

C
∥∥∥∫|v−w|>1,|w|> 1

2 |v|
〈w〉p|ḡ(w)|
|v−w|d+2sdw

∥∥∥
L2
x,v

if p ≥ 0.
(3.2)

If p < 0, then (3.2) can be estimated as follows. If 1
2 |v| ≤ |w| ≤ 2|v|, then

∥∥∥∥∥
∫
|v−w|>1, 1

2 |v|≤|w|≤2|v|

| 〈w〉p − 〈v〉p |
|v − w|d+2s |ḡ(w)|dw

∥∥∥∥∥
L2
x,v

≤ C
∥∥∥∥(〈v〉p ḡ(v)) ∗

(
1|v|>1

1
|v|d+2s

)∥∥∥∥
L2
x,v

≤ C ‖〈v〉p ḡ‖L2
x,v
, p < 0. (3.3)

where we have used Young’s inequality and the integrability of 1
|v|d+2s for |v| > 1 in the last

inequality. When |w| ≥ 2|v|, we have∥∥∥∥∥
∫
|v−w|>1,|w|≥2|v|

| 〈w〉p − 〈v〉p |
|v − w|d+2s |ḡ(w)|dw

∥∥∥∥∥
L2
x,v

≤ C
∥∥∥∥∥
∫
|v−w|>1,|w|≥2|v|

〈v〉p

|v − w|d+2s |ḡ(w)|dw
∥∥∥∥∥
L2
x,v

≤ C
∥∥∥∥∥
∫
|v−w|>1,|w|≥2|v|

〈v〉p

|v − w|d+2s+p 〈w〉
p |ḡ(w)|dw

∥∥∥∥∥
L2
x,v

≤ C
∥∥∥∥(〈v〉p ḡ(v)) ∗

(
1|v|>1

1
|v|d+2s+p

)∥∥∥∥
L2
x,v

≤ C ‖〈v〉p ḡ(v)‖L2
x,v

∥∥∥∥(1|v|>1
1

|v|d+2s+p

)∥∥∥∥
L1
v

≤ C ‖〈v〉p ḡ(v)‖L2
x,v
, for d+ 2s+ p > d or p > −2s,
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where we have used Young’s inequality again. The lower bound p > −2s is to guarantee the
integrability of |v|−d−2s−p. If p ≥ 0, then the estimate (3.2) takes the following form:∥∥∥∥∥

∫
|v−w|>1,|w|> 1

2 |v|

| 〈w〉p − 〈v〉p |
|v − w|d+2s |ḡ(w)|dw

∥∥∥∥∥
L2
x,v

≤ C
∥∥∥∥(〈v〉p ḡ) ∗

(
1|v|>1

1
|v|d+2s

)
]
∥∥∥∥
L2
x,v

≤ C ‖〈v〉p ḡ‖L2
x,v
, p ≥ 0.

Similarly, if |v − w| > 1 and |w| < 1
2 |v|, then

∥∥∥∥∥
∫
|v−w|>1,|w|< 1

2 |v|

| 〈v〉p − 〈w〉p |
|v − w|d+2s |ḡ(w)|dw

∥∥∥∥∥
L2
x,v

≤


C
∥∥∥∫|v−w|>1

〈w〉p|ḡ(w)|
|v−w|d+2sdw

∥∥∥
L2
x,v

if p ≤ 0,

C
∥∥∥∫|v−w|>1

〈v〉p|ḡ(w)|
|v−w|d+2sdw

∥∥∥
L2
x,v

if p > 0.

The case when p ≤ 0 can be estimated exactly in the same way as (3.3), which gives∥∥∥∥∥
∫
|v−w|>1,|w|< 1

2 |v|

| 〈w〉p − 〈v〉p |
|v − w|d+2s |ḡ(w)|dw

∥∥∥∥∥
L2
x,v

≤ C ‖〈v〉p ḡ‖L2
x,v
, p ≤ 0.

A more involved estimate is needed for p > 0. Note that in this region, |v| ≥ 2
3 and |v −w| ≥ 1

2 |v|.
Thus we have∥∥∥∥∥

∫
|v−w|>1,|w|< 1

2 |v|

〈v〉p |ḡ(w)|
|v − w|d+2sdw

∥∥∥∥∥
L2
x,v

≤ C
∥∥∥∥∥
∫
|v|> 2

3 ,|w|<
1
2 |v|

〈v〉p |ḡ(w)|
|v|d+2s dw

∥∥∥∥∥
L2
x,v

= C


∫ ∫
|v|> 2

3

〈v〉2p−2d−4s
[∫
|w|< 1

2 |v|
|ḡ(w)|dw

]2

dvdx


1
2

≤ C
{∫ ∫

|v|> 2
3

〈v〉2p−2d−4s
[∫
|w|< 1

2 |v|
〈w〉−2p dw

]
‖〈w〉p ḡ(w)‖2L2

x,v
dvdx

} 1
2

= C

{∫
|v|> 2

3

〈v〉2p−2d−4s
[∫
|w|< 1

2 |v|
〈w〉−2p dw

]
dv
} 1

2

‖〈w〉p ḡ(w)‖L2
x,v

≤


if p < d

2 C
{∫
|v|> 2

3
〈v〉2p−2d−4s 〈v〉d−2p dv

} 1
2 ‖〈w〉p ḡ(w)‖L2

x,v
,

if p > d
2 C

{∫
|v|> 2

3
〈v〉2p−2d−4s dv

} 1
2 ‖〈w〉p ḡ(w)‖L2

x,v
,

if p = d
2 C

{∫
|v|> 2

3
〈v〉2p−2d−4s log 〈v〉 dv

} 1
2 ‖〈w〉p ḡ(w)‖L2

x,v
.

(3.4)

The integrals in (3.4) converge since p < d
2 + 2s. Combining (3.3)–(3.4), we have∥∥∥∥∥

∫
|v−w|>1

| 〈w〉p − 〈v〉p |
|v − w|d+2s |ḡ(w)|dw

∥∥∥∥∥
L2
x,v

≤ C‖ 〈v〉p ḡ‖L2
x,v
, −2s < p <

d

2 + 2s. (3.5)

When |v−w| ≤ 1, we consider s < 1
2 and s ≥ 1

2 separately. For s < 1
2 , since |v−w| ≤ 1, we have

| 〈w〉p − 〈v〉p | ≤ C 〈w〉p . (3.6)
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Thus ∥∥∥∥∥
∫
|v−w|≤1

| 〈w〉p − 〈v〉p |
|v − w|d+2s |ḡ(w)|dw

∥∥∥∥∥
L2
x,v

≤ C
∥∥∥∥∥
∫
|v−w|≤1|

〈w〉p−1

|v − w|2s+d−1 |ḡ(w)|dw
∥∥∥∥∥
L2
x,v

≤ C
∥∥∥∥(〈v〉p−1 ḡ) ∗

1|v|<1
|v|2s+d−1

∥∥∥∥
L2
x,v

≤ C
∥∥∥〈v〉p−1 ḡ

∥∥∥
L2
x,v

, s <
1
2 . (3.7)

For s ≥ 1
2 , we rewrite (3.1) in the region |v − w| ≤ 1 as∫

|v−w|≤1

〈w〉p − 〈v〉p

|v − w|d+2s ḡ(w)dw =
∫
|v−w|≤1

〈w〉p − 〈v〉p

|v − w|d+2s [ḡ(w)− ḡ(v)]dw +
∫
|v−w|≤1

〈w〉p − 〈v〉p

|v − w|d+2s ḡ(v)dw

=: I1 + I2.

We start with the estimate of I2. Write

〈w〉p = 〈v〉p + p 〈v〉p−2 v · (w − v) + 1
2D : (w − v)⊗ (w − v),

where D is the Hessian matrix

D = p(p− 2) 〈ζ〉p−4 ζ ⊗ ζ, where |ζ| ∈ b|v|, |w|e.

If 1
2 |v| < |w| < 2|v|, then |D| ≤ C 〈v〉p−2. If |w| ≤ 1

2 |v| or |w| > 2|v|, then both |v| and |w| are
bounded and it holds that |D| ≤ C 〈v〉p−2. Altogether, we have

‖I2‖L2
x,v
≤ C

∥∥∥〈v〉p−2 ḡ
∥∥∥
L2
x,v

. (3.8)

Now we estimate I1. Expand ḡ(w) as

ḡ(w) = ḡ(v) +
∫ 1

0
∇v ḡ(tw + (1− t)v) · (w − v)dt.

Then

‖I1‖2L2
x,v
≤
∥∥∥∥∥
∫
|v−w|≤1

∫ 1

0
|∇v ḡ(tw + (1− t)v)| 〈ζ〉p−1

|v − w|d+2s−2 dtdw
∥∥∥∥∥

2

L2
x,v

≤ C
∫ ∫ ∫ 1

0

[∫
|v−w|≤1

〈ζ〉p−1

|v − w|d+2s−2 |∇v ḡ(tw + (1− t)v)|dw
]2

dtdvdx,

where |ζ| is between |v| and |w| and the inequalities follow from Cauchy-Schwartz. Let

z = tw + (1− t)v ⇒ tddw = dz, |v − z| = t|v − w|.

Note that (3.6) holds when |v − w| ≤ 1. Thus

‖I1‖2L2
x,v
≤ C

∫ ∫ ∫ 1

0

[∫
|v−z|≤t

〈z〉p−1

|v − z|d+2s−2 |∇z ḡ(z)|td+2s−2t−ddz
]2

dtdvdx

= C

∫ 1

0

∥∥∥∥∥
∫
|v−z|≤t

〈z〉p−1

|v − z|d+2s−2 |∇z ḡ(z)|td+2s−2t−ddz
∥∥∥∥∥

2

L2
x,v

dt

≤ C
∫ 1

0

∥∥∥∥1|z|≤t 1
|z|d+2s−2

∥∥∥∥2

L1
x,v

∥∥∥〈z〉p−1 |∇z ḡ(z)|
∥∥∥2

L2
x,v

t4s−4dt

= C
∥∥∥〈z〉p−1 |∇z ḡ(z)|

∥∥∥2

L2
x,v

. (3.9)
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Combining (3.8) and (3.9), we have∥∥∥∥∥
∫
|v−w|≤1

| 〈w〉p − 〈v〉p |
|v − w|d+2s |ḡ(w)|dw

∥∥∥∥∥
L2
x,v

≤ C‖ 〈v〉p−2 ḡ‖L2
x,v

+ ‖ 〈v〉p−1 |∇v ḡ|‖L2
x,v

s ≥ 1
2 . (3.10)

The final result follows from (3.5), (3.7) and (3.10).

