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Highlights

A neural network empowered implicit particle method is proposed for computing high dimensional nonlinear gradient flows.

Our method benefits from the structure preservation properties inherent in the JKO formulation and can handle high-dimensional problems due to its mesh-
free discretization.

We consider general nonlinear functionals and nonlinear mobility, which are currently beyond the scope of large-scale gradient flow solvers.

Concepts from continuous normalizing flow are employed for efficient density computation, and an explicit recurrence relation for derivative computation is
utilized to significantly streamline the backpropagation process.

We have showcased the effectiveness and versatility of our method in both high dimensions and diverse equations, including one arising from an inverse
problem—the Kalman-Wasserstein gradient flow.
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Abstract

We develop novel neural network-based implicit particle methods to compute
high-dimensional Wasserstein-type gradient flows with linear and nonlinear mo-
bility functions. The main idea is to use the Lagrangian formulation in the
Jordan—Kinderlehrer-Otto (JKO) framework, where the velocity field is approx-
imated using a neural network. We leverage the formulations from the neural
ordinary differential equation (neural ODE) in the context of continuous nor-
malizing flow for efficient density computation. Additionally, we make use of
an explicit recurrence relation for computing derivatives, which greatly stream-
lines the backpropagation process. Our methodology demonstrates versatility
in handling a wide range of gradient flows, accommodating various potential
functions and nonlinear mobility scenarios. Extensive experiments demonstrate
the efficacy of our approach, including an illustrative example from Bayesian in-
verse problems. This underscores that our scheme provides a viable alternative
solver for the Kalman-Wasserstein gradient flow.

Keywords: Nonlinear gradient flows, JKO scheme, Neural ODE, Particle
methods, Density estimation, Nonlinear mobility.

1. Introduction

Deep learning has revolutionized many areas, fundamentally reshaping fields
such as natural language processing, visual recognition, and beyond [27]. It
has also emerged as the cornerstone of contemporary scientific computing. By
harnessing the power of deep neural networks and their ability to approximate
complex functions, it has become an invaluable tool for approximating solutions
to partial differential equations (PDEs), particularly those of high dimensions.
These equations often defy conventional computational techniques due to their
complexity and dimensionality.

Several methodologies have employed neural network approximations for
solving PDEs. One approach is the deep Ritz method, crafted upon the vari-
ational formulation of elliptic-type equations [44]. Another avenue is the deep

Preprint submitted to Journal of Computational Physics June 10, 2024



backward stochastic differential equation (BSDE) method, based on the proba-
bilistic and control-based formulation of parabolic equations [23]. A third tech-
nique involves the deep Galerkin method [38] and the physics-informed neural
network (PINN) [35]. These methodologies both hinge on the minimization of
the (L?) residual of the equation. Importantly, they possess the capability to
be employed across a wide spectrum of equation types. In parallel, this pa-
per aims to develop a versatile solver for a substantial class of nonlinear PDEs
characterized by a gradient flow structure.

Gradient flows describe the evolution of a function or a probability measure
over time, with the rate of change at any point being proportional to the negative
gradient of the energy with respect to the function’s value. They were originally
used to study physical or biological systems that naturally obey some form
of least action law. However, they have since emerged as powerful tools in
various domains, including sampling, variational inference, the theory of neural
networks, and more.

To be more specific, we consider the continuity equation of the form:

Op=—Va - (pv) = Vo [pVa(U'(p) +V +Wxp)], p(0,))=po. (1)

Here, p(t,x), with & € R?, represents the particle density function, py is the
initial density function, U(p) € R represents the internal potential, V(x) € R is
a drift potential, W (x,y) = W(y,z) € R is an interaction potential involving
x and y in R?, and * denotes the convolution operator. ~ Without loss of
generality, we assume that U, V and W are sufficient regular in the sense that
V,W € C(R), and U € C*((0,00)) with lim, o 2% = 400 and U(0) = 0. See
[10, Section 3.1] for more discussion.

This equation can be viewed as the gradient flow of the energy functional
[40, 2]

0 = [ W@ +Vep@lde+; [ W= y@py)dady (2
R4 Ré xRd
in Wasserstein-2 space, which is the space of probability measures equipped with
Wasserstein-2 distance, denoted as Ws.

Among all the recent endeavors in devising structure-preserving methodolo-
gies for (1), our focus in this paper will be exclusively on the Jordan-Kindelenr-
Otto (JKO) scheme [26]. This scheme centers on the task of determining
PP = p(tFFL).) with t+1 = (k + 1)At, given the approximation p*(-) ~
p(tkv )

P € argmin{Wa(p. o) + 201€(p)} (3)

Here, Wy (p, p*) denotes the Wasserstein-2 distance between p and p*. The
scheme in (3) can be conceptualized as a time-implicit version of the fundamen-
tal gradient descent, with the expression on the right-hand side of (3) being
recognized as the Wasserstein proximal operator associated with energy func-
tional &.



In general terms, there exist two methods for expressing the W, distance,
each leading to distinct implementations of (3). The first method is the Eulerian
representation, which establishes a connection between two densities through a
continuity equation involving a velocity field that minimizes kinetic energy dur-
ing the transport. In contrast, the second method is grounded in the Lagrangian
formulation [11]. This approach explores the diffeomorphism that maps one
density onto another, a technique that has also gained prominence in modern
machine learning applications.

In this paper, we adopt the Lagrangian viewpoint by employing the particle
method, coupled with principles drawn from neural ordinary differential equa-
tions (neural ODEs). To elaborate, starting from a set of particles {(B?} that
are i.i.d. samples from p", we seek a sequence of transformations governing the
update of all particles’ positions as follows:

{SU?}T—1> {z]} , {®2}--.

