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Abstract

In this paper we examine necessary conditions for an
inhomogeneity to be non-scattering, or equivalently, by
negation, sufficient conditions for it to be scattering. These
conditions are formulated in terms of the regularity of
the boundary of the inhomogeneity. We examine broad
classes of incident waves in both two and three dimen-
sions. Our analysis is greatly influenced by the analysis
carried out by Williams in order to establish that a domain,
which does not possess the Pompeiu Property, has a real
analytic boundary. That analysis, as well as ours, relies cru-

Mensted Foundation cially on classical free boundary regularity results due to

Kinderlehrer and Nirenberg, and Caffarelli.
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1 | INTRODUCTION

A perplexing question in scattering theory is whether there are incoming time harmonic waves, at
particular frequencies, that are not scattered by a given inhomogeneity, in other words the inho-
mogeneity is invisible to probing by such waves. We refer to wave numbers, that correspond to

4022 | © 2023 Wiley Periodicals LLC. wileyonlinelibrary.com/journal/cpa Comm. Pure Appl. Math. 2023;76:4022-4047.
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frequencies for which there exists a non-scattering incoming wave, as non-scattering. The attempt
to provide an answer to this question has led to the so-called transmission eigenvalue problem
with the wave number as the eigen-parameter. This eigenvalue problem has a deceptively simple
formulation, namely two elliptic PDEs in a bounded domain (representing the inhomogeneity)
with a single set of Cauchy data on the boundary. However, the problem is a non-selfadjoint
eigenvalue problem with challenging mathematical structure. The non-scattering wave numbers
form a subset of the real transmission eigenvalues. We refer the reader to the monograph [8] for
a comprehensive discussion of the transmission eigenvalue problem, and to [22, 26] for the most
up-to-date results on the spectral analysis for the scalar problem considered here. A real transmis-
sion eigenvalue is not necessarily a non-scattering wave number, and it is desirable to understand
which (if any) are. Besides being mathematically appealing, this question is also important from
an application point of view. In particular, at a non-scattering wave number the relative scatter-
ing operator [21] (otherwise known as the far field operator [12]) is not injective. This causes the
failure of some reconstruction methods for solving the inverse scattering problem. Despite some
progress made for special geometries [4, 5, 10, 14, 16, 28], the question of existence/non-existence
of non-scattering wave numbers for a general inhomogeneity has been largely open until now.
The main contribution of our paper is that it provides finer necessary regularity conditions on
the geometry of an inhomogeneity in order that it be non-scattering, or equivalently, it provides
more general, sufficient conditions for it to be scattering. Let us proceed to formulate the specific
scattering problem.

We consider Helmholtz scattering by an inhomogeneous medium of bounded support. We
denote the inhomogeneity by D C R™, m = 2,3, and assume that D is a bounded and simply
connected region with a Lipschitz boundary dD. n denotes the outward unit normal vector to
0D defined almost everywhere on dD. We assume that the inhomogeneity is situated in a homo-
geneous background and we denote by n its refractive index. n is a real valued function, with
n € L®(D), and n(x) > n, > 0 almost everywhere in D.! The propagation of a time harmonic
monochromatic wave in homogeneous free space is modeled by the Helmholtz equation

Av+k?v =0 1.1

where k is proportional to the frequency (e.g., in R3, k = w/c, where ¢ is the sound speed of the
homogeneous background). Let g denote the function

() = n(x) xe€D
A x €R™\D.

We now formulate the direct scattering problem for the inhomogeneous media (D, n). By an inci-
dent wave v we understand a function that satisfies (1.1) in R™, except for possibly a subset of
measure zero in the exterior of D; this could be a single point, for point sources, or a surface, for
surface potentials. We decompose the total field as u,,, = u + v, where u represents the scattered
field. The scattered field now satisfies

Au + k*qu = k*(1 — q)v in R™, 1.2)

