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As humans alter landscapes worldwide, land and wildlife managers need
reliable tools to assess and monitor responses of wildlife populations. Gluco-
corticoid (GC) hormone levels are one common physiological metric used to
quantify how populations are coping in the context of their environments.
Understanding whether GC levels can reflect broad landscape characteristics,
using data that are free and commonplace to diverse stakeholders, is an
important step towards physiological biomarkers having practical application
in management and conservation. We conducted a phylogenetic comparative
analysis using publicly available datasets to test the efficacy of GCs as a bio-
marker for large spatial-scale avian population monitoring. We used hormone
data from HormoneBase (51 species), natural history information and US
national land cover data to determine if baseline or stress-induced corticoster-
one varies with the amount of usable land cover types within each species’
home range. We found that stress-induced levels, but not baseline, positively
correlated with per cent usable land cover both within and across species. Our
results indicate that GC concentrations may be a useful biomarker for charac-
terizing populations across a range of habitat availability, and we advocate
for more physiological studies on non-traditional species in less studied
populations to build on this framework.

This article is part of the theme issue ‘Endocrine responses to environ-
mental variation: conceptual approaches and recent developments’.

1. Introduction

Habitat loss is one of the greatest threats to biodiversity, threatening 85% of all
species on the JTUCN'’s Red List [1]. Degradation of natural habitats has been
caused by expansion of agricultural land, timber harvesting, overgrazing and
other anthropogenic development in response to a growing human population,
resulting in half of the world’s non-glacial land being converted for human use
[2,3]. Reduction in habitat quality or availability can cause rapid and lasting phys-
iological responses in organisms. In particular, it is well documented that habitat
alteration can cause physiological responses to stress [4-9], which can lead to
decreased reproductive success, pathology and increased mortality rates in ver-
tebrates [10,11]. As a result, a surge of research in the recent past decades
has focused on refining the use of physiological metrics to assess animal
responses to environmental change and inform conservation and management
decisions [12-15].

Glucocorticoid hormones (GCs) have long been regarded as a candidate bio-
marker of physiological stress across vertebrates [16,17] and a valuable tool in
conservation physiology [18]. This is due to their well-conserved role in mediat-
ing vertebrate behaviour and physiology in response to both long-term
environmental changes and acute perturbations [19]. GCs are released from
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the adrenal gland via the hypothalamic—pituitary—adrenal
(HPA) axis and regulate blood glucose levels and mobilize
energy reserves. At baseline levels, GCs fluctuate daily and
seasonally, reflecting the cumulative energetic demands
required to maintain internal homeostasis across changing
conditions [20]. For example, baseline GCs can vary during
energetically demanding life-history stages such as breeding
and migration [21,22], weather events [23,24] or periods of
resource limitation [25]. In response to acute or unpredicted
challenges, GCs rise quickly and promote immediate survival,
e.g. by facilitating predator escape behaviour, territory defense
behaviour or mounting of an immune response [26,27]. A fast
and robust GC stress response has traditionally been con-
sidered critical to an individual's ability to maintain
homeostasis through changing environmental conditions (i.e.
allostasis) [19,28]. However, absolute levels of GCs and the
extent to which they mediate responses to an individual’s
environment are highly context-dependent [17,29]. Both base-
line and stress-induced GC levels can vary across life-history
stage [30-33], age [34], sex [35] and species [36,37]. Whether
an environmental challenge elicits a GC response, and whether
the response is appropriate or harmful, also depends on the
nature, frequency and context of the challenge [24,29]. More-
over, recent studies assert that proper interpretation of GC
measures requires some knowledge of other components of
the HPA axis (e.g. endocrine receptors and binding agents,
or the efficiency of recovery from maximum levels) [29,38,39].