Here, :c = Tk( k= 1). As a consequence, the density evolves in accordance

with pF = T*gpk~ 1 for k =1,2,..., where f denotes the pushforward operator.
We then approximate each map T* by parameterizing the corresponding vector
field using a deep neural network. Thanks to the Jacobi’s formula, this results
in a simple update in estimating the density p*; see (4c) below.

More precisely, our primary formulation is as follows. To transit from time
t* to t**1, we solve the following minimization problem:

0" =
Up(T(1,z)))
p(T(1,z))

argmm Eznp / |lvg (7, T(7,))| dT—i—ZAt( (
+ AME (o) ~pip | W(T(1,2), T(1, )|,

+ V(T(1,x)))}

such that T'(,x) satisfies the dynamical constraint:

d%_T(T,:c) =vy(r,T(1,x)), T0,z) =, (4b)

and the density p(T'(1,x)) is computed as first evolving:

% log | det Vo T(7, )| = div(vg) (7, T(r,2)), p(T(0,x)) = p(x), (dc)

followed by the pushforward relation:
p(T(1,2)) = pt(@)/| det Vo T(1, )]. (1d)

In this problem, we employ Benamou-Brenier’s dynamic formulation [1] to
calculate the Wasserstein distance and reformulate the continuity equation us-
ing the flow map T'(7,x), with 7 serving as an artificial time. The associated



velocity field is denoted as vy, where § € © represents the parameters of a
neural network. The notation E.., denotes the expectation value for = dis-
tributed according to the probability density p, and E(x,y) ~ p ® p represents
the expectation over pairs of independent variables (x,vy), where x and y are
independent and satisfy the joint density p ® p. Equation (4c) is a signifi-
cant outcome from the perspective of neural ODEs, providing a straightforward
means to compute |det V,T'(r,x)|. Consequently, this facilitates an efficient
computation of density as outlined in (4d).

It’s crucial to highlight that the proposed method goes beyond the current
scope of merely approximating Wasserstein gradient flows. Similar approaches,
as outlined in (4), can be employed for general gradient flows, including non-
linear mobility Wasserstein and Kalman-Wasserstein gradient flows. In such
cases, the identity (4c), utilized in neural ODE density estimations, takes on
even greater significance. This is due to the fact that the objective function in
(4) becomes dependent on the density, introducing additional nonlinearities into
the optimization objective (loss function), see (24) in the subsequent context.

The exploration of computing (1) using the JKO scheme has experienced
rapid growth. Previous endeavors employed finite difference or finite volume
schemes [2, 10, 29, 41, 14, 19, 7], as well as Lagrangian methods [11, 13, 12].
More recently, efforts have been directed towards developing machine learning-
based methods, particularly in tackling high-dimensional challenges. In this
context, neural networks have been utilized to approximate maps or density
functions [31, 18, 33, 25, 37, 4]. Furthermore, a variety of methods have arisen to
approximate different formulations of one-step JKO schemes. These range from
leveraging generative adversarial networks [30] to employing neural ODEs [36].
These approaches primarily target at sampling of high-dimensional distributions
in machine learning applications [39, 42], manifesting as time-implicit updates
of the projected dynamics within neural network spaces, specifically the natural
gradient dynamics [30].

Contrasting previous methodologies, our approach employs neural ODE
techniques to compute the time-implicit update of generalized Wasserstein-type
gradient flows. This innovative strategy facilitates the streamlined computation
of high-dimensional densities in Lagrangian coordinates. It is worth highlight-
ing the similarities and disparities between our approach and its closest coun-
terparts. One such sibling is the blob method [9]. While both approaches rely
on particles and intrinsically exhibit energy dissipation, the dissipation in the
blob method hinges on the chosen time step, whereas ours remains uncondi-
tionally stable. Furthermore, our method eliminates the need for kernel density
estimation, a significant computational bottleneck present in the blob method.
Another approach involves the direct use of a neural network to approximate
the mapping between p* and p in (3) [33, 25]. This approach can be seen as
a special case of our method when the inner time step 7 is set to 1. A critical
distinction, however, lies in our utilization of the density evolution equation (4c)
from the perspective of neural ODEs and the explicit formula (28) for comput-
ing derivatives, which significantly enhances the efficiency of density estimation.
Furthermore, our approach can be readily extended to accommodate the non-



linear mobility case. A third comparable technique is the self-consistent velocity
matching approach [4, 37]. In this method, neural networks are also employed
to approximate the velocity field. However, instead of sequentially learning it
within the JKO formulation as we do, this approach adopts an end-to-end learn-
ing strategy. While this method might lead to faster computation, it doesn’t
inherently preserve energy decay in general.

This paper is organized as follows. In section 2, we review the general
formulation of Wasserstein gradient flows in Lagrangian coordinates and intro-
duce the Lagrangian Wasserstein proximal operator and its particle version for
time-implicit (i.e., JKO) updates of gradient flows. We expand our framework
to include gradient flows characterized by metrics reliant on general nonlinear
mobility functions. Section 3 outlines our proposition to approximate the push-
forward map using the trajectory of neural ODEs. This approach empowers us
to employ neural networks with diverse depths while simultaneously sidestep-
ping the computationally intensive task of back-propagation. To illustrate the
effectiveness and versatility of our approach, we present a series of numerical
examples in Section 4, including Fokker-Planck equations, porous media equa-
tions, Kalman-Wasserstein gradient flow of Kullback—Leibler (KL) divergence,
and nonlinear mobility gradient flows. Finally, the paper concludes in Section
5 with an overview of our findings and insights into future research directions.

2. Lagrangian JKO formulation

In this section, we present the main formulation of this paper. We first review
the Lagrangian coordinates of Wasserstein gradient flows and then introduce our
variational time-implicit schemes. One major component of our formulation is
to use instantaneous change of variable formula (see (13)) in the continuous
normalizing flow to achieve efficient density computation. We also consider the
generalized nonlinear gradient flows, in which the Wasserstein-type metric is
associated with nonlinear mobility functions.