I The assumptions about simply connectedness of D, and strict positivity of n, could be considerably relaxed, but for the
sake of clarity of exposition we have decided not to do so.
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along with the outgoing Sommerfeld radiation condition

m—1
limr 2 (6_1,1 - iku) =0, (1.3)
r—co or
asr := |x| — oo uniformly with respect to X := x/|x| (see e.g. [12]). The scattered field u, which
isin H 120 (R™), assumes the following asymptotic behavior as r := |x| - oo
ik _mil
u(x) = ww"’(ﬁ) + O<r 2 > ,
rz

where the function u® (%) defined on the unit m — 1 sphere is called the far field pattern of the
scattered field u. Rellich’s Lemma (see e.g. [12]) states that the vanishing of u®(%) on the unit
m — 1 sphere for all directions X implies vanishing of the scattered field u(x) = 0 forall x € R™ \
D. A natural question is: given the inhomogeneity (D, n), does there exist a wave number k > 0
and an incident wave v such that the far field pattern u® := u;° of the corresponding solution
of (1.2) is identically zero? Such an incident field is referred to as a non-scattering incident wave
and the corresponding k > 0 as a non-scattering wave number. The non-scattering phenomenon
is equivalent to the existence of u € H, (2)(D) solving?

Au + k*nu = kK*(1 — n)v in D 1.4)
where

H})D) := {u € H*(D), such that u = 2_1:1 =0 on 6D}.2

If we include v, and focus on D, this may then be written

Au + k*nu = k*(1 — n)v in D, 1.5)

Av+k*v=0 in D, 1.6)
ou

u—a—n—O on 0D, 1.7)

with u € H?(D). Equations (1.5)-(1.7), with the requirement that v € L?(D) \ {0} and u € H?*(D),
are equivalent to the statement that k is a transmission eigenvalue, with corresponding eigen-
vector (u,v). k being a transmission eigenvalue is therefore a necessary condition for k being
a non-scattering wave number, corresponding to the incident wave v (defined on all of R™).
Whereas transmission eigenvalues exist for quite general (non-smooth) domains, the results we
establish in this paper show that the existence of non-scattering wave numbers (for regular n)
imply some degree of regularity of the boundary 0D (for quite general incident waves). In terms of

2 Hg (D) is the closure of C&°(D) in H(D) - for a Lipschitz domain it coincides with those H?(D) functions, which when
extended by zero outside D remain in H2(R™). For a Lipschitz domain HS(D) also coincides with those functions u €

H?(D) for which u and g—; (defined in the sense of traces) vanish on dD.
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the transmission eigenvalue problem (1.5)-(1.7), formulated only on D, similar regularity results
would follow if we were to insist that v be appropriately regular up to the boundary (on top of
being in L?(D)). This may also be seen as a reflection of the fact that a transmission eigenvalue
only is a non-scattering wave number if the corresponding v € L?(D) can be extended to a solu-
tion of the Helmholtz equation in the exterior of D. We recall that, if n — 1 is of one sign in a
neighborhood of the boundary 9D, then the set of transmission eigenvalues (possibly complex) is
at most discrete with infinity as the only possible accumulation point. Furthermore if n — 1 is of
one sign in the entire D, then there exists an infinite sequence of real transmission eigenvalues
(see [9] and also [8]). However, this paper concerns the existence of non-scattering wave num-
bers, and our approach does not require any knowledge about the spectrum of the transmission
eigenvalue problem.