Despite this variability of GCs, large-scale comparative
studies have been successful at detecting broad trends in GC
profiles within and across species [17,40]. Indeed, while
empirical studies are vital to our biological understanding of
GCs, complementary meta-analyses provide support for
using GCs as a physiological indicator of organismal response
to environmental variation. For example, several reviews in the
past decade have linked GC variation to latitude [41,42], ambi-
ent temperature [43,44], primary productivity [42] and food
availability [45], suggesting that similar GC phenotypes may
be selected for across species in similar environments. As a
result, GCs have become one of the most common physiologi-
cal biomarkers measured in the context of conservation [17,18].
However, there is a deficit in our understanding of how GCs
relate to broad landscape characteristics, specifically those
used by land and wildlife managers to remotely identify suit-
able habitat for species. Advancements in global satellite
imaging, now able to accurately classify land cover types
remotely [46], have become a widespread and common
practice for assessing landscape and habitat characteristics
[47-49]. Although they are still relatively crude estimates of
habitat composition and overall quality compared to on-the-
ground surveys [46,50], medium resolution satellite data
offer a cost-effective way to assess land cover on very large
scales and are accessible to organizations with limited time
or resources [14,51,52]. As GCs have potential to be a valuable
tool in conservation physiology across taxa [17,18,53], bridging
the rich GC literature with broadscale, open-access data
sources is of great value to ongoing management initiatives
and to broadening global participation in conservation.

In this study, we asked whether broad trends in GC profiles
exist across avian species in relation to landscape character-
istics, using free, publicly available land cover data and
natural history databases. We gathered GC data from Hormo-
neBase, a comprehensive database containing records of GCs
collected from adult, free-living vertebrates over the past six

decades [54]. Since its publication, HormoneBase has facilitated n

the investigation of many similar comparative physiological
questions at broad spatial and temporal scales, such as relating
GCs to life-history traits [55], metabolic rate [56], energetic costs
of thermoregulation [57] and conservation status [58], but no
studies have assessed the utility of GCs in predicting organis-
mal responses to available land cover types. We focused our
study on birds due to their broad distributions, utilization of
diverse habitats, extensively studied natural history and well-
documented variation in GC (corticosterone in birds) concen-
trations across life-history stages. We hypothesized that if
GC levels reflect the status of an organism’s interaction with
its surrounding environment, then populations will differ in
their GC characteristics along a gradient of appropriate land-
scape type availability. Specifically, we predicted that
populations inhabiting areas characterized by more usable
land cover types may have lower baseline GC levels and a
robust stress-induced response. Alternatively, baseline levels
could be higher if populations inhabiting more suitable habitat
exist at greater densities and experience more intraspecific
competition, as predicted by ideal free distribution [59].

We gathered data on plasma GC concentration, species natural
history and land cover from three databases for our analysis.
These databases include (1) HormoneBase, a database containing
extensive published and unpublished records of circulating
androgens and GCs collected from free-living adult vertebrates
[54]; (2) Birds of North America (BNA), a Cornell Lab of
Ornithology database providing detailed species accounts of
North American bird biology written by recognized experts
[60], and (3) the National Land Cover Database (NLCD)
[61-64], a US Geological Survey database characterizing the US
land surface at a medium resolution of 30 m?.

We used HormoneBase to obtain records of plasma corticoster-
one (cort) sampled from free-living adult bird populations in the
USA from 1969 through 2015. The HormoneBase dataset was com-
piled via searches through online academic databases for
published (and some unpublished) data of free-living, unmanipu-
lated, adult populations where plasma hormone levels were
measured (see [46] for a detailed description of HormoneBase
inclusion criteria). We limited our study to the USA due to the
availability of high-resolution land cover data for the entire country
(i.e. Landsat products). We initially selected all records that
included baseline circulating GC measurements. Because the goal
of this study was to test for habitat effects, we limited our dataset
to records with accurate reported coordinates and excluded records
with estimated study locations. To account for sampling variance
across studies, we also limited our dataset to studies with reported
standard errors. These criteria resulted in the inclusion of 281
records of 51 species collected between 1982 and 2012. A subset
of these records included measurements of both baseline and
stress-induced cort concentrations, but the presence of a stress-
induced cort measurement was not required for inclusion in our
dataset. Stress-induced cort values were available in 216 records,
representing 44 species. From HormoneBase, we also noted
whether records were obtained during ‘breeding’ or ‘non-breeding’
periods to account for variance in life-history stage. Although more
specific information about the timing within the annual cycle (e.g.
moulting, migration) was not consistently available, we assumed
breeding periods to be separate from migration.

