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We discuss a novel approach for imaging local faults inside an infinite bi-periodic layered 
medium in ℝ3 using acoustic measurements of scattered fields at the bottom or the top of the 
layer. The faulted area is represented by compactly supported perturbations with erroneous 
material properties. Our method reconstructs the support of perturbations without knowing or 
reconstructing the constitutive material parameters of healthy or faulty bi-period layer; only 
the size of the period is needed. This approach falls under the class of non-iterative imaging 
methods, known as the generalized linear sampling method with differential measurements, first 
introduced in [2] and adapted to periodic layers in [25]. The advantage of applying differential 
measurements to our inverse problem is that instead of comparing the measured data against 
measurements due to healthy structures, one makes use of periodicity of the layer where the 
data operator restricted to single Floquet-Bloch modes plays the role of the one corresponding 
to healthy material. This leads to a computationally efficient and mathematically rigorous 
reconstruction algorithm. We present numerical experiments that confirm the viability of the 
approach for various configurations of defects.

1. Formulation of the problem

We consider nondestructive testing of an infinite bi-periodic penetrable layer in ℝ3 by means of acoustic waves. This is an im-
portant problem with growing interest since periodic structures are part of many fascinating modern technological designs with 
applications in (bio)engineering and material sciences. In many sophisticated devises the periodic structure is complicated or dif-
ficult to model mathematically, hence evaluating its Green’s function, which is the fundamental tool of many imaging methods, is 
computationally expensive or even impossible. On the other hand, when looking for faults in such complex media, the option of 
reconstructing everything, i.e. both periodic structure and the defects, may not be viable. Here we propose an approach that recon-
structs the support of local anomalies without knowing explicitly or reconstructing the constitutive material properties of the periodic 
layer, except for the size of the period. The support of local perturbations is visualized by means of its indicator function computable 
from scattering data, leading to computationally efficient non-iterative imaging method. The connection between scattering data and 
the support of local perturbations is made through a rigorous mathematical analysis of the scattering problem by the bi-periodic 
layer with and without local perturbations.
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Fig. 1. Sketch of the geometry for the 𝑳-periodic problem. The healthy bi-periodic layer consists of a homogeneous layer occupying −ℎ ≤ 𝑥3 ≤ ℎ with periodically 
distributed inhomogeneities indicated by red balls (the three balls that are periodically repeated and their copies). Blue balls (the two balls remainder) indicate the 
compactly supported perturbations 𝜔 located in one period denoted by Ω0 .

To be more specific and set the notations, let 𝒙 ∶= (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3, and assume that the scattering media is a penetrable infinite 
layer periodic in the 𝑥1 and 𝑥2 variables with period 𝐿1 and 𝐿2, respectively. Given a 2-dimensional vector 𝑳 = (𝐿1, 𝐿2), we call 
a function 𝑤 defined in ℝ3 𝑳-periodic if 𝑤 is periodic in 𝑥1 and 𝑥2 with periods 𝐿1 and 𝐿2, respectively. With this notation, we 
assume that the refractive index of the periodic layer 𝑛𝑝 ∈ 𝐿∞(ℝ3) is 𝑳-periodic such that Re (𝑛𝑝) > 0 and Im (𝑛𝑝) ≥ 0. Furthermore, 
we assume that there exists an ℎ > 0 such that 𝑛𝑝 = 1 for |𝑥3| > ℎ, hence the support of (𝑛𝑝 − 1) represents the bi-periodic layer of 
width 2ℎ. The scattering of a time harmonic incident field 𝑢𝑖 (to become precise later) is governed by

{
Δ𝑢+ 𝑘2𝑛𝑝𝑢 = 0 in ℝ3,

𝑢 is 𝑳-periodic
(1)

where 𝑢 ∶= 𝑢𝑖 + 𝑢𝑠 is the total field, 𝑢𝑠 is the scattered field and 𝑘 > 0 is the wave number proportional to interrogating frequency. 
Scattering of time-harmonic acoustic or electromagnetic waves by periodic structures such as gratings, inhomogeneous layers or 
waveguides, is a research topic that has received enormous attention due to contemporary applications in material science. Among 
vast literature in the topic, we refer the reader to [1,3–5,12,14,15,19–21,24,25,27] (the list is not exclusive by any means). For these 
types of scattering problems, both the incident field and scatterer field are assumed to be periodic in the horizontal directions, but 
the periods need not be the same. In such situations, one may multiply the fields by a quasi-periodicity-factor to restore overall 
periodicity. This allows to pose the problem on the unit cell, where an application of well-known techniques from analysis such as 
variational methods and analytic Fredholm theory [14], provides existence and uniqueness of the solution. For the purpose of this 
study we will always assume that the scattering problem (1) is well-posed, and refer the reader to aforementioned references for 
more details.
Our main interest is in the case when local perturbations are present inside the bi-periodic layer. We denote by 𝜔 the support of 
perturbations, such that 𝜔 is a compact set with connected complement ℝ3 ⧵ 𝜔. We may assume without loss of generality (up to a 
possible rearrangement of the cell), that 𝜔 is located in one period (see Fig. 1). The refractive index of the bi-periodic layer together 
with perturbations, which is no longer periodic function, is denoted by 𝑛 ∈𝐿∞(ℝ3), and it satisfies Re (𝑛) ≥ 𝑛0 > 0, Im (𝑛) ≥ 0. Note 
that 𝜔 is the support of 𝑛 − 𝑛𝑝. The well-posedness of the scattering problem for the locally perturbed bi-periodic layer is handled by 
considering it as rough layer due to loss of periodicity. For the analysis and numerical implementations of the scattering of waves by 
rough penetrable layers or gratings we referee the reader to [11,9,10,22,25,26].
Our goal is to determine the support of the damaged region 𝜔 by using the measured scattered fields outside the layer due to 
appropriate incident fields. The challenging task however is to resolve 𝜔 without an explicit knowledge of 𝑛𝑝 (which in practice can 
have a complicated form) nor reconstructing it, but just using the fact that 𝑛𝑝 is 𝑳-periodic. This problem was first considered in 
[25], where the GLSM with differential measurements introduced in [2] was modified to the current periodic configuration. In this 
context, as opposed to [2], the response of the periodic background does not need to be measured. It is replaced by the extraction 
of measurements associated with a single Floquet-Bloch mode to encode some differential behavior for an appropriately designed 
indicator functions. This extraction requires information only on the period size of the background. The analysis in [25] was further 
developed in [8] and [26], where numerical examples were also presented only for the 2-dimensional case. However, the imaging 
method was justified under some restrictive assumptions on the location of local perturbations. In the current work, we remove 
these restrictions and complete the justification of the imaging method for a general setting of local perturbations. In particular, 
our analysis includes for the first time the case where components in some periodic cells are missing, or where the perturbation 
is entirely inside a component. In addition, this paper presents numerical examples for local perturbations of a bi-periodic layer in 
ℝ3, which are much more challenging and closer to real applications. To achieve this, for technical reasons, we must replace the 
infinite bi-periodic layer with 𝑴 actual periods truncation (containing the defective period) for 𝑴 = (𝑀1, 𝑀2) ∈ ℕ2 sufficiently 
large and then extend it as 𝑴𝑳-periodic layer. As it is shown in [18], this truncation is equivalent to approximating the problem 
in the Floquet-Bloch domain using uniform discretization of the Floquet-Bloch variable and a trapezoidal rule to approximate the 
discretized solution. However, it is important to notice that this technical process of truncation and 𝑴𝑳-periodic extension is needed 



Journal of Computational Physics 501 (2024) 112773

3

F. Cakoni, H. Haddar and T.-P. Nguyen

only for the analysis of derivation of the indicator function of the set 𝜔, and is not involved in the computation of this indicator 
function. We also remark that many available inversion methods (see e.g. [6] and [23]) do not require this technical assumption in 
the analysis, but all of them rely on an explicit knowledge of the Green’s function of the periodic layered background, which is not 
the case for our method. Although it is desirable to remove this technical step, one could see it as a trade-off for not using any a 
priori information on 𝑛𝑝, except for the fact that it 𝑳-periodic. Hence, from now on, the scattering by perturbed bi-periodic layer is 
replaced by the following problem for the total field 𝑢 ∶= 𝑢𝑖 + 𝑢𝑠

{
Δ𝑢+ 𝑘2𝑛𝑢 = 0 in ℝ3,

𝑢 is 𝑴𝑳-periodic
(2)

where 𝑢𝑖 is the probing incident field and 𝑢𝑠 is the scattered field. Here 𝑴 = (𝑀1, 𝑀2) ∈ ℕ2 with the natural numbers 𝑀1 and 𝑀2
sufficiently large, refers to the number of periods we consider in the 𝑥1 and 𝑥2 directions respectively. Thanks to 𝑴𝑳-periodicity, 
solving (2) is equivalent to solving it in the period

Θ ∶=
⋃

𝒎=(𝑚1 ,𝑚2)∈ℤ2
𝑀

[
−
𝐿1
2 +𝑚1𝐿1,

𝐿1
2 +𝑚1𝐿1

]
×
[
−
𝐿2
2 +𝑚2𝐿2,

𝐿2
2 +𝑚2𝐿2

]
×ℝ.

Adapting the notation [𝒂,𝒃] ∶= [𝑎1, 𝑏1] × [𝑎2, 𝑏2] for any two generic vectors 𝒂 and 𝒃 in ℝ2, we can rewrite Θ equivalently as

Θ =
[
𝑴−

𝑳,𝑴
+
𝑳
]
×ℝ,

where 𝑴−
𝑳 ∶=

[⌊
−𝑀1

2

⌋
𝐿1+

𝐿1
2 , 

⌊
−𝑀2

2

⌋
𝐿2+

𝐿2
2

]
, 𝑴+

𝑳 ∶=
[⌊

𝑀1
2

⌋
𝐿1+

𝐿1
2 , 

⌊
𝑀2
2

⌋
𝐿2+

𝐿2
2

]
, and ℤ2

𝑀 ∶= {𝒎 = (𝑚1, 𝑚2) ∈ℤ2, 
⌊
−𝑀𝓁

2

⌋
+

1 ≤𝑚𝓁 ≤ ⌊
𝑀𝓁
2

⌋
, 𝓁 = 1, 2}, with ⌊⋅⌋ denoting the floor function and ℤ the set of integers.