In the case of spherically symmetric media, that is, when D is a ball of radius R centered at
the origin, and n := n(r) depends only on the radial variable, it is possible to show by separation
of variables that k > 0 being a transmission eigenvalue is a necessary and sufficient condition
for k being a non-scattering wave number. Furthermore, the non-scattering wave numbers form
an infinite discrete set with +oco as the only accumulation point. In this case the non-scattering
incident waves are superposition of plane waves, otherwise known as Herglotz wave functions,
with particular densities; each density associated with an infinite set of non-scattering wave num-
bers (see e.g. [12, Chapter 10] and [28]). The spherically symmetric configuration is unstable with
respect to non-scattering. Vogelius and Xiao in [28] have shown in R?, and for constant refractive
index n # 1, that if the disk is perturbed even slightly to a proper ellipse with arbitrarily small
eccentricity, then there exist at most finitely many positive wave numbers for which a Herglotz
wave function with a fixed, smooth, non-trivial density can be non-scattering. When the boundary
of the inhomogeneity D contains a corner, then the set of non-scattering wave numbers is empty,
provided n — 1 # 0 at the corner, and under some local regularity on n. This result was first proven
by Blasten et al. in [5] for a right corner, followed by [24] for a convex corner, and their analysis
employs the so-called complex geometric solutions for the Helmholtz equation. This approach is
generalized in [10] to the scattering problem with a general operator of divergence form (instead
of the Laplacian). The most comprehensive analysis, implying that corner and edge singularities
always scatter in R™, is given by Elschner and Hu in [14], based on a refined corner singularity
analysis of the solution to (1.4). All these scattering results for geometries with corners are valid
without any restrictions on the incident wave, and they provide the foundation for proving that
a convex polygonal inhomogeneity is uniquely determined from scattering data corresponding
to one single incident wave [16]. Up to now there is a large gap, between spherically symmetric
media and inhomogeneities containing a corner, in which little is known about non-scattering.
In fact, nothing is known for general smooth domains D, with the exception of the partial results
in [28] and [4]. In [28] it is shown that given any smooth, strictly convex domain in R?, there exist
at most finitely many positive wave numbers k for which an (arbitrary but fixed) incident plane
wave can be non-scattering. In [4] the authors prove that inhomogeneities, containing a bound-
ary point of high curvature (near which the inhomogeneity could be analytic) scatter any incident
field, whose modulus is bounded away from zero by a constant depending on the curvature and
the value of the contrast n — 1 at this point. Our paper substantially contributes to filling this gap.

Our main results are stated precisely in the next section. Roughly speaking, under the global
assumptions of a Lipshitz boundary D, and n € L*(D), we show that if there is a point x, € dD,
such that n is analytic in a neighborhood of x, but the boundary is not analytic in any neighbor-
hood of x,, then every incident field v is scattered, provided (n(xy) — 1)v(x,) # 0. We establish
a similar result for n that are less regular locally near X, but still in C%!. In this case we show

:sdny) SUONIPUOD) PUE WA, Y1 99§ “[FZ0Z/90/0Z] U0 AIRIGIT AUIUQ K[IAL *SPLTIQIT ANSIOAIUN SIFINY A £1122°2d/Z001°01/10p/wod Kaftav ATeiqujout]uoy/:sdity woij papeojumod ‘Z1 *€70Z “Z1£0L601

o105 Ko Keaqupouy

p

5UQDIT SUOWILIO) 2ATIERI) QIqraNIddt A1 £q PAUIDAOS QIE SIINIE YO 195N JO SAIMI 10] AIBIGIT SUIUQ AS[1AL UO (SUOT



4026 | CAKONI and VOGELIUS

that if the boundary is not sufficiently smooth locally (related to the order of smoothness of n),
then every incident wave is scattered, again provided (n(x,) — 1)v(x,) # 0. Although our results
address domains with corners (in fact we only require Lipschitz boundaries) they are only valid
provided the incident field v is non-vanishing at x, (here: the corner). This is not required by
the prior results on corners, mentioned above. A non-vanishing condition on the incident fields
is essential to our approach. Such non-vanishing holds for plane waves or point sources; it is
unclear exactly what limitations this imposes for generic Herglotz waves or for generic real ana-
lytic solutions to the Helmholtz equation. However, in R? and for analytic refractive index n near
the boundary, we prove that there exist at most finitely many positive wave numbers k for which
one may find a non-scattering Herglotz wave function (with density in a fixed compact subset of
C'), unless D is almost everywhere analytic (see Section 6 for the appropriate definition).

As a direct consequence of the proof of our main results, we conclude that at a transmission
eigenvalue, the part v of the transmission eigenfunction lacks sufficient regularity near a singular
boundary point x,, unless it vanishes at this point, thus recovering similar results for the case of
corners in [2] and [3]. For a precise statement of this result, see the end of Section 5. Our analysis
also yields results concerning the regularity of the support of non-radiating sources [20]. These
results are discussed in the last section of this paper; they substantially generalize similar results
in [2] for sources whose support contains corner singularities.

