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layer. The faulted area is represented by compactly supported perturbations with erroneous
material properties. Our method reconstructs the support of perturbations without knowing or
reconstructing the constitutive material parameters of healthy or faulty bi-period layer; only
the size of the period is needed. This approach falls under the class of non-iterative imaging
methods, known as the generalized linear sampling method with differential measurements, first
introduced in [2] and adapted to periodic layers in [25]. The advantage of applying differential
measurements to our inverse problem is that instead of comparing the measured data against
measurements due to healthy structures, one makes use of periodicity of the layer where the
data operator restricted to single Floquet-Bloch modes plays the role of the one corresponding
to healthy material. This leads to a computationally efficient and mathematically rigorous
reconstruction algorithm. We present numerical experiments that confirm the viability of the
approach for various configurations of defects.

1. Formulation of the problem

We consider nondestructive testing of an infinite bi-periodic penetrable layer in R? by means of acoustic waves. This is an im-
portant problem with growing interest since periodic structures are part of many fascinating modern technological designs with
applications in (bio)engineering and material sciences. In many sophisticated devises the periodic structure is complicated or dif-
ficult to model mathematically, hence evaluating its Green’s function, which is the fundamental tool of many imaging methods, is
computationally expensive or even impossible. On the other hand, when looking for faults in such complex media, the option of
reconstructing everything, i.e. both periodic structure and the defects, may not be viable. Here we propose an approach that recon-
structs the support of local anomalies without knowing explicitly or reconstructing the constitutive material properties of the periodic
layer, except for the size of the period. The support of local perturbations is visualized by means of its indicator function computable
from scattering data, leading to computationally efficient non-iterative imaging method. The connection between scattering data and
the support of local perturbations is made through a rigorous mathematical analysis of the scattering problem by the bi-periodic
layer with and without local perturbations.
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Fig. 1. Sketch of the geometry for the L-periodic problem. The healthy bi-periodic layer consists of a homogeneous layer occupying —h < x; < h with periodically
distributed inhomogeneities indicated by red balls (the three balls that are periodically repeated and their copies). Blue balls (the two balls remainder) indicate the
compactly supported perturbations  located in one period denoted by €.

To be more specific and set the notations, let x := (x;,x,,x3) € R?, and assume that the scattering media is a penetrable infinite
layer periodic in the x; and x, variables with period L, and L,, respectively. Given a 2-dimensional vector L = (L,, L,), we call
a function w defined in R3 L-periodic if w is periodic in x | and x, with periods L, and L,, respectively. With this notation, we
assume that the refractive index of the periodic layer n, € L*®(R3) is L-periodic such that Re (n,) >0 and Im(n,) > 0. Furthermore,
we assume that there exists an & > 0 such that n, =1 for |x3| > h, hence the support of (1, — 1) represents the bi-periodic layer of
width 2h. The scattering of a time harmonic incident field «' (to become precise later) is governed by

Au+kPnu=0 inR3,
@

u is L-periodic

where u :=u' +u® is the total field, u* is the scattered field and k > 0 is the wave number proportional to interrogating frequency.
Scattering of time-harmonic acoustic or electromagnetic waves by periodic structures such as gratings, inhomogeneous layers or
waveguides, is a research topic that has received enormous attention due to contemporary applications in material science. Among
vast literature in the topic, we refer the reader to [1,3-5,12,14,15,19-21,24,25,27] (the list is not exclusive by any means). For these
types of scattering problems, both the incident field and scatterer field are assumed to be periodic in the horizontal directions, but
the periods need not be the same. In such situations, one may multiply the fields by a quasi-periodicity-factor to restore overall
periodicity. This allows to pose the problem on the unit cell, where an application of well-known techniques from analysis such as
variational methods and analytic Fredholm theory [14], provides existence and uniqueness of the solution. For the purpose of this
study we will always assume that the scattering problem (1) is well-posed, and refer the reader to aforementioned references for
more details.

Our main interest is in the case when local perturbations are present inside the bi-periodic layer. We denote by w the support of
perturbations, such that @ is a compact set with connected complement R? \ &. We may assume without loss of generality (up to a
possible rearrangement of the cell), that w is located in one period (see Fig. 1). The refractive index of the bi-periodic layer together
with perturbations, which is no longer periodic function, is denoted by n € L*(R?), and it satisfies Re (1) > ng > 0, Im(n) > 0. Note
that w is the support of n — n,. The well-posedness of the scattering problem for the locally perturbed bi-periodic layer is handled by
considering it as rough layer due to loss of periodicity. For the analysis and numerical implementations of the scattering of waves by
rough penetrable layers or gratings we referee the reader to [11,9,10,22,25,26].

Our goal is to determine the support of the damaged region w by using the measured scattered fields outside the layer due to
appropriate incident fields. The challenging task however is to resolve w without an explicit knowledge of n, (which in practice can
have a complicated form) nor reconstructing it, but just using the fact that n, is L-periodic. This problem was first considered in
[25], where the GLSM with differential measurements introduced in [2] was modified to the current periodic configuration. In this
context, as opposed to [2], the response of the periodic background does not need to be measured. It is replaced by the extraction
of measurements associated with a single Floquet-Bloch mode to encode some differential behavior for an appropriately designed
indicator functions. This extraction requires information only on the period size of the background. The analysis in [25] was further
developed in [8] and [26], where numerical examples were also presented only for the 2-dimensional case. However, the imaging
method was justified under some restrictive assumptions on the location of local perturbations. In the current work, we remove
these restrictions and complete the justification of the imaging method for a general setting of local perturbations. In particular,
our analysis includes for the first time the case where components in some periodic cells are missing, or where the perturbation
is entirely inside a component. In addition, this paper presents numerical examples for local perturbations of a bi-periodic layer in
R3, which are much more challenging and closer to real applications. To achieve this, for technical reasons, we must replace the
infinite bi-periodic layer with M actual periods truncation (containing the defective period) for M = (M, M,) € N? sufficiently
large and then extend it as M L-periodic layer. As it is shown in [18], this truncation is equivalent to approximating the problem
in the Floquet-Bloch domain using uniform discretization of the Floquet-Bloch variable and a trapezoidal rule to approximate the
discretized solution. However, it is important to notice that this technical process of truncation and M L-periodic extension is needed
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only for the analysis of derivation of the indicator function of the set w, and is not involved in the computation of this indicator
function. We also remark that many available inversion methods (see e.g. [6] and [23]) do not require this technical assumption in
the analysis, but all of them rely on an explicit knowledge of the Green’s function of the periodic layered background, which is not
the case for our method. Although it is desirable to remove this technical step, one could see it as a trade-off for not using any a
priori information on n,, except for the fact that it L-periodic. Hence, from now on, the scattering by perturbed bi-periodic layer is
replaced by the following problem for the total field u :=u' + u*