The second lemma in this section is a commutator estimate for weights and the operator Ls.

Lemma 4. For 0 ≤ b ≤ d+ 2s, if u satisfies

|u| ≤ C

ε2sM, (3.11)

then the commutator

[(1 + δ 〈v〉)−b,Ls]u := −
[
∇v · (v(1 + δ 〈v〉)−bu)− (1 + δ 〈v〉)−b∇v · (vu)

]
+
[
(−∆v)s((1 + δ 〈v〉)−bu)− (1 + δ 〈v〉)−b(−∆v)su

]
satisfies the bound∣∣∣∣∫ ∫ (1 + δ 〈v〉)−bu[(1 + δ 〈v〉)−b,Ls]u 1

M
dvdx

∣∣∣∣ ≤ Cδ 2s
d+4 ‖(1 + δ 〈v〉)−bu‖2M−1 + Cε−4sδmin{1,2s}.

Proof. Denote

T1u = ∇v · (v(1 + δ 〈v〉)−bu)− (1 + δ 〈v〉)−b∇v · (vu),
T2u = (−∆v)s((1 + δ 〈v〉)−bu)− (1 + δ 〈v〉)−b(−∆v)su.

Then [(1 + δ 〈v〉)−b,Ls]u = −T1u+ T2u. Note that

T1u = vu · ∇v[(1 + δ 〈v〉)−b] = −bu(1 + δ 〈v〉)−b−1δ
|v|2

〈v〉
.

Then from the assumption (3.11), we have∣∣∣∣∫ (1 + δ 〈v〉)−buT1u
1
M

dv
∣∣∣∣ ≤ Cbε−4s

∫
δ 〈v〉

1 + δ 〈v〉
Mdv

= Cbε−4s
∫
|v|<1

δ 〈v〉
1 + δ 〈v〉

Mdv + Cbε−4s
∫
|v|≥1

δ 〈v〉
1 + δ 〈v〉

Mdv ≤ Cbε−4s(δ2s + δ).

It is immediate that

Cbε−4s
∫
|v|<1

δ 〈v〉
1 + δ 〈v〉

Mdv ≤ Cbε−4sδ

∫
|v|<1

〈v〉Mdv ≤ Cbε−4sδ.

Moreover,

Cbε−4s
∫
|v|≥1

δ 〈v〉
1 + δ 〈v〉

Mdv

= Cbε−4s
∫

1≤|v|≤ 1
δ

δ 〈v〉
1 + δ 〈v〉

Mdv + Cbε−4s
∫
|v|≥ 1

δ

δ 〈v〉
1 + δ 〈v〉

Mdv

≤ Cbε−4sδ

∫
1≤|v|≤ 1

δ

〈v〉Mdv + Cbε−4s
∫
|v|≥ 1

δ

Mdv ≤ Cbε−4sδ2s.
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Therefore, ∣∣∣∣∫ (1 + δ 〈v〉)−buT1u
1
M

dv
∣∣∣∣ ≤ Cbε−4s(δ2s + δ). (3.12)

To estimate T2u, we first rewrite it as

T2u = Cs,d

∫
u(w)(1 + δ 〈v〉)−b − (1 + δ 〈w〉)−b

|v − w|d+2s dw.

Hence, ∫
(1 + δ 〈v〉)−buT2u

1
M(v)dv

= Cs,d

∫ ∫ (1 + δ 〈v〉)−b − (1 + δ 〈w〉)−b

|v − w|d+2s u(w) u(v)
(1 + δ 〈v〉)b

1
M(v)dvdw

=: Cs,d
∫ ∫

Jdvdw.

We proceed by separating the integration domain into |v − w| ≤ C0 and |v − w| > C0 for some
constant C0 > 1 to be determined and estimate the two integrals individually. Over the domain
|v − w| > C0, we have∣∣∣∣∣

∫ ∫
|v−w|>C0

Jdvdw
∣∣∣∣∣

≤
∫ ∫

|v−w|>C0

|(1 + δ 〈v〉)b − (1 + δ 〈w〉)b|
|v − w|d+2s

1
(1 + δ 〈v〉)b

|u(v)|
(1 + δ 〈v〉)b

|u(w)|
(1 + δ 〈w〉)b

1
M(v)dwdv

=
∫ ∫

|v−w|>C0,|w|< 1
2 |v|

+
∫ ∫

|v−w|>C0,|w|>2|v|
+
∫ ∫

|v−w|>C0,
1
2 |v|≤|w|≤2|v|

=: T23 + T24 + T25.

If |v − w| > C0 and |w| < 1
2 |v|, then |v| >

2
3C0 and

|(1 + δ 〈v〉)b − (1 + δ 〈w〉)b|
|v − w|d+2s

1
(1 + δ 〈v〉)b

1
M(v) ≤ C

(1 + δ 〈v〉)b

|v|d+2s
1

(1 + δ 〈v〉)b
1
M(v) ≤ C.

Thus,

T23 ≤ C
∫ ∫

|v|> 2
3C0

|u(w)|
(1 + δ 〈w〉)b

|u(v)|
(1 + δ 〈v〉)bdwdv

≤ C
∫ |u(w)|

(1 + δ 〈w〉)b
1√
M(w)

√
M(w)dw

∫
|v|> 2

3C0

|u(v)|
(1 + δ 〈w〉)b

1√
M(v)

√
M(v)dv

≤ C‖(1 + δ 〈v〉)−bu‖2M−1

(∫
|v|> 2

3C0
M(v)dv

) 1
2

≤ CC−s0 ‖(1 + δ 〈v〉)−bu‖2M−1 . (3.13)

If |v − w| > C0 and |w| > 2|v|, then |w| > 2
3C0 and

|(1 + δ 〈v〉)b − (1 + δ 〈w〉)b|
|v − w|d+2s

1
(1 + δ 〈v〉)b

1
M(v)

≤ C (1 + δ 〈w〉)b

|w|d+2s
1

(1 + δ 〈v〉)b
1
M(v) ≤ C

(1 + δ 〈w〉)b 〈w〉−d−2s

(1 + δ 〈v〉)b 〈v〉−d−2s , (3.14)
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where in the last inequality we have used C1 〈v〉−d−2s ≤ M(v) ≤ C2 〈v〉−d−2s for 0 < C1 ≤ C2. If
we choose b ≤ d+ 2s, then (1 + δ 〈w〉)b 〈w〉−d−2s is a decreasing function in |w| and (3.14) implies

|(1 + δ 〈v〉)b − (1 + δ 〈w〉)b|
|v − w|d+2s

1
(1 + δ 〈v〉)b

1
M(v) ≤ C.

The rest of the estimate is the same as that of T23 and we have

T24 ≤ CC−s0 ‖(1 + δ 〈v〉)−bu‖2M−1 . (3.15)

If |v − w| > C0 and 1
2 |v| < |w| < 2|v|, then

|(1 + δ 〈v〉)b − (1 + δ 〈w〉)b|
(1 + δ 〈v〉)b ≤ C.

Hence,

T25 ≤ C
∫ ∫

|v−w|>C0,
1
2 |v|<|w|<2|v|

1
|v − w|2s+d

|u(w)|
(1 + δ 〈w〉)b

|u(v)|
(1 + δ 〈v〉)b

1
M(v)dwdv

≤ C
∫ ∫

|v−w|>C0,
1
2 |v|<|w|<2|v|

1
|v − w|2s+d

|h(w)|
(1 + δ 〈w〉)b

|u(v)|
(1 + δ 〈v〉)b

1√
M(v)

1√
M(w)

dwdv

≤ CC−2s
0 ‖(1 + δ 〈v〉)−bu‖2M−1 . (3.16)

Combining (3.13), (3.15) and (3.16), we have∣∣∣∣∣
∫ ∫

|v−w|>C0
Jdvdw

∣∣∣∣∣ ≤ CC−s0 ‖(1 + δ 〈v〉)−bu‖2M−1 . (3.17)

For the domain |v − w| ≤ C0, we symmetrize the integral as∫ ∫
|v−w|≤C0

Jdvdw

= 1
2

∫ ∫
|v−w|≤C0

(1 + δ 〈v〉)b − (1 + δ 〈w〉)b

|v − w|d+2s
h(w)

(1 + δ 〈w〉)b
h(v)

(1 + δ 〈v〉)b×

×
[ 1
M(v)(1 + δ 〈v〉)b −

1
M(w)(1 + δ 〈w〉)b

]
dvdw.

By the mean value theorem, for 〈η1〉 , 〈η2〉 between 〈v〉 and 〈w〉, we have∣∣∣∣∣
∫ ∫

|v−w|≤C0
Jdvdw

∣∣∣∣∣
≤ bδ

∫ ∫ (1 + δ 〈η1〉)b−1 |η1|
〈η1〉

|v − w|d+2s−2
|h(w)|

(1 + δ 〈w〉)b
|h(v)|

(1 + δ 〈v〉)b×

× 1
M(η2)(1 + δ 〈η2〉)b

∣∣∣∣∣∇M(η2)
M(η2) +

bδ η2
〈η2〉

(1 + δ 〈η2〉)

∣∣∣∣∣ dvdw

≤ bδ
∫ ∫ 1
|v − w|d+2s−2

|h(w)|
(1 + δ 〈w〉)b

|h(v)|
(1 + δ 〈v〉)b×

× (1 + δ 〈η1〉)b−1

M(η2)(1 + δ 〈η2〉)b

∣∣∣∣∣∇M(η2)
M(η2) +

bδ η2
〈η2〉

1 + δ 〈η2〉

∣∣∣∣∣ dvdw

≤ bδ(1 + C0δ)max{b−1,0}
∫ ∫ 1
|v − w|d+2s−2

|h(w)|
(1 + δ 〈w〉)b

|h(v)|
(1 + δ 〈v〉)b

1
M(η2)dvdw, (3.18)
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where we have used
∣∣∣∇M(η2)
M(η2)

∣∣∣ ≤ C thanks for Proposition 1. In addition, if 1
2 |v| < |w| ≤ 2|v|, then

〈η〉 ≤ C 〈v〉 and (1 + δ 〈η〉)b−1

(1 + δ 〈v〉)b ≤ C.