At the core, our analysis relies on viewing the boundary with vanishing Cauchy data as a free
boundary, and applying the free boundary regularity results of Caffarelli [6], and Kinderlehrer
and Nirenberg [18] for second order elliptic equations. There is a striking similarity in the mathe-
matical structure of the problem of non-scattering inhomogeneities, and the problem of domains
that do not possess the Pompeiu property [1, 27, 29]. Regularity properties of the latter are estab-
lished by Williams [30], and the analysis here in several places borrows significantly from his
original work.

2 | STATEMENT OF OUR MAIN RESULTS

In this section we state the main results of this paper. These results are stated in terms of sufficient
conditions of non-smoothness of dD for scattering to occur for a given incident wave. By negation
they could as well have been stated as necessary smoothness conditions that follow from non-
scattering. In the formulation the incident wave is a solution to

Av+k*v=0 (2.1)
in R™, except possibly a set of measure zero, external to D. Actually it suffices that v is a solution
to this equation in D, with v real analytic on D. In the formulation of our main results we also
refer to the region Ds C D, defined by

Ds :={x €D, dist(x,0D) < 6} for some fixed § > 0.
The proof of these results is postponed to Section 5.
Theorem 2.1. Let k > 0 be a fixed wave number. Assume the positive refractive index n is in L= (D),

and that the boundary 0D is Lipschitz. Consider an incident field v satisfying (2.1). Assume that n
is real analytic in Ds, and there exists x, € 0D such (n(xy) — 1)v(xy) # 0. Assume furthermore that
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0D n B,(x,) is not real analytic for any ball B,(x,) of radius r centered at x,. Then the incident field
v is scattered by the inhomogeneity (D, n). In other words: there exists no H g(D) solution to (1.4).

For less regular refractive index n there is a similar result.

Theorem 2.2. Let k > 0 be a fixed wave number. Assume the positive refractive index n is in L*° (D),
and that the boundary 8D is Lipschitz. Consider an incident field v satisfying (2.1). Assume thatn €
C™H(Dg) N CY1(Dg) form > 1,0 < u < 1, and there exists x, € 8D such that (n(x,) — 1)v(x,) # O.
Assume furthermore that dD N B,(x,) is not of class C"™ V4, for any ball B,(x,) of radius r centered
at x,. Then the incident field v is scattered by the inhomogeneity (D, n). In other words: there exists
no H}(D) solution to (1.4).

Remark 2.3. The smoothness assumptions on the refractive index n in Theorem 2.1 and The-
orem 2.2 are only needed locally in D N Br(x,) for some ball centered at x, of radius R >
0.

Of course Theorems 2.1 and 2.2 only add insight if the wave number k is a real transmission
eigenvalue (which is a necessary condition for the incident field to produce a vanishing scattered
field). At any k other than a transmission eigenvalue, every incident field is scattered by the given
inhomogeneity. However, it is important to emphasize that we do not need to know a priori that
k > 01is a transmission eigenvalue, and therefore our results hold under weaker conditions on the
contrast than those (currently) needed to prove the existence of real transmission eigenvalues. If
k > 01is a transmission eigenvalue, the assumptions in Theorems 2.1 and 2.2 imply that the part v
of the transmission eigenfunction (1.5)-(1.7) cannot be extended into the exterior of D as solution
of the Helmholtz equation, provided n # 1 on dD and that this eigenfunction does not vanish at
the point x, € 4D (see Corollary 5.5).

3 | AFREE BOUNDARY REGULARITY RESULT

With a(x) = k?n(x), and b(x) = k(1 — n(x))v(x), the problem (1.4) becomes

Au+a(x)u=b(x) in D (3.1
ou
u=--= 0 on 4D. (3.2)

In order to prove our main results we shall make use of two classical free boundary regularity
results. The first result is due to Kinderlehrer and Nirenberg in [18, Theorem 1’ on page 377]. In
[18] the Theorem is proven for more general nonlinear second-order elliptic partial differential
operators, but in the following we state it as it applies to our linear equation (3.1).

