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Abstract—Gradient leakage attacks are dominating privacy
threats in federated learning, despite the default privacy that
training data resides locally at the clients. Differential privacy
has been the de facto standard for privacy protection and
is deployed in federated learning to mitigate privacy risks.
However, much existing literature points out that differential
privacy fails to defend against gradient leakage. The paper
presents ModelCloak, a principled approach based on differ-
ential privacy noise, aiming for safe-sharing client local model
updates. The paper is organized into three major components.
First, we introduce the gradient leakage robustness trade-off,
in search of the best balance between accuracy and leakage
prevention. The trade-off relation is developed based on the
behavior of gradient leakage attacks throughout the federated
training process. Second, we demonstrate that a proper amount of
differential privacy noise can offer the best accuracy performance
within the privacy requirement under a fixed differential privacy
noise setting. Third, we propose dynamic differential privacy
noise and show that the privacy-utility trade-off can be further
optimized with dynamic model perturbation, ensuring privacy
protection, competitive accuracy, and leakage attack prevention
simultaneously.

Index Terms—Federated learning, gradient leakage, privacy
analysis

I. INTRODUCTION

Federated learning is a machine learning paradigm where
multiple devices or servers collaboratively train a shared model
while keeping their data locally. Instead of sending raw data to
a central server, as is common in traditional machine learning,
each participant computes its model update (like gradients)
locally on its own dataset [1]. Despite the default privacy due
to data locality, recent studies [2]-[5]have shown that federated
learning is vulnerable to gradient leakage attacks, where an
adversary can exploit the shared gradients to infer the private
data that was used to compute those gradients.

Differential privacy (DP) is a mathematical framework that
provides a formal guarantee about the amount of individual
information an algorithm reveals. When applied to federated
learning, differential privacy can act as a defense against gra-
dient leakage attacks by ensuring that the shared gradients do
not disclose too much information about any single data point.
However, existing research has demonstrated the ineffective-
ness of differential privacy noise in defending gradient leakage
attacks [2]-[4]. Even with the statistical differential privacy
guarantee, the ability to defend against gradient leakage attacks
may not be assured. These works primarily raise the concern
that excessive randomized noise may hurt the accuracy utility
of the trained global model. At the same time, insufficient
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perturbation for gradient masking may not prevent gradient
leakage attacks. While the authors in [6] show the possibility
of defending against gradient leakage attacks with reasonable
accuracy performance under different privacy parameters set-
tings, existing methods share one common challenge: how
to determine the proper amount of perturbation to use for
best balancing among three required properties: model privacy,
model leakage prevention, and model accuracy.

This paper presents ModelCloak, a principled guidance
for determining the adequate amount of model perturbation
against gradient leakage attacks. Using differential privacy
noise as the tool, ModelCloak strategically determines the ap-
propriate amount of noise added for utility assurance, privacy
protection, and leakage prevention. The paper is organized into
three major components. First, we introduce the robustness
trade-off, in search of the best balance between accuracy and
leakage prevention. The trade-off is based on the intrinsic
connection between the shared gradients and their training data
throughout the federated training process. We show that the
appropriate amount of differential privacy noise is essential
to be large enough to ensure that the perturbed gradients
no longer leak the client’s private training data, and in the
meantime, small enough to preserve the accuracy performance.
Second, we demonstrate that finding the sweet spot of differen-
tial privacy noise injection with ModelCloak guidance could
ensure leakage prevention and yet incur a minimal negative
impact on the accuracy of federated learning. At last, we
propose dynamic differential privacy noise to closely align
the injected noise with the shared gradients. Our results extend
ModelCloak with further accuracy improvement while offering
strong gradient leakage prevention.

II. GRADIENT LEAKAGE ATTACKS

Threat Model. We consider gradient leakage attacks hap-
pening during data-in-use at server. This requires only the
weak assumption that local training data is secure and there
is no privacy-peeping proxy at client. The communications
between a client and the federated server are encrypted. The
adversary at the server can be honest-but-curious or malicious,
aiming to disclose the private training data of victim clients.
Given that the server will collect local model updates from all
participating clients, the adversary may perform unauthorized
reconstruction inference by model inversion from all clients.