Note that in (2) we still call 𝑛 the 𝑴𝑳-periodic extension of 𝑛|Θ and without loss of generality assume that the defective period is

Ω0 ∶=
[
−𝑳
2 , 𝑳2

]
×ℝ =

[
−
𝐿1
2 ,

𝐿1
2

]
×
[
−
𝐿2
2 ,

𝐿2
2

]
×ℝ. (3)

We now specify the incident wave 𝑢𝑖 we will use in our algorithm. To this end, we consider down-to-up or up-to-down incident plane 
waves of the form

𝑢𝑖,±(𝒙, 𝒋) = −i
2𝛽#(𝒋)

𝐞i𝜶#(𝒋)⋅𝒙±i𝛽#(𝒋)𝑥3 , with 𝒙 = (𝒙,𝑥3) ∈ℝ2 ×ℝ (4)

where for each mode 𝒋 = (𝑗1, 𝑗2) ∈ℤ2

𝜶#(𝒋) ∶=
(

2𝜋
𝑀1𝐿1

𝑗1,
2𝜋

𝑀2𝐿2
𝑗2
)
∈ℝ2 and 𝛽#(𝒋) ∶=

√
𝑘2 − |𝜶#(𝒋)|2, Im (𝛽#(𝒋)) ≥ 0.

We remark that in terms of (17), considering these plane waves is formally equivalent to illuminating the media with periodic point 
sources (see also [16]). In addition, the scattered field 𝑢𝑠 is outgoing which is expressed by imposing a radiation condition in the 
form of Rayleigh expansions:

⎧
⎪
⎨
⎪⎩

𝑢𝑠(𝒙,𝑥3) =
∑

𝓵∈ℤ2 𝑢𝑠
+(𝓵)𝐞i(𝜶#(𝓵)⋅𝒙+𝛽#(𝓵)(𝑥3−ℎ)), ∀ 𝑥3 > ℎ,

𝑢𝑠(𝒙,𝑥3) =
∑

𝓵∈ℤ2 𝑢𝑠
−(𝓵)𝐞i(𝜶#(𝓵)⋅𝒙−𝛽#(𝓵)(𝑥3+ℎ)), ∀ 𝑥3 < −ℎ,

(5)

where the Rayleigh coefficients 𝑢𝑠(𝓵) are given by

𝑢𝑠+(𝓵) ∶= 1
𝑀1𝐿1𝑀2𝐿2 ∫[

𝑴−
𝑳 ,𝑴

+
𝑳

]
𝑢𝑠(𝒙,ℎ)𝐞−i𝜶#(𝓵)⋅𝒙 d𝒙 ,

𝑢𝑠−(𝓵) ∶= 1
𝑀1𝐿1𝑀2𝐿2 ∫[

𝑴−
𝑳 ,𝑴

+
𝑳

]
𝑢𝑠(𝒙,−ℎ)𝐞−i𝜶#(𝓵)⋅𝒙 d𝒙 .

(6)

Recall that the [𝑴−
𝑳,𝑴

+
𝑳
] is a rectangle on 𝑥1𝑥2-plane which is restricted by 𝑀1 periods along 𝑥1 and 𝑀2 periods along 𝑥2

directions. Evidently, the area of the rectangle [𝑴−
𝑳,𝑴

+
𝑳
] is 𝑀1𝐿1𝑀2𝐿2. We shall use the notations

Θℎ ∶=
[
𝑴−

𝑳,𝑴
+
𝑳
]
×]− ℎ,ℎ[ and

Γℎ𝑀 ∶=
[
𝑴−

𝑳,𝑴
+
𝑳
]
× {ℎ}, Γ−ℎ𝑀 ∶=

[
𝑴−

𝑳,𝑴
+
𝑳
]
× {−ℎ}.



Journal of Computational Physics 501 (2024) 112773

4

F. Cakoni, H. Haddar and T.-P. Nguyen

We denote by 𝐻1
# (Θ

ℎ) the restrictions to Θℎ of functions that are in the Sobolev space 𝐻1
loc(|𝑥3| ≤ ℎ) and are 𝑴𝑳-periodic. The 

space 𝐻1∕2
# (Γℎ𝑀 ) is then defined as the space of traces on Γℎ𝑀 of functions in 𝐻1

# (Θ
ℎ) and the space 𝐻−1∕2

# (Γℎ𝑀 ) is defined as the dual 
of 𝐻1∕2

# (Γℎ𝑀 ) with similar definitions for 𝐻±1∕2
# (Γ−ℎ𝑀 ).

More generally we consider the following direct problem: given 𝑓 ∈𝐿2(Θℎ) find 𝑤 ∈𝐻1
# (Θ

ℎ) satisfying

Δ𝑤+ 𝑘2𝑛𝑤 = 𝑘2(1− 𝑛)𝑓 (7)
together with the Rayleigh radiation condition (5). We remark that the solution 𝑤 ∈𝐻1

# (Θ
ℎ) of (7) can be extended to a function 

in Θ satisfying Δ𝑤 + 𝑘2𝑛𝑤 = 𝑘2(1 − 𝑛)𝑓 , using the Rayleigh expansion (5), and hence by 𝑴𝑳-periodicity to a solution in the entire 
ℝ3. Note that the scattering problem for 𝑳-periodic layer (1) is equivalent to (7) where 𝑤 ∶= 𝑢𝑠, 𝑓 ∶= 𝑢𝑖|ℎΘ and 𝑛 ∶= 𝑛𝑝, whereas the 
scattering problem for 𝑴𝑳-periodic layer (2) is equivalent to (7) where 𝑤 ∶= 𝑢𝑠 and 𝑓 ∶= 𝑢𝑖|ℎΘ. Throughout the paper we make the following assumption:

Assumption 1. The refractive index 𝑛 and 𝑘 > 0 are such that (7) as well as (7) with 𝑛 replaced by 𝑛𝑝 are both well-posed for all 
𝑓 ∈𝐿2(Θℎ).

For sufficient conditions that guarantee Assumption 1 we refer the reader to [26], [20], [25] and the references therein. If Φ(𝑛𝑝; ⋅) is 
the fundamental solution to

⎧
⎪
⎨
⎪⎩

ΔΦ(𝑛𝑝; ⋅) + 𝑘2𝑛𝑝Φ(𝑛𝑝; ⋅) = −𝛿0(⋅),

Φ(𝑛𝑝; ⋅) is𝑀𝐿− periodic,
and the Rayleigh radiation condition (5).

(8)

then the solution 𝑤 of (7) has the representation as

𝑤(𝒙) = −∫
𝐷

(
𝑘2(𝑛𝑝 − 𝑛)𝑤+ 𝑘2(1− 𝑛)𝑓

)
(𝒚)Φ(𝑛𝑝;𝒙− 𝒚) d𝒚 . (9)

Finally, as it becomes clear latter in the paper, our inversion algorithm is well-suited to the case when a period of healthy 𝑳-periodic 
layer consists of several compactly supported inhomogeneities sitting in homogeneous structure (see Fig. 1), which is the case in 
many applications. For sake of presentation we assume that the homogenous base structure of the 𝐿-period media has refractive 
index one. With this in mind, we introduced the following notations which will be used throughout the paper. To this end, let us first 
denote by 𝒂𝒃 the element wise multiplication of two generic vectors 𝒂 = (𝑎1, 𝑎2) and 𝒃 = (𝑏1, 𝑏2), that is

𝒂𝒃 = (𝑎1𝑏1,𝑎2𝑏2).

Notation 1. Recalling that Ω0 is the period containing 𝜔, we denote by

𝐷𝑝 ∶= Supp(𝑛𝑝 − 1) 𝐷 ∶= Supp(𝑛− 1) and 𝜔 ∶= Supp(𝑛− 𝑛𝑝)
and assume that the exterior of each of 𝐷𝑝 , 𝐷 and 𝜔 is connected. Next we denote by

 the union of components of 𝐷𝑝 ∩Ω0 that intersect 𝜔
𝑐 its complement in 𝐷𝑝 ∩Ω0 Λ ∶= ∪𝜔 and 𝐷̂ ∶=𝑐 ∪Λ

Let 𝜈𝒎 ∶= (𝒎𝑳, 0) ∈ℝ3 be the translation vector Ω0 ↦Ω𝑚 (𝒎-th period) for 𝒎 ∈ℤ2 and denote by

𝑝 ∶= ⋃

𝑚∈ℤ2
𝑀

+ 𝜈𝑚, 𝑐𝑝 ∶= ⋃

𝑚∈ℤ2
𝑀

𝑐 + 𝜈𝑚, Λ𝑝 ∶=
⋃

𝒎∈ℤ2
𝑀

Λ+ 𝜈𝒎 𝐷̂𝑝 ∶=
⋃

𝒎∈ℤ2
𝑀

𝐷̂ + 𝜈𝒎

which are 𝑳-periodic copies of the respective aforementioned regions. Finally we denote by 𝜔𝑚𝑖𝑠 ∶= 𝜔 ⧵𝐷 (possibly part of) missing 
components of 𝐷𝑝 and 𝜔𝑚𝑖𝑠𝑝 its 𝑳-periodic copies. Note that 𝐷̂𝑝 is periodic and 𝐷̂𝑝 ⊇ 𝐷 ∪𝐷𝑝.

We refer the reader to Figs. 2-3 for an illustration of type of defects 𝜔 we consider in this paper and for an illustration of the notation 
introduced above.

Remark 1. In the special case when the defect 𝜔 consists only of missing components of 𝐷𝑝 in Ω0, that in when 𝑛 = 1, we have 
𝐷̂𝑝 =𝐷𝑝 and Λ = = 𝜔𝑚𝑖𝑠 ∩Ω0.

Remark 2. All the results presented here can be readily extended to the case when the homogeneous base structure of the 𝐿-period 
media has refractive index given by a constant different from one. In this case, the free space with refractive index one is replaced 
by a flat layer with refractive index one in |𝑥3| > ℎ and constant different from one in |𝑥3| ≤ ℎ.
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Fig. 2. Two dimensional illustration for 𝐷, 𝐷𝑝 and 𝜔.

Fig. 3. Two dimensional illustration for the domains 𝑐
𝑝 , Λ𝑝 and 𝐷̂𝑝 associated with the configuration in Fig. 2.