Theorem 3.1. Suppose that 0 € D, and D N Bg(0) is of class C! for some ball Bg(0) of radius R
centered at 0. Suppose a and b are real valued functions in C'(D N Bg(0)), with a(0) # 0 End b(0) #
0. Furthermore suppose there exists a real valued solution u to (3.1)-(3.2), with u € C*>(D n Bg(0)).
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Then

(1) 3D N Bgi(0) is of class C1% for every positive & < 1, and some R’ < R.

(2) Ifadditionally a € Cc"#*(D N Br(0))and b € c*(D N Br(0))form >1,0< u < 1thendD N
Br/(0) is of class C™*1#, for some R’ < R.

(3) Ifa and b are real analytic in Dn Bg(0) then 3D N By/(0) is real analytic for some R' < R.

Remark 3.2. The regularity of the free boundary is a local property. Correspondingly, the result of
Theorem 3.1 holds for u solving (3.1) in D N Bg(0) with zero Cauchy data (3.2) only on the part of
boundary 0D n B(0). However, in our particular applications the solution u will be defined on
all of D.

In this paper we initially assume that 0D is only Lipschitz regular. In order to apply Theorem 3.1
we must first show that the free boundary dD N BR(0) is indeed C?, and then verify that the solu-
tion u to (3.1)-(3.2) is in C2(D N Bg(0)). This intermediate regularity is achieved with the help of
a classical result on regularity of the free boundary due to Caffarelli [6, Section 1.2 and Theorem 3
on page 166], which we state in the following theorem, modified to the framework of our problem.
This result refers to a function w that satisfies

Aw =g in D n Bg(0), such that w = g—:‘: =0 on dDNBR(0), (3.3)

where again 0 € dD and Bg(0) is some ball of radius R centered at 0.

Theorem 3.3. Suppose that 3D N Bg(0) is Lipschitz and the function w satisfying (3.3) isin C(D N
Br(0)). Furthermore, assume that w < 0 in D N Bg(0), and g has a C'-extension g* in a neighbor-
hood of D N Bg(0) such that g* < —a < 0. Then there exists R’ < R such that D N B/(0) is of class
C! and all second derivatives of w are continuous up to dD N Bx/(0), that is, w € c*(Dn Bri(0)).

The first obstacle to the application of Theorem 3.3 is to verify that the HS(D) solution u to (1.4)

has all second derivatives uniformly bounded in D N Br(x,). For this purpose, we next investigate
the regularity of the volume potential.

4 | AREGULARITY RESULT FOR THE VOLUME POTENTIAL

Let ®(x, y) be the free space fundamental solution to the Laplace operator, given by

1
ax =yl in R°
O(x,y) =19 1 )i (41)
—1In in R2.
2 |x =yl
For later use we note the following estimates:
)
forl<j<m a—(x,y) < # in R™ m=2,3,
9x; |x — y|0n=D)
9’® c
forl1<i,j<m X, <— InR™ m=2,3.
<i,j< ‘6xiaxj( y)_|x—y|m

//:5dny woy papeoumod ‘T €70T ‘TIE0L60T
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In this section we study the regularity of the (weighted) volume potential
wy) = [ $0)e.p)dy.
D

The following lemma is proven in [19, Lemma 3.7] in the case of R®. For completeness we include
here the proof in R™, m = 2, 3.

Lemma 4.1. Fory € L*(D) we have that wy € C'(R™), m = 2,3 and
aﬂ(x)—/gb()a—q’(x ydy, xE€RM j=1,.m
6xj B D Y axj ) ay, S = e

Proof. It easy to see that wy, is in C°(R™). Now, consider a smooth cut-off function & such that
0<é()<1,ét)=1fort >2and &(t) =0fort <1 and set

d;(x) :=/D¢(y)§—i(x,y)dy,

which exists from the above estimates of the derivatives of the fundamental solutions. Next, let us
denote by

w.(x) i= / POIE(x — y1/)D(x,y) dy ;
D
notice that w. € C*(R™) and that w. — wy, in C°(R™) as ¢ — 0. We have
d MWe 1y = 9 g 1 d
1) = Gt = /D YO) OGN~ Ellx =/

and so in R3 we estimate

dw L) 1€ |0
di(x) — —)| < IIII)IIDO/ —x, )|+ |®(x,y)| | dy
J 5xj ly—x|<2¢ ax] €
2€
<C l+l rzdr=C1€,
0 r2  er
whereas in R?
w D 1€l
dj(x) - —E(x)' < IIZPIIOO/ —x, )|+ |®(x,y)| | dy
! axi ly—x|<2¢ axj €

