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Abstract—Gradient leakage attacks are dominating privacy
threats in federated learning, despite the default privacy that
training data resides locally at the clients. Differential privacy
has been the de facto standard for privacy protection and
is deployed in federated learning to mitigate privacy risks.
However, much existing literature points out that differential
privacy fails to defend against gradient leakage. The paper
presents ModelCloak, a principled approach based on differ-
ential privacy noise, aiming for safe-sharing client local model
updates. The paper is organized into three major components.
First, we introduce the gradient leakage robustness trade-off,
in search of the best balance between accuracy and leakage
prevention. The trade-off relation is developed based on the
behavior of gradient leakage attacks throughout the federated
training process. Second, we demonstrate that a proper amount of
differential privacy noise can offer the best accuracy performance
within the privacy requirement under a fixed differential privacy
noise setting. Third, we propose dynamic differential privacy
noise and show that the privacy-utility trade-off can be further
optimized with dynamic model perturbation, ensuring privacy
protection, competitive accuracy, and leakage attack prevention
simultaneously.

Index Terms—Federated learning, gradient leakage, privacy
analysis

I. INTRODUCTION

Federated learning is a machine learning paradigm where

multiple devices or servers collaboratively train a shared model

while keeping their data locally. Instead of sending raw data to

a central server, as is common in traditional machine learning,

each participant computes its model update (like gradients)

locally on its own dataset [1]. Despite the default privacy due

to data locality, recent studies [2]–[5]have shown that federated

learning is vulnerable to gradient leakage attacks, where an

adversary can exploit the shared gradients to infer the private

data that was used to compute those gradients.

Differential privacy (DP) is a mathematical framework that

provides a formal guarantee about the amount of individual

information an algorithm reveals. When applied to federated

learning, differential privacy can act as a defense against gra-

dient leakage attacks by ensuring that the shared gradients do

not disclose too much information about any single data point.

However, existing research has demonstrated the ineffective-

ness of differential privacy noise in defending gradient leakage

attacks [2]–[4]. Even with the statistical differential privacy

guarantee, the ability to defend against gradient leakage attacks

may not be assured. These works primarily raise the concern

that excessive randomized noise may hurt the accuracy utility

of the trained global model. At the same time, insufficient

perturbation for gradient masking may not prevent gradient

leakage attacks. While the authors in [6] show the possibility

of defending against gradient leakage attacks with reasonable

accuracy performance under different privacy parameters set-

tings, existing methods share one common challenge: how

to determine the proper amount of perturbation to use for

best balancing among three required properties: model privacy,

model leakage prevention, and model accuracy.

This paper presents ModelCloak, a principled guidance

for determining the adequate amount of model perturbation

against gradient leakage attacks. Using differential privacy

noise as the tool, ModelCloak strategically determines the ap-

propriate amount of noise added for utility assurance, privacy

protection, and leakage prevention. The paper is organized into

three major components. First, we introduce the robustness

trade-off, in search of the best balance between accuracy and

leakage prevention. The trade-off is based on the intrinsic

connection between the shared gradients and their training data

throughout the federated training process. We show that the

appropriate amount of differential privacy noise is essential

to be large enough to ensure that the perturbed gradients

no longer leak the client’s private training data, and in the

meantime, small enough to preserve the accuracy performance.

Second, we demonstrate that finding the sweet spot of differen-

tial privacy noise injection with ModelCloak guidance could

ensure leakage prevention and yet incur a minimal negative

impact on the accuracy of federated learning. At last, we

propose dynamic differential privacy noise to closely align

the injected noise with the shared gradients. Our results extend

ModelCloak with further accuracy improvement while offering

strong gradient leakage prevention.

II. GRADIENT LEAKAGE ATTACKS

Threat Model. We consider gradient leakage attacks hap-

pening during data-in-use at server. This requires only the

weak assumption that local training data is secure and there

is no privacy-peeping proxy at client. The communications

between a client and the federated server are encrypted. The

adversary at the server can be honest-but-curious or malicious,

aiming to disclose the private training data of victim clients.

Given that the server will collect local model updates from all

participating clients, the adversary may perform unauthorized

reconstruction inference by model inversion from all clients.