We obtained species” diet and average adult mass data from
BNA because these variables have been shown to play a role in


https://birdsoftheworld.org/bow/home

Downloaded from https://royalsocietypublishing.org/ on 20 June 2024

c
© usable landcover type non-usable landcover type
o [ developed—Ilow intensity [l developed—high intensity
[[Jdeveloped—open spaces [l developed—medium intensity
Zin [ deciduous forest [] pasture
P [Jmixed forest cultivated
ks :g-« [l evergreen forest B crop
. o Tl LT
k &
Vil
(b) =
| J
1] it i
| | FETgI
=

per cent cover

EEO

@ B 70% usable

.5 [ 30% unusable

Figure 1. Methods for extracting per cent availability of appropriate landcover cover using the National Land Cover Database (NLCD) and Birds of North America
(BNA) natural history information, demonstrated using a song sparrow (Melospiza melodia). For each HormoneBase record, we assigned a binned home range area
(less than 1, 1-10, 10-100, greater than 100 ha). Centring each home range area on the coordinates of the HormoneBase cort sample (a), we layered each home
range area on the NL(D raster (b). Using natural history information from the Birds of North America database (c), we extracted per cent cover of usable habitat for
each HormoneBase record in our study based on each record’s binned home range area (d). Map courtesy of NLCD. (Online version in colour.)

the variation of GC levels, as well as in responses to anthropo-
genic change [65,66]. We selected the species’ diet (carnivore,
herbivore or omnivore) and average mass from BNA that most clo-
sely matched the sex, life-history stage (i.e. breeding or non-
breeding), geographical location and time of sample collection for
each HormoneBase record. For example, for widespread species
with different specific diets across its range, we selected the diet
representative of populations in the same region or same ecosystem
type of the HormoneBase record. Similarly, when diet was reported
to vary seasonally or across life-history stages, we selected a relevant
time of sample collection as the same month, season, or life-history
stage. See electronic supplementary material, table S1 for all
designations.

We used BNA to identify each species’ approximate home
range and the types of land cover that each species is reported to
use (figure 1). Again, we extracted the most relevant information
corresponding to the sex, life-history stage, geographical location
and season of each HormoneBase record. For example, if a Hormo-
neBase record was obtained during breeding, we extracted the
home range and usable land types as specified on BNA for breed-
ing populations specifically. In the absence of a reported home
range, we used reported distances travelled from the nest, defining
this distance as the home range radius. We categorized appropriate
land cover types for each species using the 18 land surface classes
defined in the NLCD [62]. Habitat classes include forested (conifer-
ous, deciduous, mixed), wetland (woody wetlands, herbaceous
wetlands), short vegetated (shrub/scrub, grassland/herbaceous),
northern latitude-associated (dwarf scrub, sedge/herbaceous),
unvegetated (open water, perennial snow and ice, barren land)
and developed habitats (developed open spaces; low-, medium-
and high-intensity development; cultivated crops; hay/pasture;
figure 1). For species that use edge habitats, we included land
cover categories for both types of land cover forming the edge.

We then used the ‘raster’ package [67] in R v.3.4.3 [68] to
extract the percentage of cover of each NLCD land cover class
within a species” home range, centred on the geographical coor-
dinate of each HormoneBase record (figure 1). We pooled home
ranges into four bins (1 ha, 10 ha, 100 ha and 1000 ha), resulting
in similar numbers of species in each bin (1 ha=10 species,

10 ha=26 species, 100 ha=8 species, 1000 ha=9 species).
Because NLCD produced land cover datasets in 1992, 2001,
2006 and 2011 and land cover can change over time, we extracted
land cover data from the NLCD dataset closest in year to each
HormoneBase record. We then calculated the percentage of
usable land cover available by summing the per cent cover of
land classes that species have been reported to use (figure 1).