2e
SC/ <1+llnl>rdrgczeln1.
0 r € r €
ow,

In both cases . d; uniformly in R™ ase — 0, which shows that wy, € C 1(R™) and that Zﬂ =
X; x;
d;. This completes the proof. O
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All second derivatives of wy exist for x € R™ \ D, and one can differentiate twice inside the
integral to obtain

52

wy o 3°®
sae= [ zp(y)m(x,wdy

3*®
= [ 1900 -9y 1909 | Sy

/ [B0) ~ 400 —(x Gy,  (42)
D

provided ¥ extends into R™ \ D. Here the last integral over D is obtained by using the divergence
theorem (the minus sign arises when one replaces an x; derivative with a y; derivative). Note that
unit normal vector n = (1n;);— ,, is well-defined for almost all y € D. We show next that if 3, in
addition to being bounded on D, is in C*(Bg(0)), then (4.2) holds true for x € D N Br(0). To this
end, we set

dy(x) 1= / [0) ~ 90l 5 (x W dy - $x) / 92 (x, () dy

Note that d;;(x) is well defined for x € D n Bg(0), since for 3 € C%(Bg(0)) the integrand inside
the volume integral behaves as

‘[¢(y) P(x )] (x Y| <Clx—y|*™, fory near x, (4.3)

and is bounded for y away from x; the surface integral exists since x is not on dD. Now we choose
2¢ < dist(x,dD) and again consider a smooth cut-off function & such that 0 < £(t) < 1,&(t) =1
fort > 2and &(¢t) = 0fort < 1. Set

d; () 1= /D w(y>§(|x—y|/e>§—i<x,y)dy.

‘We obtain

- /D W) - #wl (mx - y|/e>§—z<x,y>)dy
0P
e /a S mO)dy,

and therefore

dl](x) _( )

'
<c/ ( L 18" 1l 1)|y—x|°‘dy
ly—x|<2e \NY = X" " ely — x|m-

2¢ /
—C 1 +”§”°°“d<Ce
0 rl—ot €
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Hence, as € — 0, d; (x) converges to —(x) and (x) converges to d;;(x), both uniformly on
Xj

compact subsets of D N Br(0). Thus d;;(x) = ax (x) for x € Bx(0) N D.
j

Even for smooth %, but with 3 # 0 on 6Dl, the second derivatives of w, maybe become
unbounded as x approaches a boundary point from either inside or outside D. Thus the vol-
ume potential is not necessarily in C2(D N Bg(0)). However, we can show that symmetric jumps
of the second derivative (to become precise later) are uniformly bounded near 0 € 6D, when
) € C¥(Bg(0)) for 0 < o < 1. A similar result is proven in [30, Theorem 2] for ) = 1. Our method
of proof of Lemma 4.2 below is in many ways very similar to that in [30]. We provide the details
for completeness.

First we introduce some notations. Denote x := (x(", x,,) € R™ where x("~1 € R”~!, and
consider a cylindrical neighborhood of 0 defined by N := N(p, h) = ij”‘”(o) X [=h, h], where
ij”‘“(O) isthe m — 1 dimensional ball of radius p centered at the origin. We assume that B,,.(0) C
N C N c Bg(0). Furthermore, we assume (by appropriate rotation and selection of o and h) that
N N 4D is the graph x,,, = f(x~D) of a Lipshitz continuous function f : Bf(jm_l)(o) - R, with
Lipschitz constant K. We also assume that h > Kp and

NAD = {(x<m—1>,xm) : xm=D € B0y, f(xm D) < x,, < h},

Finally we denote by e,, the unit vector in the m-direction. We can now prove the following
lemma.