Au+k*nu=0 inR3,
2

u is M L-periodic

where u' is the probing incident field and u* is the scattered field. Here M = (M, M,) € N? with the natural numbers M, and M,
sufficiently large, refers to the number of periods we consider in the x; and x, directions respectively. Thanks to M L-periodicity,
solving (2) is equivalent to solving it in the period

L, L, L,
0:= U [—7+m1L1,7+m1L1 7

L,
X |=—=+mL,,

+myL, | XR.
) nmy 2]

- 2
m=(m ,mz)EZM

Adapting the notation [a, b] :=[a,,b,] X [a,, b,] for any two generic vectors a and b in R2, we can rewrite ® equivalently as
0=[M;,M}| xR,

- M L M L M L M. L M,
where My i=| |- | L+ 2, |- 22| L+ 2], ME = [ |2 L+ 20| 22| o+ 2] and 23, = (m=0mymy €22, |- 22 |+

1<m, < l%J , ¢ =1,2}, with || denoting the floor function and Z the set of integers.

Note that in (2) we still call n the M L-periodic extension of n|g and without loss of generality assume that the defective period is
L L L, L, L, L,
Q :=[——,—]><R= -——. = | X|-=. = | xR 3
0 272 [ 272 ®
We now specify the incident wave u’ we will use in our algorithm. To this end, we consider down-to-up or up-to-down incident plane

waves of the form

uE(x, j) = %eiw(f}fﬂﬁ%i)xz, with x=(X,x;) ER*xR 4)
#

where for each mode j = (j;,j,) € z?
() = (32 ein ) €R2 and  Au()) i= VI =TI Im (5,7 20.

We remark that in terms of (17), considering these plane waves is formally equivalent to illuminating the media with periodic point
sources (see also [16]). In addition, the scattered field u° is outgoing which is expressed by imposing a radiation condition in the
form of Rayleigh expansions:

— ~+ . —
WX, X3) = Y pepn B (£)lEHEOVTHEN=1) x5 p,

- — (5)
MS(E,X3) — ZerZ us (f)el(a#(f)-x—ﬂ#(f)()@Jrh))’ v x5 < —h,
where the Rayleigh coefficients 1%(#) are given by
R — / u (X, hye @)% dx |
M, LM, L,
M; Mt
o 1 ez o ©)
B = — / ut (x, —h)e @)X gx
ML\ M,L,
[Mimi]

Recall that the [M M 2’] is a rectangle on x;x,-plane which is restricted by M, periods along x; and M, periods along x,
directions. Evidently, the area of the rectangle [M M 1’] is M| LM, L,. We shall use the notations

©" :=[M.M}|x]—h.h[  and

Fh

hoi= M. MT|x{h}, T =My, M| x{-h}.
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We denote by H ; (®") the restrictions to ®" of functions that are in the Sobolev space Hlloc(lx3| < h) and are M L-periodic. The
space H ;/ 2(1"’;4) is then defined as the space of traces on 1"'](4 of functions in H ; (®") and the space H #_ 1/ 2(1"’]:/1) is defined as the dual
of H, ;/ 2(Iﬁ’}(/[) with similar definitions for H#tl/ 2(1“;;’).

More generally we consider the following direct problem: given f € L*(©") find w € H,(©") satisfying

Aw+ kKnw=k*(1=n)f )

together with the Rayleigh radiation condition (5). We remark that the solution w € H ; (®h) of (7) can be extended to a function
in @ satisfying Aw + k?nw = k*>(1 — n) f, using the Rayleigh expansion (5), and hence by M L-periodicity to a solution in the entire
R3. Note that the scattering problem for L-periodic layer (1) is equivalent to (7) where w :=u’, f :=u'| g and n := n,, whereas the

scattering problem for M L-periodic layer (2) is equivalent to (7) where w :=u* and f :=u/| g. Throughout the paper we make the
following assumption:

Assumption 1. The refractive index n and k > 0 are such that (7) as well as (7) with »n replaced by n, are both well-posed for all
f e L2,

For sufficient conditions that guarantee Assumption 1 we refer the reader to [26], [20], [25] and the references therein. If ®(n,;-) is
the fundamental solution to

AD(ny; ) + K2n,D(ny: ) = —5o(),

<I>(np; -) is M L — periodic, 8)

and the Rayleigh radiation condition (5).
then the solution w of (7) has the representation as

w(x) = —/ (kz(np —mw+ k(1 - n)f)(y)CIJ(np;x —y)dy. ©)
D

Finally, as it becomes clear latter in the paper, our inversion algorithm is well-suited to the case when a period of healthy L-periodic
layer consists of several compactly supported inhomogeneities sitting in homogeneous structure (see Fig. 1), which is the case in
many applications. For sake of presentation we assume that the homogenous base structure of the L-period media has refractive
index one. With this in mind, we introduced the following notations which will be used throughout the paper. To this end, let us first
denote by ab the element wise multiplication of two generic vectors a = (a;,a,) and b= (b, b,), that is

ab= (al bl N azbz).
Notation 1. Recalling that €, is the period containing w, we denote by

D, :=Supp(n,—1) D :=Supp(n—1) and w :=Supp(n—n,)
and assume that the exterior of each of D,, D and w is connected. Next we denote by
O the union of components of D, N €, that intersect ®
O its complement in D, N Q, A:=OUw and D:=0O°UA
Let v,, :=(mL,0) € R> be the translation vector Q,  Q,, (m-th period) for m € Z> and denote by
0,:= |J 0+v,, = O +v,, A= | A+v, D= | D+,
mEZi/I mEZi/I meZ%W mEZﬁ/[
which are L-periodic copies of the respective aforementioned regions. Finally we denote by @™ :=w\ D (possibly part of) missing

components of D, and a;;,”f $ its L-periodic copies. Note that f)p is periodic and ﬁp 2DuUD,.

We refer the reader to Figs. 2-3 for an illustration of type of defects @ we consider in this paper and for an illustration of the notation
introduced above.

Remark 1. In the special case when the defect @ consists only of missing components of D, in €, that in when n =1, we have
D,=D,and A=0=0""nQ.