(b) Analyses

All analyses were conducted in R v.3.5.2 [68]. We used phylo-
genetic generalized linear mixed models (PGLMM) to assess the
impact of life history and per cent usable land cover on cort con-
centrations ([55,69]. We used the package MCMCglmm’ and
incorporated phylogeny using the ‘pedigree’ argument within
the 'MCMCglmm’ function [69]. For our phylogeny, we con-
structed a consensus tree using 1000 Hackett et al. [70] backbone
trees downloaded from BirdTree.org [71]. Specifically, we built a
50% majority-rule consensus tree [72] using the Python program
‘SumTrees’ in ‘DendroPy’ [73] following the methods of Rubolini
et al. [74]. We trimmed trees to include species in the baseline and
stress-induced data subsets using the R package ‘APE’ [75].

We created separate models for baseline and stress-induced
cort. We applied a logyo transformation to both baseline and
stress-induced cort population means to improve fit to a normal
distribution. Our fixed effects included latitude, sex, mean mass
(logyo-transformed), home range size, diet, life-history stage (breed-
ing or non-breeding), per cent usable land cover type, and the times
at which baseline and stress-induced cort were measured post-
capture [76]. Most (92%) of baseline levels were collected < 3 min,
and all were collected within 7.5 min, post-capture. Similarly,
most (80%) of stress-induced levels were collected at 30+ 5 min,
with only eight records collected in less than 25 min and all col-
lected within 60 min post-capture. We included species as a
random effect, as well as laboratory ID to control for inter-labora-
tory variation [77]. We included standard error reported with
each record as a random effect, with parameter-expanded priors
to control for potential measurement biases. We defined non-infor-
mative priors for both R and G as inverse-Wishart distributions
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Figure 2. Phylogeny of species included in our analyses. We selected records from HormoneBase that reported mean population baseline cort, standard error and
study site geographical coordinates for bird populations in North America (281 records of 51 species). Records that lacked stress-induced cort values are noted with
asterisks. Within-species analyses were conducted for five species with more than 2 population records (denoted by +).

(expected variance, V = 1; degree of belief, v = 0.002). For all models,
we ran three chains of 200 000 iterations, with a burn-in of 50 000
and thinning interval of 100. We diagnosed convergence visually
and with Gelman-Rubin statistics [78].

For species with multiple (more than 2) populations rep-
resented in HormoneBase, we also ran individual within-
species linear models. These species were the house sparrow
(Passer domesticus), semi-palmated sandpiper (Calidris pusilla),
dark-eyed junco (Junco hyemalis), song sparrow (Melospiza melo-
dia) and white-crowned sparrow (Zonotrichia leucophrys). For
each species, we ran separate models for baseline and stress-
induced cort, including sex, life-history stage (breeding or non-
breeding) and per cent usable land cover type as fixed effects.
All models met assumptions of a normal distribution. These
models are redundant with the main model (which included
species as a random effect) but were included to demonstrate

the variability in trends across species, and to provide an

example of how our methods can be applied to a single focal
species (figure 2).

3. Results
(a) Baseline cort

Baseline cort correlated with sex and species mean mass, but not
with per cent usable land cover type. Males had higher baseline
cort compared to females, with the 95% credible interval not
overlapping zero (table 1). Baseline cort decreased with increas-
ing mean mass, with the 95% credible interval not overlapping
zero (table 1). There was no support for an effect of latitude,
diet type, home range size, life-history stage, late sample time
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Table 1. Results from the PGLMMs for baseline and stress-induced corticosterone models. In the pycwc columns, values in bold are significant for the 95% “
credible interval (Cl); those in parentheses are significant for the 90% credible interval.

baseline

post. lower upper

mean 95% C 95% Cl
usable landcover (%) 0.102 —0.034 0.245
latitude 0.003 —0.003 0.008
late cort (sample time) 0028 —0002 0006
diet (carnivore) 0.089 —0.21 0.392
diet (herbivore) 0015 0531 0303
breeding cycle —0.056 —0.127 0.023