2.1. Dynamic JKO schemes in Lagrangian coordinates
Recall the dynamic JKO formulation to (1) as follows. Given p"(x), then
one can obtain p"*1(x) as p(1,x) with p(7, ) solving

(p,v) —argmf / / plv|2dadr + 2AtE(p(1, )
st. Orp+V-(pv)=0, p(0,z) = p"(x).

In the above formulation, the minimization is over the probability density func-
tion p(7,x), 7 € (0,1), terminal time density p(1,x), and vector fields v(r, x),
such that the continuity equation holds.

Now we translate the variational problem (5) into the Lagrangian formula-
tion. Assume the velocity field is sufficiently regular, then the solution p(7,x)
to the constrained continuity equation can be written as

p<T7 ) = T(T’ )ﬂpn ) (6)

(5)



where T is the flow map that solves the following ODE:

C%T(T,a:) =v(r,T(r,x)), T0,2)=x. (7)

Note that (6) implies that for any integrable test function ¢, we have that

¢(@)p(r,x)de = [ ¢(T(r,z))p" (@)d.
Rd Rd

Then variational problem (5) rewrites as

1
Hi,in/ / p" (@) |v(r, T(7,))[*drde + 2AtE(T (1, -)ip")
21 R? (8)

s.t. ET(T, z)=v(r,T(r,x)), T0,z)==x.

To proceed, it is necessary to derive an explicit formulation of £(T'(1,-)4p™)
that can be interpreted as an expectation of a functional, allowing for its rep-
resentation using particles in the subsequent discussion. In the following, we
present a comprehensive formulation for each component of equation (2). Specif-
ically, the external potential and interaction potential have straightforward ex-
pectation formulations through the push forward relations, whereas the internal
energy necessitates further reformulation.

External potential energy

V@p(La)dz = [ V(T(1,2))"(2)de. (9)
R4 R4

Interaction energy

/Rd » W (x,y)p(1, z)p(1, y)dedy
- /Rd R¢ W(T(1,2), T(1,y))p" (®)p" (y)dzdy (10)

Internal energy/entropy

U(p(L, z))dz
Rd

= g Up(1,T(1,x)))|det V. T(1,x)|dx
| det Z:gc()l,wﬂpn(w)dw
__
p(L,T(1,z))

_ /R Up(1,T(1,z)))

_ / U1, T(1,2))) P (x)da, (11)



where we have used the Monge-Ampere equation
p(1,T(1,2)| det Vo T(1, )| = " () (12)

thanks to (6). In practice, computing the determinant of the Jacobian V,T'(1,))
poses a significant bottleneck due to its cubic cost with respect to the dimension
of . To address this issue, we draw inspiration from the concept of continuous
normalizing flow and employ an efficient approach based on the instantaneous
change of variable formula [15, 22]. The crucial element is the following formula.

Proposition 1.
d .
s log | det V. T'(1,x)| = div(v)(r, T (7, x)). (13)
-

Proof. Equation (13) is derived through a calculus that involves both ODE (7)
and the Monge-Ampere equation (12). Assume that T'(7, ) is invertible, i.e.
detV,T' (1, ) # 0, then

d sgn(det VoT'(1,x)) d
71 :’cT 9 = q_ x )
I og|det V,T'(1, )| et Vo T(r o) dr (det(VT (1, x)))

=tr((VaT(r,2)) " Voo (1, T(r,2)) )
:diV(’U)(T, T(Ta CC)),

where the second equality uses the Jacobi’s formula, and the last equality uses
the chain rule, and sgn(z) = ToT- O

As aresult, the computational burden shifts towards calculating div(v) (7, T'(7, x)),
which only involves a trace calculation and can be accomplished much more ef-
ficiently. In sum, (12) and (13) play a crucial role in enabling efficient density
estimation, as elaborated in the next section and Section 3.1.

2.2. A Particle method

By interpreting the integral against p(z)dx as an expectation, (8) reveals a
direct particle representation. More precisely, let {:):;L ;\/:1 be particles sampled
from p"(x), we discretize (8) as follows. Note here we omit the superscript n in
n

:Ej.



Case 1 : (8) with (9) and/or (10)

mln— U lo(r, T(r, ;) Pdr + 286V (T(1, 2,))

QAtZW T(1,2,), T(1,21))

s.t. %T(T, x;) =v(r,T(1,2;)), T0,z;)=x;.
(14)

Case 2 : (8) with (11)

p" (x;) |det Vo T'(1, ;)|
mln—z {/ |v(r, T(, a:]))| dr 4+ 2AtU (|detiT(1,mj)|> (@)

s.t. CZ( 71:]) l’<;71(;7wj))5 1<07mj) lj
dr
10g|det ;mj (‘?:L.J)| _dl"(l’)( 51 (‘aw]))a 10g|det ;wl (O7w])‘ _07
dr

(15)

In cases where the energy solely comprises potential and interaction compo-

nents, it suffices to monitor the particle positions. However, when internal

energy is introduced, it becomes necessary also to track the density p, which is

accomplished by monitoring the logarithmic determinant of the transport map.
More precisely, denote the minimizer of either problem 7", then

n+1 . n+1
" (L)) =2i",
which can be viewed as samples from p"*!(z). Therefore, starting from {x?},
we have a sequence of update

@5 2 5 (22 D (af), (16)

where x7 = T" (1, w;-“l). Likewise, the density evolves as

Pl p = Pt = P, (17)

where p" = T"(1,-)fp"*

In practice, since we only evolve particles, a major difficulty in (17) lies in
the density estimation of p™, which can be very expensive and inaccurate in
high dimensions. To resolve this issue, a key observation is that we don’t need
the full information of the density, but only the density evaluated along the
trajectory of particles!