Remark 2. All the results presented here can be readily extended to the case when the homogeneous base structure of the L-period
media has refractive index given by a constant different from one. In this case, the free space with refractive index one is replaced
by a flat layer with refractive index one in |x;| > h and constant different from one in |x3| < h.
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The domain D = Supp(n — 1) > Gl \_;) L;QD (7 ) (,Q
The domain D,, = Supp(n, — 1) Q LQ @ (f\_) @ (_,J @ L/Q

The domain w = Supp(n, — n) @

Fig. 2. Two dimensional illustration for D, D, and w.

- - @ @0 @0 @
The domain Dy := U,z D+ vm QPP PP QP QD

p - -~ P
@0 @0 adr ar
The domain A, := Uyezz A+ v O (7 ) @ o

The domain O := U,pez3, O° + Vim LT\\_) LTJ LTD Lz)

Fig. 3. Two dimensional illustration for the domains O, A, and 13,, associated with the configuration in Fig. 2.

The imaging method discussed in this paper falls into the recently developed qualitative approach to inverse scattering or otherwise
referred to as non-iterative methods [7]. The underlying idea is to design an indicator function of the support of perturbation solely
from the scattering data without involving any partial differential model, hence the support of perturbation is reconstructed without
knowing the physical properties of the perturbation. In its standard presentation this approach requires an expression for the Green’s
function of unperturbed background. However, in many applications an accurate modeling of the background is difficult to compute,
hence one way to avoid this is to use differential measurements. This idea was first introduced in [2] where two sets of scattering
data, one for the healthy structure and the other in a latter time, were mathematically analyzed to arrive at an indicator function
for the support of perturbation to the healthy based structure. This idea was latter adapted to periodic layers in [25] (see also [17]).
The advantage of applying differential measurements to the inverse problem for periodic layer like the one considered here, is that
instead of comparing the measured data against measurements corresponding to the healthy structure, one makes use its periodicity.
More precisely, the measurement operator restricted to single Floquet-Bloch modes plays the role of data operator corresponding to
the healthy background. As a result, the support @ of perturbations is obtained without knowing or reconstructing the constitutive
material properties of the periodic background. The analysis of a non-standard boundary value problem for two elliptic partial
differential equations, referred to as the interior transmission problem, is at the core of this comparison. The interior transmission
problems related to the problems considered here, are studied in details in [8,26].

In this paper we provide a comprehensive presentation of this novel imaging method for locally perturbed bi-periodic layer in R3
in acoustic scattering. We include in our discussion new configurations of defective areas, including missing components or part of
components of the healthy cell. In addition, we present the first 3D numerical implementation of the imaging algorithm. The paper
is organized as follows. In the next section, we develop the analytical tools of our inversion method, in particular the properties
of the data (near field) operator corresponding the faulty periodic layer, and its restriction to single Floquet-Bloch modes. Based
on this analysis, in Section 3 we design an imaging algorithm for the support @ of the defective region. In addition, we implement
numerically this algorithm, and present a large collection of 3D numerical examples for a various type of defects.

2. The inverse problem

We start by defining precisely the scattering data. As described above we have two choices of interrogating waves. If we use
down-to-up (scaled) incident plane waves u*(x;j) defined by (4), then the (measured) scattering data is given by the Rayleigh
coefficients

BT, . ez?x7?,

(that is the transmitters are under the layer whereas the receivers are above the layer), whereas if we use up-to-down (scaled)
incident plane waves u~(x; j) defined by (4) then the (measured) scattering data is given by the Rayleigh coefficients

B (&), (j.€)ezZ*x7?,

(that is the transmitters are above the layer whereas the receivers are under the layer).



F. Cakoni, H. Haddar and T.-P. Nguyen Journal of Computational Physics 501 (2024) 112773

The inverse problem reads: from a knowledge of Rayleigh sequences {12\Y +(t’ R j)}f . due to all incident waves u'*(x; j) for j € Z>
€

(or Rayleigh sequences {LTS T j)} sz due to all incident waves ub=(x; j) for j € Z%) determine w = Supp(n — n,) without knowing
n and n,, but only the fact that n,, is bi-periodic with period L = (L, L,) and that the layer is situated between x3 = —h and x3 = h,
for some 2 > 0.

. . . . ~+ . - i .
To fix the idea, from now on we consider the Rayleigh sequences {us e, J)}f s due to incident waves u"*(x; j), and to
JEZ*XZ:

simplify the notation we let L/I\S(f;j) i= L?"Jr(t’;j) and u(x; ) :=u"*(x;j) for all # € Z? and j € Z>. This scattering data defines the
so-called near field (or data) operator N : (7% - fz(Zz) by

IN@)peze = Y, aD@&:)), for a={a()};cp €227 (10)
jez?

(recall that #2(Z?) is the Hilbert space of square summable sequences in Z2). This operator is one of the main objects of our imaging
method. We show that its properties are connected to the reconstruction D (i.e. the support on n — 1). To this end, we define the
Herglotz operator H : ¢%(Z2) - L?(D) by

Ha:= Y, a(u'(i)) . an
jez?
Its adjoint H* : L2(D) — £2(Z?) is given by
H'¢ :={®(j)};ez2, where &; :=/<p(x)u"(';j)(x)dx. (12)
D

Let us denote by H;,.(D) the closure of the range of H in L2(D). We then consider the compact operator G : H; (D) - (7%
defined by

G(f) :={i0@)} pez2- 13)
where {i{0(£)} <72 is the Rayleigh sequence of the solution w € H}(®") of (7). Then by linearity N : £#2(Z*) — £*(Z*) we have

N(a)=GH(a). 14

The properties of G and H are crucial to our inversion method. To state them, we must recall the standard interior transmission
problem: find (u,v) € L?(D) x L*(D) such that u — v € H*(D) and satisfying

Au+k2nu=0 in D,
Av+k2v=0 in D,

(15)
U—v=¢@ on 6D,

ou—v)/ov=y on 0D,

for given (p,w) e H 3/2(9D) x H'/2(0D) where v denotes the outward normal on dD. The wave number k is called a (standard)
transmission eigenvalue if the corresponding homogeneous problem, i.e. (15), with ¢ =0 and y =0, has non-trivial solutions. Up-to-
date results on this problem can be found in [7, Chapter 3] where in particular one finds sufficient solvability conditions. Without
loss of generality we may assume that dD N dQ, = where Q, is given by (3). If the boundary of D intersects the vertical sides
of the boundary €, then the previous interior transmission problem should be augmented with periodicity conditions on d.D N 0®
(intersection of D with horizontal sides of the boundary Q, causes no problems). For sake of presentation, since this case does not
affect the assumptions on the solvability of the interior transmission problem (in H?(D) with periodic conditions on 0D N d©), we
omitting it in our discussion. In the sequel we make the following assumption.