The imaging method discussed in this paper falls into the recently developed qualitative approach to inverse scattering or otherwise 
referred to as non-iterative methods [7]. The underlying idea is to design an indicator function of the support of perturbation solely 
from the scattering data without involving any partial differential model, hence the support of perturbation is reconstructed without 
knowing the physical properties of the perturbation. In its standard presentation this approach requires an expression for the Green’s 
function of unperturbed background. However, in many applications an accurate modeling of the background is difficult to compute, 
hence one way to avoid this is to use differential measurements. This idea was first introduced in [2] where two sets of scattering 
data, one for the healthy structure and the other in a latter time, were mathematically analyzed to arrive at an indicator function 
for the support of perturbation to the healthy based structure. This idea was latter adapted to periodic layers in [25] (see also [17]). 
The advantage of applying differential measurements to the inverse problem for periodic layer like the one considered here, is that 
instead of comparing the measured data against measurements corresponding to the healthy structure, one makes use its periodicity. 
More precisely, the measurement operator restricted to single Floquet-Bloch modes plays the role of data operator corresponding to 
the healthy background. As a result, the support 𝜔 of perturbations is obtained without knowing or reconstructing the constitutive 
material properties of the periodic background. The analysis of a non-standard boundary value problem for two elliptic partial 
differential equations, referred to as the interior transmission problem, is at the core of this comparison. The interior transmission 
problems related to the problems considered here, are studied in details in [8,26].
In this paper we provide a comprehensive presentation of this novel imaging method for locally perturbed bi-periodic layer in ℝ3

in acoustic scattering. We include in our discussion new configurations of defective areas, including missing components or part of 
components of the healthy cell. In addition, we present the first 3D numerical implementation of the imaging algorithm. The paper 
is organized as follows. In the next section, we develop the analytical tools of our inversion method, in particular the properties 
of the data (near field) operator corresponding the faulty periodic layer, and its restriction to single Floquet-Bloch modes. Based 
on this analysis, in Section 3 we design an imaging algorithm for the support 𝜔 of the defective region. In addition, we implement 
numerically this algorithm, and present a large collection of 3D numerical examples for a various type of defects.

2. The inverse problem

We start by defining precisely the scattering data. As described above we have two choices of interrogating waves. If we use 
down-to-up (scaled) incident plane waves 𝑢𝑖,+(𝒙; 𝒋) defined by (4), then the (measured) scattering data is given by the Rayleigh 
coefficients

𝑢𝑠+(𝓵; 𝒋), (𝒋,𝓵) ∈ℤ2 ×ℤ2,

(that is the transmitters are under the layer whereas the receivers are above the layer), whereas if we use up-to-down (scaled) 
incident plane waves 𝑢𝑖,−(𝒙; 𝒋) defined by (4) then the (measured) scattering data is given by the Rayleigh coefficients

𝑢𝑠−(𝓵; 𝒋), (𝒋,𝓵) ∈ℤ2 ×ℤ2,

(that is the transmitters are above the layer whereas the receivers are under the layer).
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The inverse problem reads: from a knowledge of Rayleigh sequences 
{
𝑢𝑠+(𝓵; 𝒋)

}
𝓵∈ℤ2

due to all incident waves 𝑢𝑖,+(𝒙; 𝒋) for 𝒋 ∈ ℤ2

(or Rayleigh sequences {𝑢𝑠−(𝓵; 𝒋)}𝓵∈ℤ2 due to all incident waves 𝑢𝑖,−(𝒙; 𝒋) for 𝒋 ∈ℤ2) determine 𝜔 = Supp(𝑛 − 𝑛𝑝) without knowing 
𝑛 and 𝑛𝑝 but only the fact that 𝑛𝑝 is bi-periodic with period 𝑳 = (𝐿1, 𝐿2) and that the layer is situated between 𝑥3 = −ℎ and 𝑥3 = ℎ, 
for some ℎ > 0.
To fix the idea, from now on we consider the Rayleigh sequences 

{
𝑢𝑠+(𝓵; 𝒋)

}
𝓵,𝒋∈ℤ2×ℤ2

due to incident waves 𝑢𝑖,+(𝒙; 𝒋), and to 
simplify the notation we let 𝑢𝑠(𝓵; 𝒋) ∶= 𝑢𝑠+(𝓵; 𝒋) and 𝑢𝑖(𝒙; 𝒋) ∶= 𝑢𝑖,+(𝒙; 𝒋) for all 𝓵 ∈ℤ2 and 𝒋 ∈ℤ2. This scattering data defines the 
so-called near field (or data) operator 𝑁 ∶ 𝓁2(ℤ2) → 𝓁2(ℤ2) by

{N(𝒂)}𝓵∈ℤ2 =
∑

𝒋∈ℤ2
𝒂(𝒋)𝑢𝑠(𝓵; 𝒋), for 𝒂 = {𝒂(𝒋)}𝒋∈ℤ2 ∈ 𝓁2(ℤ2) (10)

(recall that 𝓁2(ℤ2) is the Hilbert space of square summable sequences in ℤ2). This operator is one of the main objects of our imaging 
method. We show that its properties are connected to the reconstruction 𝐷 (i.e. the support on 𝑛 − 1). To this end, we define the 
Herglotz operator  ∶ 𝓁2(ℤ2) →𝐿2(𝐷) by

𝒂 ∶=
∑

𝒋∈ℤ2
𝒂(𝒋)𝑢𝑖(⋅; 𝒋)|||𝐷. (11)

Its adjoint ∗ ∶𝐿2(𝐷) → 𝓁2(ℤ2) is given by

∗𝜑 ∶= {𝜑̂(𝒋)}𝑗∈ℤ2 , where 𝜑̂𝒋 ∶= ∫
𝐷

𝜑(𝒙)𝑢𝑖(⋅; 𝒋)(𝒙) d𝒙 . (12)

Let us denote by 𝐻inc(𝐷) the closure of the range of  in 𝐿2(𝐷). We then consider the compact operator G ∶𝐻inc(𝐷) → 𝓁2(ℤ2)
defined by

G(𝑓 ) ∶= {𝑤̂(𝓵)}𝓵∈ℤ2 , (13)
where {𝑤̂(𝓵)}𝓵∈ℤ2 is the Rayleigh sequence of the solution 𝑤 ∈𝐻1

# (Θ
ℎ) of (7). Then by linearity N ∶ 𝓁2(ℤ2) → 𝓁2(ℤ2) we have

N(𝒂) = G(𝒂). (14)
The properties of G and  are crucial to our inversion method. To state them, we must recall the standard interior transmission 
problem: find (𝑢, 𝑣) ∈𝐿2(𝐷) ×𝐿2(𝐷) such that 𝑢 − 𝑣 ∈𝐻2(𝐷) and satisfying

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

Δ𝑢+ 𝑘2𝑛𝑢 = 0 in 𝐷,

Δ𝑣+ 𝑘2𝑣 = 0 in 𝐷,

𝑢− 𝑣 = 𝜑 on 𝜕𝐷,

𝜕(𝑢− 𝑣)∕𝜕𝜈 = 𝜓 on 𝜕𝐷,

(15)

for given (𝜑, 𝜓) ∈𝐻3∕2(𝜕𝐷) ×𝐻1∕2(𝜕𝐷) where 𝜈 denotes the outward normal on 𝜕𝐷. The wave number 𝑘 is called a (standard) 
transmission eigenvalue if the corresponding homogeneous problem, i.e. (15), with 𝜑 = 0 and 𝜓 = 0, has non-trivial solutions. Up-to-
date results on this problem can be found in [7, Chapter 3] where in particular one finds sufficient solvability conditions. Without 
loss of generality we may assume that 𝜕𝐷 ∩ 𝜕Ω0 = ∅ where Ω0 is given by (3). If the boundary of 𝐷 intersects the vertical sides 
of the boundary Ω0, then the previous interior transmission problem should be augmented with periodicity conditions on 𝜕𝐷 ∩ 𝜕Θ
(intersection of 𝐷 with horizontal sides of the boundary Ω0 causes no problems). For sake of presentation, since this case does not 
affect the assumptions on the solvability of the interior transmission problem (in 𝐻2(𝐷) with periodic conditions on 𝜕𝐷 ∩ 𝜕Θ), we 
omitting it in our discussion. In the sequel we make the following assumption.

Assumption 2. 𝜕𝐷 ∩ 𝜕Ω0 = ∅, and the refractive index 𝑛 and the wave number 𝑘 > 0 are such that (15) has a unique solution.

In particular, if Re (𝑛 − 1) > 0 or −1 < Re (𝑛 − 1) < 0 uniformly in a neighborhood of 𝜕𝐷 inside 𝐷 the interior transmission problem 
(15) satisfies the Fredholm alternative, and the set of real standard transmission eigenvalues is discrete (possibly empty) without 
interior accumulation points. Thus Assumption 2 holds as long as 𝑘 > 0 is not a transmission eigenvalue.
The next three propositions proven in [17] summarize the main properties of the operators  and G in relation to the operator N
which is available from the measurements.

Proposition 1 (Lemma 3.3 in [17]). The operator  ∶ 𝓁2(ℤ2) →𝐿2(𝐷) is compact and injective. The closure of the range of  in 𝐿2(𝐷), 
denoted by 𝐻inc(𝐷), is given by

𝐻inc(𝐷) ∶= {𝑣 ∈𝐿2(𝐷) ∶ Δ𝑣+ 𝑘2𝑣 = 0 in 𝐷}. (16)
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Let us denote by Φ̂(⋅;𝒛) ∶= {Φ̂(𝓵;𝒛)}𝓵∈ℤ2 for 𝒛 ∈ Θℎ the Rayleigh sequences of Φ(1, 𝒛) given by (8) in the special case when 𝑛𝑝 ≡ 1
(i.e. corresponding to the free space), whose entries are given by

Φ̂(𝓵;𝒛) ∶= i
2𝑀1𝐿1𝑀2𝐿2𝛽#(𝓵)

𝐞−i(𝜶#(𝓵)⋅𝒛−𝛽#(𝓵)|𝑧3−ℎ|), 𝒛 = (𝒛,𝑧3). (17)

Proposition 2 (Theorem 3.5 in [17]). Under Assumptions 1 and 2 the operator G ∶𝐻inc(𝐷) → 𝓁2(ℤ2) defined by (13) is injective with 
dense range. Moreover Φ̂(⋅;𝒛) belongs to (G) if and only if 𝒛 ∈𝐷.

Finally we introduce the solution operator T ∶𝐿2(𝐷) →𝐿2(𝐷) given by

T𝑓 ∶= 𝑘2(𝑛− 1)(𝑓 +𝑤|𝐷) (18)
with 𝑤 being the solution of (7). By construction we have the following relation

G𝑓 =∗T𝑓

which leads to the following symmetric factorization of N

N=∗ T, (19)
This symmetric factorization applied to an appropriate operator given in terms of N allows us to characterize 𝐷 in terms of the 
scattering data. To this end, let us define

N♯ ∶= |Re (N)|+ |Im (N)| (20)
where Re (N) ∶= 1

2 (N +N∗), Im (N) ∶= 1
2i (N−N∗), and N∗ ∶ 𝓁2(ℤ2) → 𝓁2(ℤ2) denotes the adjoint of N ∶ 𝓁2(ℤ2) → 𝓁2(ℤ2). Similarly, 

letting T♯ ∶= |Re (T)| + |Im (T)| we have the following result:

Proposition 3 (Theorem 4.2 in [17]). Under Assumptions 1 and 2 we have that

N♯ =∗ T♯, (21)
where T♯ ∶𝐿2(𝐷) →𝐿2(𝐷) is self-adjoint and coercive on 𝐻inc(𝐷). Moreover, 𝒛∈𝐷 if and only if Φ̂(⋅;𝒛) ∈ 

(
(N♯)1∕2

).