Suppose we are given a set of samples :13? drawn from the known analytical
expression of pg. In the first JKO step, we can compute the updated density as
follows:

0( 10
p ()
P (TH(1,2))) = s (18)
N—_—— \detiT (17£Bj)|

1
€
J

where T represents the map obtained in the first JKO step. Here, m]l corre-

sponds to the transformed sample after applying T to mg. Following a similar
procedure, we obtain the density in the subsequent JKO steps:

1(gl
) ——C)
N—— \detiT (1,:13J1)|

; (19)

and this iterative process can be continued for any subsequent JKO step.

Remark 1. We emphasize that this observation holds true for general non-
linear internal potential functions, denoted as U. In the existing literature, U
is commonly assumed to be the negative Boltzmann-Shannon entropy, given by
U(z) = zlogz. In this particular case, the aforementioned difficulty can be
circumuvented. Indeed, since

p" () |det VoT'(1, ;)|
v (|detV:cT(1,90j)|> p"(z;)

= log p"(x;) — log |detV,T'(1, x;)|,

we can simplify the computation by avoiding the need to directly calculate p™(x;).
This is because log p™(x;) is separated from log|det(VoT'(1,;))| in equation
(15), enabling us to exclude it from the calculation. However, for general poten-
tial functions, the computation of p™(x;) cannot be circumvented.

2.3. Nonlinear mobility

In this section, we expand upon the previous method to encompass the
generalized gradient flow, as delineated by the following equation:

55(p)) '

s (20)

atp =Vg- (M(p)vfﬂ

Here, the function M(p) > 0 represents a nonlinear mobility function. This
type of equation appears in various contexts, such as thin films [3], phase sep-
aration in binary alloys described by the Cahn-Hilliard equation [6], and the
transport phenomena of biological systems with overcrowding prevention [5],
among others.

For general mobility function M(p), equation (20) can also can also be in-
terpreted as a gradient flow, especially when M (p) is concave and satisfies



some other properties in [16, 8]. The generalized metric also admits a dynamic
formulation, leading to the following extension of the dynamic JKO scheme (5):

(pf)fargmf / RdM( p)|o*dzdr + 2ALE(p(1, ) (21)

st. Orp+ V- (M(p)v) =0, p(0,2) = p"(z).

In the above formulation, the minimization is over density function p(r, ) for
€ (0,1), terminal time density p(1, ), and vector fields ¥(7, x), such that the
nonlinear mobility induced continuity equation holds.
Let v = (p)v equation (21) can be rewritten into

(p, )farglnf / y M(p)|v\2da:d7’+2At5( p(L,4),

st Orp+ V- (pv) =0, p(0,z) = p"(x).

(22)

This reformulation states that the minimization is constrained by the classical
continuity equation. It is worth noting that such reformulation does not change
the optimizer of the problem. Indeed, let ¢ be the Lagrangian multiplier, then
one can check that the critical point system of variational problems (21) and
(22) lead to the same Hamilton-Jacobi equation for ¢:

1
0r6 + M (p)[Vol* =0
We note that variational problem (22) now admits a similar Lagrangian

representation as in (8), with the only distinction being the first term, which
now becomes:

1 2
P (T7 $> 2
————|v(7,x)|*drdx.
/0 R4 M(p(Tv :13))
By employing the same technique as utilized in deriving (11), the integral with
respect to  in the given expression rewrites as

p*(1,z)

o M(plr.ay) 0
= P*(r,T(r,z)) v(r,T(T,z e T
=) M(p(r,T(7,m)))| (1, T(7,2))[?| det VT (7, z)|d
B P2 (1, T(r,x)) T o |det Vo T(1,2)| 2

L TG TP Tl e
L[ SO0 Tl gy,

R4 M(,D T,T(T,CC))) p(T,T(T,m))

10



As in (18), the density p(7, T(r, x)) is determined by the Monge-Ampere equa-
tion:

p" ()
T P
P T(T2) = e voT (o)
Similar to the JKO scheme presented in (14) or (15), given {x }; and {p"(z])};
(we omit the superscript n in @} in the following formula), the updated formu-
lation can now be expressed as follows:

N [/ Wyt Ty M TP 4 2005 JE 0
s.t. ET(T x;) =v(r,T(1,2;)), T(0,2;)=x;
(% log | det Vo T(7, ;)| = div(v)(r, T(r,z;)), log|det VoT (0, ;) =0
o(r, T, ;) = — 2 (21)

|det Vo T'(7, ;)|
(24)
It is obvious that when M (p) = p, (24) reduces to (15).

3. Neural ODE empowered JKO schemes

In this section, we leverage neural network functions to approximate the vec-
tor field v as described in equations (14), (15), or, more broadly, equation (24).
As a result, the optimization procedure aims at refining the parameters of the
neural network. Building upon the efficiency gains achieved through the use of
continuous normalizing flow for density estimation, as previously discussed, we
incorporate a recursive relation formula proposed in a prior work [34] to compute
derivatives, significantly improving the efficiency of backpropagation. Lastly, we
conclude this section by presenting a concise summary of the algorithm.

3.1. Learning the potential function

In view of (14) and (15), the primary objective is to determine the optimal
transport map, denoted as T'. However, this task can be computationally de-
manding, especially in high-dimensional scenarios. Fortunately, by applying the
principles of optimal transport [20, 40], we can express the velocity field v(t, x)
as the gradient of a potential function ¢(t, ) such that v(t,x) = —V4é(t, x).
Consequently, our focus shifts to finding the potential function ¢. To achieve
this, we utilize a neural network to approximate ¢(¢, x), denoted as ¢y (t, x). As
a result, we obtain vy (t,x) = —Vzoy(t, ) as the corresponding approximation
of the velocity field.