Inferring Private Input using Gradients. Gradient leakage
attacks infer the private training data from the stolen gradient
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Fig. 1: Attack Reconstruction process visualization.

value V, f. The attacker will initiate the reconstructed data
with a random seed. The reconstructed data is optimized such
that the distance between the gradient of the reconstructed
input V, _ and the leaked gradient value V f:

min ||V, . f=Vafll2 st ey

Figure 1 demonstrate the iterative optimization in the recon-
struction attack process.

Impact of training. Due to the nature of stochastic gradient
descent (SGD), gradient values would decrease as the training
progresses. Thus the gradient contains less information when
compared to gradient with a larger value [7]. Similar results
are observed in [4], indicating that gradient leakage attack
could fade away after some rounds of local training. These
observations are essential for us to design model perturbations
for gradient leakage prevention.

[|z = Zpec|l2 = 0.

III. MODELCLOAK: PROPER NOISE PERTURBATION

Federated Learning with Differential Privacy. We first
provide some preliminaries about differential privacy and its
implementation in federated learning. Differential privacy [8]
states that a randomized mechanism M: D — R satisfies
(¢, §)-differential privacy if for any two neighboring input sets
D C D and D' C D, differing with only one entry: ||D —
Dlo=1,0<d<1ande>0,

Pr(M(D) € R) < ¢ Pr(M(D') € R) +6.  (2)

This definition implies that (e, 0)-differential privacy ensures
that the outcome under input D’ is approximating the outcome
given input D by an € controlled term with at least 1 —¢ prob-
ability. The instantiation of (e, §)-differential privacy relies on
randomized response, noise injection, or both. Existing deep
learning and federated learning with differential privacy [9],
[10] typically deploy Gaussian noise addition by following
Gaussian Mechanism [8]. Gaussian mechanism [8] states that
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applying Gaussian noise N(0,¢?) calibrated to a real-valued
function: f : D — R with noise variance ¢? such that
M(D) = f(D) + N(0,¢?) is (e, §)-differentially private if

2log(1.25/6) - 52
o 2losl125/0).8°

3

where S represent the sensitivity in [y norm. Sensitivity is

a key concept [11], which measures the maximum change of

the function f under two neighboring datasets differing in one

entry. The noise variance <2 is commonly replaced with o252

where o is the noise scale and S is the [, sensitivity for better

noise control [6], [9], [10], [12]-[14]:
o2 210g(12.25/5).

€

€

“)

In federated learning, there are two steps for adding the
Gaussian noise for differential privacy protection: clipping and
noise addition. The former sets up the upper bound for the
gradient’s [5 norm for sensitivity. Specifically, the lo norm of
the per-client local update is computed and compared with
the pre-defined clipping bound. If the /> norm is larger than
the clipping bound C, it will be capped at C. Otherwise,
the gradient remains the same. The latter injects Gaussian
noise N'(0,02C?T) to the clipped local model update for
noise addition. I denotes the size of the noise reflecting the
number of gradient coordinates. Given that the Gaussian noise
is added only to the per-client local model update, client-level
differential privacy is ensured [6], [13].

ModelCloak Perturbation. The goal of ModelCloak is to
determine the proper amount of differential privacy noise:
(Vo f)* V.f + N(0,6%T) for best balancing gradient
leakage resilience, accuracy, and privacy. V., f is the clipped
raw gradient V,f. Specifically, MondelCloak selects only
those differential privacy hyperparameters that result in the
following amount of differential privacy noise:

/\6,5}1 S HV_Lf - (va)*”Q S )\InaxH:

®)

where A s is the lower bound for the injected differential
privacy noise for gradient leakage prevention and Apax iS
the upper bound for preserving accuracy. Given that for
zero-mean Gaussian noise with a I-coordinate vector satisfies
ELen[|N(0,6°T)]|3] = ¢%I, we can map the noise-induced
gradient difference into the Gaussian noise variance.