(non-breeding)

mass —0.434 —0.872 -0.0m
sex (male) 0.056 —0.003 0.110

home range size < 0.001 < —0.001 < 0.001

or per cent usable land cover type (table 1). The random effect of
species, which incorporates the underlying phylogeny, was
important (posterior mean =0.437, lower credible interval
(LCI)=0.149, upper credible interval (UCI)=0.790), whereas
laboratory identity (posterior mean = 0.062, LCI = 0.006, UCI =
0.140) explained a much smaller proportion of the variance
and the effect of study standard error was negligible (posterior
mean = 0.0005, LCI=0.0001, UCI = 0.001).

(b) Stress-induced cort

Stress-induced cort significantly correlated with per cent usable
land cover type, sex, life-history stage and species mean mass.
Stress-induced cort levels increased with increasing percentage
of usable habitat, with the 95% credible interval not overlapping
zero (table 1). Males had higher average stress-induced cort
than females, with the 95% credible interval not overlapping
zero (table 1). Breeding populations had higher stress-induced
cort levels than non-breeding, with the 95% credible intervals
not overlapping zero (table 1). There was also support for a
negative effect of mean mass, with the 90% credible intervals
not overlapping zero (table 1). There was no support for an
effect of latitude, late sample time, diet type or home range
size. The random effect of species was important (posterior
mean=0.104, 95% LCI=0.036, UCI=0.183), though less so
than in the baseline cort model. Again, laboratory identity
explained much less of the variance (posterior mean=0.017,
95% LCI=0.0003, UCI=0.048) and the effect of study
standard error was negligible (posterior mean =0.0001, 95%
LCI =0.00008, UCI=0.0002).

(c) Within-species relationships between cort and per

cent usable land cover type
Within-species analysis of five taxa all showed similar trending
relationships between cort and per cent usable land cover type
as the PGLMM. There was no relationship between baseline
cort and land cover availability for any species, and the direc-
tion of the slopes differed among species (table 2). For stress-
induced cort, all species showed positive trending relationships

0.544 <0.001

stress-induced

post. lower

mean 95% dl
0171 0.144 0.048 0253 0.004
0345 <0001 —0.004 0.004 0.845
003 0002 0003 0007 0351
0.524 0.145 —0.039 0347 0.143
0913 —0.075 0304 0137 0467
015  —0.112 —0.73 —0.035 <0.001
0044  —0204 0458 0.040 0.103)
0.045 0.067 0023 0.110 0.005
< —0.001 <0001 0966

with per cent usable land cover type (figure 3), although signifi-
cance level and effect sizes varied (table 2). House sparrow
(n =25), semi-palmated sandpiper (1 =6) and dark-eyed junco
(n=>5) models showed significant effects of per cent usable
land cover on stress-induced cort, while song sparrow (1 =11)
and white-crowned sparrow (1 =22) models did not (table 2).

4. Discussion

As landscape alteration and habitat loss increase globally, land
managers and conservation practitioners need reliable tools to
assess and monitor wildlife populations. Within-individual
physiological responses can scale up to population-level
responses and have great potential to increase the effectiveness
of conservation decisions [40,79,80], yet identifying practical
physiological biomarkers is challenging. We sought to evalu-
ate the efficacy of GCs as a physiological biomarker that
may help assess how populations are coping with their sur-
rounding environment. Specifically, we tested whether the
availability of appropriate landcover types within a popu-
lation’s generalized home range correlates with GC profiles,
across 51 species of birds. We intentionally used free, accessi-
ble environmental data from the National Land Cover
Database, and life-history information from the Birds of
North America dataset, to generate insights that are relevant
and accessible to any land and wildlife manager. We found
that stress-induced cort, but not baseline cort, correlated with
differences in usable habitat, where populations surrounded
by higher percentages of usable habitat had higher stress-
induced cort levels. We discuss our results in light of what is
known about avian GC responses and recommend how this
framework may be applied to conservation in the future.