Proposition 3 provides a mathematically rigorous criteria to determine 𝐷, which includes the support of periodic inhomogeneities 
in the healthy bi-periodic layer together with the defective region, from the data operator N. In particular that Picard series for the 
range of N♯ converges if and only if the sampling point 𝒛 is in 𝐷. However, for complicated periodic structures and relatively small 
defects or defects with peculiar location such as 𝜔 ⊂𝐷𝑝, reconstructing 𝐷 is unsatisfactory. Our aim is to design an indicator function 
of the set 𝜔 without knowing or recovering 𝐷𝑝 in the same spirit as the criterion in Proposition 3. To achieve this, the idea of using 
the data (near field) operator corresponding to one Floquet-Bloch mode and perform the same type of analysis to it as for 𝑁 was first 
introduced in [25]. This operator plays the role of the data operator corresponding to unperturbed background used in the sampling 
method with differential measurements in [2]. The main difference here is that this operator is computationally extracted from the 
measurement operator N without extra measurements. Indeed for a fixed 𝒒 ∈ℤ2

𝑀 we consider only 𝒒 +𝓵𝑴 Rayleigh coefficients of 
scattered waves 𝑢̂𝑠(𝒒 +𝓵𝑴 ; 𝒒 + 𝒋𝑴) generated by incident waves 𝑢𝑖(⋅; 𝒒 + 𝒋𝑴).

Thus, single Floquet-Bloch mode data operator: 𝑁𝑞 ∶ 𝓁2(ℤ2) → 𝓁2(ℤ2) is defined by
{
N𝑞(𝒂)

}
𝓵∈ℤ2 =

∑

𝒋∈ℤ2
𝒂(𝒋)𝑢𝑠(𝒒 +𝓵𝑴 ;𝒒 + 𝒋𝑴), for 𝒂 = {𝒂(𝒋)}𝒋∈ℤ2 . (22)

The operators N𝑞 and N are related through the projection operator I𝑞 ∶ 𝓁2(ℤ2) → 𝓁2(ℤ2) given by

(I𝑞𝒂)(𝓵) =
{

𝒂(𝒋), if 𝓵 = 𝒒 + 𝒋𝑴

0, else.
(23)

with its adjoint I∗𝑞 ∶ 𝓁2(ℤ2) → 𝓁2(ℤ2) given by (I∗𝑞𝑏)(𝒋) = 𝑏(𝒒 + 𝒋𝑴).
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(In the figure the Rayleigh coefficients that define N𝑞 are indicated by red squares).

Hence we have

N𝑞 𝒂 = I∗𝑞 NI𝑞 𝒂. (24)

From physical point of view, N𝑞 is associated with 𝜶𝒒 -quasi-periodic fields with period 𝑳, where 𝜶𝒒 = 2𝜋
𝑴𝑳𝒒, since the sequence 

N𝑞 𝒂 corresponds to the Fourier coefficients of 𝜶𝒒 -quasi-periodic component of the scattered field. Recall that a function 𝑢 is called 
𝜶𝒒 -quasi-periodic fields with period 𝑳 = (𝐿1, 𝐿2) if

𝑢(𝒙+ 𝒋𝑳,𝑥3) = 𝐞𝑖𝜶𝒒 ⋅(𝒋𝑳)𝑢(𝒙,𝑥3), for all 𝒋 ∈ℤ2.

To understand the operator 𝑁𝑞 we need the 𝜶𝒒 -quasi-periodic fundamental solution Φ𝑞(⋅) that satisfies

ΔΦ𝑞(⋅− 𝒛) + 𝑘2Φ𝑞(⋅− 𝒛) = −𝛿𝒛 inΩ0 (25)
for 𝒛 ∈ℝ𝑑 . Its Rayleigh coefficients Φ̂𝑞(⋅;𝒛) of Φ𝑞(⋅− 𝒛) are given by

Φ̂𝑞(𝒋;𝒛) =
{ i

2𝐿1𝐿2𝛽#(𝒒+𝑴 𝓵) 𝐞
−i(𝜶#(𝒒+𝑴 𝓵)⋅𝒛−𝛽#(𝒒+𝑴 𝓵)|𝑧3∓ℎ|) if 𝒋 = 𝒒 +𝑴𝓵, 𝓵 ∈ℤ2,

0 if 𝒋 ≠ 𝒒 +𝑴𝓵, 𝓵 ∈ℤ2.
(26)

Similarly to the Herglotz operator , the single Floquet-Bloch mode Herglotz operator 𝑞 ∶ 𝓁2(ℤ2) →𝐿2(𝐷) is defined by

𝑞𝒂 ∶= I𝑞𝒂 =
∑
𝒋
𝒂(𝒋)𝑢𝑖(⋅;𝒒 + 𝒋𝑴)|𝐷, (27)

where we note that 𝑞𝒂 restricted to 𝐷𝑝 is also 𝜶𝒒 -quasi-periodic function with period 𝑳 (see Remark 3 if missing (parts of) 
components are present). Note that (𝑞) is characterized in Proposition 4. Then the factorization (19) along with (24) immediately 
implies

N𝑞 =∗
𝑞 T𝑞 , (28)

where T is defined by (18). The role of G given by (13) with respect to N𝑞 is now played by G𝑞 ∶(𝑞)→ 𝓁2(ℤ2) by

G𝑞 =∗
𝑞T|(𝑞 )

. (29)
Observing that

𝜑(𝒋;𝒙) ∶= 𝑒i𝜶#(𝒋)⋅𝒙 = 𝑒
2𝜋
𝑀𝐿 𝒋⋅𝒙, 𝒋 ∈ℤ

is a Fourier basic of 𝑴𝑳 periodic function in 𝐿2(Ω𝑀 ), we have that any 𝑤 ∈𝐿2(Ω𝑀 ) which is 𝑴𝑳 periodic, has the expansion

𝑤(𝒙) =
∑
𝒋∈ℤ

𝑤̂(𝒋,𝑥3)𝜑(𝒋;𝒙), where 𝑤̂(𝒋,𝑥3) ∶=
1

𝑀1𝐿1𝑀2𝐿2 ∫
Ω𝑀

𝑤(𝒙)𝜑(𝒋;𝒙) d𝒙 , (30)

(here the line over 𝜑 denotes the conjugation whereas 𝒙 = (𝑥1, 𝑥2)). Splitting 𝒋 by module 𝑴 component by component (i.e. splitting 
𝑗𝓁 by module 𝑀𝓁 , 𝓁 = 1, 2) we can arrange the expansion of 𝑤 as

𝑤(𝒙) =
∑

𝒒∈ℤ2
𝑀

∑

𝓵∈ℤ2
𝑤̂(𝒒 +𝑴𝓵,𝑥3)𝜑(𝒒 +𝑴𝓵;𝒙), (31)

where 𝜑(𝒒 +𝑴𝓵; 𝒙) is 𝜶𝒒 -quasi-periodic with period 𝑳. We also have that

𝑤𝑞 ∶=
∑

𝓵∈ℤ2
𝑤̂(𝒒 +𝑴𝓵,𝑥3)𝜑(𝒒 +𝑴𝓵;𝒙)

is 𝜶𝒒 -quasi-periodic with period 𝑳. Thus any 𝑴𝑳-periodic function 𝑤 ∈𝐿2(Ω𝑀 ) can be decomposed



Journal of Computational Physics 501 (2024) 112773

9

F. Cakoni, H. Haddar and T.-P. Nguyen

𝑤 =
∑

𝒒∈ℤ2
𝑀

𝑤𝑞 (32)

where 𝑤𝑞 is 𝜶𝒒 -quasi-periodic with period 𝑳. Moreover, by the orthogonality of the Fourier basis {𝜑(𝒋; ⋅)}𝒋∈ℤ, we have that

𝑤𝑞(𝒋) = 0 if 𝒋 ≠ 𝒒 +𝑴𝓵, 𝓵 ∈ℤ2 and 𝑤̂(𝒒 +𝑴𝓵) =𝑤𝑞(𝒒 +𝑴𝓵) (33)
where 𝑤𝑞(𝒋) the Rayleigh sequence of 𝑤𝑞 defined in (6). From the definition of G𝑞 , we see that G𝑞(𝑓 ) is the Rayleigh subsequence 
of 𝑤̂(𝒋) corresponding to the indices 𝒋 = 𝒒 +𝑴𝓵, 𝓵 ∈ℤ2, where 𝑤 is solution of (7).
The above discussion is helpful to proving the following properties for 𝑞 and G𝑞 that are the counterpart results to Proposition 1
and Proposition 2 needed to analyze the range of the operator N𝑞 .

Proposition 4. The operator 𝑞 ∶ 𝓁2(ℤ2) →𝐿2(𝐷) is injective. Furthermore the closure of its range is given by (𝑞) =𝐻
𝑞
inc(𝐷) where

𝐻𝑞
inc(𝐷) ∶= {𝑣 ∈𝐿2(𝐷), Δ𝑣+ 𝑘2𝑣 = 0 in 𝐷 and 𝑣 is 𝜶𝒒-quasi-periodic in 𝐷𝑝}. (34)

We remind the reader that our discussion in the following heavily relies on Notation 1. Before we prove the preposition, we make 
some clarification in the remark below.