Assumption 2. 0D N 0, =, and the refractive index n and the wave number k > 0 are such that (15) has a unique solution.

In particular, if Re(n — 1) > 0 or —1 <Re(n — 1) < 0 uniformly in a neighborhood of dD inside D the interior transmission problem
(15) satisfies the Fredholm alternative, and the set of real standard transmission eigenvalues is discrete (possibly empty) without
interior accumulation points. Thus Assumption 2 holds as long as k > 0 is not a transmission eigenvalue.

The next three propositions proven in [17] summarize the main properties of the operators H and G in relation to the operator N
which is available from the measurements.

Proposition 1 (Lemma 3.3 in [17]). The operator H : £>(Z*) = L*(D) is compact and injective. The closure of the range of H in L*(D),
denoted by H,,.(D), is given by

Hyo(D) :={ve L*(D): Av+Kk*v=0inD}. (16)
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Let us denote by </15(~; z) = {</I3(f 32)}pepe for z e ®" the Rayleigh sequences of ®(1,z) given by (8) in the special case when n,=1
(i.e. corresponding to the free space), whose entries are given by

D7) =— 1 a—i(@s(®)Z—pu(®)|z3—h]) =(z
Dt z) = 2M|L,M2L2ﬁ,,(t’)e # # 3=, z=(z,2z3). 17)

Proposition 2 (Theorem 3.5 in [17]). Under Assumptions 1 and 2 the operator G : H;, (D) — fz(Zz) defined by (13) is injective with
dense range. Moreover ®(-; z) belongs to R(G) if and only if z € D.

Finally we introduce the solution operator T : L%(D) — L%(D) given by

Tf :=k(n—1)(f +wlp) (18)

with w being the solution of (7). By construction we have the following relation

Gf =H*Tf

which leads to the following symmetric factorization of N

N=H"TH, 19

This symmetric factorization applied to an appropriate operator given in terms of N allows us to characterize D in terms of the
scattering data. To this end, let us define

N; 1= [Re(N)] + [Im(N)| (20)

where Re(N) := % (N+N*),Im(N) := % (N —N*), and N* : £2(Z?) — £*(Z?) denotes the adjoint of N : £2(Z?) — £*(Z?). Similarly,
letting Ty := |Re (T)| + [Im (T)| we have the following result:

Proposition 3 (Theorem 4.2 in [17]). Under Assumptions 1 and 2 we have that

where Ty : L2(D) — L*(D) is self-adjoint and coercive on H;, (D). Moreover, z € D if and only ifd(;z)ER ((Np/2).

mc

Proposition 3 provides a mathematically rigorous criteria to determine D, which includes the support of periodic inhomogeneities
in the healthy bi-periodic layer together with the defective region, from the data operator N. In particular that Picard series for the
range of Ny converges if and only if the sampling point z is in D. However, for complicated periodic structures and relatively small
defects or defects with peculiar location such as @ C D, reconstructing D is unsatisfactory. Our aim is to design an indicator function
of the set @ without knowing or recovering D), in the same spirit as the criterion in Proposition 3. To achieve this, the idea of using
the data (near field) operator corresponding to one Floquet-Bloch mode and perform the same type of analysis to it as for N was first
introduced in [25]. This operator plays the role of the data operator corresponding to unperturbed background used in the sampling
method with differential measurements in [2]. The main difference here is that this operator is computationally extracted from the
measurement operator N without extra measurements. Indeed for a fixed q € Z?M we consider only q + ¢ M Rayleigh coefficients of
scattered waves 4°(q + £ M; q + j M) generated by incident waves u/(-;q + jM).

Thus, single Floquet-Bloch mode data operator: N, P 272 > £%(Z?) is defined by
N(@}pepo = D, aD (@ +EM:q+jM). for a={a()} ez (22)
jez?
The operators N, and N are related through the projection operator 1, : #%(Z?) — £%(Z?) given by

a). if £=q+jM
@m&={ 23)
0, else.

with its adjoint IZ : £2(2%) - £%(Z?) given by (IZb)(j) =b(g+jM).

7
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(In the figure the Rayleigh coefficients that define N, are indicated by red squares).

Hence we have
Nqa=I;NIq a. 24)

From physical point of view, N, is associated with e&,-quasi-periodic fields with period L, where a, = %q, since the sequence
N, a corresponds to the Fourier coefficients of a,-quasi-periodic component of the scattered field. Recall that a function u is called
a,-quasi-periodic fields with period L = (L, L,) if

ux+jL,x3)= e% D%, x3), for all j e Z>.
To understand the operator N, we need the &,-quasi-periodic fundamental solution ®,(-) that satisfies

AD (- —z2)+ KD, (—2)==-5, inQ, (25)

for z € RY. Its Rayleigh coefficients C/I\>q(-; z) of @, (- — z) are given by

2Ly Lyfy(g+M &) (26)

. i a-i(ap(@+M ) Z-fyq+ M E)z3Fh)  jf j=q+M¢, £e7?,
®,3(;2)=
0 if j£q+ M¢, ¢ € 7%

Similarly to the Herglotz operator H, the single Floquet-Bloch mode Herglotz operator H, : ¢%(Z?) —» L*(D) is defined by

an :=qua=2a(.j)u[(-;q+jM)|D, 27)

J

where we note that Hya restricted to D, is also aq—quasi—periodic function with period L (see Remark 3 if missing (parts of)

components are present). Note that R(H,)is characterized in Proposition 4. Then the factorization (19) along with (24) immediately
implies

N, =H;‘THq, (28)
where T is defined by (18). The role of G given by (13) with respect to N, is now played by G, : R(H,) — 273 by
Observing that

@0(j;X) 1= % ¥ = e%ji, jE€Z

is a Fourier basic of M L periodic function in L2(Q m ), we have that any w € LX(Q m) which is M L periodic, has the expansion

N — ~ 1 — _
wx)= ) w(j,x3)p(j;x), where (j,x;): = ——— / wx)p(j;x)dx, (30)
Jé (. x3)e(j J>X3 ML, M, ngM (J

(here the line over ¢ denotes the conjugation whereas x = (x, x,)). Splitting j by module M component by component (i.e. splitting
J, by module M,, £ =1,2) we can arrange the expansion of w as

wE)= Y Y g+ Me,x3)eq+ ME;%), (31)

qez3, ez’

where p(q + M¥€;x) is a4-quasi-periodic with period L. We also have that

w, 1= Y W(q+M&,x3)p(q+ ME;%)
tez?

is a4-quasi-periodic with period L. Thus any M L-periodic function w € L?(Q,,) can be decomposed

8
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w= Z w, (32)

where w, is aq—quasi—periodic with period L. Moreover, by the orthogonality of the Fourier basis {¢(j;-)} jez> we have that

0,j)=0 ifj#q+M¢, ¢€7® and @(g+ME)=,(q+M?) (33)

where L/U;( J) the Rayleigh sequence of w, defined in (6). From the definition of G,, we see that G,(f) is the Rayleigh subsequence
of i(j) corresponding to the indices j = q + M?, ¢ € Z?, where w is solution of (7).