As in other comparative studies, sex and mass explained
variance in both baseline and stress-induced cort levels
across species. Males had higher baseline and stress-induced
cort than females [55,81], and larger species (by average
mass) had lower baseline and stress-induced levels of cort,
consistent with other avian comparative analyses [28,66,82].
Here, mass represents a mean per sex per species because
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Table 2. Within-species linear models testing the effect of per cent useable landcover type on baseline and stress-induced corticosterone levels. Corticosterone

values were obtained from HormoneBase and filtered for records that with accurate GPS coordinates and standard errors recorded. Species were selected for

individual analysis if records from more than 2 locations existed in HormoneBase. Models include life-history stage, sex and per cent usable landcover type,
except for the semi-palmated sandpiper and song sparrow. All stress-induced corticosterone records of the song sparrow came from males during breeding, so

sex and life-history stage were excluded from this model. All records of the semi-palmated sandpiper came from males during breeding, so sex and life-history

stage were excluded from both models. Bold values indicate p < 0.05.
baseline

estimate

dark-eyed junco

usable landcover (%) —0.35 0.47 —0.74
breeding cycle (non-brebeding) » —0.54 0.23 —2.30
sex —0.15 0.24 —0.61
house sparrow

usable landcover (%) -1.77 1.01 —1.76
breeding cycle (non-breeding) 0.24 0.21 1.18
sex 0.23 0.21 1.18
song sparrow

usable landcover (%) 0.21 0.16 14
breeding cycle (non—breedihg) 40;30 ‘ 0.13“ =23
sex 0.18 0.12 1.48
white-crowned sparrow »
usable landcover (%) —0.15 0.21 —0.71
breeding cycle (non—brebeding) » —-0.34 0.26 41.28
sex 0.17 0.13 140
semi-palmated sandpiper

usable landcover (%) —0.14 0.24 —0.57

we did not have information about variation in mass across
specific HormoneBase records. Thus, the relationship between
GCs and mass that we detected likely indicates an evolution-
ary life-history phenomenon, rather than a reflection of
individual populations being smaller or of poor body con-
dition. It is also important to note that one other study
assessing avian data (separate from HormoneBase) found
that mass was not an important predictor of GCs when
accounting for latitude [42], which also covaries with body
size among species, but we did not find the same result here.

We found that stress-induced cort was higher for breed-
ing populations. This is contrary to some previous avian
empirical studies and reviews that show stress-induced cort
is lowered during breeding [66,83]. Higher levels of stress-
induced cort are sometimes associated with reduced breeding
success [84,85]. However, cort phenotypes also vary tem-
porally within the breeding season [22,55] and depend on
brood value [66], which can reflect a combination of many
variables such as relative clutch size, age, mate choice etc.
It could be that that the coarse dichotomy of ‘breeding’
and ‘non-breeding’ available on HormoneBase does not
capture the complexity of circannual cort variation. There is
not a consistent correlation between breeding and stress-
induced cort in birds according to the literature, to
date [55,82,86].

No correlation was found between baseline cort levels
and per cent usable land cover type, in agreement with

stress-induced

estimate

0.487 —0.25 0.002 —122.94 0.005
0.061 —0.60 0.001 —535.77 0.001
0.562 —0.08 0.001 —82.96 0.007
0.122 0.26 0.089 2.91 0.008
0.278 —0.05 0.061 —0.383 0.414
0.122 0.03 0.064 0.53 0.603
0.202 0.09 0.118 0.81 0.440
0.040 — — — —

0.165 — — — —

0.486 0.16 0.194 0.82 0.425
0.212 —0.19 0.220 —0.86 0.403
0.176 0.20 0.098 2.05 0.056
0.600 3.97 0.524 7.58 0.002

several other meta-analyses that suggest baseline cort may
not be a reliable biomarker on broad comparative scales
[22,30,45]. This is likely because individual variation in
baseline cort is high, due to its role in metabolism, energy
expenditure and reflection of daily and seasonally fluctuating
conditions (e.g. weather or breeding/migration status,
respectively [23,87,88]. Our results support other recent
literature advocating for caution when interpreting single
measurements of baseline GCs [38,89]. Measurements of base-
line circulating cort may be a valuable metric for individual
health on a case-by-case basis if investigators take repeated
measurements and incorporate species biology into sampling
design [45,90-92].