If |w| ≥ 2|v|, then we have 2|v| ≤ |w| ≤ 2C0 and

(1 + δ 〈v〉)b−1 ≤
{
C(1 + δC0)b−1 b > 1,

C b ≤ 1.

Therefore, we always have
(1 + δ 〈η1〉)b−1

(1 + δ 〈η2〉)b
≤ C(1 + C0δ)max{b−1,0}.

Since |v−w| ≤ C0, if |w| > 2|v|, then we have |v| ≤ C0 and |w| ≤ 2C0. If |w| < 1
2 |v|, then |v| ≤ 2C0

and |w| ≤ C0. In both cases,
1

M(η2) ≤ C max
{ 1
M(w) ,

1
M(v)

}
≤ C 1√

M(w)
1√
M(v)

C
d
2 +s
0 . (3.19)

When 1
2 |v| ≤ |w| ≤ 2|v|, since 〈η2〉 is between 〈v〉, and 〈w〉, we have

1
M(η2) ≤ C

1√
M(w)

1√
M(v)

. (3.20)

Substituting (3.19) and (3.20) into (3.18), we have∣∣∣∣∣
∫ ∫

|v−w|≤C0
Jdvdw

∣∣∣∣∣
≤ bδ(1 + C0δ)max{b−1,0}C

d
2 +s
0

∫ ∫
|v−w|<C0

1
|v − w|d+2s−2

|u(w)|
(1 + δ 〈w〉)b×

× |u(v)|
(1 + δ 〈v〉)b

1√
M(w)

1√
M(v)

dvdw

≤ Cbδ(1 + δC0)max{b−1,0}C
d
2 +s
0

(∫ ∫
|v−w|<C0

1
|v − w|2s+d−2

|u(v)|2

(1 + δ 〈v〉)2b
1√
M(v)

dvdw
) 1

2

×

×
(∫ ∫

|v−w|<C0

1
|v − w|2s+d−2

|u(w)|2

(1 + δ 〈w〉)2b
1√
M(w)

dvdw
) 1

2

≤ Cbδ(1 + δC0)max{b−1,0}C
d
2 +s
0 C2−2s

0 ‖(1 + δ 〈v〉)−bu‖2M−1 . (3.21)

Summation of (3.17) and (3.21) leads to∫ ∫
(1 + δ 〈v〉)−buT2u

1
M

dxdv ≤ C
[
bδ(1 + δC0)max{b−1,0}C

d
2 +2−s
0 + C−s0

]
‖(1 + δ 〈v〉)−bu‖2M−1 .

Choose C0 = δ−
2
d+4 . Then the inequality above becomes∫ ∫

(1 + δ 〈v〉)−buT2u
1
M

dxdv ≤ Cδ
2s
d+4 ‖(1 + δ 〈v〉)−bu‖2M−1 .

Together with (3.12), this implies∣∣∣∣∫ ∫ (1 + δ 〈v〉)−bu[(1 + δ 〈v〉)−b,Ls]u 1
M

dxdv
∣∣∣∣ ≤ Cδ 2s

d+4 ‖(1 + δ 〈v〉)−bu‖2M−1 + Cε−4sδmin{1,2s}.

We thereby finish the proof of the commutator estimate.
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4 Error estimate

In this section we prove the uniform accuracy in time for the semi-discrete scheme (1.14). When ε is
large compared with ∆t, it corresponds to the kinetic regime, in which we show that the numerical
error can be controlled by some positive power of ∆t. This shows the consistency of the method.
When ε is small compared with ∆t, we will leverage the asymptotic preserving property of our
scheme to control the numerical error by a certain positive power of ε. The specific regimes will be
made clear later.
Given the initial data fin(x, v), we have the initial data for ρ and g as

ρin = 〈fin〉v , gin(x, v) = fin(x, v)− ρin(x+ εv)M(v).

Assume the initial data are chosen such that the following quantities are bounded:

‖gin‖M−1 , ‖gin‖L∞
M−1

, , ‖∂xigin‖M−1 , ‖∂vivjgin‖M−1 , ‖ρin‖H2
x
, ‖ρin‖W 1,∞ < +∞. (4.1)

Add the last two equations in (1.14) to get
1

∆t(η
n+1 − ηn) = −(−∆x)sηn+1, (4.2a)

ε2s

∆t (g
n+1 − gn) + εv∂xg

n+1 = Ls(gn+ 1
2 )− γgn+ 1

2 + γgn+1 − I(ηn+1,M). (4.2b)

Let en1 and en2 be the local truncation errors defined by

en1 = 1
∆t2 (g(tn+1)− g(tn)− ∂tg(tn+1)),

en2 = 1
∆t2 (η(tn+1)− η(tn)− ∂tη(tn+1)).

Then (1.12) becomes
1

∆t
[
η(tn+1)− η(tn)

]
= −(−∆x)sη(tn+1) + ∆ten2 , (4.3a)

ε2s

∆t
[
g(tn+1)− g(tn)

]
+ εv∂xg(tn+1) = Lsg(tn+1)− I(η(tn+1),M) + ε2s∆ten1 , (4.3b)

Denote
η̃n(x, v) = η(tn, x, v)− ηn(x, v), g̃n(x, v) = g(tn, x, v)− gn(x, v)

as the numerical error. By subtracting (4.2) from (4.3), we get
1

∆t(η̃
n+1 − η̃n) = −(−∆x)sη̃n+1 + ∆ten2 , (4.4a)

ε2s

∆t (g̃
n+1 − g̃n) + εv∂xg̃

n+1 = Lsg̃n+1 − I(η̃n+1,M) + (Ls − γI)(gn+1 − gn+ 1
2 ) + ∆tε2sen1 . (4.4b)

Denote the error from the operator splitting as

en3 = (Ls − γI)(gn+1 − gn+ 1
2 )

and denote

α = ε2s

∆t , f̃n = η̃nM+ g̃n. (4.5)
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Multiply (4.4a) by ε2sM and add to (4.4b). Then the error equation (4.4) has the form

α(f̃n+1 − f̃n) + εv∂xf̃
n+1 = Lsf̃n+1 + ∆ten1 + en3 + ε2s∆ten2M. (4.6)

In view of (4.2a), ηn evolves independently from gn. We summarize the properties of ηn as follows.

Lemma 5. Denote
ηn(x, v) = hn(x+ εv).

Then hn(y) solves
1

∆t(h
n+1 − hn) = −(−∆y)shn+1, h0(y) = ρin(y) (4.7)

and we have

‖hn‖H1
x
≤
∥∥∥h0

∥∥∥
H1
x

= ‖ρin‖H1
x
, ‖hn‖

W 1,∞
x
≤
∥∥∥h0

∥∥∥
W 1,∞
x

= ‖ρin‖W 1,∞
x

.

Proof. Equation (4.7) directly follows from (4.2a) and (1.13) and the inequality is the result of the
dissipative property of −(−∆x)s.

We have the following estimates for errors en1 and en2 .

Lemma 6. If (η, g) satisfies (4.1), then en1 , en2 defined in (4.8) and (4.9) satisfy

‖en1‖M−1 ≤ Cε−4s
2∑

i,j=1
‖|v|2(∂vivj + ∂xixj )fin‖M−1 + 1

2

∥∥∥(−∆x)2sρin
∥∥∥
L2
x

,

‖en2M‖M−1 ≤
1
2

∥∥∥(−∆x)2sρin
∥∥∥
L2
x

.

Proof. Rewrite en1 and en2 in their integral forms:

en1 = 1
∆t2

∫ tn+1

tn
(∂sg(s)− ∂sg(tn+1))ds = 1

∆t2
∫ tn+1

tn

∫ tn+1

s
∂ττg(τ, x, v)dτds. (4.8)

Similarly,

en2 = 1
∆t2

∫ tn+1

tn

∫ tn+1

s
∂ττη(τ, x, v)dτds. (4.9)

Recall that η(t, x, v) = h(t, x+ εv) where h(t, y) solves

∂th = −(−∆y)sh, h(0, y) = ρin(y).

Then ∂tth(t, y) satisfies

∂t(∂tth) = −(−∆y)s(∂tth), ∂tth(0, y) = (−∆y)2sρin(y).

Note that ∂ttη(t, x, v) = ∂tth(t, x+ εv). Thus we have

‖e2M‖M−1 ≤
1

∆t2
∫ tn+1

tn

∫ tn+1

s
‖∂ττη(τ, ·, ·)‖M−1dτds ≤ C

∥∥∥(−∆x)2sρin
∥∥∥
L2
x

. (4.10)
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To bound en1 , we make use of equation (1.3) for f . Note that ∂ttf solves the same equation as f
with initial condition

∂ttf(0, x, v) = ε2−4s(v · ∇x)(v · ∇x)fin(x, v)− ε1−4sv · ∇x(Lsfin)
− ε1−4sLs(v · ∇xfin) + ε−4sLsLsfin.

Due to the dissipative mechanism of Ls, we have

‖∂ttf‖M−1 ≤ ‖∂ttfin‖M−1 ≤ Cε−4s
2∑

i,j=1
‖|v|2(∂vivj + ∂xixj )fin‖M−1 . (4.11)

Then

‖en1‖M−1 = 1
∆t2 ‖

∫ tn+1

tn

∫ tn+1

s
∂ττg(τ, x, v)dτds‖M−1

≤ 1
∆t2

∫ tn+1

tn

∫ tn+1

s
‖∂ττ (f − ηM)(τ, ·, ·)‖M−1dτds

≤ 1
∆t2

∫ tn+1

tn

∫ tn+1

s
‖∂ττf‖M−1 + ‖∂ττηM‖M−1dτds.

The desired bound for en1 follows from (4.10) and (4.11).

Next, we bound gn+1 − gn+ 1
2 and gn+1. These are for estimating the splitting and asymptotic

errors in the fractional diffusion regime. In both cases, we start with the estimate for I(ηn+1,M).

Lemma 7 (Estimate of I(η,M)). Denote η(x, v) = h(x+ εv). Then for s ∈ (0, 1), we have

1) ‖I(η,M)‖L2
x,v
≤ C‖h‖H1

x
εs;

2) ‖DkI(η,M)‖M−1 ≤ C‖h‖Hk+1
x

εs, 0 ≤ k ≤ 2;

3) |I(η,M)| ≤ C ‖h‖W 1,∞M.

Here ‖ · ‖M−1 is defined in (1.20), and D1f = ∂vif , D2f = ∂vivjf .