Lemma 4.2. Assume that ) € C%(Bg(0)), for 0 < a < 1, in addition to being bounded on D. Then
there exist 0 < r so that the symmetric jumps

3wy, 3*wy, .
— — <i,i<
5x,0%,) (x +nem) 5x,0x, (x — ey, <i,j<m

across the boundary at x are uniformly bounded with respect to 0 < 7 < r and x € 6D N B,(0).

Proof. Using (4.2), outside and inside D, we write

32w 8wy

v
B, & T em) ~ Fan

2 (x —nen)

- / [60) — $x + nen)] s (x 0y dy
- /D [D(y) — p(x — nem)]%(x — ey, y)dy
—(x +ne,,) /aD g—z_(x +nem, y)n;(y) ds,

oo
g =nen) [ 2= e ) ds,
oD OXj

for x € 4D N B,(0). In the above integral expressions the part of the integrals taken over D \ Bz(0)
and 0D \ Bi(0) are uniformly bounded with respect to 7 in [0, r] and for all x € 6D n B,(0). So it
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4032 | CAKONI and VOGELIUS

suffices to consider only the integrals over Bx(0) N D and Br(0) N D. Next we have the following
estimates for the integrands of the volume integrals
9’®
0x;0x;

[v(y) —P(x inem)]ﬂ(x +7ne,,Y)| < Clx £ne, —y|*™™, y € Bg(0)
J

for x € D N B,(0) and 5 < r (note that x + ne,, € B,,(0) C Br(0)). Therefore, the integrals over
D N Br(0) are bounded uniformlyin# € [0,r] and x € D N B,(0). Next we consider the boundary
integral terms

oo
¢(x + 77em) a_(x + ﬂem,Y)ni(J’) dsy
aDNBR(0) OXj
oo
_¢(x - 77em) —(X —Nem; J’)nz(J’) dsy

aDBR(0) 9%

for 1 < i, j < m. The above expression can be written as

I 410, + 5
where
0P
b = [P(x +ney,) — ¢(y)]a—(x + ney, yn;(y) ds,
4DNBR(0) Xj
. L)
b 1= [PO) —Pp(x - nem)]a—(x —ney, y)n;(y)ds,
3DNBg(0) Xj
and

P P
I = / [a—(x +nem,y) — a—(x - nem,y)]w(y)ni(y) ds,,.
aDNBg(0) LOX] Xj

Using the fact that ¢ € C*(Bg(0)), and that X := x + ne,, € B,,(0) C N for x € D n B,(0) and
7 < r, we obtain

1 1
lio| £C / ds,=C+C / ———ds
hal < €, 5DnBR(0) |(X £ 1ey,) — y|m=t=a = " Japow 1% =ylmime T

1 /
<C+ Cz/ — 1+ |Vf(y(m—1)|2 dy(m—l)
B[(Jm—l)(o) |x(m—1) _ y(m—l)lm—l—oc

1
<C+C d(m—l) m=273.
’ /ij"‘l)(o) |%(m=1) — y(m—1)|m-1-a Y

Note that by Rademacher’s theorem V f(y~1) is well defined and is bounded at all points in
ym=1 e B;,m_l)(o) except for a subset of Lebesgue measure zero. Hence [ , are also bounded
uniformly in 7 € [0,r] and x € dD n B,(0). To prove our lemma it thus suffices to estimate the
term [5, with the symmetric jumps. We provide the details of this estimation for x = 0. For x near
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0 (i.e., in D N B,(0)) the same approach works with obvious modifications. Since

0P(x,y) —(x; =)
5%, amlx =y’

m=23 j=1--m, w,=2m w3=4m,

the integrals we need to study take the form

/ »
(Iym=DP2 + (£ (=) = 2) "

(m—1)
B Y(0)

B Yj F(y(m—l))dy(m—l),

(Iym=DP2 + (£(m=0) 4 92) "

forj=1,..,(m—1)and

/ fO" ) -n)

(Iym=D + (F(ymD) = p2)"?