To be more specific, let us consider solving equation (14). By substituting
v with vg = =V, the constraint in (14) becomes:

ddTT(T x;) = —Vaoo(r,T(7,2;)), T0,xz;) = x;.

11



Similarly, in the case of the more complex equation (15), computing p(T'(1, x;))
calls for the following update:

% log ’det(Vi%(T,T(T, :cj)))} = div(ve)(7, T(1,x;)) = —tI‘(Vi¢9(T,T(T, x;))).

Detailed computations of V2¢g will be given in the next subsection.

8.2. Deep JKO Algorithms

We hereby provide comprehensive details for computing the minimizer of (14),
(15) or (24), when v is replaced by vy. Let N, denote the number of time dis-
cretization such that [0, 1] is discretized into 0, - N ]3 AR NN*17 and 0 is a
vector of parameters for neural network functions. Given the den51ty p" at the

n-th JKO step and sampled points {x; } j=1, the loss function to compute the

density at the n + 1-th JKO step is defined as follows:

N,
Lo, {z;},) = Z[dTZ}vmg(kdr,zmz
k=1

j=1

Ulp@ ) w1l SN,
+ 2At ( e +V(zh7) + N;W(zj 27 }

(25)
where the inner time step is denoted as dr = 1/N, and the update equations
are given by:

k+1 f — d1 Vgde(kdr, Z?), zg) =z,

z’€+1 1% — drtr(Vige(kdr,zh)), 19 =0,

for £ =0,---,N: — 1 and the terminal density p at the location z; N is defined
as

p"(z;)
1,28 = L) 2
The above equations for z* ] ! and log p(z k'H) utilize the forward Euler method

to solve the ordinary differential equations (ODEs) in the constraints of (15).
However, alternative ODE solvers such as Runge-Kutta can also be employed.
For our numerical experiment, we utilize the RK4 as the ODE solver.

The loss function, denoted as L(6, {a;}}_,), takes two inputs: the neural
network parameter 6 and a set of sampled points {:c]}év:l The objective is
to minimize this loss function with respect to 6. This 6 plays a vital role in
approximating the potential function ¢g(x, 7), which relies on two variables: a
state vector z € R? and a time value ¢ € [0, 1]. The velocity is computed as:

vo(1, @) = —Vaoo(T, @),

and its divergence is obtained as the trace of the Hessian:

div(vg)(1,x) = —tr(Viepe(T, x)).

12



To simplify the calculation of gradients and Hessians in the formulas above,
we utilize the explicit expression introduced in [34]. This approach capitalizes
on the smoothness of the activation function within the neural network. Conse-
quently, our optimization process experiences significant acceleration, as we no
longer rely on automatic differentiation (AD) for backpropagation to compute
gradients and Hessians in each iteration.

More precisely, we adopt a multi-layer ResNet that takes the input s =
(1,x) € R where € R? represents the initial state, and 7 € [0, 1] denotes
time, yielding an output in R. The neural network function consists of L hidden
layers with recursive relations defined as follows:

u; = o(Wps + by),
wy =w+o(Wu +by), I=1,---L—1,
NN(SvO) ’UJTuL.

Here, 0 = (Wo, Wy, by), with Wy € R™*(@+1) and W, € R™*™ (1 = 1,---,L)
are dense matrices. Additionally, by € R™ (I = 0,---, L) are biases, while m
denotes the number of nodes in each hidden layer and w € R™ is a vector we
perform dot product at the end of the ResNet. The element-wise activation
function o(x) = log(exp(x) + exp(—x)) is used, which is differentiable. The
dual variable ¢y is defined through

do(T,x) = NN((1,2);6). (27)

Denote by V, a gradient operator with respect to the space variable  and Vg
be a gradient operator with respect to the state vector s. Both the gradient
Vzdo(x,7) and the Hessian V2 ¢y (x, T) can be effortlessly computed using the
explicit formulas presented in [34]. Specifically, for the case where L = 2, these
formulas are as follows:

Voo (1, ) = W, diag(o’ (Wos + bg))z1, (28a)
z1 = w + W, diag(o’ (Wiuy + b1))w, (28b)
and
Vigo(x, ) = to + t1, (28¢)
where

to = Wy diag(c” (Wos + by) ® 21) W,
t1 = JJWleiag(a”(Wlul + bl) ® ’lU)W1JQ,
Jo = W, diag(o’ (Wos + b)) "
Here ® represents the element-wise multiplication. Then, Vg ¢g(x, 7) is the
first d elements of Vsgg(7,x), and V2¢y(7, ) = [V2¢g(T, T)]1.4.1.a Where the
subscript 1 : d,1 : d denotes the submatrix of size d x d. For comprehensive

expressions of the gradient and Hessian operators for a general L, we recommend
readers to see details in [34].
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We now provide a summary of the proposed algorithms. Algorithm 2 serves
as the primary algorithm, guiding the movement of particles along the gradient
flow. Whenever sampling/resampling is necessary, Algorithm 1 will be invoked.
Please note that the [ update and density computation in Algorithm 1 are only
required when working with general nonlinear internal energy and mobility.
Additionally, in the algorithm, we utilize forward Euler, but it is adaptable for
replacement with explicit Runge-Kutta type ODE solvers.