Proof. 1) & 2): Since part 1) is a direct consequence of part 2) via Cauchy-Schwartz, we only show
the proof of part 2). Note that

‖I(η,M)‖M−1 ≤ C
∥∥∥∥∥
∫
Rd

‖(h(x+ εv)− h(x+ εw))‖L2
x
|M(v)−M(w)|

|v − w|d+2s
√
M(v)

dw
∥∥∥∥∥
L2
v

= C

∥∥∥∥∥
∫
|v−w|> 1

ε

·dw
∥∥∥∥∥
L2
v

+ C

∥∥∥∥∥
∫
|v−w|< 1

ε

·dw
∥∥∥∥∥
L2
v

=: C ‖I1‖L2
v

+ C ‖I2‖L2
v
.

For I1, we have

‖(h(x+ εv)− h(x+ εw))‖L2
x
≤ ‖h(x+ εv)‖L2

x
+ ‖h(x+ εw)‖L2

x
≤ 2 ‖h‖L2

x
.

Thus,

‖I1‖L2
v
≤ C ‖h‖L2

x

∥∥∥∥∥
∫
|v−w|> 1

ε

|M(v)−M(w)|
|v − w|d+2s

1√
M(v)

dw
∥∥∥∥∥
L2
v

.
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If |v − w| > 1
ε and |w| > 1

2 |v|, thenM(w) ≤ CM(v). In this case we have∥∥∥∥∥
∫
|v−w|> 1

ε
,|w|> 1

2 |v|

|M(v)−M(w)|
|v − w|d+2s

1√
M(v)

dw
∥∥∥∥∥
L2
v

≤ C
∥∥∥∥∥
∫
|v−w|> 1

ε
,|w|> 1

2 |v|

√
M(v)

|v − w|d+2sdw
∥∥∥∥∥
L2
v

≤ C
∫
|v−w|> 1

ε

1
|v − w|d+2sdw ‖M‖

1
2
L1
v

= Cε2s. (4.12)

If |v − w| > 1
ε and |w| ≤ 1

2 |v|, thenM(v) ≤ CM(w), |v| > 2
3ε and |v − w| ≥ 1

2 |v|, and we have∥∥∥∥∥
∫
|v−w|> 1

ε
,|w|≤ 1

2 |v|

|M(v)−M(w)|
|v − w|d+2s

1√
M(v)

dw
∥∥∥∥∥
L2
v

≤ C
∥∥∥∥∥
∫
|v−w|> 1

ε
,|w|≤ 1

2 |v|

M(w)
|v − w|d+2s

1√
M(v)

dw
∥∥∥∥∥
L2
v

≤ C
∥∥∥∥∥
∫
Rd

M(w)
|v|d+2s

1√
M(v)

1|v|> 2
3ε

dw
∥∥∥∥∥
L2
v

≤ C(
∫
|v|> 2

3ε

M(v)dv)
1
2

∫
M(w)dw = Cεs. (4.13)

Combining (4.12) and (4.13) gives

‖I1‖L2
v
≤ C ‖h‖L2

x
εs.

For I2, we rewrite it as

‖I2‖L2
v

=
∥∥∥∥∥
∫
|v−w|≤1

‖(h(x+ εv)− h(x+ εw))‖L2
x
|M(v)−M(w)|

|v − w|d+2s
√
M(v)

dw
∥∥∥∥∥
L2
v

+
∥∥∥∥∥
∫

1≤|v−w|≤ 1
ε

‖(h(x+ εv)− h(x+ εw))‖L2
x
|M(v)−M(w)|

|v − w|d+2s
√
M(v)

dw
∥∥∥∥∥
L2
v

=: ‖I21‖L2
v

+ ‖I22‖L2
v
.

Note that

‖h(x+ εv)− h(x+ εw)‖L2
x
≤ ε ‖∇h‖L2

x
|v − w|,

M(v)−M(w) = ∇M(ξ) · (v − w), where ξ = (1− t)v + tw, t ∈ (0, 1).

Then for |v − w| ≤ 1, we have

|∇M(ξ)| ≤ C|∇M(v)| ≤ CM(v), (4.14)

where for the first inequality we have used the fact that |ξ − v| ≤ 1 and the second comes as a
result of Proposition 1. Therefore I21 satisfies

‖I21‖L2
v
≤ ε ‖∇h‖L2

x

∥∥∥∥∥
∫
|v−w|<1

1
|v − w|d+2s−2

√
M(v)dw

∥∥∥∥∥
L2
v

≤ Cε ‖∇h‖L2
x
. (4.15)
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Similarly, for I22, we have

‖I22‖L2
v
≤ Cε ‖∇h‖L2

x

∥∥∥∥∥
∫

1≤|v−w|≤ 1
ε
,|w|≤ 1

2 |v|

1
|v − w|d+2s−1

|M(v)−M(w)|√
M(v)

dw
∥∥∥∥∥
L2
v

+ Cε ‖∇h‖L2
x

∥∥∥∥∥
∫

1≤|v−w|≤ 1
ε
,|w|> 1

2 |v|

1
|v − w|d+2s−1

|M(v)−M(w)|√
M(v)

dw
∥∥∥∥∥
L2
v

=: Cε ‖∇h‖L2
x

(I22,1 + I22,2). (4.16)

For I22,1, using |v − w| > 1
2 |v|, we get

I22,1 ≤ C
∫
M(w)dw

∫
2
3<|v|<

2
ε

(
1

|v|d+2s−1
1√
M(v)

)2

dv

 1
2

≤ Cεs−1. (4.17)

For I22,2, we haveM(w) ≤ CM(v). Thus,

I22,2 ≤ C ‖M‖L1
v

∫
1≤|v−w|≤ 1

ε

1
|v − w|d+2s−1 dw ≤ Cε2s−1. (4.18)

Applying (4.19) and (4.18) to (4.16), we get

‖I22‖L2
v
≤ C ‖∇h‖L2

x
εs. (4.19)

The combination of (4.15) and (4.19) leads to

‖I(η,M)‖M−1 ≤ C ‖∇h‖L2
x
εs.

The first-order derivatives ofM are

∂viI(η,M) = ∂vi

∫
Rd

(h(x+ εv)− h(x+ εw))(M(v)−M(w))
|v − w|1+2s dw

= ∂vi

∫
Rd

(h(x+ εv)− h(x+ εv − εw))(M(v)−M(v − w))
|w|1+2s dw

= εI(∂xih,M) + I(η, ∂viM).

These can be estimated similarly as I(η,M). In particular, we have εI(∂xh,M) ≤ C ‖h‖H2
x
εs+1

directly following the first estimate in part 2). For I(h, ∂viM), the same estimate holds since

|∂kvM| ≤ CkM,

thanks to Proposition 1. Likewise,

∂vivjI(η,M) = ∂vj (εI(∂xiη,M) + I(η, ∂viM))
= ε2I(∂xixjη,M) + εI(∂xjη, ∂viM) + εI(∂xiη, ∂vjM) + I(h, ∂vivjM),

and the rest of the estimate proceeds exactly the same as before.
3) We divide the integral in I(h,M) into several subdomains and estimate them individually:

|I(η,M)| ≤
∫ |h(x+ εv)− h(x+ εw)||M(v)−M(w)|

|v − w|d+2s dw

=
∫
|v−w|>1

· dw +
∫
|v−w|≤1

· dw =: I3 + I4.
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For I3, we separate the two cases where |w| ≥ 1
2 |v| and |w| <

1
2 |v|. When |w| ≥ 1

2 |v|, we have
M(w) ≤ CM(v). Thus,∫

|v−w|>1,|w|≥ 1
2 |v|

|h(x+ εv)− h(x+ εw)||M(v)−M(w)|
|v − w|d+2s dw

≤ C ‖h‖∞M(v)
∫
|v−w|>1

1
|v − w|d+2sdw = C ‖h‖∞M(v).

When |w| < 1
2 |v|, we have |v| > 2

3 , |v − w| >
1
2 |v| andM(v) ≤ CM(w). Therefore,∫

|v−w|>1,|w|< 1
2 |v|

|h(x+ εv)− h(x+ εw)||M(v)−M(w)|
|v − w|d+2s dw

≤ C ‖h‖∞
∫
|v|> 2

3

M(w)
|v|d+2sdw ≤ C ‖h‖∞

( 1
|v|d+2s1|v|> 2

3

)∫
M(w)dw

≤ C ‖h‖∞M(v).

For I4, we have

I4 ≤ Cε ‖∇h‖∞
∫
|v−w|<1

|∇M(ξ)|
|v − w|d+2s−2 dw, ξ = (1− t)v + tw, t ∈ (0, 1),

where |∇M(ξ)| has the same estimate as in (4.14). Therefore,

I4 ≤ Cε ‖∇h‖∞M(v).

Combining the estimates above gives the pointwise bound of I.

To proceed with the error estimate, we will consider two separate regimes sketched in Fig. 2.

4.1 Regime I: kinetic regime with ε2s ≥ ∆t2sβ

First we show that when ε is large compared to ∆t and γ is chosen to satisfy (4.20) and (4.29), the
accuracy is controlled by some positive power of ∆t. In the following estimates, we do not keep
track of the error dependence on γ, but it is expected that the constant increases with larger values
of γ. So in practice, we always choose γ to be a constant slightly larger than 2 that satisfies the
aforementioned conditions.

Lemma 8 (Estimate of ‖gn‖ in Regime I). Let (ηn, gn) be the solution to (4.2a)–(4.2b) and hn(x+
εv) = ηn(x, v). Suppose ε2s ≥ ∆t2sβ with β < 1

4s . Then for any γ such that

0 < γ ≤
√
λ0 − 1
λ0

α =
√
λ0 − 1
λ0

ε2s

∆t , for some fixed λ0 > 1, (4.20)

we have the following estimates for gn and gn+ 1
2 :

1) ‖gn‖M−1 ≤ Cε−s
(
εs‖gin‖M−1 + ‖hin‖H1

x

)
, ‖gn‖L2

x,v
≤ Cε−s

(
εs‖gin‖M−1 + ‖hin‖H1

x

)
;

2) ‖gn+ 1
2 ‖M−1 ≤ Cε−s

(
εs‖gin‖M−1 + ‖hin‖H1

x

)
,
∥∥∥gn+ 1

2

∥∥∥
L2
x,v

≤ Cε−s
(
εs‖gin‖M−1 + ‖hin‖H1

x

)
;

3) ‖gn‖L∞
M−1

:=
∥∥∥ gnM∥∥∥∞ ≤ Cε−2s(εs‖gin‖L∞

M−1
+ ‖hin‖W 1,∞).
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Proof. 1) Without loss of generality, we assume that the final time is t = 1 such that

N∆t = 1, 0 ≤ n ≤ N.