For the left side, recall Equation 3, ¢ computed based on the
given differential privacy parameters (e, ) is the lower bound
noise. Therefore, we can use a minimal noise bound A, s to
fulfill a given (e,d) requirement. Based on the Theorem 1
of [15] and the Lipschitz smoothness assumption, we have
the following equation:

Vaf = (Vaf) ll2
IVafll2

The numerator of Equation 6 suggests that a larger difference
between the perturbed gradient and the leaked gradient can
offer the larger difference between their training data coun-
terpart. In gradient leakage attacks, if we view the perturbed
gradient (V. f)* as the product of the gradient descent from a

(6)

llz —2™[]2 >
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virtual input x*, then the reconstruction attack will force the
attack optimization (V. ___f*) to converge to the perturbed
gradient (V, f)*. The corresponding reconstructed data ;..
will lead to unrecognizable data instances =*. In this case, the
perturbed gradient no longer leaks the sensitive information
about its private training data, if the difference between z*
and the original private input is large enough due to the non-
linearity of deep neural networks. Furthermore, the denomina-
tor indicates that the reconstruction attack is more severe when
the gradient value is larger, and the reconstruction optimization
leaves a larger space for the difference between the private data
and the reconstructed input from the perturbed gradient when
the gradient value is smaller.

For the right side, an upper-bound noise is introduced such
that the injected differential privacy noise can have a limited
impact on model performance. In fact, the output stability
of differential privacy states that the perturbed gradient is a
1 — e dominating strategy [16], slightly deviated from the
main-stream gradient. Based on Equation 3, we can see that
a larger noise variance can lead to a smaller ¢ when the
sensitivity S and differential privacy parameter § are fixed,
implying that the perturbed gradient direction is less diverged
from the original gradient, preserving the essential training
information. With noise lower bound and upper bound, we
are able to select an appropriate differential privacy noise that
is small enough to maintain the federated model performance
and yet large enough to prevent the privacy leakage of training
data from the shared gradients. From Equation 5, we can derive
the following proposition for the lower bound noise.

Proposition 1. ModelCloak with fixed differential privacy
parameters. Let N'(0,02C?I) be the differential privacy
noise (V. f)* = V. f +N(0,¢%I), we have

Hx_mrec”Z >0 \/ﬁ

(7

Proof. First, E[||NV(0,0%C?I)||3] = C?0?L. Given the defini-
tion of sensitivity and the clipping bound for sensitivity ap-
proximation, we have C' > S > ||V f||2. Then by Equation 6,

Vel =(Va)llz _ [Vaf+N(O.PD=Vafll2 - [N(0.0°C°Dl2
Ve fll2 [Vafll2 = [V fll2 =
CoVi >0V !

While we investigate ModelCloak with differential privacy
noise, other gradient perturbation techniques, such as gradient
compression [15], can also leverage ModelCloak to define the
appropriate amount of perturbation with a lower bound for
gradient leakage protection and an upper bound for preserving
accuracy [17].

IV. EVALUATING MODELCLOAK WITH FIXED NOISE

Setup. We first evaluate the effectiveness of ModelCloak
using fixed differential privacy noise, as studied in most feder-
ated learning with differential privacy literature [6], [10], [13].
The fixed differential privacy noise is a result of fixed clipping
bound C' and fixed noise scale o according to Equation 4.
‘We consider three benchmark datasets: MNIST, CIFAR10, and
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MNIST CIFAR10 LFW

# training data 60000 50000 2267
# validation data 10000 10000 756

# features 28%28 32%32%3  32%32%3

# classes 10 10 62

# data/client 500 400 300

# local iteration L 100 100 100
local batch size b 5 4 3
# rounds T' 100 100 60

no-private acc. 0.984 0.674 0.695

TABLE I: Benchmark datasets and parameters

LFW'. Table I summarizes the test accuracy and hyperparam-
eter settings for these datasets. We evaluate these datasets on
a deep convolutional neural network with two convolutional
layers and one fully-connected layer. We set up the federated
learning system by following the simulator in [13] with a total
of N = 1000 clients and k; set to 10% of N per round.
To demonstrate gradient leakage prevention of ModelCloak,
we follow the representative attack procedure in [4]. Code is
available: https://github.com/git-disl/ModelCloak.