Remark 3. If 𝜔 contains missing (part of) components of 𝐷𝑝 in (34) we mean that 𝑣 has an extension as 𝜶𝒒 -quasi-period in 𝐷𝑝. More 
specifically this extension is defined as

𝐻𝑞
inc(𝐷) ∶=

⎧
⎪
⎨
⎪⎩

𝑣 ∈𝐿2(𝐷), Δ𝑣+ 𝑘2𝑣 = 0 in 𝐷 such that 𝑣̃(𝒙) ∈𝐿2(𝐷 ∪𝐷𝑝) defined by:

𝑣̃(𝒙) =
{
𝑣(𝒙), ∀ 𝒙 ∈𝐷
𝑣(𝒙+𝑳)𝑒−𝑖𝜶𝒒 ⋅𝑳, ∀ 𝒙 ∈𝐷𝑝 ⧵𝐷

is 𝜶𝒒-quasi-periodic in 𝐷𝑝
(35)

Note also that, in the case 𝐷𝑝 ⊆ 𝐷 (this is the case studied in [8]), i.e. there are no missing components, the definition in (34)
becomes

𝐻𝑞
inc(𝐷) ∶= {𝑣 ∈𝐿2(𝐷), Δ𝑣+ 𝑘2𝑣 = 0 in 𝐷 and 𝑣|𝐷𝑝 is 𝜶𝒒-quasi-periodic}. (36)

Proof of Proposition 4. Injectivity of 𝑞 follows from injectivity of the operators  and I𝑞 . Hence it suffices to show that ∗
𝑞 is 

injective in 𝐻𝑞
inc(𝐷). The case when 𝜔 ⊂𝐷 corresponds to Lemma 3.1 in [8]. We sketch here this proof to confirm that it works also 

in the case when 𝜔 ⊄𝐷. In particular, 𝜔 is considered to be the entire component  or a part of the component . To this end, let 
𝜑 ∈𝐻𝑞

inc(𝐷) and assume ∗
𝑞 (𝜑) = 0. Then we define

𝑢(𝒙) ∶= 1
𝑀1𝑀2 ∫

𝐷

Φ𝑞(𝒙− 𝒚)𝜑(𝒚) d𝒚 .

where Φ𝑞 has the Rayleigh coefficients given by (26). By the definition of 𝑢 and using (26) we see that the Rayleigh coefficients of 
𝑢 are given by 𝑢̂(𝒋) = 0 for all 𝒋 ≠ 𝒒 +𝑴𝓵 and 𝑢̂(𝒒 +𝑴𝓵) = (∗(𝜑)) (𝒒 +𝑴𝓵) = (∗

𝑞 (𝜑))(𝓵) = 0. Therefore 𝑢 has all zero Rayleigh 
coefficients, which implies that 𝑢 = 0 for 𝑥3 > ℎ and 𝑥3 < ℎ. We now observe that for all 𝒚 ∈ 𝐷, ΔΦ𝑞(⋅; 𝒚) + 𝑘2Φ𝑞(⋅; 𝒚) = 0 in the 
complement of 𝐷̂𝑝. This implies that

Δ𝑢+ 𝑘2𝑢 = 0 in ℝ3 ⧵ 𝐷̂𝑝.

Using a unique continuation argument we infer that 𝑢 = 0 in Ω𝑀 ⧵ 𝐷̂𝑝. Therefore, 𝑢 ∈𝐻2
0 (𝐷̂𝑝) by the regularity of volume potentials. 

We remark that 𝜔 may include components that are part of  but are missing in 𝐷. For configurations where this does not happen, 
we can proceed exactly in the same way as [8, pages 11-12 in the proof fo Lemma 3.1]. For this reason, here we focus on the case 
where the defect occupies a region in  that is missing (or partially missing) in 𝐷. Specifically in this case, 𝜔 =𝐷𝑝 ⧵𝐷, and 𝑛 = 1 in 
𝜔. Therefore 𝐷̂𝑝 =𝐷𝑝 and 𝐷 ∩𝜔 = ∅. We then obtain 𝑢 ∈𝐻2

0 (𝐷𝑝), and it rewrite it as

𝑢(𝒙) = 1
𝑀1𝑀2 ∫

𝐷𝑝

Φ𝑞(𝒙− 𝒚)𝜑(𝒚) d𝒚 − 1
𝑀1𝑀2 ∫

𝜔

Φ𝑞(𝒙− 𝒚)𝜑(𝒚) d𝒚 ,

where 𝜑 is 𝜶𝒒 -quasi-periodic in 𝐷𝑝. From the definition of 𝑢(𝒙), we first observe that 𝑢(𝒙) is 𝜶𝒒 -quasi-periodic. Indeed

𝑢(𝒙+𝒎𝑳) ∶= 1
𝑀1𝑀2 ∫

𝐷

Φ𝑞(𝒙+𝒎𝑳− 𝒚)𝜑(𝒚) d𝒚

= 𝑒𝑖𝜶𝒒 ⋅𝒎𝑳 1
𝑀1𝑀2 ∫

𝐷

Φ𝑞(𝒙− 𝒚)𝜑(𝒚) d𝒚 = 𝑒𝑖𝜶𝒒 ⋅𝒎𝑳𝑢(𝒙),
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for all 𝒎 ∈ℤ2
𝑀 . We now consider 𝒙 ∈𝐷𝑝 ∩Ω0. By the 𝜶𝒒 -quasi-periodicity of Φ𝑞 and 𝜑 with period 𝑳, we have

1
𝑀1𝑀2 ∫

𝐷𝑝

Φ𝑞(𝒙− 𝒚)𝜑(𝒚) d𝒚 = ∫
𝐷𝑝∩Ω0

Φ𝑞(𝒙− 𝒚)𝜑(𝒚) d𝒚 ,

and hence

𝑢(𝒙) = ∫
𝐷𝑝∩Ω0

Φ𝑞(𝒙− 𝒚)𝜑(𝒚) d𝒚 − 1
𝑀1𝑀2 ∫

𝜔

Φ𝑞(𝒙− 𝒚)𝜑(𝒚) d𝒚

= ∫
𝐷̂𝑝∩Ω0

Φ𝑞(𝒙− 𝒚)𝜑(𝒚) d𝒚 +
𝑀1𝑀2 − 1
𝑀1𝑀2 ∫

𝜔

Φ𝑞(𝒙− 𝒚)𝜑(𝒚) d𝒚 , ∀𝒙 ∈𝐷𝑝 ∩Ω0.

Next, we define 𝜑̃(𝒙) for all 𝒙 ∈𝐷𝑝 ∩Ω0 by

𝜑̃(𝒙) =
⎧
⎪
⎨
⎪⎩

𝜑(𝒙), ∀ 𝒙 ∈ 𝐷̂𝑝 ∩Ω0

𝑀1𝑀2−1
𝑀1𝑀2

𝜑(𝒙), ∀ 𝒙 ∈ 𝜔

we have

Δ𝑢+ 𝑘2𝑢 = −𝜑̃(𝒙), ∀𝒙 ∈𝐷𝑝 ∩Ω0.

Evidently, extending 𝜑̃ as 𝜶𝒒 -quasi-periodic to 𝐷𝑝 we have

Δ𝑢+ 𝑘2𝑢 = −𝜑̃(𝒙), ∀𝒙 ∈𝐷𝑝.

Furthermore, linearity of the Laplace operator and the fact that 𝜑(𝒙) satisfies equation Δ𝜑 + 𝑘2𝜑 = 0 in 𝐷𝑝 implies that

Δ𝜑̃+ 𝑘2𝜑̃ = 0, ∀ 𝒙 ∈𝐷𝑝. (37)
Since 𝑢 ∈𝐻2

0 (𝐷𝑝) we then have

‖𝜑̃‖2𝐿2(𝐷𝑝)
= −∫

𝐷𝑝

(Δ𝑢+ 𝑘2𝑢)𝜑̃ = 0,

which implies 𝜑̃ = 0 in 𝐷𝑝. In particular, 𝜑̃= 0 in 𝐷𝑝 ∩Ω0. If 𝑀1𝑀2 = 1, then the definition of 𝜑̃ implies 𝜑 = 0 in 𝐷̂𝑝 ∩Ω =𝐷, which 
ends the proof. Otherwise, when 𝑀 is such that 𝑀1𝑀2 ≥ 2 we have 𝜑 = 0 in 𝐷𝑝 ∩Ω0, and therefore by the quasi-periodicity 𝜑 = 0
in 𝐷𝑝 ⊃𝐷. This proves the injectivity of (±)∗ on 𝐻𝑞

inc(𝐷) and hence proves the Lemma. □

In the case of missing component, we assume that 𝑓 ∈𝐻𝑞
inc(𝐷) then 𝑓 (defined by the same way as 𝑣̃ in (35)) is 𝜶𝒒 -quasi-periodic in 

𝐷𝑝. Furthermore, since in this case, 𝑛 = 1 in 𝜔, solution 𝑤 to equation (7) associated with data 𝑓 satisfy

Δ𝑤+ 𝑘2𝑛𝑤 = 𝑘2(1− 𝑛)𝑓 = 𝑘2(1− 𝑛𝑝)𝑓 + 𝑘2(𝑛𝑝 − 𝑛)𝑓 . (38)
Using decomposition (32) for the solution 𝑤 of (7) along with the facts that 𝑛𝑝 is periodic, 𝑓 is 𝜶𝒒 -quasi-periodic and that 𝑛 − 𝑛𝑝 is 
compactly supported in one period 𝜔 ⊂Ω0, then (7) in terms of the coefficients 𝑤𝑞 in (32) for this 𝑤 takes the form

Δ𝑤𝑞 + 𝑘2𝑛𝑝𝑤𝑞 = 𝑘2(𝑛𝑝 − 𝑛)𝑤+ 𝑘2(1− 𝑛)𝑓 in Ω0. (39)
However, since 𝑓 = 𝑓 in the support of 𝑛 − 1, (39) becomes

Δ𝑤𝑞 + 𝑘2𝑛𝑝𝑤𝑞 = 𝑘2(𝑛𝑝 − 𝑛)𝑤+ 𝑘2(1− 𝑛)𝑓 in Ω0. (40)
Therefore, operator G𝑞 ∶(𝑞) =𝐻

𝑞
inc(𝐷) → 𝓁2(ℤ2) can be equivalently defined by

G𝑞(𝑓 ) ∶= I∗𝑞{𝑤𝑞(𝓵)}𝓵∈ℤ2 , (41)
where 𝑤𝑞 solves (40), 𝑤 is solution to (7), and {𝑤𝑞(𝓵)}𝓵∈ℤ2 is the Rayleigh sequence of 𝑤𝑞 .

We need to introduce one more interior transmission problem that is related to the characterization of the range of G𝑞 .
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Definition 1. Given (𝜑, 𝜓) ∈𝐻3∕2(𝜕Λ) ×𝐻1∕2(𝜕Λ), find (𝑢, 𝑓 ) ∈𝐿2(Λ) ×𝐿2(Λ) such that 𝑢 − 𝑓 ∈𝐻2(Λ) satisfying
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

Δ𝑢+ 𝑘2𝑛𝑢 = 𝑘2(𝑛𝑝 − 𝑛)̃𝑘(𝑓 ) in Λ,

Δ𝑓 + 𝑘2𝑓 = 0 in Λ,

𝑢− 𝑓 = 𝜑 on 𝜕Λ,

𝜕(𝑢− 𝑓 )∕𝜕𝜈 = 𝜓 on 𝜕Λ,

(42)

where

̃𝑘 ∶𝐿2(Λ)→𝐿2(Λ) ∶

𝑓 ↦ −∫
Λ

𝑘2(1− 𝑛𝑝)𝑓 (𝒚)
( ∑

𝟎≠𝒎∈ℤ2
𝑀

𝑒i𝜶𝒒 ⋅𝒎𝑳Φ(𝑛𝑝;𝒙−𝒎𝑳− 𝒚)
)
d𝒚 , (43)

Φ(𝑛𝑝; ⋅) is the 𝑴𝑳-periodic fundamental solution given by (8) and 𝜈 denotes the unit normal on 𝜕Λ outward to Λ.