Inferring Private Input using Gradients. Gradient leakage

attacks infer the private training data from the stolen gradient
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Fig. 1: Attack Reconstruction process visualization.

value ∇xf . The attacker will initiate the reconstructed data

with a random seed. The reconstructed data is optimized such

that the distance between the gradient of the reconstructed

input ∇xrec and the leaked gradient value ∇xf :

min ||∇xrecf −∇xf ||2 s.t. ||x− xrec||2 ≈ 0. (1)

Figure 1 demonstrate the iterative optimization in the recon-

struction attack process.

Impact of training. Due to the nature of stochastic gradient

descent (SGD), gradient values would decrease as the training

progresses. Thus the gradient contains less information when

compared to gradient with a larger value [7]. Similar results

are observed in [4], indicating that gradient leakage attack

could fade away after some rounds of local training. These

observations are essential for us to design model perturbations

for gradient leakage prevention.

III. MODELCLOAK: PROPER NOISE PERTURBATION

Federated Learning with Differential Privacy. We first

provide some preliminaries about differential privacy and its

implementation in federated learning. Differential privacy [8]

states that a randomized mechanism M: D → R satisfies

(ε, δ)-differential privacy if for any two neighboring input sets

D ⊆ D and D′ ⊆ D, differing with only one entry: ||D −
D′||0 = 1, 0 ≤ δ < 1 and ε > 0,

Pr(M(D) ∈ R) ≤ eε Pr(M(D′) ∈ R) + δ. (2)

This definition implies that (ε, δ)-differential privacy ensures

that the outcome under input D′ is approximating the outcome

given input D by an ε controlled term with at least 1−δ prob-

ability. The instantiation of (ε, δ)-differential privacy relies on

randomized response, noise injection, or both. Existing deep

learning and federated learning with differential privacy [9],

[10] typically deploy Gaussian noise addition by following

Gaussian Mechanism [8]. Gaussian mechanism [8] states that

applying Gaussian noise N (0, ς2) calibrated to a real-valued

function: f : D → R with noise variance ς2 such that

M(D) = f(D) +N (0, ς2) is (ε, δ)-differentially private if

ς2 >
2 log(1.25/δ) · S2

ε2
, (3)

where S represent the sensitivity in l2 norm. Sensitivity is

a key concept [11], which measures the maximum change of

the function f under two neighboring datasets differing in one

entry. The noise variance ς2 is commonly replaced with σ2S2

where σ is the noise scale and S is the l2 sensitivity for better

noise control [6], [9], [10], [12]–[14]:

σ2 >
2 log(1.25/δ)

ε2
. (4)

In federated learning, there are two steps for adding the

Gaussian noise for differential privacy protection: clipping and

noise addition. The former sets up the upper bound for the

gradient’s l2 norm for sensitivity. Specifically, the l2 norm of

the per-client local update is computed and compared with

the pre-defined clipping bound. If the l2 norm is larger than

the clipping bound C, it will be capped at C. Otherwise,

the gradient remains the same. The latter injects Gaussian

noise N (0, σ2C2
I) to the clipped local model update for

noise addition. I denotes the size of the noise reflecting the

number of gradient coordinates. Given that the Gaussian noise

is added only to the per-client local model update, client-level

differential privacy is ensured [6], [13].

ModelCloak Perturbation. The goal of ModelCloak is to

determine the proper amount of differential privacy noise:

(∇xf)
∗ = ∇xf + N (0, ς2I) for best balancing gradient

leakage resilience, accuracy, and privacy. ∇xf is the clipped

raw gradient ∇xf . Specifically, MondelCloak selects only

those differential privacy hyperparameters that result in the

following amount of differential privacy noise:

λε,δI ≤ ||∇xf − (∇xf)
∗||2 ≤ λmaxI, (5)

where λε,δ is the lower bound for the injected differential

privacy noise for gradient leakage prevention and λmax is

the upper bound for preserving accuracy. Given that for

zero-mean Gaussian noise with a I-coordinate vector satisfies

Eμ∈N [||N (0, ς2I)||22] = ς2I, we can map the noise-induced

gradient difference into the Gaussian noise variance.