Gradient Leakage Prevention with Accuracy Assurance.
We consider six settings of noise scale o, which represent six
privacy budget settings according to Equation 4. We also select
five clipping bound C settings, originating from existing feder-
ated learning with differential privacy research [6], [10], [13].
Consequently, we have 30 differential privacy noise settings
for each dataset. To measure the attack effect under these
configurations, we report the attack success rate results of
reconstructing 100 images for each dataset. The reconstruction
is considered failed if the mean square error (MSE) of the
reconstructed data and the original data is larger than 1.4, an
empirical threshold for the [, difference between two images
with size 28 x 28 or 32 x 32. The attack optimization is
iterated 300 steps maximum. In Section II, we have shown
that gradient leakage attack is severer when the gradient has
a larger value, which typically occurs in the early stage of
training since the gradient value would decrease as training
progresses for gradient descent optimization. In this set of
experiments, we focus on the gradient leakage attack that
happened on the first round.

Table II shows the gradient leakage prevention results for
MNIST, CIFAR10 and LFW dataset, respectively. We make
three observations. (1) We highlight those differential privacy
noise configurations which could prevent gradient leakage
in blue, and those chosen by ModelCloak in bold blue.
ModelCloak would select the configuration C = 2,0 = 5
for MNIST, C = 2,0 = 3 for CFIAR10, and C = 3,0 = 2
for LFW. The reason ModelCloak determines those settings as
the appropriate amount of differential privacy noise is that they
deliver the best accuracy performance among those gradient
leakage resilient settings. This implies that ModelCloak finds
the lower bound of model perturbation, and in the meantime,
maximizes the accuracy performance.

(2) Compared with ModelCloak, those highlighted gradient
leakage resilient settings inject relatively larger differential

Uhttps://pytorch.org/vision/stable/datasets.html
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MNIST CIFARI10 LFW

S=C C=4 C=3 C=2 C=1 C=0.5 C=4 C=3 C=2 C=1 C=0.5 C=4 C=3 C=2 C=1 C=0.5

o=6 0.779 0.861 0922 0944 0.949 0.107 0.129 0.335 0.611 0.649 0212 0383 0.503 0.605 0.636

o=5 0.835 0.863 0.936 0949 0951 0.135 0301 0.376  0.625  0.649 0.345 0.441 0525 0.616 0.638

Accuracy o=4 0.867 0923 0937 0951 0.954 0.249 0335 0.559 0.636  0.651 0.404  0.505 0571 0.635 0.64
o=3 0926 0939 0941 0957 0.955 0.337 0.484 0.613 0.648 0.666 0.506  0.567 0.607 0.642  0.64

o=2 0941 0945 0952 0963 0.961 0.561  0.613 0.644 0.672 0.674 0.569  0.609 0.633 0.645 0.641

o=1 0952 0959 0963 0.965 0.961 0.647 0.656 0.67 0.681 0.673 0.637 0.644 0.647 0.648 0.644

o=6 0 0 0 0.10 0.60 0 0 0 0 0.31 0 0 0 0 0.25

Attack o=5 0 0 0 0.21 0.65 0 0 0 0.06 0.42 0 0 0 0.06 0.45
success o=4 0 0 0.123 043 0.70 0 0 0 0.15 0.50 0 0 0 0.16 0.56
rate o=3 0 0.02 0.28 0.64 0.71 0 0 0 0.31 0.52 0 0 0 0.31 0.58
o=2 0.13 0.29 0.46 0.76 0.73 0 0 0.16 0.58 0.62 0 0 0.19 0.59 0.64

o=1 047 0.66 0.77 0.82 0.81 0.17 0.33 0.56 0.66 0.65 0.19 0.34 0.63 0.73 0.69

TABLE 1II: Accuracy and prevention of gradient leakage with fixed differential privacy noise. 24 differential privacy settings of (o, C) are
considered for MNIST, CIFAR10, and LFW, respectively. Settings in black are vulnerable to gradient leakage, and the setting highlighted
in bold black is based on maximizing accuracy. Settings in blue could prevent gradient leakage. The bold blue highlight is the sweet spot
setting selected by ModelCloak, which injects just enough noise for model perturbation. The test accuracy without model perturbation is

0.984 for MNIST, 0.674 for CIFAR10, and 0.695 for LFW.

privacy noise. However, the excessive noise is unnecessary
since it does no good in preventing gradient leakage as the
injected noise is already enough (recall Equation 6), and yet
it may bring down the accuracy performance.