This problem is first introduced in [17] and we refer the reader to this paper for the analysis of its solvability. We here make the 
following assumption on its solvability.

Assumption 3. The refractive index 𝑛 and 𝑘 > 0 are such that the interior transmission problem in Definition 1 has a unique solution.

Theorem 1. Suppose that Assumptions 1, 2, 3 hold, and Assumption 2 holds in addition when (𝑛, 𝐷) is replaced by (𝑛𝑝, 𝐷𝑝). Then the 
operator G𝑞 ∶𝐻𝑞

inc(𝐷) → 𝓁2(ℤ2) is injective with dense range.

Proof. As in the previous proof, we only consider the case where the defect is constituted by components in 𝐷𝑝 that are missing in 
𝐷, i.e. 𝜔 ⊆  and 𝜔 ∩𝐷 = ∅. The other cases can be treated as in [8, Theorem 3.2]. Assume that 𝑓 ∈𝐻𝑞

inc(𝐷) such that G𝑞(𝑓 ) = 0
and 𝑓 ∈𝐿2(𝐷𝑝) is an extension of 𝑓 given in (35). Let 𝑤 be solution of (7) with data 𝑓 . We have that

G𝑞(𝑓 ) ∶= I∗𝑞{𝑤𝑞(𝓵)}𝓵∈ℤ2 ,

where and 𝑤𝑞 is solution to

Δ𝑤𝑞 + 𝑘2𝑛𝑝𝑤𝑞 = 𝑘2(𝑛𝑝 − 𝑛)𝑤+ 𝑘2(1− 𝑛)𝑓 in Ω0 (44)
Note that Δ𝑤𝑞 + 𝑘2𝑤𝑞 = 0 in Ω𝑀 ⧵𝐷𝑝. Using a similar unique continuation argument as in the beginning of proof of Proposition 4, 
we deduce that

𝑤𝑞 = 0 in Ω𝑀 ⧵𝐷𝑝.

In other words, 𝑤𝑞 = 0 outside 𝐷𝑝. From now to the end of the proof, we consider only the period Ω0. Since Supp(𝑛 − 𝑛𝑝) ∩ Supp(1 −
𝑛) = 𝜔 ∩𝐷 = ∅, and 𝑛 = 𝑛𝑝 in 𝐷, (44) can be split into two equations

Δ𝑤𝑞 + 𝑘2𝑛𝑝𝑤𝑞 = 𝑘2(𝑛𝑝 − 1)𝑤 in 𝜔, (45)
where 𝑤 ∈𝐻1

loc(Θ) is solution to (7) and

Δ𝑤𝑞 + 𝑘2𝑛𝑝𝑤𝑞 = 𝑘2(1− 𝑛𝑝)𝑓 in Ω0 ∩𝐷. (46)
Observe that 𝑤 satisfies Δ𝑤 + 𝑘2𝑤 = 0 in 𝜔. Therefore, from (45) (𝑤𝑞 , −𝑤) ∈𝐻2

0 (𝜔) ×𝐿
2(𝜔) and satisfies

{
Δ𝑤𝑞 + 𝑘2𝑛𝑝𝑤𝑞 = 𝑘2(𝑛𝑝 − 1)𝑤 in 𝜔,

Δ𝑤+ 𝑘2𝑤 = 0 in 𝜔.
(47)

Assumption 2 with (𝑛, 𝐷) replaced by (𝑛𝑝, 𝐷𝑝) implies that (47) has only the trivial solution and therefore

𝑤𝑞 = −𝑤 = 0 in 𝜔.

We again see that, in the domain Ω0 ∩𝐷, (𝑤𝑝, 𝑓 ) ∈𝐻2
0 (Ω0 ∩𝐷) ×𝐿2(Ω0 ∩𝐷) and satisfies

{
Δ𝑤𝑞 + 𝑘2𝑛𝑝𝑤𝑞 = 𝑘2(1− 𝑛𝑝)𝑓 in Ω0 ∩𝐷,

Δ𝑓 + 𝑘2𝑓 = 0 in Ω0 ∩𝐷.
(48)

Assumption 2 with (𝑛, 𝐷) replaced by (𝑛𝑝, 𝐷𝑝) again implies that (48) has only the trivial solution, and therefore
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𝑤𝑞 = 𝑓 = 0 in Ω0 ∩𝐷.

This proves the lemma. □

Finally we can prove exactly in the same way as in the proof of [8, Theorem 3.5] the following range test related to the operator G𝑞
which plays an important role in the design of our imaging method.

Theorem 2. Suppose that Assumptions 1, 2 and 3 hold. Then, I∗𝑞Φ̂𝑞(⋅;𝒛) ∈(G𝑞) if and only if 𝒛 ∈ 𝐷̂𝑝.

We now have all the ingredients to arrive at our imaging method in the next section.

3. A differential imaging algorithm

We now apply theoretical results of Section 2 to design an algorithm that provides us with an indicator function of the support of 
the defect 𝜔 without reconstructing 𝐷𝑝 or computing the Green’s function of the periodic media. Such an indicator function is based 
on the analysis of the range of operators 𝑁 and 𝑁𝑞 in relation to interior transmission problems discussed in Section 2. Roughly 
speaking we can construct three appropriate sequences 𝒂𝜶,𝒛, 𝒂𝜶,𝒛𝒒 and 𝒂̃𝜶,𝒛𝒒 (to become precise latter), as nearby solutions to

‖𝑁𝒂𝜶,𝒛 − Φ̂(⋅;𝒛)‖𝓁2 ≤ 𝛼, ‖𝑁𝒂𝜶,𝒛𝒒 − Φ̂𝑞(⋅;𝒛)‖𝓁2 ≤ 𝛼, ‖𝑁𝑞 𝒂̃𝜶,𝒛𝒒 − I∗𝑞Φ̂𝑞(⋅;𝒛)‖𝓁2 ≤ 𝛼 (49)

as 𝛼→ 0, where Φ̂(⋅;𝒛) are the Rayleigh coefficients of Φ(1, 𝒛) (i.e. Φ(𝑛𝑝; 𝒛) defined by (8) with 𝑛𝑝 = 1) given by (17), and Φ̂𝑞(⋅;𝒛)
are the Rayleigh coefficients of Φ𝑞(⋅− 𝒛) given by (26). Then we show that these nearby solutions satisfy:

• 𝒛 ∈𝐷 if and only if lim
𝛼→0

⟨
N♯𝒂𝜶,𝒛,𝒂𝜶,𝒛

⟩
<∞.

The domain 𝐷 = Supp(𝑛− 1)

• 𝒛 ∈𝐷𝑝 ⧵𝜔𝑚𝑖𝑠𝑝 if and only if lim
𝛼→0

⟨
N♯𝒂

𝜶,𝒛
𝒒 ,𝒂𝜶,𝒛𝒒

⟩
<∞.

The domain 𝐷𝑝 ⧵𝜔𝑚𝑖𝑠𝑝

• 𝒛 ∈ 𝐷̂𝑝 if and only if lim𝛼→0

⟨
N𝑞,♯𝒂̃

𝜶,𝒛
𝒒 , 𝒂̃𝜶,𝒛𝒒

⟩
<∞.

The domain 𝐷̂𝑝 ∶=
⋃

𝑚∈ℤ2
𝑀

𝐷̂ + 𝜈𝑚

An appropriate combination of these three indicator functions yield a visualization of the support of local perturbation. In the 
following we introduce and mathematically justify the algorithm.
Next we show rigorously how to obtain the nearby solutions with the behavior as in (49). To this end, let N♯ be defined by (20) and 
N𝑞,♯ ∶= 𝐼∗𝑞N♯𝐼𝑞 . Then for given 𝝓 and 𝒂 in 𝓁2(ℤ2) we define the functionals

𝐽𝛼(𝝓,𝒂) ∶= 𝛼
⟨
N♯𝒂,𝒂

⟩
+ ‖N𝒂−𝝓‖2,

𝐽𝛼,𝑞(𝝓,𝒂) ∶= 𝛼
⟨
N𝑞,♯𝒂,𝒂

⟩
+ ‖N𝑞𝒂−𝝓‖2,

(50)

here ⟨⋅, ⟩ denotes the inner product in 𝓁2(ℤ2).
Let 𝒂𝜶,𝒛, 𝒂𝜶,𝒛𝒒 and 𝒂̃𝜶,𝒛𝒒 in 𝓁(ℤ2) satisfy (i.e. minimizing sequences)

𝐽𝛼(Φ̂(⋅;𝒛),𝒂𝜶,𝒛) ≤ inf
𝒂∈𝓁2(ℤ2)

𝐽𝛼(Φ̂(⋅;𝒛),𝒂) + 𝑐(𝛼)

𝐽𝛼(Φ̂𝑞(⋅;𝒛),𝒂𝜶,𝒛𝒒 ) ≤ inf
𝒂∈𝓁2(ℤ2)

𝐽𝛼(Φ̂𝑞(⋅;𝒛),𝒂) + 𝑐(𝛼)

𝐽𝛼,𝑞(I∗𝑞Φ̂𝑞(⋅;𝒛), 𝒂̃𝜶,𝒛𝒒 ) ≤ inf
𝒂∈𝓁2(ℤ2)

𝐽𝛼,𝑞(I∗𝑞Φ̂𝑞(⋅;𝒛),𝒂) + 𝑐(𝛼)

(51)
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with 𝑐(𝛼)𝛼 → 0 as 𝛼→ 0. The standard analysis of the generalized linear sampling method (see e.g. [7, Section 2.2]) making use of the 
factorization of N♯ in Theorem 3 along with all the properties of the involved operators developed in Section 2 can be used to prove 
the lemma below.