The above discussion is helpful to proving the following properties for , and G, that are the counterpart results to Proposition 1
and Proposition 2 needed to analyze the range of the operator N,.

Proposition 4. The operator H, : ¢*(Z*) — L*(D) is injective. Furthermore the closure of its range is given by R(H,) = H,' (D) where

H! (D):={ve L*(D), Av+k*v=0inDandvis a,-quasi-periodic in D,}. (34)

mc

We remind the reader that our discussion in the following heavily relies on Notation 1. Before we prove the preposition, we make
some clarification in the remark below.

Remark 3. If w contains missing (part of) components of D, in (34) we mean that v has an extension as a,-quasi-period in D,,. More
specifically this extension is defined as

ve LX(D), Av+k*v=0in D such that &(x) € L*(D U D,) defined by:

Hip(D) o= b(x) = o(x), vxeD is a,-quasi-periodic in D ©9)
"\ ux+ LDt vxep,\p ' YaIEP r

Note also that, in the case Dp C D (this is the case studied in [8]), i.e. there are no missing components, the definition in (34)
becomes

H! (D) :={ve L*(D), Av+k*v=0in Dandv| p, is @,-quasi-periodic}. (36)
Proof of Proposition 4. Injectivity of H, follows from injectivity of the operators } and I,. Hence it suffices to show that H;‘ is

injective in H;;C(D). The case when w C D corresponds to Lemma 3.1 in [8]. We sketch here this proof to confirm that it works also
in the case when @ ¢ D. In particular,  is considered to be the entire component O or a part of the component @. To this end, let
@E Hi‘ic(D) and assume H;‘((p) = 0. Then we define

u(x) .=

1
MM, / D, (x—y)p(y)dy.
D

where @, has the Rayleigh coefficients given by (26). By the definition of 4 and using (26) we see that the Rayleigh coefficients of
u are given by (j) =0 for all j # q+ M€ and u(q + M¢) = (H*(¢)) (q + M) = (H;((p))(t’) = 0. Therefore u has all zero Rayleigh

coefficients, which implies that u =0 for x3 > h and x3 < h. We now observe that for all y € D, A® (-3 y) + k2®q(-;y) =0 in the
complement of f)p. This implies that

Au+k*u=0 in R*\D,.

Using a unique continuation argument we infer that u =0 in Q,, \ D - Therefore, u € H g(b\ ) by the regularity of volume potentials.
We remark that @ may include components that are part of @ but are missing in D. For configurations where this does not happen,
we can proceed exactly in the same way as [8, pages 11-12 in the proof fo Lemma 3.1]. For this reason, here we focus on the case
where the defect occupies a region in O that is missing (or partially missing) in D. Specifically in this case, o= D, \ D, and n=1 in

w. Therefore ﬁp =D, and D Nw = @. We then obtain u € Hg(Dp), and it rewrite it as

-1 _ __1 _
u(x) = M, M, / D, (x - y)p(y)dy MM, / D, (x = y)p(y)dy,
D [}

4

where ¢ is aq—quasi—periodic in D,. From the definition of u(x), we first observe that u(x) is aq—quasi—periodic. Indeed

1

u(x+mL) := (YR,
1M

/ D, (x+mL—y)p(y)dy
D

i - 1 i -
=e%ml / D, (x = y)p(y)dy = ™ Ly(x),
MM, J !
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forallme Z%W. We now consider x € D, N . By the a,-quasi-periodicity of ®, and ¢ with period L, we have
1

M, M, / Q,(x—y)p(y)dy = / D, (x—y)o(y)dy,
D, D,y

and hence

1
u(x) = / D, (x - y)p(y)dy — MM, / D, (x—y)p(y)dy
D,NQy ®
MM, —1
= @, (x - y)p(y)dy + MM, @,(x - y)p(y)dy, Vxe€D,nQy.
b,n9y @

Next, we define @(x) for all x € D, N Q, by

p(x), VxeD,nQ,

o(x) = MMy

MM, p(x), Vx€ew

we have

Au+ K*u=-3(x), Vx€D,NnQ,.

Evidently, extending ¢ as a,-quasi-periodic to D, we have

Au+ k*u=-p(x), Vx€D,.

Furthermore, linearity of the Laplace operator and the fact that @(x) satisfies equation A + k*¢ =0 in D, implies that

AG+KkG=0, VxeD, (37)

Since u € Hg(Dp) we then have

~2 __ 28N> _
17, =~ [ @t =0
D,
which implies @ = 0 in D,,. In particular, g = 0 in D,N Q. If M; M, = 1, then the definition of @ implies ¢ = 0 in ﬁp NQ = D, which
ends the proof. Otherwise, when M is such that M; M, >2 we have ¢ =0 in D, N €, and therefore by the quasi-periodicity ¢ =0
in D, D D. This proves the injectivity of (H*)" on Hﬁlc(D) and hence proves the Lemma. []

In the case of missing component, we assume that f € Hiqm(D) then f (defined by the same way as & in (35)) is a,-quasi-periodic in
D,. Furthermore, since in this case, n =1 in w, solution w to equation (7) associated with data f satisfy

Aw+ K nw = k(1 =n)f = k*(1 =n,) f + k*(n, - n)f. (38)
Using decomposition (32) for the solution w of (7) along with the facts that n, is periodic, fis a,-quasi-periodic and that n —n,, is
compactly supported in one period @ C Q, then (7) in terms of the coefficients w, in (32) for this w takes the form

p

2 _ 12 2 x .
Aw, +kn,w, =k*(n, —mw+k“(1—n)f in Q. (39)
However, since f = f in the support of n — 1, (39) becomes
2 2 2 .
Awq+k nl,quk (np—n)w+k (1=-n)f in Q. (40)
Therefore, operator G, R(MH)=H ii c(D) — £%(Z?) can be equivalently defined by
G,() I=IZ{@(f)}fezz, (41)
where w, solves (40), w is solution to (7), and {@(f )}pez is the Rayleigh sequence of w,.
We need to introduce one more interior transmission problem that is related to the characterization of the range of G,,.