By (1.14b) and (1.14c), we have

gn+ 1
2 = (α+ γ − Ls)−1(αgn − In+1), gn+1 = (α− γ + εv · ∇x)−1αgn+ 1

2 . (4.21)

Then we have

gn+1
√
M

= (α− γ + εv · ∇x)−1 α√
M

(α+ γ − Ls)−1α
√
M
(

gn√
M
− 1
α

In+1
√
M

)

= H
(
gn√
M

)
−H

(
1
α

In+1
√
M

)

= Hn+1
(
gin√
M

)
−
n+1∑
p=1
Hp

(
1
α

In+1−p
√
M

)
, (4.22)

where

H = (α− γ + εv∂x)−1 α√
M

(α+ γ − Ls)−1α
√
M =: H1H2,

with

H1 = (α− γ + εv · ∇x)−1α, H2 = 1√
M

(α+ γ − Ls)−1α
√
M. (4.23)

It is easy to check that H1 is bounded operator from L2
x,v to itself with bound

‖H1‖L2
x,v→L2

x,v
≤ α

α− γ
.

For H2, we conduct the energy estimate. Suppose F and G satisfy H2F = G, or equivalently,

F = α+ γ

α
G− 1

α

1√
M
Ls(
√
MG).

Multiply the equation by G and integrate with respect to x and v. Using the fact that∫
Rd

∫
Rd

G√
M
Ls(
√
MG)dxdv =

∫
Rd

∫
Rd

1
M
√
MGLs(

√
MG)dxdv ≤ 0,

one has

‖G‖L2
x,v
≤ α

α+ γ
‖F‖L2

x,v
=⇒ ‖H2‖L2

x,v→L2
x,v
≤ α

α+ γ
. (4.24)

Therefore ‖H‖L2
x,v→L2

x,v
≤ α2

α2−γ2 . Plugging it into (4.22), one has

‖gn+1‖M−1 ≤
(

α2

α2 − γ2

)n+1

‖gin‖M−1 + 1
α

n+1∑
p=1

(
α2

α2 − γ2

)p
‖In+2−p‖M−1 . (4.25)

24



Note that since ε2s ≥ ∆t2sβ with β < 1
4s , we have

α2 − γ2 ≥ 1
∆t2−4sβ − γ

2 ≥ N − γ2 ≥ n− γ2.

Therefore, (
α2

α2 − γ2

)n+1

≤
(

1 + γ2

n− γ2

)n+1

≤ Ceγ2
, for all n ≥ γ2 + 1. (4.26)

In the case when n < γ2 + 1, recall that α2 =
(
ε2s/∆t

)2 ≥ ∆t2(β−1). Therefore, as long as γ is
chosen such that γ2 ≤ λ0−1

λ0
α2 for some fixed λ0 > 1, we have

(
α2

α2 − γ2

)n+1

≤ λn+1
0 . (4.27)

In sum, (4.25) continues as

‖gn+1‖M−1 ≤ C‖gin‖M−1 + C

α

n+1∑
p=1
‖Ip‖M−1 , C = max

{
eγ , λ

[γ2+1]
0

}
.

Using Lemma 7 part 2) and Lemma 5, one has

‖gn+1‖M−1 ≤ Cε−s
(
εs‖gin‖M−1 + ‖hin‖H1

x

)
.

The bound for
∥∥gn+1∥∥

L2
x,v

is a direct consequence of the boundedness of ‖gn+1‖M−1 .
2) By (4.21) we have

gn+ 1
2

√
M

= 1√
M

(α+ γ − Ls)−1√M(α gn√
M
− In+1)

= H2

(
gn√
M
− 1
α
In+1

)

= Hn+1
2

(
gin√
M

)
−
n+1∑
p=1
Hp2

(
1
α

In+1−p
√
M

)
.

Using the bound (4.24), we have for any γ > 0,

‖gn+ 1
2 ‖M−1 ≤ ‖gin‖M−1 + 1

α

n+1∑
p=1
‖Ip‖M−1 .

The estimate for ‖gn+ 1
2 ‖M−1 again follows from Lemma 7 part 2) and Lemma 5.

3) Denote

H0 = (α− γ + εv · ∇x)−1α(α+ γ − Ls)−1α, H3 = (α+ γ − Ls)−1α.

Then by using (4.21), one can write gn+1 as

gn+1 = H0g
n − 1

α
H0I.
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Then our goal is to find the bounds of H3 and H1 defined in (4.23) with respect to the norm L∞M−1 .
To this end, we will use the maximum principle argument. Let q1 satisfies

q1 = H3g = (α+ γ − Ls)−1αg.

Then g =
(
α+γ
α −

1
αL

s
)
q1. Since g ≤

∥∥ g
M
∥∥
∞M, we have

g −
∥∥∥∥ gM

∥∥∥∥
∞
M =

(
α+ γ

α
− 1
α
Ls
)(

q1 −
α

α+ γ

∥∥∥∥ gM
∥∥∥∥
∞
M
)
≤ 0.

Multiply the above inequality by sgn+
(
q1 − α

α+γ
∥∥ g
M
∥∥
∞M

)
, where sgn+(x) = 1 if x > 0 and 0

otherwise. Then it becomes

α+ γ

α

(
q1 −

α

α+ γ

∥∥∥∥ gM
∥∥∥∥
∞
M
)+
− 1
α
∇v ·

[
v

(
q1 −

α

α+ γ

∥∥∥∥ gM
∥∥∥∥
∞
M
)+
]

+ 1
α

(
q1 −

α

α+ γ
M
)+

(−∆v)s
(
q1 −

α

α+ γ

∥∥∥∥ gM
∥∥∥∥
∞
M
)
≤ 0. (4.28)

Note that for any b(v), we have

(sgn+b)(−∆v)sb = Cs,d(sgn+b)(v)
∫
b(v)− b(w)
|v − w|1+2s dw ≥ Cs,d(sgn+b)(v)

∫
b(v)− b+(w)
|v − w|1+2s dw

= Cs,d

∫
b+(v)− (sgn+b)(v)b+(w)

|v − w|1+2s dw ≥ Cs,d
∫
b+(v)− b+(w)
|v − w|1+2s dw = (−∆v)sb+.

Therefore, (4.28) leads to

α+ γ

α

(
q1 −

α

α+ γ

∥∥∥∥ gM
∥∥∥∥
∞
M
)+
− Ls

(
q1 −

α

α+ γ

∥∥∥∥ gM
∥∥∥∥
∞
M
)+
≤ 0.

Multiply the above equation by 1
M

(
q1 − α

α+γ
∥∥ g
M
∥∥
∞M

)+
and integrate in v. We get

∥∥∥∥∥
(
q1 −

α

α+ γ

∥∥∥∥ gM
∥∥∥∥
∞
M
)+
∥∥∥∥∥
M−1

≤ 0,

which implies q1 ≤ α
α+γ

∥∥ g
M
∥∥
∞M. Similarly, we can show that −q1 ≤ α

α+γ
∥∥ g
M
∥∥
∞M. Therefore,∥∥∥∥ q1

M

∥∥∥∥
∞
≤ α

α+ γ

∥∥∥∥ gM
∥∥∥∥
∞

or ‖H3‖L∞
M−1

≤ α

α+ γ
.

Likewise, to bound H1, let q2 = H1g = (α− γ + εv · ∇x)−1αg. Then(
α− γ
α

+ ε

α
v · ∇x

)
q2 = g.

Since g −
∥∥ g
M
∥∥
∞M≤ 0, we have(
α− γ
α

+ ε

α
v · ∇

)(
q2 −

α

α− γ

∥∥∥∥ gM
∥∥∥∥
∞
M
)

= g −
∥∥∥∥ gM

∥∥∥∥
∞
M≤ 0.
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Multiplying the above inequality by
(
q2 − α

α−γ
∥∥ g
M
∥∥
∞M

)+
and conducting an energy estimate

leads to q2 ≤ α
α−γ

∥∥ g
M
∥∥
∞M. Consequently, we have

‖H1‖L∞
M−1

≤ α

α− γ
and ‖H0‖L∞

M−1
≤ α2

α2 − γ2 .

Then following the same proof as for part 1), we have

‖gn+1‖L∞
M−1

≤
(

α2

α2 − γ2

)n+1

‖gin‖L∞
M−1

+ 1
α

n+1∑
p=1

(
α2

α2 − γ2

)p
‖In+1−p‖L∞

M−1
.

This leads to

‖gn+1‖L∞
M−1

≤ C‖gin‖L∞
M−1

+ C

α

n+1∑
p=1
‖Ip‖L∞

M−1
,≤ C‖gin‖L∞

M−1
+ C

ε2s ‖hin‖W 1,∞ ,

where C = max{eγ , λ[γ2+1]
0 } and we have used part 3) of Lemma 7 and Lemma 5.

Next we bound the derivatives of gnp and gnh.