Algorithm 1 Generate samples and densities at n-th JKO step

Input:
e QOuter JKO time step At.

e Inner dynamic formulation time step dr and total number of inner steps
N;.

e Initial distribution p° and initial samples {«9}’_, and densities
{p()}}11
e Potential functions from previous steps (¢, , g_l).
Output:

e Sampled points {x' ;}le at n-th outer iteration.

e Density values {p(7)}}_; at n-th outer iteration.

fori=0,---,n—1do
for j=1,--- ,N do

for k=0,--- ,N, —1do
2Vt =2k — dr Voo (kdr, 2¥)
It =1k — dr tr(V2 ) (kdr, 28))

end for ()
i+1 _ N, i1y . p"(=zy)
:E] — Zj ) p(w] ) - cxp(l;v")
end for
end for
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Algorithm 2 Deep JKO scheme
Input:
e Outer JKO time step At

e Inner dynamic formulation time step dr

Initial distribution p°

e Learning rate « for the Adam optimizer
e Total number of outer iterations K
e Resampling frequency C

Output:

e Neural network parameter 6 and corresponding potential function
¢79L(t7w)7 n= 1a2,"' aK

e Particle locations: {z}}, n=1,2,--- K, j=1,2,---,N.

e Density along particle trajectories: p"(z}), n = 1,2,--- K, j =
1,2,---, N.

Initialize 6 from a standard normal distribution.

forn=1,--- K do
c=0.
while not converged do
if mod(c,C) = 0 then do
Sample {x)} 1, i po
Compute {:18}1 j=1 using Algorithm 1 and update the density value
through (26).
end if
Update 6 = 6 —aVyL(0, {x}}1L))
where L is from (25) and the gradient is computed using automatic
differentiation (AD).
c+—c+1
end while
end for

4. Numerical examples

This section presents several numerical examples of the proposed deep JKO
schemes for computing gradient flows with various choices of energy functionals
and mobility functions.
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4.1. Wasserstein gradient flow of the KL divergence

In this experiment, we present the computed solutions of (15) with the

energy functional defined as

U(p) = Dxwi(pllg) = /p(w)log de, (29)

q(x)

where g represents a reference density. The initial density p° is characterized
by two Gaussian distributions centered at (£1.2,0) with a standard deviation
of 0 = 0.5. The reference density ¢ is defined as four Gaussian distributions
centered at (+£2,42) each with a covariance matrix represented by a diagonal
matrix with every diagonal entry equal to 0.25.

For the numerical experiment, the inner timestep is set as N, = 1 and the
JKO time stepsize is set as At = 0.025. The model architecture includes 3
layers with m = 64 nodes in the hidden layers. The training is performed using
a batch size of 1000, and the learning rate is chosen to be 107°. The total
number of iterations is set to 10, 000.

The two-dimensional results are depicted in Figure 1 and Figure 2. Figure 1
illustrates the evolution of the density from ¢ = 0 to ¢ = 0.4. In this figure, the
color of the points represents the value of the density p™(x) at the corresponding
location x. Brighter colors indicate higher density values. The computation
involves a total of 16 JKO steps. Figure 2 displays the trajectories of each
particle with respect to time ¢ and the energy value computed from the algorithm
with respect to the iterations. As the iterations progress, the energy decreases
and eventually converges to the stationary value.

We further extended our experiments to a 10-dimensional space while retain-
ing the same energy functional (29). The initial density p” was set as a Gaussian
distribution centered at the origin, and the reference density ¢ was constructed
using a combination of four Gaussian distributions centered at (2, 2.5), (—2.5,2),
(—2,-2.5), and (2.5, —2) each with a covariance matrix represented by a diago-
nal matrix with every diagonal entry equal to 0.25. In this experimental setup,
we use a time step size of AT = 0.2, a learning rate of 1075, and executed a
total of 10,000 iterations. The results are illustrated in Figure 3, highlighting
the initial 2D cross sections of the density’s evolution from ¢ = 0 to ¢t = 3.4.
These visual representations present kernel density plots derived from the point
clouds generated by the algorithm at each time instance ¢.

4.2. Porous medium equation
The second experiment concerns the porous medium equation represented
by
dip(t,z) = Ap(t,z)™, m>1,xcR?, (30)
which can be interpreted as the Wasserstein gradient flow with the internal
energy functional U defined as

V() = | | —ole)da.

am—1
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(a) t=0 (b) t =0.025 (c) t=0.1 (d) t=0.2 (e) t=0.4

Figure 1: Computed solutions of 2D Fokker-Planck equation, i.e. the Wasserstein gradient
flow of KL divergence (29). An initial density is a mixture of two Gaussians and the target
density is a mixture of four Gaussians. The figures visually depict the evolution of these
densities from t =0 to t = 0.4.

25

Figure 2: 3D plot (left) and the energy decay plot (right) from Figure 1. The left plot shows
the trajectories of each particles where z-axis represents time from ¢ = 0 to t = 0.35. The
right plot illustrates the decay of the energy from t =0 to t = 2.4.

B B 2 2
© . © © ©
- - N\ - -

(a) t =0 (b) t =0.6 () t=1 (d)t=2 (e) t=3.4

Figure 3: Evolution of densities from 10D Fokker-Planck equation from ¢ = 0 to ¢t = 3.4. An
initial density is a Gaussian distribution centered at the origin and the target density is a
mixture of four Gaussians.

This equation admits a close-form solution given by the Barenblatt formula:

plt @) = (14 10) (O = Bllal?(t +10) %) " (31)
where o = d(m—dl)-&-Q’ 8= (";;;)a, C'is a constant that makes [, p(t, z)dz = 1.

We choose ty = 1073. Formula (31) serves as a reference solution to evaluate
the performance of our algorithm.
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In the numerical experiment, we employ an inner timestep of N, = 2 and
set the JKO time step size to At = 0.001. The model architecture consists of 3
layers with 128 nodes in each hidden layer. During training, a batch size of 1000
is used, and the learning rate is set at 107°. The total number of iterations for
the experiment is configured to be 10, 000.