10
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Definition 1. Given (¢, ) € H3/2(0A) x H/2(0A), find (u, f) € L2(A) x L%(A) such that u — f € H%(A) satisfying

Au+ K=k (n, - mS(f)  in A,

Af+Kk2f=0 in A,
(42)
u—f=¢ on OA,
ou—f)/ov=y on OA,
where
S, LX(A) — L2(A)
fH—/Ha—@vw( D é%“@%m—mL—wﬂ» (43)

A O#meZ%w

<I>(np; -) is the M L-periodic fundamental solution given by (8) and v denotes the unit normal on dA outward to A.

This problem is first introduced in [17] and we refer the reader to this paper for the analysis of its solvability. We here make the
following assumption on its solvability.

Assumption 3. The refractive index n and k > 0 are such that the interior transmission problem in Definition 1 has a unique solution.

Theorem 1. Suppose that Assumptions 1, 2, 3 hold, and Assumption 2 holds in addition when (n, D) is replaced by (ny, D). Then the
operator G, : Hi'fl (D)= ¢%(Z?) is injective with dense range.

Proof. As in the previous proof, we only consider the case where the defect is constituted by components in D), that are missing in
D, ie. @ CO and w N D = @. The other cases can be treated as in [8, Theorem 3.2]. Assume that f € Hi'ilc(D) such that G,(f) =0

and f € L2(Dp) is an extension of f given in (35). Let w be solution of (7) with data f. We have that

G () :=TAT,@)) gz,
where and w, is solution to
Aw, + Knyw, =k (n, —mw+k*(1—n)f  in Q (44)

Note that Aw, + K2 w, =01in Qy, \ D,. Using a similar unique continuation argument as in the beginning of proof of Proposition 4,
we deduce that

w,=0 in Qy\D,

In other words, w, = 0 outside D,. From now to the end of the proof, we consider only the period Q. Since Supp(n — n,,) N Supp(1 —

n=wnD=@ and n= n, in D, (44) can be split into two equations

Aw, + k*nyw, =k*(n,— hw in o, (45)
where w € Hlloc((a) is solution to (7) and

Aw, +K*nyw, =k*(1-n,)f in QynD. (46)

Observe that w satisfies Aw + k*w = 0 in . Therefore, from (45) (wy, —w) € Hg(a)) x L?(w) and satisfies

Aw, +K2n,w, =k*(n,— Dw in o, @
Aw+k*w=0 in .
Assumption 2 with (n, D) replaced by (n,, D,) implies that (47) has only the trivial solution and therefore
w,=-w=0 in o
We again see that, in the domain Q, N D, (w,, )€ Hg(QO N D) X L2(QO N D) and satisfies
Awq+k2npwq:k2(1 —nmy)f in QynD, (48)
Af+Kk2f=0 in Q,nD.

Assumption 2 with (n, D) replaced by (n,, D)) again implies that (48) has only the trivial solution, and therefore

11
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w,=f=0 in QynD.

This proves the lemma. []

Finally we can prove exactly in the same way as in the proof of [8, Theorem 3.5] the following range test related to the operator G,
which plays an important role in the design of our imaging method.

Theorem 2. Suppose that Assumptions 1, 2 and 3 hold. Then, IZ(I\)LI(-; z) ER(G,) ifand only if z € ﬁp.
We now have all the ingredients to arrive at our imaging method in the next section.
3. A differential imaging algorithm

We now apply theoretical results of Section 2 to design an algorithm that provides us with an indicator function of the support of
the defect @ without reconstructing D, or computing the Green’s function of the periodic media. Such an indicator function is based
on the analysis of the range of operators N and N, in relation to interior transmission problems discussed in Section 2. Roughly

speaking we can construct three appropriate sequences a®=, a;”z and @%* (to become precise latter), as nearby solutions to

q
INa®* = @(:2)ll,2 <@, [Nag® —D,(32)l2 <@, [IN,aP* —L®,(2)ll 2 <a (49)

as a — 0, where EI\)(-;z) are the Rayleigh coefficients of ®(1,z) (i.e. ®(n,; z) defined by (8) with n, = 1) given by (17), and Cf)q(-;z)
are the Rayleigh coefficients of @ (- — z) given by (26). Then we show that these nearby solutions satisfy:

czeD if and only if lim <Nna‘“, a”"z> < 00.
a—0

The domain D = Supp(n — 1) Q @ o Q ®
0N oD
-

*z€D, \w;"is if and only if il_r% <Nna;”z,ag’z> < 0.

_ e o
N e e D

N e ~ 0,2 ~ 0,2
c ZE Dp if and only if il_r)l(l) (Nmaq ,ay > < 00.

The domain D, := U D+v ®0 ®o ®0 @9
T, O O O 0D

An appropriate combination of these three indicator functions yield a visualization of the support of local perturbation. In the
following we introduce and mathematically justify the algorithm.

The domain D, \w;""s

Next we show rigorously how to obtain the nearby solutions with the behavior as in (49). To this end, let Ny be defined by (20) and
Ny = I;Nﬁ I,. Then for given ¢ and a in £%(Z*) we define the functionals

Jo(¢,a) :=a(Nya,a) +|Na - |2,
Ty . @) :=a (N, sa.a) +|[N,a— |,

here (-,) denotes the inner product in #2(Z?).

(50)

Let a®*, ag”* and ag”* in £(Z?) satisfy (i.e. minimizing sequences)
J(®(;2),a™) < inf T (®(;2),a) +c(a)
act?(72)
& (.- azy & (.-
Jo (@, (- 2),a%) < aelfgfzz) Jo(@,(32),a) + c(a) (51)

*&8 (.- ~a,z : D (.-
S g 0P (5 2),a%) < ae?}fzz) S, ®, (5 2).a) + c(@)

12
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with % — 0 as @ — 0. The standard analysis of the generalized linear sampling method (see e.g. [7, Section 2.2]) making use of the
factorization of Ny in Theorem 3 along with all the properties of the involved operators developed in Section 2 can be used to prove
the lemma below.