Lemma 9 (Estimate of ‖∂vign+1‖M−1 and ‖∂vign+ 1
2 ‖M−1 in Regime I). Suppose ε2s ≥ ∆t2sβ and

2 < γ ≤
√
λ2 − 4
λ2

ε2s

∆t =
√
λ2 − 4
λ2

α for some fixed λ2 > 4. (4.29)

Then the following bounds hold:

1) for any i = 1, 2, · · · , d,

‖∂vign+1‖M−1 ≤ C(ε−s + ε1−3s)L0
1, ‖∂vign+ 1

2 ‖M−1 ≤ C(ε−s + ε1−3s)L0
1,

where
L0

1 = εs‖∂xigin‖M−1 + εs‖∂vigin‖M−1 + ‖hin‖H2
x

; (4.30)

2) for any i, j = 1, 2, · · · , d,

‖∂vivjgn+1‖M−1 + ‖∂vivjgn+ 1
2 ‖M−1 ≤ C(ε−s + ε1−3s + ε2−5s)L0

2,

where

L0
2 = εs‖∂xigin‖M−1 + εs‖∂xjgin‖M−1 + εs‖∂vigin‖M−1

+ εs‖∂vivjgin‖M−1 + ‖hin‖H2
x
. (4.31)

Proof. Taking the derivative in vi of (1.14b) and (1.14c), we have{
α(∂vign+ 1

2 − ∂vign) = Ls(∂vign+ 1
2 )− (γ − 1)∂vign+ 1

2 − ∂viI(ηn+1,M), (4.32a)
α(∂vign+1 − ∂vign+ 1

2 ) + εv · ∇x(∂vign+1) = γ∂vig
n+1 − ε∂xign+1, (4.32b)

which leads to

∂vig
n+1 = (α− γ + εv · ∇x)−1α(α− Ls + γ − 1)−1(α∂vign − ∂viIn+1)

− (α− γ + εv · ∇x)−1ε∂xig
n+1.
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Then similar to the proof of part 1) of Lemma 8, we write

∂vig
n+1

√
M

= H1H4

(
∂vig

n

√
M

)
−H1H4

(
1
α

∂viI
n+1

√
M

)
−H1ε

1−2s∆t∂xign+1

= (H1H4)n+1
(
∂vigin√
M

)
−
n+1∑
p=1

(H1H4)p
(

1
α

∂viI
n+2−p
√
M

)

−
n+1∑
p=1

(H1H4)p−1H1ε
1−2s∆t∂xign+2−p, (4.33)

where H1 is defined in (4.23) and

H4 = 1√
M

(α− Ls + γ − 1)−1α
√
M.

Similar to (4.24), we see that
‖H4‖L2

x,v→L2
x,v
≤ α

α+ γ − 1 . (4.34)

Denote c = α2

(α−γ)(α+γ−1) . Then via iterations, (4.33) can be estimated as

‖∂vign+1‖M−1 ≤ cn+1‖∂vigin‖M−1 + ε−2s∆t
n+1∑
p=1

cp‖∂viIn+2−p‖M−1

+
n+1∑
p=1

cp−1 α

α− γ
ε1−2s∆t

∥∥∥∂xign+2−p
∥∥∥
L2
x,v

.

By Lemma 8 part 1), Lemma 7 part 2) and Lemma 5, we obtain

‖∂vign+1‖M−1 ≤ cn+1‖∂vigin‖M−1 + ε−s∆t ‖hin‖H2
x

n+1∑
p=1

cp

+ Cε1−3s α

α− γ
∆t
(
εs‖∂xigin‖M−1 + ‖hin‖H2

x

) n+1∑
p=1

cp−1.

Following the same argument as in (4.26) and (4.27), if we choose γ such that

0 < γ ≤
√
λ1 − 2
λ1

ε2s

∆t =
√
λ1 − 2
λ1

α

for some fixed λ2 > 2, then the above inequality reduces to

‖∂vign+1‖M−1 ≤ C‖∂vigin‖M−1 + Cε−s ‖hin‖H2
x

+ Cε1−3s
(
εs‖∂xigin‖M−1 + ‖hin‖H2

x

)
≤ C‖∂vigin‖M−1 + C(ε−s + ε1−3s)

(
εs‖∂xigin‖M−1 + ‖hin‖H2

x

)
.

In addition, from (4.32a) one has

∂vig
n+ 1

2 = (α− Ls + γ − 1)−1(α∂vign − ∂viIn+1).
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Thus,

∂vig
n+ 1

2
√
M

= H4

(
∂vig

n

√
M
− 1
α

1√
M

∂viI
n+1

)
,

which immediately leads to

‖∂vign+ 1
2 ‖M−1 ≤ C(‖∂vign‖M−1 + 1

α
‖∂viIn+1‖M−1),

thanks to (4.34) with γ > 1. Combining the bound for ∂vign above with Lemma 7 part 2) and
Lemma 5, we further have

‖∂vign+ 1
2 ‖M−1 ≤ C(ε−s + ε1−3s)

(
εs‖∂xigin‖M−1 + ‖hin‖H2

x

)
+ C‖∂vigin‖M−1 + C∆tε−s‖hin‖H2

x

≤ C(ε−s + ε1−3s)
(
εs‖∂xigin‖M−1 + ‖hin‖H2

x

)
+ C‖∂vigin‖M−1 .

For the second-order derivatives, differentiating (4.32a) and (4.32b) in vj , we have α(∂vivjgn+ 1
2−∂vivjgn) = Ls(∂vivjgn+ 1

2 )− (γ − 2)∂vivjgn+ 1
2 − ∂vivjI(ηn+1,M), (4.35a)

α(∂vivjgn+1−∂vivjgn+ 1
2 )+εv ·∇x(∂vivjgn+1)=γ∂vivjg

n+1−ε∂xivjgn+1−ε∂xjvign+1,(4.35b)

which implies

∂vivjg
n+1 = (α− γ + εv · ∇x)−1α(α− Ls + γ − 2)−1(α∂vivjgn − ∂vivjI)

− (α− γ + εv · ∇x)−1ε(∂xi∂vjgn+1 + ∂xj∂vig
n+1). (4.36)

Recall H1 defined in (4.23) and denote

H5 = 1√
M

(α− Ls + γ − 2)−1α
√
M.

Then (4.36) can be written as

∂vivjg
n+1

√
M

= H1H5

(
∂vivjg

n

√
M

)
−H1H5

( 1
α

∂vivjI√
M

)
−H1ε

1−2s∆t(∂xi∂vjgn+1 + ∂xj∂vig
n+1)

= (H1H5)n+1
(
∂vivjgin√
M

)
−
n+1∑
p=1

(H1H5)p
(

1
α

∂vivjI
n+1−p

√
M

)

−
n+1∑
p=1

(H1H5)p−1H1ε
1−2s∆t(∂xi∂vjgn+1−p + ∂xj∂vig

n+1−p). (4.37)

Similar to (4.24) and (4.34), we have

‖H5‖L2
x,v→L2

x,v
≤ α

α+ γ − 2 .

Denote c2 = α2

(α−γ)(α+γ−2) . Then via iterations, (4.37) satisfies

‖∂vivjgn+1‖M−1 ≤ cn+1‖∂vivjgin‖M−1 + ε−2s∆t
n+1∑
p=1

cp‖∂vivjIn+1−p‖M−1

+
n+1∑
p=1

cp−1 α

α− γ
ε1−2s∆t

(∥∥∥∂xi∂vjgn+1−p
∥∥∥
L2
x,v

+
∥∥∥∂xj∂vign+1−p

∥∥∥
L2
x,v

)
.
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By Lemma 7 part 2), Lemma 5 and Lemma 8, we have

‖∂vivjgn+1‖M−1 ≤ cn+1‖∂vivjgin‖M−1 + Cε−2s‖hin‖H3
x
εs∆t

n+1∑
p=1

cp

+ C
α

α− γ
ε1−2s∆t(ε−s + ε1−3s)

n+1∑
p=1

cp−1

×
×
(
εs‖∂xigin‖M−1 + εs‖∂xjgin‖M−1 + εs‖∂vigin‖M−1 + ‖hin‖H2

x

)
.

Following the same argument as in (4.26) and (4.27), if we chose γ such that

0 < γ ≤
√
λ2 − 4
λ2

ε2s

∆t =
√
λ2 − 4
λ2

α

for some fixed λ2 > 4, then the above inequality reduces to

‖∂vivjgn+1‖M−1

≤ C‖∂vivjgin‖M−1 + Cε−s ‖hin‖H3
x

+ C(ε1−3s + ε2−5s)
(
εs‖∂xigin‖M−1 + εs‖∂xjgin‖M−1 + εs‖∂vigin‖M−1 + ‖hin‖H2

x

)
≤ C(ε−s + ε1−3s + ε2−5s)×

×
(
εs‖∂xigin‖M−1 + εs‖∂xjgin‖M−1 + εs‖∂vigin‖M−1 + εs‖∂vivjgin‖M−1 + ‖hin‖H2

x

)
.

Additionally, by (4.35a) one has that

∂vivjg
n+ 1

2 = (α− Ls + γ − 2)−1(α∂vivjgn − ∂vivjIn+1).

This implies

∂vivjg
n+ 1

2
√
M

= H4

(
∂vivjg

n

√
M

− 1
α

1√
M

∂vivjI
n+1

)
.

Therefore, for γ > 2, we have

‖∂vign+ 1
2 ‖M−1 ≤ C(‖∂vivjgn‖M−1 + 1

α
‖∂vivjI‖M−1)

and the desired bound follows from the estimate for ‖∂vivjgn‖M−1 .

Now we estimate the difference gn+1 − gn+ 1
2 .

Lemma 10 (Estimate of gn+1 − gn+ 1
2 in Regime I). For ε2s ≥ ∆t2sβ with β < 1

4s , we have the
following estimates for gn+1 − gn+ 1

2 :

1)
∥∥∥〈v〉m (gn+1 − gn+ 1

2 )
∥∥∥
L2
x,v

≤ C
(

∆t
ε2s

)min{s+ d
2−m,1} ε−sL0

0,

where m < s+ d
2 and L0

0 = εs‖gin‖M−1 + ‖hin‖H1
x
;

2)
∥∥∥〈v〉m ∂vi(gn+1 − gn+ 1

2 )
∥∥∥
L2
x,v

≤ C
(

∆t
ε2s

)min{s+ d
2−m,1} (ε−s + ε1−3s)L0

1,

where m < s+ d
2 , i = 1, 2, · · · , d, and L0

1 is defined in (4.30);
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3)
∥∥∥〈v〉m ∂vivj (gn+1 − gn+ 1

2 )
∥∥∥
L2
x,v

≤ C
(

∆t
ε2s

)min{s+ d
2−m,1} (ε−s + ε2−5s)L0

2,

where m < s+ d
2 , i = 1, 2, · · · , d and L0

2 is defined in (4.31);

4)
∥∥∥〈v〉p (−∆v)s(gn+1 − gn+ 1

2 )
∥∥∥
L2
x,v

≤ C
(

∆t
ε2s

)min{s+ d
2−p,1} (ε−s + ε2−5s)(L0

0 + L0
2),

where −2s < p < s+ d
2 .