Lemma 1. Under Assumptions 1, 2 3 the following results hod true:

(i) 𝒛 ∈𝐷 if and only if lim
𝛼→0

⟨
N♯𝒂𝜶,𝒛,𝒂𝜶,𝒛

⟩
<∞. Moreover, if 𝒛 ∈𝐷 then 𝒂𝜶,𝒛 → 𝑣𝑧 in 𝐿2(𝐷) where (𝑢𝑧, 𝑣𝑧) is the solution of problem 

(15) with 𝜑 =Φ(1; 𝑧) and 𝜓 = 𝜕Φ(1; 𝑧)∕𝜕𝜈 on 𝜕𝐷.
(ii) 𝒛 ∈ 𝐷𝑝 ⧵ 𝜔𝑚𝑖𝑠𝑝 if and only if lim

𝛼→0

⟨
N♯𝒂

𝜶,𝒛
𝒒 ,𝒂𝜶,𝒛𝒒

⟩
<∞. Moreover, if 𝒛 ∈ 𝐷𝑝 ⧵ 𝜔𝑚𝑖𝑠𝑝 then 𝒂𝜶,𝒛𝒒 → 𝑣𝑧 in 𝐿2(𝐷) where (𝑢𝑧, 𝑣𝑧) is the 

solution of problem (15) with 𝜑 =Φ𝑞(⋅− 𝒛) and 𝜓 = 𝜕Φ𝑞(⋅− 𝒛)∕𝜕𝜈 on 𝜕𝐷.
(iii) 𝒛 ∈ 𝐷̂𝑝 if and only if lim𝛼→0

⟨
N𝑞,♯𝒂̃

𝜶,𝒛
𝒒 , 𝒂̃𝜶,𝒛𝒒

⟩
<∞. Moreover, if 𝒛∈ 𝐷̂𝑝 then 𝑞 𝒂̃

𝜶,𝒛
𝒒 → ℎ𝑧 in 𝐿2(𝐷) where ℎ𝑧 is defined by

ℎ𝑧 =
{

−Φ𝑞(⋅− 𝒛) in Λ𝑝
𝑣𝑧 in 𝑐𝑝 if 𝒛 ∈𝑐𝑝

ℎ𝑧 =
{

𝑣𝑧 in Λ𝑝
−Φ𝑞(⋅− 𝒛) in 𝑐𝑝 if 𝒛 ∈Λ𝑝

(52)

where (𝑢𝑧, 𝑣𝑧) is the solution of problem (15) with 𝜑 = Φ𝑞(⋅− 𝒛) and 𝜓 = 𝜕Φ𝑞(⋅− 𝒛)∕𝜕𝜈 on 𝜕𝐷 and (𝑢̂𝑧, ̂𝑣𝑧) is 𝜶𝒒 -quasi-periodic 
extension of the solution (𝑢, 𝑓 ) of the interior transmission problem in Definition 1 with 𝜑 =Φ𝑞(⋅− 𝒛) and 𝜓 = 𝜕Φ𝑞(⋅− 𝒛)∕𝜕𝜈 on 𝜕Λ.

Here  ∶ 𝓁2(ℤ2) →𝐿2(𝐷) is defined by (11) and 𝑞 ∶ 𝓁2(ℤ2) →𝐿2(𝐷) is defined by (27).

Proof. For the proof of the items (𝑖) and (𝑖𝑖), we refer to Theorem 3.5 and Lemma 4.7 in [17]. The proof of items (𝑖𝑖𝑖) is a direct 
application of Theorem A.4 in [17] in combination with Theorem 2. □

We then consider the following imaging functional, that characterizes the defects and the defective components of the periodic 
background,

𝛼(𝒛) =
(
⟨
N♯𝒂𝜶,𝒛,𝒂𝜶,𝒛

⟩
(
1 +

⟨
N♯𝒂𝜶,𝒛,𝒂𝜶,𝒛

⟩

𝐷(𝒂𝜶,𝒛𝒒 , 𝒂̃𝜶,𝒛𝒒 )

))−1

(53)

where for 𝒂 and 𝒃 in 𝓁2(ℤ2),

𝐷(𝒂,𝒃) ∶=
⟨
N♯(𝒂− I𝑞𝒃), (𝒂− I𝑞𝒃)

⟩
.

Theorem 3. Under Assumptions 1, 2 and 3, we have that

𝒛 ∈𝐷 ⧵𝑐𝑝 if and only if lim
𝛼→0

𝛼(𝒛) > 0.

Thus we reconstruct the support of defects that do not intersect healthy components together with periodic copies of the components 
that intersect the defective region as illustrated below.

The domain 𝐷 ⧵𝑐𝑝

Proof. This theorem complements Theorem 5.2 in [8] where the configuration with 𝐷 ⧵𝑐𝑝 = Λ𝑝 was investigated only. Thus the 
same arguments as in the proof of Theorem 5.2 in [8] show that lim𝛼→0 𝛼(𝒛) = 0 for all 𝒛 ∉𝐷 and 𝒛 ∈𝑐𝑝. Therefore we only need 
to show that

lim
𝛼→0

𝛼(𝒛) > 0 for all 𝒛 ∈𝐷 ⧵𝑐𝑝.
Note that 𝐷⧵𝑐𝑝 ⊂Λ𝑝 (see the figure above and Fig. 3 for an illustration). By Lemma 1, factorization of N𝑞,♯ and identity N𝑞,♯ = 𝐼∗𝑞N♯𝐼𝑞
we obtain

(N♯I𝑞 𝒂̃𝜶,𝒛𝒒 , I𝑞 𝒂̃𝜶,𝒛𝒒 )→ (𝑇♯ℎ𝑧,ℎ𝑧) < +∞, 𝛼→ 0

where ℎ𝑧 ∈ 𝐿2(𝐷̂𝑝) is defined by (52). Let us split domain 𝐷 ⧵ 𝑐𝑝 into (𝐷 ⧵ 𝑐𝑝) ⧵ 𝐷𝑝 and (𝐷 ⧵ 𝑐𝑝) ∩ 𝐷𝑝, and treat each domain 
separately.
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Case 1: We assume that 𝒛 ∈ (𝐷 ⧵ 𝑐𝑝) ⧵𝐷𝑝 (parts of the defect that do not intersect healthy components of the periodic layer). By 
Lemma 1(𝑖𝑖) (N♯𝒂𝜶,𝒛𝒒 , 𝒂𝜶,𝒛𝒒 ) → +∞ as 𝛼→ 0. This implies,

𝐷(𝒂𝜶,𝒛𝒒 , 𝒂̃𝜶,𝒛𝒒 ) ≥ |||(N♯𝒂
𝜶,𝒛
𝒒 ,𝒂𝜶,𝒛𝒒 )− (N♯I𝑞 𝒂̃𝜶,𝒛𝒒 , I𝑞 𝒂̃𝜶,𝒛𝒒 )|||→ +∞.

We then conclude that lim𝛼→0 𝛼(𝒛) > 0.
Case 2: We assume that 𝒛 ∈ (𝐷 ⧵𝑐𝑝) ∩𝐷𝑝. The case (𝐷 ⧵𝑐𝑝) ∩𝐷𝑝 =𝑝 is treated in [8]. The case (𝐷 ⧵𝑐𝑝) ∩𝐷𝑝 ≠ 𝑝 corresponds 
to the case where 𝜔𝑚𝑖𝑠 ≠ ∅. In this domain 𝑛 = 1 and 𝑛𝑝 ≠ 1. If 𝒛 is not in 𝜔𝑚𝑖𝑠𝑝 (i.e. one of the periodic copies of 𝜔𝑚𝑖𝑠) then the same 
arguments as in [8] apply and show that 𝐷(𝒂𝜶,𝒛𝒒 , ̃𝒂𝜶,𝒛𝒒 ) remains bounded away from 0 as 𝛼→ 0. This is due to the fact that ℎ𝑧 ≠ 𝑣𝑧
where 𝑣𝑧 and ℎ𝑧 are defined in Lemma 1 (𝑖𝑖) and (𝑖𝑖𝑖), respectively. This implies lim𝛼→0 𝛼(𝒛) > 0. The case where 𝒛 ∈ 𝜔𝑚𝑖𝑠𝑝 ⧵ 𝜔𝑚𝑖𝑠

can be treated similarly to Case 1. By Lemma 1 (𝑖𝑖) and (𝑖𝑖𝑖), ⟨N♯𝒂𝜶,𝒛𝒒 ,𝒂𝜶,𝒛𝒒
⟩
→∞ while ⟨N♯𝒂𝜶,𝒛𝒒 ,𝒂𝜶,𝒛𝒒

⟩ remains bounded as 𝛼→ 0. 
Consequently 𝐷(𝒂𝜶,𝒛𝒒 , ̃𝒂𝜶,𝒛𝒒 ) →∞ as 𝛼→ 0. Lemma 1 (𝑖) indicates that ⟨N♯𝒂𝜶,𝒛,𝒂𝜶,𝒛

⟩ remains bounded as 𝛼→ 0. The last two items 
show that lim𝛼→0 𝛼(𝒛) > 0, which ends the proof of the theorem. □

3.1. Numerical studies

In this section we present some numerical examples using simulated data in ℝ3 showing viability of our imaging method. In 
our examples, the probing region is Ω𝑀 containing 𝑀1 ×𝑀2 periods including the defective cell. Data is generated by a family of 
incident plane waves as described in (4) with the indices 𝒋 = (𝑗1, 𝑗2) in the set

ℤ2
𝑖𝑛𝑐 ∶= {𝒋 = (𝑗1, 𝑗2)|𝒋 = 𝒒 +𝑴𝓵 with 𝓵 ∈

[
−𝑵𝑚𝑖𝑛,𝑵𝑚𝑎𝑥

]
}.

Here, 𝒒 ∈ℤ2
𝑀 is fixed and 𝑵𝑚𝑖𝑛, 𝑵𝑚𝑎𝑥 ∈ℤ2

+ are given. The scattered wave associated with each individual incident wave is computed 
numerically by implementing the Floquet-Bloch transform and volume integral method described in [18]. The collection of Rayleigh 
coefficients corresponding to 𝓁 ∈ ℤ2

𝑖𝑛𝑐 of the scattered wave associated with each individual incident wave form the data for the 
inverse problem. Thus, if 𝑁𝑖𝑛𝑐 denotes the number of incident waves, then the measurements 

{
𝑢𝑠(𝓵; 𝒋)

}
𝓵,𝒋∈ℤ2

𝑖𝑛𝑐
form a 𝑁𝑖𝑛𝑐 ×𝑁𝑖𝑛𝑐

matrix

N ∶=
[
𝑢𝑠(𝓵; 𝒋)

]
𝓵,𝒋∈ℤ2

𝑖𝑛𝑐
. (54)

Since in practice the measured data is always corrupted by noisy, we simulate the noise in our computed data. In particular, if 𝛿 > 0
is the noise level, the noisy near-field operator N𝛿 is computed by adding random noise to N, that is

N𝛿(𝒋,𝓵) ∶=N(𝒋,𝓵)
(
1 + 𝛿𝐴(𝒋,𝓵)

)
, ∀(𝒋,𝓵) ∈ℤ2

𝑖𝑛𝑐 ×ℤ2
𝑖𝑛𝑐 (55)

where 𝐴 = [𝐴(𝒋, 𝓵)]𝑁𝑖𝑛𝑐×𝑁𝑖𝑛𝑐 is a matrix of uniform complex random variables with real and imaginary parts in [−1, 1]2 . We define 
the functionals 𝐽𝛿𝛼 and 𝐽𝛿𝛼,𝑞 associated with the noisy data, by

𝐽𝛿𝛼 (𝝓,𝒂) ∶= 𝛼
(⟨

N𝛿♯𝒂,𝒂
⟩
+ 𝛿‖N𝛿♯‖‖𝒂‖2

)
+ ‖N𝛿𝒂−𝝓‖2,

𝐽𝛿𝛼,𝑞(𝝓,𝒂) ∶= 𝛼
(⟨

N𝛿♯ I𝑞𝒂, I𝑞𝒂
⟩
+ 𝛿‖N𝛿♯‖‖𝒂‖2

)
+ ‖N𝛿𝑞𝒂−𝝓‖2.