Lemma 1. Under Assumptions 1, 2 3 the following results hod true:

(i) ze€ D if and only ifii_r)r(l) <Nna""",a"’z> < 0. Moreover, if z € D then Ha®* — v, in L*(D) where (u,,v,) is the solution of problem
(15) with ¢ = ®(1; z) and w = 0®d(1;z)/dv on dD.

(ii) z € D, \ @y if and only if altl_r}(l) (Nyag*,ag™) < co. Moreover, if z € D, \ @' then Hag*® — v, in L*(D) where (u,,v,) is the
solution of problem (15) with ¢ = ®@,(- — z) and y = 0P (- — z)/dv on oD.

(iii) z e ﬁp if and only if lin(l) <Nq’ﬁﬁg’z,&g’z> < co. Moreover, if z € ﬁp then Hqﬁg’z — hy in L*(D) where h, is defined by
a—
—(Dq(- —z) in Ap
h,= if zeO°
v, in 0O P

(52)

0, in A,
h,= if z€A,
~®,(~z) in O

where (u,,v,) is the solution of problem (15) with ¢ = ®,(- —z) and y = d® (- — z)/dv on 0D and (u,,0,) is aq—quasi—periodic
extension of the solution (u, f°) of the interior transmission problem in Definition 1 with ¢ = ®,(- — z) and y = 0D (- — z) /0v on OA.

Here H : ¢*(Z*) — L*(D) is defined by (11) and M, : £*(Z*) - L*(D) is defined by (27).

Proof. For the proof of the items (i) and (ii), we refer to Theorem 3.5 and Lemma 4.7 in [17]. The proof of items (iii) is a direct
application of Theorem A.4 in [17] in combination with Theorem 2. []

We then consider the following imaging functional, that characterizes the defects and the defective components of the periodic
background,

D(af*.al*)
where for a and b in £2(Z3),
D(a,b) := (Ny(a—1,b),(a—1,b)).
Theorem 3. Under Assumptions 1, 2 and 3, we have that
zeD\(?Ic) if and only if ii_r}r(l)lﬁz)>0.

Thus we reconstruct the support of defects that do not intersect healthy components together with periodic copies of the components
that intersect the defective region as illustrated below.

- W o o
O o O

Proof. This theorem complements Theorem 5.2 in [8] where the configuration with D \ O} = A, was investigated only. Thus the
same arguments as in the proof of Theorem 5.2 in [8] show that lim,_,Z,(z)=0forall z¢ D and z € (9;. Therefore we only need
to show that

The domain D \ o,

limZ,(z)>0 forall zeD\O.
a—0 P

Note I;hat D\(D; C A, (see the figure above and Fig. 3 for an illustration). By Lemma 1, factorization of N, y and identity N, 4 = I;‘ N1,
we obtain

(Nﬁlqag’z,lq&g’z) = (Tyh,, h,) < +oo, a—0

where h, € Lz(ﬁp) is defined by (52). Let us split domain D \ (9; into (D \ (9;) \ D, and (D \ O;) N D,, and treat each domain
separately.

13
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Case 1: We assume that z € (D \ (9;) \ D, (parts of the defect that do not intersect healthy components of the periodic layer). By
Lemma 1(ii) (Nyag™, ag’™) — +oo as a — 0. This implies,

D(a®,a%) > |(N;a%*, a®?) — (Ngl,a%%,1,a%%)| — +oo.

We then conclude that lim,_,, Z,(z) > 0.

Case 2: We assume that z € (D \ (9;) NnD,. The case (D \ (9;) ND,=0,is treated in [8]. The case (D \ (9;) nD,#0, corresponds
to the case where @™ # (. In this domain n =1 and n, #1. If z is not in w"’” (i.e. one of the periodic copies of »"™*) then the same
arguments as in [8] apply and show that D(ag™, ag’ z) remains bounded away from 0 as a — 0. This is due to the fact that h, # v,
where v, and h, are defined in Lemma 1 (ii) and (zzz) respectively. This implies lim,_,; Z,(z) > 0. The case where z € a)Z’” \co””s
can be treated similarly to Case 1. By Lemma 1 (ii) and (iii), (Nua""Z a’z> — oo while (Nnag’z, aZ’z> remains bounded as a — 0.
Consequently D(aa Y z) — o0 as @ — 0. Lemma 1 (i) indicates that <Nﬂa ‘“) remains bounded as « — 0. The last two items

show that lim,_,, Z 2(2) > 0, which ends the proof of the theorem. []

3.1. Numerical studies

In this section we present some numerical examples using simulated data in R3 showing viability of our imaging method. In
our examples, the probing region is Q,, containing M| X M, periods including the defective cell. Data is generated by a family of
incident plane waves as described in (4) with the indices j = (j;,j,) in the set

72 ={j=0.)li=q+M¢ with £€[-N,;,.N,.]|}

inc

Here, g € 22 isfixedand N ;,,, N .. € Zi are given. The scattered wave associated with each individual incident wave is computed
nurnerically by implementing the Floquet-Bloch transform and volume integral method described in [18]. The collection of Rayleigh

coefficients corresponding to £ € Z,.zm, of the scattered wave associated with each individual incident wave form the data for the

inverse problem. Thus, if N;

inc denotes the number of incident waves, then the measurements {zfs (¢; j)} ¢.jez? form a N;,. X N;,,
& inc

inc

matrix

N:= [us(t’;j)] f,jeZ%m, . (54)
Since in practice the measured data is always corrupted by noisy, we simulate the noise in our computed data. In particular, if 6 > 0
is the noise level, the noisy near-field operator N¢ is computed by adding random noise to N, that is

N°(j, &) :=N(j, &) (1 + 8AG.®)), V(.8)€Z> X712 (55)

mnc mnc

where A =[A(j,?)]n. « N, is a matrix of uniform complex random variables with real and imaginary parts in [—1, 1]%. We define

inc

the functionals J¢ and J? . “associated with the noisy data, by

7@ =a((Na.a) +3IN:lall?) + INa - ¢,

(56)
J2 ($.a)i=a ((Nglqa I a> +8IN2llall?) + INza - 1.
We then consider a 5 aq Z and a 1n ¢%(Z?) as minimizing sequences of
JE@(;2),a), Jj@qc;z), a), and J? (®,(;2),a), (57)

respectively. The noisy indicator function takes the form

¢@gh \\
1) _ 5 Az &
1{,(1)—<§ (ag )<1+W>> , (58)

where for a and b in £2(Z3),
D(a,b) :=(Ni(a=1,b).(a~1,b))
and

(@) = (Noa.a) + 6N lllalf.
In order to speed up the inversion algorithm and adopt an automatic choice of the regularization parameter using the Morozov
principle we choose to replace <N3a,a> with ||N;iS [lla]|>. More specifically, the sequence ag’z is computed as the minimizer of the
functional

14
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Fig. 4. (a) exact geometry of the domain D with a defect being a ball (see details in the description of Example 1), (b) a slice of D in the y direction passing through
the center of the ball, (c) a 3D view of the reconstruction given by (60), (d) a slice view of the indicator function Zj that corresponds to (b).

a(1+8)INZllllall® + IN°a - D¢ 2], (59)

which can be viewed as the Tikhonov regularization of N°a = 3)( -;z) with regularization parameter a,,, :=a(l + 6)||Ng ||. Associated
a.