We did find a relationship between population-level
stress-induced cort profiles and per cent usable land cover
type. Populations living in areas with more usable land
cover had higher stress-induced plasma cort levels. In con-
trast to baseline levels, stress-induced cort levels represent
an acute physiological response that is relatively more repea-
table over an individual’s lifetime [93-96] and is heritable
[97-99]. The positive relationship between stress-induced
cort and land cover availability is consistent with the tra-
ditional view that a robust GC stress response is an
adaptive mechanism critical to the maintenance of homeosta-
sis and may be indicative of population health [11,100-102].
However, it is becoming increasingly evident that the benefits
of a robust response may depend on the efficacy of recovery
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Figure 3. Individual species trends for the relationship between stress-induced corticosterone and per cent availability of appropriate landcover; p-values indicate
significance based on linear models. Positive trends within species models support findings from interspecific models. (Online version in colour.)

to baseline levels, i.e. the rate at which individual GC levels
return to baseline after a disturbance [39,44].

While our results show that land use can affect physiology
on a population level, the magnitude and direction of the effect
should be carefully interpreted on a case-by-case basis. For
example, the positive relationship between stress-induced
cort levels and per cent usable land cover could reflect a dam-
pened stress response in populations inhabiting sub-optimal,
habitat-limited areas. There are several possible mechanisms
that explain a reduced stress response when habitat availability
is reduced. First, dampening of the stress response may be
adaptive for populations in poor-quality environments that
invest more in reproduction than immediate survival, because
their likelihood of surviving to the next breeding season is rela-
tively low [66]. Second, populations surrounded by lower
amounts of usable land cover types could exhibit lower
stress-induced cort as a result of habituation or maternal
effects, as might be expected in a chronically stressful environ-
ment [103]. For example, nutritionally restricted maternal
environments can lead to decreased responsiveness of the
hypothalamic-pituitary-adrenal axis in fledglings [104],

leading to long-term changes in populations. Decreased
GC responsiveness may not be maladaptive, as some popu-
lations in urban environments exhibit dampened stress
responses while survivorship remains high [105-107], which
is important to consider when interpreting GC variation at
the population level. Finally, areas with less usable habitat
might be disproportionately occupied by subordinate or
younger/inexperienced individuals [108], with more domi-
nant/older individuals controlling more optimal habitats.
Results may reflect differences in population structure that
can vary across temporal and spatial scales and that we are
unable to deduce from the HormoneBase database (although
all samples here represent adult populations).

It is also important to acknowledge that the trend we
detected might be driven by species’ land-use specificity.
We classified surrounding usable land cover types based on
information about the habitat types used by each species.
So, species that are more generalist in regard to habitat
have, by default, more ‘options’ of usable land cover types.
As a result, more generalist species should show a higher
probability of being surrounded by a high percentage of
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suitable land-cover types, regardless of the specific mosaic of
land-cover classifications.