(56)

We then consider 𝒂𝜶,𝒛𝜹 , 𝒂𝜶,𝒛𝒒,𝜹 and 𝒂̃𝜶,𝒛𝒒,𝜹 in 𝓁2(ℤ2) as minimizing sequences of

𝐽𝛿𝛼 (Φ̂(⋅;𝒛),𝒂), 𝐽𝛿𝛼 (Φ̂𝑞(⋅;𝒛),𝒂), and 𝐽𝛿𝛼,𝑞(Φ̂𝑞(⋅;𝒛),𝒂), (57)
respectively. The noisy indicator function takes the form

𝛿𝛼 (𝒛) =
(
𝛿(𝒂𝜶,𝒛𝜹 )

(
1 +

𝛿(𝒂𝜶,𝒛𝜹 )
𝐷𝛿(𝒂𝜶,𝒛𝒒,𝜹 , 𝒂̃

𝜶,𝒛
𝒒,𝜹 )

))−1

, (58)

where for 𝒂 and 𝒃 in 𝓁2(ℤ2),

𝐷𝛿(𝒂,𝒃) ∶=
⟨
N𝛿♯ (𝒂− I𝑞𝒃), (𝒂− I𝑞𝒃)

⟩

and

𝛿(𝒂) ∶= ⟨
N𝛿♯𝒂,𝒂

⟩
+ 𝛿‖N𝛿♯‖‖𝒂‖2.

In order to speed up the inversion algorithm and adopt an automatic choice of the regularization parameter using the Morozov 
principle we choose to replace 

⟨
N𝛿♯𝒂,𝒂

⟩
with ‖N𝛿♯‖‖𝒂‖2. More specifically, the sequence 𝒂

𝜶,𝒛
𝜹 is computed as the minimizer of the 

functional
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Fig. 4. (a) exact geometry of the domain 𝐷 with a defect being a ball (see details in the description of Example 1), (b) a slice of 𝐷 in the 𝑦 direction passing through 
the center of the ball, (c) a 3D view of the reconstruction given by (60), (d) a slice view of the indicator function 𝛿𝛼 that corresponds to (b).

𝛼(1 + 𝛿)‖N𝛿♯‖‖𝒂‖2 + ‖N𝛿𝒂− Φ̂(⋅;𝒛)‖2, (59)

which can be viewed as the Tikhonov regularization of N𝛿𝒂 = Φ̂(⋅;𝒛) with regularization parameter 𝛼𝑎𝑝𝑝 ∶= 𝛼(1 + 𝛿)‖N𝛿♯‖. Associated 
with each sampling point 𝒛, the minimizer 𝒂𝜶,𝒛𝜹 of the functional given by (59) is 𝒂𝜶,𝒛𝜹 = [(N𝛿)∗N𝛿 + 𝛼𝑎𝑝𝑝𝐼]−1(N𝛿)∗Φ̂(⋅;𝒛), where the 
regularization parameter 𝛼𝑎𝑝𝑝 is determined using the generalized Morozov’s discrepancy parameter as proposed in [13], i.e., 𝛼𝑎𝑝𝑝
is such that ‖N𝛿𝒂𝜶,𝒛𝜹 − Φ̂(⋅;𝒛)‖ = 𝛿‖𝒂𝜶,𝒛𝜹 ‖. We observe that the results obtained using the indicator function (58) have qualitatively 
the same accuracy as those obtained by using the sequences associated with minimizing (56) using 𝛼 = 𝛼𝑎𝑝𝑝∕((1 + 𝛿)‖N𝛿♯‖). Similar 
procedure is applied to 𝒂𝜶,𝒛𝒒,𝜹 and 𝒂̃𝜶,𝒛𝒒,𝜹 .

In order to visualize a 3D approximation of 𝐷 ⧵𝑐𝑝 we plot the set of sampling points 𝒛 defined as
{𝒛 ∶ 𝛿𝛼 (𝒛) ≥ 𝜅max(𝛿𝛼 )} (60)

where 𝜅 is a tuning visualization parameter. We choose 𝜅 = 0.45 and keep it fixed for all examples below. The focus of the numer-
ical study is on testing the viability of the indicator function for different configurations of the defects (defects inside, outside or 
intersecting the periodic domain 𝐷𝑝). We therefore shall also keep the following parameters fixed:

𝑛𝑝 = 2, 𝑛 = 4, 𝑘 = 𝜋, 𝐿𝑥 =𝐿𝑦 = 2𝜋, 𝑴 = (3,2), 𝒒 = (1,1), 𝛿 = 5% (61)
and set the width of the periodic layer ℎ = 1.5𝜆, where 𝜆 ∶= 2𝜋∕𝑘 denotes the wavelength.

Example 1. In the first example, the periodic layer is made of two cubes in each period with edge length 0.6𝜆 and 0.5𝜆. In the period 
Ω0, these two cubes are centered at (0.6𝜆, −0.6𝜆, −0.3𝜆) and (−0.5𝜆, 0, 0), respectively. The local perturbation is a ball of the radius 
𝑟 = 0.3𝜆 non-intersecting with the periodic components (see Fig. 4(a) and 4(b) for a 3D plot and a slice in the 𝑦 direction through the 
center of the ball, respectively). The reconstruction of the defect using the indicator function 𝛿𝛼 is depicted in Fig. 4(c) for the 3D 
view given by (60) and in Fig. 4(d) for the slice view. They demonstrate the efficiency of our differential indicator function for this 
configuration of the defect.

Example 2. The periodic background in this example is the same in Example 1. The perturbation 𝜔 is a ball that intersects the 
smaller cube (see Figs. 5(a) and 5(b)). In this example 𝑛 = 4 in the part of the ball inside the cube and 𝑛 = 3 in the rest of the ball 
(see Fig. 5(b)). The 3D reconstruction using the indicator function (60) is displayed in Fig. 5(c) and Fig. 5(d) displays the indicator 
function at the slice plane. Theorem 3 indicates that the values of 𝛿𝛼 (𝒛) are positive for 𝒛 inside the perturbation and in the periodic 
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Fig. 5. (a) exact geometry of the domain 𝐷 with a defect being a ball that intersects the periodic domain 𝐷𝑝 (see details in the description of Example 2), (b) a slice 
of 𝐷 in the 𝑦 direction passing through the center of the ball, (c) a 3D view of the reconstruction given by (60), (d) a slice view of the indicator function 𝛿𝛼 that 
corresponds to (b).

copies of the background that intersects the perturbation. However, we do not have quantitative information about the values of 𝛼(𝒛) at each point in the probing region. A careful observation of iso-surfaces in the reconstructions presented in Fig. 5 suggests that 
the value of 𝐼(𝒛) at the points 𝑧 in the periodic copies of the part of the cube intersecting the defect is much smaller than the values at 
the points in the perturbed region. One can argue that this difference clearly distinguishes the true defect from the periodic artifacts. 
The presence of periodic copies of intersection subsets also indicates whether the defective region overlaps with components of the 
healthy periodic layer or not (compare to Example 1).

Example 3. In this example, we change the configuration of the periodic background which now includes two cubes and one ball 
in each period (see Fig. 6(a)) with refractive index 𝑛𝑏 = 2. We consider a local perturbation of the refractive index that changes the 
value of 𝑛𝑏 inside the ball in Ω0 (see Fig. 6(b)). We set 𝑛 = 4 in this defective component. According to the theoretical result in 
Theorem 3 the indicator function 𝛼(𝒛) should visualize periodic copies of this ball. This is what is observed in Figs. 6(c) and 6(d).
We also observe that the values of the indicator function are larger in the ball inside Ω0 which may also be used as an indicator for 
the location of the defect.

Example 4. We end our numerical investigations by showing three more numerical examples illustrating a case where a whole 
component of the periodic domain 𝐷𝑝 is missing (see Fig. 7), a case where only a part of a component of 𝐷𝑝 is missing (see Fig. 8), 
and a case where both scenarios are present (see Fig. 9).
The 3D reconstruction obtained in Fig. 7 confirms the result of our theory as we obtain periodic copies of the missing component 
except in Ω0.
In the case of a partially missing component presented in Fig. 8, the 3D reconstruction resembles the case of an entire component 
missing: only the missing part is repeated periodically except in Ω0. In the last case presented in Fig. 9, we have a partially missing 
component and an additional defect in the form of ball intersecting the component that has a missing part. This is indeed a compli-
cation over the previous case and the obtained reconstructions are compatible with what one would expect from the theory, i.e. the 
indicator function shows the defective component repeated periodically.
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Fig. 6. (a) exact geometry of the domain 𝐷 with a defect being a ball that coincides with one component of the periodic domain 𝐷𝑝 (see details in the description of 
Example 3), (b) a slice of 𝐷 in the 𝑦 direction passing through the center of the ball, (c) a 3D view of the reconstruction given by (60), (d) a slice view of the indicator 
function 𝛿𝛼 that corresponds to (b).

Fig. 7. This example illustrates the case of a defect consisting of a missing component of 𝐷𝑝 as shown in (a). (b) displays a 3D view of the reconstruction given by 
(60).
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Fig. 8. (a) exact geometry of the domain 𝐷 with a defect being partially missing component of the periodic domain 𝐷𝑝 , (b) a slice of 𝐷 in the 𝑦 direction passing 
through the middle of the defective component, (c) a 3D view of the reconstruction given by (60), (d) a slice view of the indicator function 𝛿𝛼 that corresponds to (b).

Fig. 9. (a) exact geometry of the domain 𝐷 with a defect being partially missing component of the periodic domain 𝐷𝑝 and a ball intersecting this defective component, 
(b) a slice of 𝐷 in the 𝑦 direction passing through the middle of the defective component, (c) a 3D view of the reconstruction given by (60), (d) a slice view of the 
indicator function 𝛿𝛼 that corresponds to (b).
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