For the left side, recall Equation 3, ς computed based on the

given differential privacy parameters (ε, δ) is the lower bound

noise. Therefore, we can use a minimal noise bound λε,δ to

fulfill a given (ε, δ) requirement. Based on the Theorem 1

of [15] and the Lipschitz smoothness assumption, we have

the following equation:

||x− x∗||2 ≥ ||∇xf − (∇xf)
∗||2

||∇xf ||2 . (6)

The numerator of Equation 6 suggests that a larger difference

between the perturbed gradient and the leaked gradient can

offer the larger difference between their training data coun-

terpart. In gradient leakage attacks, if we view the perturbed

gradient (∇xf)
∗ as the product of the gradient descent from a
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virtual input x∗, then the reconstruction attack will force the

attack optimization (∇xrecf
∗) to converge to the perturbed

gradient (∇xf)
∗. The corresponding reconstructed data xrec

will lead to unrecognizable data instances x∗. In this case, the

perturbed gradient no longer leaks the sensitive information

about its private training data, if the difference between x∗

and the original private input is large enough due to the non-

linearity of deep neural networks. Furthermore, the denomina-

tor indicates that the reconstruction attack is more severe when

the gradient value is larger, and the reconstruction optimization

leaves a larger space for the difference between the private data

and the reconstructed input from the perturbed gradient when

the gradient value is smaller.

For the right side, an upper-bound noise is introduced such

that the injected differential privacy noise can have a limited

impact on model performance. In fact, the output stability

of differential privacy states that the perturbed gradient is a

1 − eε dominating strategy [16], slightly deviated from the

main-stream gradient. Based on Equation 3, we can see that

a larger noise variance can lead to a smaller ε when the

sensitivity S and differential privacy parameter δ are fixed,

implying that the perturbed gradient direction is less diverged

from the original gradient, preserving the essential training

information. With noise lower bound and upper bound, we

are able to select an appropriate differential privacy noise that

is small enough to maintain the federated model performance

and yet large enough to prevent the privacy leakage of training

data from the shared gradients. From Equation 5, we can derive

the following proposition for the lower bound noise.

Proposition 1. ModelCloak with fixed differential privacy
parameters. Let N (0, σ2C2

I) be the differential privacy
noise (∇xf)

∗ = ∇xf +N (0, ς2I), we have

||x− xrec||2 ≥ σ ·
√
I. (7)

Proof. First, E[||N (0, σ2C2
I)||22] = C2σ2

I. Given the defini-

tion of sensitivity and the clipping bound for sensitivity ap-

proximation, we have C ≥ S ≥ ||∇xf ||2. Then by Equation 6,
||∇xf−(∇xf)

∗||2
||∇xf ||2 = ||∇xf+N (0,ς2I)−∇xf ||2

||∇xf ||2 ≥ ||N (0,σ2C2
I)||2

||∇xf ||2 ≥
C·σ·√I

S ≥ σ · √I.

While we investigate ModelCloak with differential privacy

noise, other gradient perturbation techniques, such as gradient

compression [15], can also leverage ModelCloak to define the

appropriate amount of perturbation with a lower bound for

gradient leakage protection and an upper bound for preserving

accuracy [17].

IV. EVALUATING MODELCLOAK WITH FIXED NOISE

Setup. We first evaluate the effectiveness of ModelCloak

using fixed differential privacy noise, as studied in most feder-

ated learning with differential privacy literature [6], [10], [13].

The fixed differential privacy noise is a result of fixed clipping

bound C and fixed noise scale σ according to Equation 4.

We consider three benchmark datasets: MNIST, CIFAR10, and

MNIST CIFAR10 LFW
# training data 60000 50000 2267

# validation data 10000 10000 756
# features 28*28 32*32*3 32*32*3
# classes 10 10 62

# data/client 500 400 300
# local iteration L 100 100 100
local batch size b 5 4 3

# rounds T 100 100 60
no-private acc. 0.984 0.674 0.695

TABLE I: Benchmark datasets and parameters

LFW1. Table I summarizes the test accuracy and hyperparam-

eter settings for these datasets. We evaluate these datasets on

a deep convolutional neural network with two convolutional

layers and one fully-connected layer. We set up the federated

learning system by following the simulator in [13] with a total

of N = 1000 clients and kt set to 10% of N per round.

To demonstrate gradient leakage prevention of ModelCloak,

we follow the representative attack procedure in [4]. Code is

available: https://github.com/git-disl/ModelCloak.

Gradient Leakage Prevention with Accuracy Assurance.
We consider six settings of noise scale σ, which represent six

privacy budget settings according to Equation 4. We also select

five clipping bound C settings, originating from existing feder-

ated learning with differential privacy research [6], [10], [13].