(3) Clipping would impact the differential privacy noise
injection from two perspectives. First, when the clipping
bound C is as small as 0.5, the essential training information
is distorted during the clipping operation, and the resulting
accuracy can be lower than those settings with the same noise
scale o but C' = 1. Decreasing the clipping bound C' from 4
to 1 with a given noise scale o will reduce the injected noise
according to Equation 3. However, such a noise reduction can
no longer improve the accuracy performance if the clipping
bound is small enough to have a negative impact. Second, for
a chosen noise variance ¢ = o*C), it is possible to find multiple
different settings of o and C'. Among them, the setting with a
smaller clipping bound C' demonstrates better gradient leakage
resilience. For example, the setting C' = 1,0 = 6 has a lower
attack success rate than the setting C' = 3,0 = 2 but yet
slightly lower accuracy for MNIST (0.944 v.s. 0.945).

A possible explanation is that a smaller clipping bound C
will result in a larger o with a fixed noise variance <. Recall
Equation 4, the corresponding e-spending is smaller when the
noise scale o is large, indicating stronger differential privacy
guarantee. Equation 6 also suggests that a constant noise
variance in the numerator and a reduced clipping bound or
sensitivity in the denominator would lead to a larger difference
between the reconstructed input from the perturbed gradient
and the original raw input.

e-Privacy Spending. From the definition of differential
privacy, the privacy spending € measures the statistical privacy
protection level based on Equation 2. By injecting Gaussian
noise following (¢, ¢) differential privacy, we consider the mo-
ments accountant method [9] for e-privacy spending tracking.
By utilizing the moments accountant computation?, we can
measure the accumulated e spending with Rényi differential
privacy [18] under a fixed J. Specifically, the privacy spending

Zhttps://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/
privacy/analysis/compute_dp_sgd_privacy.py

€
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=6 o=5 o=4 o=3 o=2 o=1

MNIST  0.678 0.835 1.082 1.528 2.581 7.899
CIFARIO 0.678 0.835 1.082 1.528 2.581 7.899
LFW 0.519 0.64 0.832 1.18 2.01  6.331

TABLE III: e-privacy spending measured at round 100, 100, and 60
for MNIST, CIFAR10, and LFW, respectively. § = le — 5.

is computed given the total rounds 7', the noise scale o, the
privacy parameter J, and the sampling rate g.

In this set of experiments, we report the e-privacy spend-
ing results for MNIST, CIFAR10, and LFW at round 100,
100, and 60, respectively. The privacy parameter § is set to
le — 5, and the sampling rate ¢ is the client sampling rate
of 10/100 = 10% with 10 participating clients per round
with 100 total clients. Table III shows the results and we
make two observations. (1) Moments accountant states that
the privacy spending e will not change when the noise scale
o, the total learning rounds 7, the privacy parameter §, and
the sampling rate ¢ are fixed. Therefore, the e-spending of
MNIST is the same as that of CIFAR10, while differing from
the e-spending of LEFW. (2) Recall Equation 4, the € spending is
correlated with the noise scale o under a given ¢ at each noise
injection step. Therefore, for a given o, changing the clipping
bound C' does not add or reduce the privacy spending € at a
given round. Given that the noise variance is defined by ¢ and
C', ModelCloak can benefit from a larger choice of clipping
bound C' while keeping the noise scale o the same. This
results in a larger amount of differential privacy noise for gra-
dient leakage prevention without injecting additional privacy
spending overhead. Consequently, ModelCloak demonstrates
the capability of selecting the differential privacy noise settings
that best balance three factors: privacy (e-spending), accuracy,
and gradient leakage resilience.