5~ of the functional given by (59) is ag™* = [(N°)*N° + aappl]‘l(N5)*<T>(-;z), where the
is determined using the generalized Morozov’s discrepancy parameter as proposed in [13], i.e., «,

with each sampling point z, the minimizer a
regularization parameter a,,, app
is such that [[N°ag"”® — (- z)| = 8llag*|l. We observe that the results obtained using the indicator function (58) have qualitatively
the same accuracy as those obtained by using the sequences associated with minimizing (56) using & = a,,,/((1 + 6)||Ng [|). Similar

procedure is applied to a®Z and a®Z.
9,5 (24

In order to visualize a 3D approximation of D \ (9; we plot the set of sampling points z defined as

{z : I2(z) > k max(12)} (60)

where k is a tuning visualization parameter. We choose k = 0.45 and keep it fixed for all examples below. The focus of the numer-
ical study is on testing the viability of the indicator function for different configurations of the defects (defects inside, outside or
intersecting the periodic domain D,). We therefore shall also keep the following parameters fixed:

ny=2,n=4 k=nx, L =L =2z, M=(3.,2), q=(L,1), §=5% (61)

and set the width of the periodic layer 2 = 1.54, where 4 :=2x/k denotes the wavelength.

Example 1. In the first example, the periodic layer is made of two cubes in each period with edge length 0.64 and 0.54. In the period
Q,, these two cubes are centered at (0.64,—0.64,—-0.34) and (—0.54,0,0), respectively. The local perturbation is a ball of the radius
r =0.31 non-intersecting with the periodic components (see Fig. 4(a) and 4(b) for a 3D plot and a slice in the y direction through the
center of the ball, respectively). The reconstruction of the defect using the indicator function Ig is depicted in Fig. 4(c) for the 3D
view given by (60) and in Fig. 4(d) for the slice view. They demonstrate the efficiency of our differential indicator function for this
configuration of the defect.

Example 2. The periodic background in this example is the same in Example 1. The perturbation w is a ball that intersects the
smaller cube (see Figs. 5(a) and 5(b)). In this example n =4 in the part of the ball inside the cube and n =3 in the rest of the ball
(see Fig. 5(b)). The 3D reconstruction using the indicator function (60) is displayed in Fig. 5(c) and Fig. 5(d) displays the indicator
function at the slice plane. Theorem 3 indicates that the values of I{‘Z(z) are positive for z inside the perturbation and in the periodic
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Fig. 5. (a) exact geometry of the domain D with a defect being a ball that intersects the periodic domain D, (see details in the description of Example 2), (b) a slice
of D in the y direction passing through the center of the ball, (c) a 3D view of the reconstruction given by (60), (d) a slice view of the indicator function 12 that
corresponds to (b).

copies of the background that intersects the perturbation. However, we do not have quantitative information about the values of
1,(z) at each point in the probing region. A careful observation of iso-surfaces in the reconstructions presented in Fig. 5 suggests that
the value of I(z) at the points z in the periodic copies of the part of the cube intersecting the defect is much smaller than the values at
the points in the perturbed region. One can argue that this difference clearly distinguishes the true defect from the periodic artifacts.
The presence of periodic copies of intersection subsets also indicates whether the defective region overlaps with components of the
healthy periodic layer or not (compare to Example 1).

Example 3. In this example, we change the configuration of the periodic background which now includes two cubes and one ball
in each period (see Fig. 6(a)) with refractive index n, = 2. We consider a local perturbation of the refractive index that changes the
value of n, inside the ball in € (see Fig. 6(b)). We set n =4 in this defective component. According to the theoretical result in
Theorem 3 the indicator function Z,(z) should visualize periodic copies of this ball. This is what is observed in Figs. 6(c) and 6(d).
We also observe that the values of the indicator function are larger in the ball inside Q, which may also be used as an indicator for
the location of the defect.

Example 4. We end our numerical investigations by showing three more numerical examples illustrating a case where a whole
component of the periodic domain D, is missing (see Fig. 7), a case where only a part of a component of D), is missing (see Fig. 8),
and a case where both scenarios are present (see Fig. 9).

The 3D reconstruction obtained in Fig. 7 confirms the result of our theory as we obtain periodic copies of the missing component
except in €.

In the case of a partially missing component presented in Fig. 8, the 3D reconstruction resembles the case of an entire component
missing: only the missing part is repeated periodically except in €. In the last case presented in Fig. 9, we have a partially missing
component and an additional defect in the form of ball intersecting the component that has a missing part. This is indeed a compli-
cation over the previous case and the obtained reconstructions are compatible with what one would expect from the theory, i.e. the
indicator function shows the defective component repeated periodically.
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Fig. 6. (a) exact geometry of the domain D with a defect being a ball that coincides with one component of the periodic domain D, (see details in the description of
Example 3), (b) a slice of D in the y direction passing through the center of the ball, (c) a 3D view of the reconstruction given by (60), (d) a slice view of the indicator
function I;; that corresponds to (b).

Fig. 7. This example illustrates the case of a defect consisting of a missing component of D, as shown in (a). (b) displays a 3D view of the reconstruction given by
(60).
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Fig. 8. (a) exact geometry of the domain D with a defect being partially missing component of the periodic domain D, (b) a slice of D in the y direction passing
through the middle of the defective component, (c) a 3D view of the reconstruction given by (60), (d) a slice view of the indicator function I;; that corresponds to (b).

Fig. 9. (a) exact geometry of the domain D with a defect being partially missing component of the periodic domain D, and a ball intersecting this defective component,
(b) a slice of D in the y direction passing through the middle of the defective component, (c) a 3D view of the reconstruction given by (60), (d) a slice view of the
indicator function Zi that corresponds to (b).
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