Consequently, we have 30 differential privacy noise settings

for each dataset. To measure the attack effect under these

configurations, we report the attack success rate results of

reconstructing 100 images for each dataset. The reconstruction

is considered failed if the mean square error (MSE) of the

reconstructed data and the original data is larger than 1.4, an

empirical threshold for the l2 difference between two images

with size 28 × 28 or 32 × 32. The attack optimization is

iterated 300 steps maximum. In Section II, we have shown

that gradient leakage attack is severer when the gradient has

a larger value, which typically occurs in the early stage of

training since the gradient value would decrease as training

progresses for gradient descent optimization. In this set of

experiments, we focus on the gradient leakage attack that

happened on the first round.

Table II shows the gradient leakage prevention results for

MNIST, CIFAR10 and LFW dataset, respectively. We make

three observations. (1) We highlight those differential privacy

noise configurations which could prevent gradient leakage

in blue, and those chosen by ModelCloak in bold blue.

ModelCloak would select the configuration C = 2, σ = 5
for MNIST, C = 2, σ = 3 for CFIAR10, and C = 3, σ = 2
for LFW. The reason ModelCloak determines those settings as

the appropriate amount of differential privacy noise is that they

deliver the best accuracy performance among those gradient

leakage resilient settings. This implies that ModelCloak finds

the lower bound of model perturbation, and in the meantime,

maximizes the accuracy performance.

(2) Compared with ModelCloak, those highlighted gradient

leakage resilient settings inject relatively larger differential

1https://pytorch.org/vision/stable/datasets.html
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MNIST CIFAR10 LFW
S=C C=4 C=3 C=2 C=1 C=0.5 C=4 C=3 C=2 C=1 C=0.5 C=4 C=3 C=2 C=1 C=0.5

σ=6 0.779 0.861 0.922 0.944 0.949 0.107 0.129 0.335 0.611 0.649 0.212 0.383 0.503 0.605 0.636
σ=5 0.835 0.863 0.936 0.949 0.951 0.135 0.301 0.376 0.625 0.649 0.345 0.441 0.525 0.616 0.638
σ=4 0.867 0.923 0.937 0.951 0.954 0.249 0.335 0.559 0.636 0.651 0.404 0.505 0.571 0.635 0.64
σ=3 0.926 0.939 0.941 0.957 0.955 0.337 0.484 0.613 0.648 0.666 0.506 0.567 0.607 0.642 0.64
σ=2 0.941 0.945 0.952 0.963 0.961 0.561 0.613 0.644 0.672 0.674 0.569 0.609 0.633 0.645 0.641

Accuracy

σ=1 0.952 0.959 0.963 0.965 0.961 0.647 0.656 0.67 0.681 0.673 0.637 0.644 0.647 0.648 0.644
σ=6 0 0 0 0.10 0.60 0 0 0 0 0.31 0 0 0 0 0.25
σ=5 0 0 0 0.21 0.65 0 0 0 0.06 0.42 0 0 0 0.06 0.45
σ=4 0 0 0.123 0.43 0.70 0 0 0 0.15 0.50 0 0 0 0.16 0.56
σ=3 0 0.02 0.28 0.64 0.71 0 0 0 0.31 0.52 0 0 0 0.31 0.58
σ=2 0.13 0.29 0.46 0.76 0.73 0 0 0.16 0.58 0.62 0 0 0.19 0.59 0.64

Attack
success

rate

σ=1 0.47 0.66 0.77 0.82 0.81 0.17 0.33 0.56 0.66 0.65 0.19 0.34 0.63 0.73 0.69

TABLE II: Accuracy and prevention of gradient leakage with fixed differential privacy noise. 24 differential privacy settings of (σ, C) are
considered for MNIST, CIFAR10, and LFW, respectively. Settings in black are vulnerable to gradient leakage, and the setting highlighted
in bold black is based on maximizing accuracy. Settings in blue could prevent gradient leakage. The bold blue highlight is the sweet spot
setting selected by ModelCloak, which injects just enough noise for model perturbation. The test accuracy without model perturbation is
0.984 for MNIST, 0.674 for CIFAR10, and 0.695 for LFW.

privacy noise. However, the excessive noise is unnecessary

since it does no good in preventing gradient leakage as the

injected noise is already enough (recall Equation 6), and yet

it may bring down the accuracy performance.