V. IMPROVING MODELCLOAK WITH DYNAMIC NOISE

Limitation of Fixed Noise. Based on Equation 4, the
Gaussian noise for a differentially private function is calibrated
with noise variance defined by noise scale o and sensitivity S
of the function. The baseline Differentially Private Stochastic
Gradient Descent (DPSGD) implementation [9], followed by
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most of the work [6], [10], [12] suggests using a fixed clipping
parameter C' to approximate sensitivity S, and with a fixed
noise scale o. The fixed pre-defined clipping bound C' and
the fixed noise scale o result in constant noise variance, and
thus a fixed amount of differential privacy noise is injected
throughout all 7" rounds of federated learning.

However, gradient descent is designed to optimize towards
the convergence with decreasing gradient values. Given that
the sensitivity of a differentially private function is defined as
the maximum amount that the function value varies when a
single input entry is changed, the decreasing magnitude of the
gradient would imply different sensitivity of the local model
for different clients and rounds. Therefore, when the /5 norm
of the gradient is smaller than the fixed clipping bound C' at a
given round, using the clipping bound C' can be an undesirably
loose approximation of the actual /5 sensitivity S.

Recall Equation 6, the smaller magnitude of gradient could
also lower the value in the denominator, resulting in a larger
difference between the reconstructed data and the private
training data under a fixed noise represented by the gradient
difference in the numerator. These observations suggest that
(1) gradient leakage attacks weaken when the gradient mag-
nitude gets smaller as the training progresses; (2) injecting a
fixed differential privacy noise may be excessive, especially
at the later stage of training near convergence. Therefore,
we next investigate the possible enhancement of ModelCloak
via dynamic differential privacy noise. Our approach aims to
provide high gradient leakage resilience, strong differential
privacy guarantee, and competitive model accuracy.

Dynamic Differential Privacy Noise. We propose to opti-
mize ModelCloak with dynamic differential privacy parame-
ters. Instead of using the fixed clipping bound C' to approxi-
mate the sensitivity of the local SGD function, we define the
sensitivity .S by the max [ norm of the per-client gradient at
local client. We argue that /o-max can more accurately capture
the actual sensitivity of the local SGD with differential privacy.
With dynamic /5-max sensitivity, the gradient perturbation is
defined by using Gaussian noise A(0,¢?), where we define ¢
based on the dynamic sensitivity S = max ||V, f]|2.

With the sensitivity closely aligned with the gradient trend,
we can optimize the differential privacy noise with two differ-
ent goals. First, if we consider a fixed noise variance ¢ = o*C,
we will need to dynamically adjust the noise scale oy,
such that its product with the ls-max sensitivity .S remains
unchanged. In this case, a smaller /s-max sensitivity S will
correspond to a larger o4y, compared to the pre-defined fixed
0, 1.e., 0qyn > 0. Recall Equation 5, the same noise variance
with a smaller S and a larger o could lead to stronger gradient
leakage resilience. Second, if we consider a fixed noise scale,
the [5-max sensitivity will decay with the decreasing gradient
magnitude, thus leading to lower differential privacy noise
injected for better accuracy performance.

From Equation 5, we can derive the following proposition
for the lower bound noise with dynamic noise injection.

Proposition 2. ModelCloak with dynamic differential pri-

MNIST CIFARIO LFW

Raw gradient MSE 0.0014 0.0012 0.0012
accuracy 0.984 0.674 0.695

. € 0.835 1.082 2.581
ModelCloak-Fix MSE 4.84 269 262
accuracy 0.936 0.613 0.609

. € 0.737 1.041 2.329
ModelCloak-Dynamic MSE 5.03 275 271
accuracy 0.937 0.614 0.608

TABLE IV: MSE measurement (the larger, the more robust). With
the same amount of noise, ModelCloak with dynamic noise stronger
gradient leakage resilience and stronger differential privacy guarantee
compared to ModelCloak with fixed noise.

vacy parameters.. Ler N'(0,07 S35 1) be the differential
privacy noise for gradient perturbation, where Sq,y, is the -
max sensitivity and o gy, is the dynamic noise scale. we have:

||£L - x'r'ccH2 > Odyn * \/ﬁ (8)