Proof. 1) From (1.14c), one sees that

gn+1 − gn+ 1
2 = 1

α
(γgn+1 − εv · ∇xgn+1), α = ε2s

∆t . (4.38)

Then for a fixed m,∥∥∥〈v〉m (gn+1 − gn+ 1
2 )
∥∥∥2

L2
x,v

=
∫ ∫
〈v〉2m |gn+1 − gn+ 1

2 |2θ|gn+1 − gn+ 1
2 |2(1−θ)dxdv

= C

α2(1−θ)

∫ ∫
〈v〉2m |gn+1 − gn+ 1

2 |2θ|γgn+1 − εv · ∇xgn+1|2(1−θ)dxdv

≤ C

α2(1−θ)

∫ ∫
〈v〉2m (|gn+1|2θ + |gn+ 1

2 |2θ)(|γgn+1|2(1−θ) + ε2(1−θ)|v · ∇xgn+1|2(1−θ))dxdv.

Expand the product in the above inequality. The most difficult term is∫ ∫
〈v〉2m |gn+ 1

2 |2θε2(1−θ)|v · ∇xgn+1|2(1−θ)dxdv,

which can be estimated as follows:∫ ∫
〈v〉2m |gn+ 1

2 |2θε2(1−θ)|v · ∇xgn+1|2(1−θ)dxdv

= ε2(1−θ)
∫ ∫
〈v〉2m+2(1−θ) |gn+ 1

2 |2θ|∇xgn+1|2(1−θ)dxdv

≤ ε2(1−θ)
(∫ ∫

〈v〉2m+2(1−θ) |gn+ 1
2 |2dxdv

)θ (∫ ∫
〈v〉2m+2(1−θ) |∇xgn+1|2dxdv

)1−θ
.

To use Lemma 8 to bound the right hand side of the inequality above, we need

2m+ 2(1− θ) ≤ d+ 2s.

Since θ ∈ (0, 1), this requires m < d
2 + s. In this case, we can choose

θ = max {1− (d/2 + s−m), 0} .

and apply Lemma 8. The other terms are bounded similarly.
2) Equation (4.38) implies that

∂vi(gn+1 − gn+ 1
2 ) = 1

α

{
γ∂vig

n+1 − ε[v · ∇x(∂vign+1) + ∂xig
n+1]

}
. (4.39)

Then for a fixed m,∥∥∥〈v〉m ∂vi(gn+1 − gn+ 1
2 )
∥∥∥2

L2
x,v

=
∫ ∫
〈v〉2m |∂vi(gn+1 − gn+ 1

2 )|2θ|∂vi(gn+1 − gn+ 1
2 )|2(1−θ)dxdv

= C

α2(1−θ)

∫ ∫
〈v〉2m |∂vi(gn+1 − gn+ 1

2 )|2θ|γ∂vign+1 − ε[v · ∇x(∂vign+1) + ∂xig
n+1]|2(1−θ)dxdv

≤ C

α2(1−θ)

∫ ∫
〈v〉2m [|∂vign+1|2θ + |∂vign+ 1

2 |2θ]×

× [|γ∂vign+1|2(1−θ) + ε2(1−θ)|v · ∇x(∂vign+1)|2(1−θ) + |∂xign+1|2(1−θ)]dxdv.
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The rest follows similarly as for part 1) by replacing Lemma 8 with Lemma 9 in the proof.
3) This part is similar to Part 2). From (4.39), we have

∂vivj (gn+1 − gn+ 1
2 ) = 1

α

{
γ∂vig

n+1 − ε[v · ∇x(∂vivjgn+1) + ∂xi∂vjg
n+1 + ∂xj∂vig

n+1]
}
.

Then for a fixed m,∥∥∥〈v〉m ∂vivj (gn+1 − gn+ 1
2 )
∥∥∥2

L2
x,v

=
∫ ∫
〈v〉2m |∂vivj (gn+1 − gn+ 1

2 )|2θ|∂vivj (gn+1 − gn+ 1
2 )|2(1−θ)dxdv

= C

α2(1−θ)

∫ ∫
〈v〉2m |∂vivj (gn+1 − gn+ 1

2 )|2θ|γ∂vivjgn+1

− ε[v · ∇x(∂vivjgn+1) + ∂xi∂vjg
n+1 + ∂xj∂vig

n+1]|2(1−θ)dxdv

≤ C

α2(1−θ)

∫ ∫
〈v〉2m [|∂vivjgn+1|2θ + |∂vivjgn+ 1

2 |2θ][|γ∂vivjgn+1|2(1−θ) + |∂xi∂vjgn+1|2(1−θ)

+ ε2(1−θ)|v · ∇x(∂vivjgn+1)|2(1−θ) + |∂xj∂vign+1|2(1−θ)]dxdv.

The rest of the estimate follows similarly as that in part 2).
4) For simplicity, we denote ḡ = gn+1 − gn+ 1

2 and rewrite

〈v〉p (−∆v)sḡ = (−∆v)s(〈v〉p ḡ)− [〈v〉p , (−∆v)s]ḡ,

where [·, ·] is the commutator. For the first term, by interpolation we have for any p < s+ d
2 ,

‖(−∆v)s(〈v〉p ḡ)‖2L2
x,v
≤ C

∫ ∫
| 〈v〉p ḡ|2dxdv +

∫ ∫
|∇2

v(〈v〉
p ḡ)|2dxdv

≤ C(L0
2)2
(∆t
ε2s

)min{2s+d−2p,2}
(ε−s + ε1−3s + ε2−5s)2. (4.40)

For the second term, from Lemma 3, we have, for −2s < p < d
2 + 2s,

‖[〈v〉p , (−∆v)s]ḡ‖L2
x,v
≤ C‖ 〈v〉p ḡ‖L2

x,v
+ ‖ 〈v〉p−1 |∇v ḡ|‖L2

x,v
.

Substitute part 1) and 2) into the right-hand side of the inequality. Then it becomes

‖[〈v〉p , (−∆v)s]ḡ‖L2
x,v
≤ C

(∆t
ε2s

)min{s+ d
2−p,1}

ε−sL0
0

+ C

(∆t
ε2s

)min{s+ d
2 +1−p,1}

(ε−s + ε1−3s)L0
1, −2s < p < s+ d

2 ,

which together with (4.40) implies

‖〈v〉p (−∆v)sḡ‖L2
x,v
≤ C

(∆t
ε2s

)min{s+ d
2−p,1}

(ε−s + ε1−3s + ε2−5s)(L0
0 + L0

2),

with −2s < p < s+ d
2 .

We are now ready to state our main theorem in Regime I. The main idea is to construct a new
weighted norm that can compensate the slow decay of the equilibrium at the tail.
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Theorem 2 (Error estimate in Regime I). Assume (4.1) and suppose

ε2s ≥ ∆t2sβ , β ≤ min{β0,
1
4s},

where β0 is the biggest constant that satisfies (4.49)–(4.53). Then the solution fn = ηnM + gn

obtained from solving (1.14) with γ chosen to satisfy (4.20) and (4.29) has the following estimate

‖ 〈v〉−b f̃n‖M−1 ≤ C∆tζ

for 1 < b ≤ min{d + 2s, d2 + 3s−} and ζ(β0, b) > 0 explicitly computable. Here f̃n is defined in
(4.5), n∆t = T , and C is a constant depending on T .

Proof. Multiply (4.6) by the weight (1 + δ 〈v〉)−b, where b and δ are two constants that will be
made precise later. We have

α
[
(1 + δ 〈v〉)−bf̃n+1 − (1 + δ 〈v〉)−bf̃n

]
+ εv∂x((1 + δ 〈v〉)−bf̃n+1)

= Ls((1 + δ 〈v〉)−bf̃n+1) + [(1 + δ 〈v〉)−b,Ls]f̃n+1

+ (1 + δ 〈v〉)−b(Ls − γI)(gn+1 − gn+ 1
2 ) + (1 + δ 〈v〉)−ben,

where
en = ∆t(en1 + ε2sen2M). (4.41)

Conduct an energy estimate for the equation by multiplying it by (1 + δ 〈v〉)−b f̃
n+1

M and integrating
with respect to x and v. We obtain

α

2
(
‖(1 + δ 〈v〉)−bf̃n+1‖2M−1 − ‖(1 + δ 〈v〉)−bf̃n‖2M−1

)
≤
∫ ∫

(1 + δ 〈v〉)−bf̃n+1[(1 + δ 〈v〉)−b,Ls]f̃n+1 1
M

dvdx

+
∫ ∫

(1 + δ 〈v〉)−bLs(gn+1 − gn+ 1
2 )(1 + δ 〈v〉)−bf̃n+1 1

M
dvdx

+
∫ ∫

(1 + δ 〈v〉)−2ben
f̃n+1

M
dvdx, (4.42)

where we have used the fact that
∫ fLsf
M dv ≤ 0 . By the definition of Ls in (1.1),

1√
M

(1 + δ 〈v〉)−bLs(gn+1 − gn+ 1
2 )

= 1√
M

(1 + δ 〈v〉)−b
(
∇v · (v(gn+1 − gn+ 1

2 ))− (−∆v)s(gn+1 − gn+ 1
2 )
)
.

To proceed, first note that the lower bound in Part 4) of Lemma 10 can be removed. This is because
for p < −2s, we have∥∥∥〈v〉p (−∆v)s(gn+1 − gn+ 1

2 )
∥∥∥
L2
x,v

≤ C
∥∥∥〈v〉−2s− (−∆v)s(gn+1 − gn+ 1

2 )
∥∥∥
L2
x,v

≤ C
(∆t
ε2s

)min{ d2 +3s−,1}
(ε−s + ε2−5s)(L0

0 + L0
2).
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where s− denotes any number smaller than s. Therefore, if b satisfies

−b+ 1
2(d+ 2s) + 1 < s+ d

2 , or equivalently, b > 1, (4.43)

then by Lemma 10, we have the estimate

‖(1 + δ 〈v〉)−bLs(gn+1 − gn+ 1
2 )‖M−1

≤ Cδ−b

(∆t
ε2s

)min{b−1,1}
(ε−s + ε1−2s)L0

1 +
(∆t
ε2s

)min{ d2 +3s−,1}
(ε−s + ε2−5s)(L0

0 + L0
2)

 .