(3) Clipping would impact the differential privacy noise

injection from two perspectives. First, when the clipping

bound C is as small as 0.5, the essential training information

is distorted during the clipping operation, and the resulting

accuracy can be lower than those settings with the same noise

scale σ but C = 1. Decreasing the clipping bound C from 4

to 1 with a given noise scale σ will reduce the injected noise

according to Equation 3. However, such a noise reduction can

no longer improve the accuracy performance if the clipping

bound is small enough to have a negative impact. Second, for

a chosen noise variance ς = σ∗C, it is possible to find multiple

different settings of σ and C. Among them, the setting with a

smaller clipping bound C demonstrates better gradient leakage

resilience. For example, the setting C = 1, σ = 6 has a lower

attack success rate than the setting C = 3, σ = 2 but yet

slightly lower accuracy for MNIST (0.944 v.s. 0.945).

A possible explanation is that a smaller clipping bound C
will result in a larger σ with a fixed noise variance ς . Recall

Equation 4, the corresponding ε-spending is smaller when the

noise scale σ is large, indicating stronger differential privacy

guarantee. Equation 6 also suggests that a constant noise

variance in the numerator and a reduced clipping bound or

sensitivity in the denominator would lead to a larger difference

between the reconstructed input from the perturbed gradient

and the original raw input.

ε-Privacy Spending. From the definition of differential

privacy, the privacy spending ε measures the statistical privacy

protection level based on Equation 2. By injecting Gaussian

noise following (ε, δ) differential privacy, we consider the mo-

ments accountant method [9] for ε-privacy spending tracking.

By utilizing the moments accountant computation2, we can

measure the accumulated ε spending with Rényi differential

privacy [18] under a fixed δ. Specifically, the privacy spending

2https://github.com/tensorflow/privacy/blob/master/tensorflow privacy/
privacy/analysis/compute dp sgd privacy.py

σ=6 σ=5 σ=4 σ=3 σ=2 σ=1
MNIST 0.678 0.835 1.082 1.528 2.581 7.899

CIFAR10 0.678 0.835 1.082 1.528 2.581 7.899
LFW 0.519 0.64 0.832 1.18 2.01 6.331

TABLE III: ε-privacy spending measured at round 100, 100, and 60
for MNIST, CIFAR10, and LFW, respectively. δ = 1e− 5.

ε is computed given the total rounds T , the noise scale σ, the

privacy parameter δ, and the sampling rate q.

In this set of experiments, we report the ε-privacy spend-

ing results for MNIST, CIFAR10, and LFW at round 100,

100, and 60, respectively. The privacy parameter δ is set to

1e − 5, and the sampling rate q is the client sampling rate

of 10/100 = 10% with 10 participating clients per round

with 100 total clients. Table III shows the results and we

make two observations. (1) Moments accountant states that

the privacy spending ε will not change when the noise scale

σ, the total learning rounds T , the privacy parameter δ, and

the sampling rate q are fixed. Therefore, the ε-spending of

MNIST is the same as that of CIFAR10, while differing from

the ε-spending of LFW. (2) Recall Equation 4, the ε spending is

correlated with the noise scale σ under a given δ at each noise

injection step. Therefore, for a given σ, changing the clipping

bound C does not add or reduce the privacy spending ε at a

given round. Given that the noise variance is defined by σ and

C, ModelCloak can benefit from a larger choice of clipping

bound C while keeping the noise scale σ the same. This

results in a larger amount of differential privacy noise for gra-

dient leakage prevention without injecting additional privacy

spending overhead. Consequently, ModelCloak demonstrates

the capability of selecting the differential privacy noise settings

that best balance three factors: privacy (ε-spending), accuracy,

and gradient leakage resilience.

V. IMPROVING MODELCLOAK WITH DYNAMIC NOISE

Limitation of Fixed Noise. Based on Equation 4, the

Gaussian noise for a differentially private function is calibrated

with noise variance defined by noise scale σ and sensitivity S
of the function. The baseline Differentially Private Stochastic

Gradient Descent (DPSGD) implementation [9], followed by
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most of the work [6], [10], [12] suggests using a fixed clipping

parameter C to approximate sensitivity S, and with a fixed

noise scale σ. The fixed pre-defined clipping bound C and

the fixed noise scale σ result in constant noise variance, and

thus a fixed amount of differential privacy noise is injected

throughout all T rounds of federated learning.

However, gradient descent is designed to optimize towards

the convergence with decreasing gradient values. Given that

the sensitivity of a differentially private function is defined as

the maximum amount that the function value varies when a

single input entry is changed, the decreasing magnitude of the

gradient would imply different sensitivity of the local model

for different clients and rounds. Therefore, when the l2 norm

of the gradient is smaller than the fixed clipping bound C at a

given round, using the clipping bound C can be an undesirably

loose approximation of the actual l2 sensitivity S.