If the noise variance s is set to ¢ = 0 % C = Oqyn * Sayn,
where the noise scale o and the clipping bound C' are fixed,

lle = @leclle = oayn - VIZ o - VI ©)

V(0,030 SaynDll2

Proof. For equation 8, we have 71l >
M = 0ayn - VI similar to Proposition 1. For
dyn )
equation 9, given ¢ = o x C = 0gyn * Sqyn and C' >
Sayn > ||Vzfll2, we have o4y, > o. By Proposition 1,
IN(0,02C°Dll2 , C-ovI _ Sayn Tayn VI )
IV fll2 = dyn Sdyn 20 \/ﬁ 0

VI. EVALUATING MODELCLOAK WITH DYNAMIC NOISE

ModelCloak Noise Injection with Fixed Noise Amount.
We first consider the fixed noise variance under the [5-max
sensitivity and adaptive noise scale. In this case, we inject the
same amount of the differential privacy noise under dynamic
differential privacy parameters as the fixed noise parameters
setting. The resulting noise variance will have the following
relation: ogyy, * S;2 = o * C, where the fixed noise scale
o and the clipping bound C' can be selected from Model-
Cloak with fixed differential privacy noise as provided in
Table II. Table IV shows the MSE measurement between
the reconstructed data and the raw data. The reconstructed
data are from the raw gradient and gradient perturbed by
ModelCloak with fixed noise and dynamic noise. We make
three observations. (1) With a fixed noise variance, we are
able to maintain the same model accuracy performance with
better differential privacy guarantee and stronger capability for
gradient leakage resilience. (2) Due to the decaying magnitude
of the gradient during gradient descent, we are able to get
a decaying [2-max sensitivity accordingly. The corresponding
dynamic noise scale o4y, is larger than the original fixed noise
scale, and the resulting e-privacy spending is lower, indicating
better differential privacy guarantee (recall Equation 2 and
Equation 4). (3) Also according to Equation 9, the dynamic
noise scale ogy, is larger than the fixed ones and thus
offers a better capability of gradient leakage prevention when
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Fig. 2: Lo distance between the sanitized and raw per-client
gradients throughout the federated training.

compared with the ModelCloak noise with a fixed clipping
bound and noise scale.

Figure 2 illustrates the difference between the perturbed
per-client gradients and the raw gradients throughout the
federated training. This difference represents the numerator of
Equation 6. When the gradient magnitude converges to zero
due to gradient descent, the numerator will move towards the
noise variance and the denominator gets smaller and smaller.
Therefore, the difference between the reconstructed input from
the perturbed gradients and the raw gradients can be enlarged.
Consequently, it is unnecessary to inject the same amount of
differential privacy noise in all training rounds.

ModelCloak Noise Injection with Decaying Noise
Amount. We then evaluate the accuracy improvement of
ModelCloak with dynamic differential privacy noise, without
sacrificing the gradient leakage prevention capability. In this
set of experiments, we keep a fixed noise scale o, and the
lo-max sensitivity will decay with the decreasing gradient
magnitude, thus leading to smaller amount of differential
privacy noise injected. Table V shows the results and we
make two observations. (1) According to Equation 4, the e-
privacy spending is only correlated with the noise scale o
with a given . Therefore, the smaller injected noise brought
by ModelCloak with dynamic differential privacy noise with
the [5-max sensitivity and the fixed noise scale does not influ-
ence the e-privacy spending, maintaining the high differential
privacy guarantee. (2) ModelCloak with dynamic differential
privacy noise offers higher accuracy utility when compared to
ModelCloak with fixed differential privacy noise, due to the
reduced injected noise by the /o-max sensitivity. (3) According
to Equation 7, a fixed noise scale could provide the same
high level of gradient leakage prevention by ModelCloak with
dynamic noise compared with the fixed noise.