The experimental results are presented in Figure 4 and Figure 5. Figure 4 vi-
sualizes the density evolution from ¢ = 0 to t = 0.12, where particles positions x
and their corresponding density values, p(t, x), are accurately computed at each
time step. The color intensity at each particle’s location represents its density,
with brighter colors indicating higher density values. Notably, the computed
solutions maintain radial symmetry, providing a precise representation. The
green rings in the figures correspond to the support of the analytical solution
(31) and align well with the computed solutions, affirming the algorithm’s ac-
curacy. Figure 5 displays particle trajectories from ¢ = 0 to t = 0.01, exhibiting
linear trajectories as expected from the analytical solution of the PDE.

We then utilize the algorithm to compute solutions for the porous medium
equation in high-dimensional spaces, specifically in dimensions 6 and 10. For
both cases, we choose an outer time step size of At = 0.0005, and set the inner
timestep to N, = 2. The model architecture comprises three layers with 128
nodes in the hidden layers. Training is carried out using a batch size of 1000,
and the learning rate is fixed at 1075. The total number of iterations is set to
be 20, 000.

Figure 6 illustrates the evolution of densities in both 6D and 10D. To visual-
ize the results and demonstrate the accuracy of the algorithm, 2D cross-section
plots of the particles are presented, along with the support of the densities ob-
tained from the analytical solution, represented as a green ring. The computed
densities exhibit spherical evolution and closely match the analytical solutions.

o o 0 0 0

(a) t=0 (b) ¢t = 0.002 (¢) t = 0.005 (d) t = 0.008 (e) t =0.01

Figure 4: Computed solutions of 2D porous medium equation. The figures show the evolution
of densities from t = 0 to ¢t = 0.12. The algorithm calculates the positions of particles & € R?
and their corresponding density values p(t,x) at each time t. The color of each particle
represents its density value, with brighter colors indicating higher density values. The green
ring indicates the support of the density from the analytical solution at the given time t.

Here, we discuss the complexity and accuracy of our scheme. For 2D and 6D
cases, we use 4-layer fully connected neural network with 512 nodes per layer,
and for 10D case, we use 4-layer fully connected neural network with 1024 nodes
per layer. For all cases, we set the number of iterations to be 50,000 during the
first outer iteration and 5,000 iterations thereafter. The cost per iteration is
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Figure 5: 3D plot from Figure 4. It shows the trajectories of each particles where z-axis
represents time from ¢ = 0 to ¢t = 0.01.

03 0s s 0s 0s y
* ‘ “ ° “ ‘ b ° ” :
05 05 05 05 05

o 05 do o5 1o do 65 do o5 1o do s do o5 1o do 05 do o5 1o o 65 do o5 1o

(a) t=0 (b) t = 0.0005 (c) t =0.001 (d) t = 0.0025 (e) t = 0.005

05 05 0 05 05
* . “ . " ' " ‘ ) ‘

o %5 0 o5 1o To s o o5 1o S0 s o o5 1o Ho w5 oo o5 10 To w5 o o5 10

(Ht=0 (g) t = 0.0005 (h) ¢t = 0.001 (i) t = 0.0025 () t = 0.005

Figure 6: Computed solutions of 6D (first row) and 10D (second row) porous medium equation.
The figures show the evolution of densities from ¢ = 0 to ¢t = 0.005 for 6D and 10D porous
medium flows. The green ring indicates the support of the density from the analytical solution
at the given time t.

however the same acorss different dimensions, approximately 1 to 2 minutes
per 1000 iterations on 2 GPUs. We evaluate the accuracy by comparing the
computed density using the density update formula with the exact solution.
Figure 7 illustrates this comparison for a dataset {mj};V:l with N = 50, 000.
The L? error is calculated as:

1/2
N /

1
L? error = N Z |pcomputed(m§:) — Pexact (xf)|
j=1

2

4.8. Nonlocal transport equation with nonlinear mobility

In this section, we explore an example that involves nonlinear mobility, a
phenomenon frequently encountered in the study of transport in biological sys-
tems, where it serves to prevent overcrowding [5]. Particularly, we examine a
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Figure 7: L? error from porous medium equation experiments for 2D and 6D results

specific mobility function, represented as M(p) = p(1 — p), and a particular
energy functional described by the equation:

1

£p) = / W= yp@p()dady, Wia)=[of. (32

The corresponding equation can be expressed as:
o0&
Quplt @) = V- (M(p(t, )V (1)) (33)

This model is based on [17]. Beginning with an initial condition po(z) = 2(1 —
|z|?),, it is anticipated that p. will take the form of a characteristic function
whose support is determined by the total mass. The experimental results are
presented in Figure 8. The top row of figures illustrates particle evolution from
a bird’s-eye view, where each particle’s position @ is color-coded according to
its associated density value, p"(x). The bottom row of figures presents a side
view of the density values for each particle when their locations are projected
onto the z-axis. These visualizations provide compelling evidence of the density
converging toward a characteristic function.

4.4. Kalman-Wasserstein gradient flow

In the last example, we consider the Kalman-Wasserstein gradient flow [21]:
o€
Quplt w) = V- (plt w)C (D) Vs (1)), (34)
where u € R? is the parameter in the Bayesian inverse problem,

Clp) = / (- m(p)) @ (u— m(p)p(wdu, mip) = / Cup(u)du, (3)
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(a) t =0 (b) t = 0.02 (c) t=0.1 (d) t =0.2
() t=0 (f) t = 0.02 (g) t =0.1 (h) t=0.2

Figure 8: Computed solutions of nonlocal transport equation with nonlinear mobility (33).
The figures show the evolution of densities from ¢ = 0 to ¢ = 0.2. Top row: bird eye view
with color coded density. Bottom row: particle density (on the y-axis) versus its projected
location on the z-axis.

and
() = Displm) = [ (B(wp+ plw)npe)du+nz.  (36)

Here p is a probability density function of u, 7 = %e_q’(“) is a given target
distribution and we assume Z = f e~ ®(®dy < +00 is a normalization constant.