Recall Equation 6, the smaller magnitude of gradient could

also lower the value in the denominator, resulting in a larger

difference between the reconstructed data and the private

training data under a fixed noise represented by the gradient

difference in the numerator. These observations suggest that

(1) gradient leakage attacks weaken when the gradient mag-

nitude gets smaller as the training progresses; (2) injecting a

fixed differential privacy noise may be excessive, especially

at the later stage of training near convergence. Therefore,

we next investigate the possible enhancement of ModelCloak

via dynamic differential privacy noise. Our approach aims to

provide high gradient leakage resilience, strong differential

privacy guarantee, and competitive model accuracy.

Dynamic Differential Privacy Noise. We propose to opti-

mize ModelCloak with dynamic differential privacy parame-

ters. Instead of using the fixed clipping bound C to approxi-

mate the sensitivity of the local SGD function, we define the

sensitivity S by the max l2 norm of the per-client gradient at

local client. We argue that l2-max can more accurately capture

the actual sensitivity of the local SGD with differential privacy.

With dynamic l2-max sensitivity, the gradient perturbation is

defined by using Gaussian noise N (0, ς2), where we define ς
based on the dynamic sensitivity S = max ||∇xf ||2.

With the sensitivity closely aligned with the gradient trend,

we can optimize the differential privacy noise with two differ-

ent goals. First, if we consider a fixed noise variance ς = σ∗C,

we will need to dynamically adjust the noise scale σdyn

such that its product with the l2-max sensitivity S remains

unchanged. In this case, a smaller l2-max sensitivity S will

correspond to a larger σdyn compared to the pre-defined fixed

σ, i.e., σdyn ≥ σ. Recall Equation 5, the same noise variance

with a smaller S and a larger σ could lead to stronger gradient

leakage resilience. Second, if we consider a fixed noise scale,

the l2-max sensitivity will decay with the decreasing gradient

magnitude, thus leading to lower differential privacy noise

injected for better accuracy performance.

From Equation 5, we can derive the following proposition

for the lower bound noise with dynamic noise injection.

Proposition 2. ModelCloak with dynamic differential pri-

MNIST CIFAR10 LFW
Raw gradient MSE 0.0014 0.0012 0.0012

accuracy 0.984 0.674 0.695

ModelCloak-Fix
ε 0.835 1.082 2.581

MSE 4.84 2.69 2.62
accuracy 0.936 0.613 0.609

ModelCloak-Dynamic
ε 0.737 1.041 2.329

MSE 5.03 2.75 2.71
accuracy 0.937 0.614 0.608

TABLE IV: MSE measurement (the larger, the more robust). With
the same amount of noise, ModelCloak with dynamic noise stronger
gradient leakage resilience and stronger differential privacy guarantee
compared to ModelCloak with fixed noise.

vacy parameters.. Let N (0, σ2
dynS

2
dynI) be the differential

privacy noise for gradient perturbation, where Sdyn is the l2-
max sensitivity and σdyn is the dynamic noise scale. we have:

||x− xrec||2 ≥ σdyn ·
√
I. (8)

If the noise variance ς is set to ς = σ ∗ C = σdyn ∗ Sdyn,
where the noise scale σ and the clipping bound C are fixed,

||x− x∗
rec||2 ≥ σdyn ·

√
I ≥ σ ·

√
I. (9)

Proof. For equation 8, we have
||N (0,σ2

dynS
2
dynI)||2

||∇xf ||2 ≥
Sdyn·σdyn·

√
I

Sdyn
= σdyn · √I similar to Proposition 1. For

equation 9, given ς = σ ∗ C = σdyn ∗ Sdyn and C ≥
Sdyn ≥ ||∇xf ||2, we have σdyn ≥ σ. By Proposition 1,
||N (0,σ2C2

I)||2
||∇xf ||2 ≥ C·σ·√I

Sdyn
=

Sdyn·σdyn·
√
I

Sdyn
≥ σ · √I.