VII. CONCLUSION

We have presented ModelCloak, a principled approach to-
wards securing model sharing against gradient leakage attacks.
We addressed the critical challenge for effective model pertur-
bation: how to determine the proper amount of perturbation to
achieve the sweet spot in terms of balancing privacy, accuracy,
and leakage prevention. We introduced the robustness trade-off
based on the behavior of gradient leakage attacks throughout
the federated training process. Then, we demonstrated that
ModelCloak can help identify the differential privacy param-
eter settings that effectively mitigate gradient leakage attacks

MNIST CIFARIO LFW
Raw gradient accuracy  0.984 0.674 0.695

. c 0835 1082 2381

ModelCloak-Fix o iracy 0936 0.613  0.609

, c 0835 1082 2381
ModelCloak-Dynamic . oo 0951 0627 0.635

TABLE V: Accuracy improvement ModelCloak with [2-max
sensitivity-driven dynamic noise and ModelCloak with fixed differ-
ential privacy noise. We consider the blue highlighted configurations
selected by ModelCloak as in Table II for MNIST (o = 5,C = 2),
CIFARI10 (o = 3,C = 2), and LFW (0 = 2, C = 3), respectively.

while offering competitive accuracy performance under dif-
ferential privacy guarantee. Finally, we improve ModelCloak
with dynamic differential privacy noise for better performance
on the privacy-utility trade-off.

Acknowledgement. This research is partially sponsored by
the NSF CISE grants 2302720, 2312758, 2038029, an IBM
faculty award, and a grant from CISCO Edge AI program.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS. PMLR, 2017, pp. 1273-1282.

[2] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in NeurlPS,
2019, pp. 14747-14756.

[3] J. Geiping, H. Bauermeister, H. Droge, and M. Moeller, “Inverting
gradients - how easy is it to break privacy in federated learning?” in
NeurIPS, 2020, pp. 16937-16947.

[4] W. Wei, L. Liu, M. Loper, K.-H. Chow, M. E. Gursoy, S. Truex, and
Y. Wu, “A framework for evaluating client privacy leakages in federated
learning,” in ESORICS. Springer, 2020, pp. 545-566.

[5] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov,
“See through gradients: Image batch recovery via gradinversion,” in
CVPR. 1EEE/CVF, 2021, pp. 16332-16341.

[6] W.Wei, L. Liu, Y. Wu, G. Su, and A. Iyengar, “Gradient-leakage resilient
federated learning,” in /CDCS. 1EEE, 2021, pp. 797-807.

[71 Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” in /CLR, 2018.

[8] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211-407, 2014.

[9] M. Abadi, A. Chu, I. Goodfellow, B. McMahan, 1. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in CCS. ACM,
2016, pp. 308-318.

[10] B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning differ-
entially private recurrent language models,” in /CLR, 2018.

[11] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in T7CC.  Springer, 2006, pp.
265-284.

[12] L. Yu, L. Liu, C. Pu, M. E. Gursoy, and S. Truex, ‘“Differentially private
model publishing for deep learning,” in S&P. IEEE, 2019, pp. 332-349.

[13] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” arXiv preprint arXiv:1712.07557,
2017.

[14] W. Wei, L. Liu, J. Zhou, K.-H. Chow, and Y. Wu, “Securing distributed
sgd against gradient leakage threats,” IEEE TPDS, vol. 34, no. 7, pp.
2040-2054, 2023.

[15] J. Sun, A. Li, B. Wang, H. Yang, H. Li, and Y. Chen, “Soteria: Provable
defense against privacy leakage in federated learning from representation
perspective,” in CVPR. 1EEE/CVF, 2021, pp. 9311-9319.

[16] F. McSherry and K. Talwar, “Mechanism design via differential privacy,”
in [EEE FOCS, 2007, pp. 94-103.

[17] W. Wei, X. Fan, R. Zhang, J. Zhou, and L. Liu, “Fedgcloak: Gradient
cloaking for privacy-preserving federated learning,” Technical Report,
2023.

[18] I. Mironov, “Rényi differential privacy,” in CSF. 1EEE, 2017, pp. 263—
275.

1408

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on June 20,2024 at 10:21:28 UTC from IEEE Xplore. Restrictions apply.