Overall, we interpret the significant positive relationship
between appropriate land cover availability and stress-induced
cort levels as notable, especially given the resolution of our
land cover data and inclusivity of our criteria for identifying
usable habitat for a population. Using BNA life-history infor-
mation, we identified land cover types as ‘usable’ for a
population if the species had any record of inhabiting the
type of land cover at the appropriate time of year/life-history
stage, without attempting to estimate differences in the quality
or preference, likely overestimating the area that a population
could realistically exploit. Still, examining the limitations of
our study provides an opportunity to recommend some
ways in which researchers can increase the utility of GC
measures in conservation and management in the future.
First, while HormoneBase offers the most comprehensive hor-
mone database in existence to date, data were strongly biased
toward passerine bird species and some species lack records
from multiple populations or are limited to data from only
one sex or life-history stage. Even for the five species high-
lighted here with records for more than 3 populations, there
were sometimes only one or two representative populations
per sex, per life-history stage (see results for song sparrow
and semi-palmated sandpiper), limiting the power of these
analyses. More empirical data are needed to test whether our
findings are biologically meaningful for all taxa and to exam-
ine interactive effects (e.g. whether the effect of surrounding
land cover varies between age classes or between breeding
and non-breeding individuals of a population). Assessing
interactions could be important for managers to interpret vari-
ation within and across populations and identify particularly
vulnerable groups. Additionally, many of the GPS points
recorded for populations in HormoneBase are approximate,
(e.g. representing the research station rather than exact capture
points). Remote sensing technology and satellite data are cur-
rently advancing at an exciting rate. As high-resolution land
cover data becomes more accurate and available, efforts to
record precise GPS coordinates will be especially worthwhile,
allowing future studies to consider the existence of microrefu-
gia within an otherwise unusable landscape, or degree of
connectivity with other usable habitat areas.

What application do GCs have in management and conserva-
tion? We show that, despite the known individual variability
and complexity of the GC response, access to suitable land
cover types can affect GC phenotypes at the population level.
This is an important contribution, demonstrating a utility for
GCs at the scales that managers are most concerned with
(populations) and a framework for predicting how changes
in land-use will affect populations. For example, it may be poss-
ible to calculate a threshold of per cent usable land cover at
which populations will have a physiological response when
making decisions about converting landscapes (e.g. for agricul-
ture, urbanization, or restoration etc.). Contrary to occupancy
and demographic surveys, GC measurements may offer a
way to monitor and assess populations before declines occur.

Below we offer several suggestions for conservation prac-
titioners and wildlife managers applying this framework to
monitor species in their jurisdictions.

First, when using GC data in an applied context, we
strongly suggest incorporating more specific natural history
information into investigations than we were able to here.
Our method of quantifying the per cent of surrounding habitat
variability could be much improved by wildlife managers who
have more accurate information about their species of interest.
For example, a more comprehensive definition of usable ‘habi-
tat’” might be more closely related to food abundance, foraging
efficiency, competitor densities, or other abiotic and biotic fac-
tors unrelated to land cover [109]. Even within a species, we
found that the per cent of usable land cover sometimes varies
depending on the life-history stage or sex of individuals in
the same population. When possible, it would be informative
to incorporate the extent to which species depend on specific
resources in their environment, and how this dependency
may vary across life history or ontogeny.

Second, it is important to consider the context in which GC
measures were collected before making judgements about
populations. The conditions under which GC responsiveness
is adaptive depend on the nature of the stressor [29]. For
example, factors such as the abruptness of a landscape
change, history of a landscape and concomitant responses of
competitors or predators will determine the extent to which
a change in land cover imposes ‘stress” on a population [89].

Additionally, whether a GC response is considered adap-
tive or harmful in a particular context may vary between
species or life-history stages within species. For example,
studies have shown that the relationship between GC levels
and fitness may be highly variable across breeding stages
[22,31,33,110], but also can depend on the lifetime reproduc-
tive opportunity of a species [82,111]. Pairing GC measures
with information about survivorship and recruitment will
help better understand the relationship between GC levels
and fitness for different species or populations.

Finally, conservation practitioners should be cautious
in using one-time plasma samples of GCs to make long-
term judgements about populations. While it is possible to
detect broad trends using metrics as crude as population
means of one-time measures, it is becoming increasingly evi-
dent that other aspects of the HPA axis are equally (or more)
important for wholistically interpreting the GC response. As
new data emerge, we hope that it becomes possible to start
incorporating more integrative measures into wildlife assess-
ments. Our results represent a meaningful starting point, but
more repeated measures of various endocrine traits within
species and across geographically distinct populations will
strengthening the utility of GC as a conservation tool.
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