VI. EVALUATING MODELCLOAK WITH DYNAMIC NOISE

ModelCloak Noise Injection with Fixed Noise Amount.
We first consider the fixed noise variance under the l2-max

sensitivity and adaptive noise scale. In this case, we inject the

same amount of the differential privacy noise under dynamic

differential privacy parameters as the fixed noise parameters

setting. The resulting noise variance will have the following

relation: σdyn ∗ Sl2 = σ ∗ C, where the fixed noise scale

σ and the clipping bound C can be selected from Model-

Cloak with fixed differential privacy noise as provided in

Table II. Table IV shows the MSE measurement between

the reconstructed data and the raw data. The reconstructed

data are from the raw gradient and gradient perturbed by

ModelCloak with fixed noise and dynamic noise. We make

three observations. (1) With a fixed noise variance, we are

able to maintain the same model accuracy performance with

better differential privacy guarantee and stronger capability for

gradient leakage resilience. (2) Due to the decaying magnitude

of the gradient during gradient descent, we are able to get

a decaying l2-max sensitivity accordingly. The corresponding

dynamic noise scale σdyn is larger than the original fixed noise

scale, and the resulting ε-privacy spending is lower, indicating

better differential privacy guarantee (recall Equation 2 and

Equation 4). (3) Also according to Equation 9, the dynamic

noise scale σdyn is larger than the fixed ones and thus

offers a better capability of gradient leakage prevention when
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(a) MNIST. (b) LFW.

Fig. 2: L2 distance between the sanitized and raw per-client

gradients throughout the federated training.

compared with the ModelCloak noise with a fixed clipping

bound and noise scale.

Figure 2 illustrates the difference between the perturbed

per-client gradients and the raw gradients throughout the

federated training. This difference represents the numerator of

Equation 6. When the gradient magnitude converges to zero

due to gradient descent, the numerator will move towards the

noise variance and the denominator gets smaller and smaller.

Therefore, the difference between the reconstructed input from

the perturbed gradients and the raw gradients can be enlarged.

Consequently, it is unnecessary to inject the same amount of

differential privacy noise in all training rounds.

ModelCloak Noise Injection with Decaying Noise
Amount. We then evaluate the accuracy improvement of

ModelCloak with dynamic differential privacy noise, without

sacrificing the gradient leakage prevention capability. In this

set of experiments, we keep a fixed noise scale σ, and the

l2-max sensitivity will decay with the decreasing gradient

magnitude, thus leading to smaller amount of differential

privacy noise injected. Table V shows the results and we

make two observations. (1) According to Equation 4, the ε-
privacy spending is only correlated with the noise scale σ
with a given δ. Therefore, the smaller injected noise brought

by ModelCloak with dynamic differential privacy noise with

the l2-max sensitivity and the fixed noise scale does not influ-

ence the ε-privacy spending, maintaining the high differential

privacy guarantee. (2) ModelCloak with dynamic differential

privacy noise offers higher accuracy utility when compared to

ModelCloak with fixed differential privacy noise, due to the

reduced injected noise by the l2-max sensitivity. (3) According

to Equation 7, a fixed noise scale could provide the same

high level of gradient leakage prevention by ModelCloak with

dynamic noise compared with the fixed noise.

VII. CONCLUSION

We have presented ModelCloak, a principled approach to-

wards securing model sharing against gradient leakage attacks.

We addressed the critical challenge for effective model pertur-

bation: how to determine the proper amount of perturbation to

achieve the sweet spot in terms of balancing privacy, accuracy,

and leakage prevention. We introduced the robustness trade-off

based on the behavior of gradient leakage attacks throughout

the federated training process. Then, we demonstrated that

ModelCloak can help identify the differential privacy param-

eter settings that effectively mitigate gradient leakage attacks

MNIST CIFAR10 LFW
Raw gradient accuracy 0.984 0.674 0.695

ModelCloak-Fix
ε 0.835 1.082 2.581

accuracy 0.936 0.613 0.609

ModelCloak-Dynamic
ε 0.835 1.082 2.581

accuracy 0.951 0.627 0.635

TABLE V: Accuracy improvement ModelCloak with l2-max
sensitivity-driven dynamic noise and ModelCloak with fixed differ-
ential privacy noise. We consider the blue highlighted configurations
selected by ModelCloak as in Table II for MNIST (σ = 5, C = 2),
CIFAR10 (σ = 3, C = 2), and LFW (σ = 2, C = 3), respectively.

while offering competitive accuracy performance under dif-

ferential privacy guarantee. Finally, we improve ModelCloak

with dynamic differential privacy noise for better performance

on the privacy-utility trade-off.
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