If we further assume that

b < 3s− + d

2 + 1 , (4.44)

the above inequality becomes

‖(1 + δ 〈v〉)−bLs(gn+1 − gn+ 1
2 )‖M−1 ≤ Cδ−b

(∆t
ε2s

)min{b−1,1}
(ε−s + ε2−5s)L0, (4.45)

where L0 = L0
0 + L0

2. This is because in Region I we have ∆t/ε2s ≤ 1.
Next, we control the commutator term [(1 + δ 〈v〉)−b,Ls]f̃n+1. By Lemma 4, if

‖f̃n+1‖L∞
M−1

≤ Cε−2s, (4.46)

then we have ∣∣∣∣∫ ∫ (1 + δ 〈v〉)−bf̃n+1[(1 + δ 〈v〉)−b,Ls]f̃n+1 1
M

dxdv
∣∣∣∣

≤ Cδ
2s
d+4 ‖(1 + δ 〈v〉)−bf̃n+1‖2M−1 + Cε−4sδmin{1,2s}. (4.47)

Here (4.46) is fulfilled by combining part 2) of Lemma 8, the bound ‖g(tn)‖L∞
M−1

≤ Cε−2s and the
fact that f̃n = η̃nM + g̃n. Indeed, from the argument of maximum principle that similar to the
proof of part 2) in Lemma 8, the boundedness of ‖g(tn)‖L∞

M−1
is guaranteed. Denote

Fn = ‖(1 + δ 〈v〉)−bf̃n‖M−1 .

Plug (4.45) and (4.47) into (4.42). Then we get

(Fn+1)2 − (Fn)2 ≤ a∆t(Fn+1)2 + r, (4.48)

where

a = 1 + Cδ
2s
d+4 ε−2s,

r = C
∆t
ε6s δ

min{1,2s} + Cδ−2b∆t
ε4s

(∆t
ε2s

)min{2,2b−2}
(ε−s + ε2−5s)2(L0)2 + ∆t

ε4s ‖e
n‖2M−1 .

Note that here we have used the fact that for b > 0, ‖(1 + δ 〈v〉)−ben‖M−1 ≤ ‖en‖M−1 . Optimize
in r by choosing

δ =


(

∆t
ε2s

)min{2,2b−2}
1+2b ε

4−8s
2b+1 , s > 1

2 ,(
∆t
ε2s

)min{1,b−1}
b+s , s < 1

2 .
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This correspondingly gives

a =


1 + C

(
∆t
ε2s

)min{2,2b−2}
1+2b

2s
d+4 ε

4−8s
2b+1

2s
d+4−2s, s > 1

2

1 + C
(

∆t
ε2s

)min{1,b−1}
b+s

2s
d+4 ε−2s, s ≤ 1

2

and

r

∆t =


C

[(
∆t
ε2s

)min{2,2b−2}
1+2b ε

4−8s
2b+1−6s +

(
∆t
ε2s

)min{2,2b−2}
1+2b ε4−14s−2b 4−8s

2b+1 (L0)2 + 1
ε4s ‖en‖2M−1

]
s > 1

2 ,

C

[(
∆t
ε2s

)2smin{1,b−1}
b+s ε−6s +

(
∆t
ε2s

) 2smin{1,b−1}
b+s ε−6s(L0)2 + 1

ε4s ‖en‖2M−1

]
s ≤ 1

2 .

Recall the definition of en in (4.41) and the estimate of en1 , en2 in Lemma 6. Then β needs to satisfy

s >
1
2 : (1− 2sβ)min{2, 2b− 2}

1 + 2b
2s
d+ 4 − 2sβ

(8s− 4
2b+ 1 + 1

)
≥ 0, (4.49)

(1− 2sβ)min{2, 2b− 2}
1 + 2b − 2β

(4s− 2
2b+ 1 + 3s

)
≥ 0, (4.50)

(1− 2sβ)min{2, 2b− 2}
1 + 2b − 2β

(
2− 7s+ b

4s− 2
2b+ 1

)
≥ 0 ; (4.51)

s ≤ 1
2 : (1− 2sβ)min{1, b− 1}

b+ s

2s
d+ 4 − 2sβ ≥ 0, (4.52)

(1− 2sβ)min{1, b− 1}
b+ s

− 3β ≥ 0. (4.53)

Since β ∈ (0, 1), it is clear that there exists β0 ∈ (0, 1) such that if β ∈ (0, β0) then the inequalities
above are satisfied. Then (4.48) leads to

(Fn+1)2 ≤ eaT (F 0)2 + C
eaT

a

r

∆t . (4.54)

Moreover, since F 0 = 0 and

‖(1 + δ 〈v〉)−bf̃n‖M−1 ≥ ‖((1 + δ) 〈v〉)−bf̃n‖M−1 ≥ 2−b‖ 〈v〉−b f̃n‖M−1 ,

the bound (4.54) reduces to

‖ 〈v〉−b f̃n‖M−1 ≤ Ce
aT
2

√
r

∆t ,

where CT is a constant only depends on final time T .

Remark 1. We can choose b = 1 + 2s, then one choice of β0 is

β0 =
{ 1

2s+(d+4)(12s−2) , s > 1
2 ,

s
(1+3s)(d+4)+2s2 , s ≤ 1

2 .

In this case we have ‖ 〈v〉−b f̃n‖M−1 ∼ ∆tζ , where

ζ =
{

4s
3+4s − 2β 13s−2+16s2

3+4s , s > 1
2 ,

2s
1+3s − β

3+9s+4s2

1+3s . s ≤ 1
2 ,

β ∈ (0, β0).
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4.2 Regime II: diffusive and intermediate regime with ε2s ≤ ∆t2sβ

We show that when ε is small compared with ∆t, gn can be bounded in terms of ε. In this regime,
the choice of γ will depend on the relative relationship between ∆t and ε specified as follows.

Lemma 11 (Estimate of gn in Regime II). For ε2s ≤ ∆t2sβ, we choose γ according to

γ =
{ √

3 if ε2s ≤ ∆t√
3∆tβ−1 if ∆t ≤ ε2s ≤ ∆t2sβ . (4.55)

Then

‖gn‖2 ≤ C∆t(‖ρin‖H1
x

+ ‖gin‖M−1),

for n ≥ n0 outside an initial layer.

Proof. Combining the two equations in (4.21) leads to

gn+1 = (α− γ + εv∂x)−1α(α+ γ − Ls)−1(αgn − In+1).

Recall the estimate (4.25), then

‖gn+1‖M−1 ≤
∣∣∣∣∣ α2

α2 − γ2

∣∣∣∣∣
n+1

‖gin‖M−1 + α

α2 − γ2

[
1 + · · ·+

∣∣∣∣∣ α2

α2 − γ2

∣∣∣∣∣
n]
‖In+2−p‖M−1 . (4.56)

When ε2s ≤ ∆t and γ =
√

3, we have α ≤ 1,
∣∣∣ α2

α2−γ2

∣∣∣ < 1
2 and

∣∣∣ α
α2−γ2

∣∣∣ < 1
2 . Furthermore, by

Lemma 7 Part 2) and Lemma 5 we have ‖I‖M−1 ≤ Cε2s ‖ρin‖H1
x
. Therefore,

‖gn+1‖M−1 ≤
1
2n ‖gin‖M−1 + Cε2s

(
1 + 1

2 + · · ·+ 1
2n+1

)
‖ρin‖H1

x
≤ Cε2s ‖ρin‖H1

x
+ 1

2n ‖gin‖M−1 .

Choose n ≥ n0 with n0 = log ∆t
log 1

2
such that 1

2n ≤ ∆t. Then the conclusion follows from the bound
‖gn‖L2

x,v
≤ C‖gn‖M−1 .

When ∆t < ε2s ≤ ∆t2sβ , γ =
√

3∆t2sβ−1, we again have
∣∣∣ α2

α2−γ2

∣∣∣ < 1
2 . Then (4.56) leads to

‖gn+1‖M−1 ≤
1
2n ‖gin‖M−1 + Cε2s

∣∣∣∣ α

α2 − γ2

∣∣∣∣ ‖ρin‖H1
x
≤ ∆t‖gin‖M−1 + C∆t ‖ρin‖H1

x
.

Theorem 3 (Error estimate in Regime II). Suppose ε2s < ∆t2sβ and t ≥ t0 with t0 being a fixed
constant greater than Cε2s. Then the numerical error f̃n satisfies∥∥∥f̃n∥∥∥2

L2
x,v

≤ C∆t2‖en2M‖2L2
x,v

+ Cs,t0ε
2s ‖ρin‖2L1 + C

[
ε ‖v · ∇xfin‖L1

x,v
+ Ct0ε

2s ‖vfin‖L1
x,v

]
+ Cε

d
2 +2s ‖ρin‖∞ + Cεd+4s ‖(−∆x)sρin‖2x .

Proof. Recall the definition of the numerical error in (4.5). We have∥∥∥f̃n∥∥∥2

L2
x,v

= ‖(η(tn, x, v)− ηn(x, v))M+ (g(tn, x, v)− gn(x, v))‖2L2
x,v

≤ 2∆t2 ‖en2M‖
2
L2
x,v

+ 2 ‖g(tn, x, v)‖2L2
x,v

+ 2 ‖gn(x, v)‖2L2
x,v
.
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Note that

‖g(tn, x, v)‖L2
x,v

= ‖f(tn, x, v)− ρ(tn, x)M(v) + ρ(tn, x)M(v)− η(tn, x, v)M(v)‖L2
x,v

≤ ‖f(tn, x, v)− ρ(tn, x)M(v)‖L2
x,v

+ ‖(ρ(tn, x)− ρ(tn, x+ εv))M(v)‖L2
x,v
.

Bound of the first term follows from Theorem 1. For the first term, write

‖(ρ(tn, x)− ρ(tn, x+ εv))M(v)‖2L2
x,v

≤ C
∫ ∫

|v|≤ 1
ε

|ρ(x+ εv)− ρ(x)|2

〈v〉2(d+2s) dxdv + C

∫ ∫
|v|> 1

ε

|ρ(x+ εv)− ρ(x)|2

〈v〉2(d+2s) dxdv =: I5 + I6.

For I6, we have

I6 ≤ C ‖ρin‖∞
∫ ∫

|v|> 1
ε

1
〈v〉2(d+2s) dxdv ≤ Cε

d
2 +2s ‖ρin‖∞ .

For I5, use the change of variables

y = x+ εv, then v = y − x
ε

, dv = ε−ddy.

Then

I5 ≤ Cεd+4s
∫ ∫

|x−y|≤1

|ρ(y)− ρ(x)|2

|y − x|d+4s dxdy ≤ Cεd+4s ‖(−∆x)sρ‖2x ≤ Cε
d+4s ‖(−∆x)sρin‖2x .

The rest follows from Theorem 1, Lemma 6 and Lemma 11.
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