This equation is derived as a mean field limit of the Kalman Wasserstein
sampler, aiming at identifying the unknown parameter u in the Bayesian setting.
In particular, ®(u) takes the form

1 1
®(u) = 5[1G(w) — yllf + 5 ulf, , (37)

where ||ula := u" A~ u, G represents a forward map that relates the parameter
u to the measurement y, typically represented as a PDE operator. We assume
that u follows a prior distribution A(0,I'g). The term 1|/G(u) — yl|/3 is com-
monly referred to as the likelihood function, and %e“b(“), with Z being the
normalizing constant, represents the posterior distribution.

Then our goal of solving (34) is to sample from the posterior distribution.
Instead of running a Lagenvin type dynamics as proposed in [21], we use our
DeepJKO formulation. Note that C(p) dose not have an explicit u dependence,
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(23) simplifies to
[ otroira) Clotr. )~ o(rw)du
= [ o T w) T Ol T w) ol T )" ()i
= [ o T w) T C) ol T ) ().

It’s important to highlight that C(7) = C(p(7,T(7,w))) is reliant on the mo-
ments of p and thus remains unaffected by variations in u. Consequently, the
JKO scheme (24) rewrites to:

N

1
HlGIH%Z{/O ’Ug(T,T(T,Uj)TC(T)71v0(TaT(Tauj))dT

j=1
F2AL[R(T(1,u;))+ log " (u;) — log det(V, T (1, u;))] |

N
where C(7) = (T(r,u;) —m) @ (T(1,u;) —m), m= % ZT(T, u;),

j=1

d
s.t. ET(T, u;) = vg(7, T(1,u;)), T0,u;) =u,.

aﬁ logdet(V,T'(1,u;)) = div(v)(r, T(1,u;)), logdet(V,T(0,u;))=0.
-
(38)
As a specific example, we consider a case where the forward map G is given
by the one-dimensional elliptic boundary value problem:

d Ul d —
% (e dxpu(a:)> =1, ze€]0,1],

with boundary conditions p,,(0) = 0 and p, (1) = uz. This problem has been
considered in [24, 21, 28]. The explicit solution for this problem is

u 2?2z
Pu(T) = ugw + e~ —?‘1‘5 .
Then the forward map G is defined by
G(u) = (pu(0.25)7pu(0.75))—r ,  where u = (ul,uQ)T . (39)

Then the Bayesian inverse problem is to find the distribution of the unknown
u conditioned on the observation y, assuming additive Gaussian noise. More
precisely, we use ®(u) defined in (37) and choose

y=(275,79.7)", T =0.1%y, Ty=10%,,
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where Iy € R2*2 is the identity matrix. We run the dynamics by initially
sampling according to

po(w) = N(0,1) x U(90,110), (40)

That is, sample u; according to normal distribution A/(0,1), and ug according
to uniform distribution /(90, 110).

In the computational approach, we set the matrix C(7)~! to be equal to
C(0)~! to approximate the running costs. This approximation offers the ad-
vantage of reducing computational complexity by circumventing the need for
backpropagation over the inverse cost function, thereby significantly increasing
computation speed. Note that the approximation introduces an error of order
At, which does not compromise the first order accuracy of the JKO scheme.
The results of our experiment are presented in Figure 9, illustrating the den-
sity evolution from ¢t = 0 to ¢ = 20. The density converges to the stationary
distribution, and the results are consistent with the numerical solution depicted
in [21].

Figure 10 shows the loss plot and the contour plot of ®(w). The loss plot
displays the value of the loss function with the x-axis representing iterations
and the y-axis representing the loss value. Here the loss function represents the
relative entropy defined in (36). On the right, the figure illustrates the computed
solution at ¢ = 20, overlaid on the contour plot derived from ®(u).

%0

(a) t =0 by t=2 (c)t=4 (d) t=17.5 (e) t =20

Figure 9: Computed solutions of a 2D Kalman-Wasserstein gradient flow (34).

5. Conclusion and discussion

In this paper, we introduce neural network-based implicit particle methods
for computing high-dimensional Wasserstein-type gradient flows with linear and
nonlinear mobility functions. Our approach centers around the Lagrangian for-
mulation within the Jordan—Kinderlehrer-Otto (JKO) framework, where neural
networks approximate the velocity field. Neural ODE techniques are harnessed
to efficiently compute the time-implicit updates of both particle locations and
the densities they carry. Additionally, we leverage an explicit recurrence re-
lation to compute derivatives, significantly streamlining the backpropagation
process. Our methodology exhibits versatility and can handle a broad spectrum
of gradient flows while accommodating diverse potential functions and nonlinear
mobility scenarios.
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Figure 10: The loss function values across iterations are depicted on the x-axis, while the
computed solution at ¢ = 20 is superimposed on the contour plot generated from ®(u) (on
the right).

There are several promising directions for future work. Firstly, there is po-
tential for accelerating the training process. This could involve leveraging the
properties of the velocity field as suggested in [32], or exploring transfer learn-
ing techniques [43], and improving resampling methods. Another avenue for
exploration is the convexity of the problem, investigating how it depends on pa-
rameters like the step size At and network architectures, including the choices
of neural network activation functions. Understanding the convexity proper-
ties can contribute to faster training and provide insights into the convergence
properties of the algorithm. Additionally, we aim to extend this approach to
accommodate more complex energy functionals and scenarios where a gradient
flow structure is not fully presented or is only part of the physical dynamics.
This extension would broaden the applicability of our method to a wider range
of problems in simulating general physics oriented partial differential equations.
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