(m-1)
B V(0)

~ (fO D) + 1)
(lym=D2 + (f(ym=D) + 1)2

(m-1) (m-1)
Z FQ)dy ™,

for j = m. Here

Fy) := \/ L+ V=D D, foD)nymb, f(m)

is a function in L°°(B,gm_1)(0)), and hence there isa C > 0 such that |[F(y~1)| < C for almost all

ym=1 e Bf,'"‘”(o). In order to estimate the above integrals, it therefore suffices to estimate

/ Yi - Yi dy™=D (4.4)

/2 /2
Sty | (DR + (FO0=0) = n2)™ Iy + (F@D) 4+ 7)2) "
P

forj=1,..,(m—1),and

fO" ) -n) _ (fO" ) +n)

_ _ m/2 _ _ m/2 dy(m_l) (4'5)
(lym=D2 + (f(ym=D) — p)2) (lym=D2 + (f(y(m=D) + n)?)

(m-1)
B, (0)

In fact these are exactly the integrands estimated in [30, page 363-364] using simple algebraic
manipulations, which we have included in Appendix A.1 for the reader’s convenience. Upon sub-
stitution of y™~1 = 5u(™=1 these calculations imply that the integrals (4.4) and (4.5) are bounded
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4034 | CAKONI and VOGELIUS

by
1 (m-1)
du < 400, s
oy, (1mDP2 + 1)m/2
Bp/ri ©
uniformly in 0 < # < r and x € dD N B,(0). This completes the proof of Lemma 4.2. O

5 | PROOF OF OUR MAIN RESULTS

In our proof of the main results we shall make use of a regularity result about HS(D) solutions
to (1.4). A central ingredient in the proof of this regularity result is the regularity analysis for the
volume potential found in the previous section.

Proposition 5.1. Assume that dD is Lipschitz, 0 € dD, and the refractive index is given by n €
L®(D). Furthermore, we assume that n € C*(D N Br(0)) for some ball Bx(0) of radius R centered
at0and some0 < o <1. Thenu € Hg(D), that satisfies (1.4), lies in CY(D), and has all its second
derivatives {u; j}; j—1,, uniformly bounded in D N B,(0) for some r > 0.

Proof. First we remark that the incident field v is real analytic in D, as it is an (L?) solution of
Helmholtz equation in a region containing D. Introduce the function

u(x) forxebD,
Ulx) =
0 forx e R™\D.

This function is in H>(R™) (since u € HS(D)) and since m = 2 or 3, it follows from the Sobolev
embedding Theorem that U € C*(R") for some 0 < a < 1. U is a solution of

P(x) forxeD

AU =%in R™ |, where ¥(x) =

0 forx e R™\ D
with P(x) = k*(1 — n(x))v(x) — k*n(x)u(x), x € D. The function 1 is clearly in L*(D), and due
to the assumptions about n and v, and the C% extendability of u, it has an extension that lies in
C%(B,(0)). The solution U is now given by the formula

UG = - / POIP(y) dy = —wy(x)
D

with ¢ = k(1 — n)v — k?nu € L®(D) N C%(B,(0)). Lemma 4.1 and Lemma 4.2 of the preceding
section therefore apply to U. Lemma 4.1 implies that U € C'(R™) and, since U = 0 outside D,
Lemma 4.2 implies that all second derivatives of u are uniformly bounded in D N B,.(0) for some
r>0. O

Remark 5.2. In the above proof of Proposition 5.1 it is shown that U is in C'(R™); as a conse-
quence u has an extension (by zero) which is in C'(R™). We also note that, the fact that all
second derivatives of u are shown to be uniformly bounded in D n B,(0) implies that u is in
CH1(D n B,(0)).
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To obtain the main results of our paper we need to use Theorem 3.1, which requires a real valued
solution. With this in mind, we note that the real valued function w = R(w) is an H>(D) solution
to

Aw + k*nw = =k*2(n — DR(@) withw = g—:: =0ondD. (5.1

Since the incident wave is an L? solution to Av + k?v = 0 in a neighborhood of D, it follows that
M(v) is a real analytic function on D. In particular, Proposition 5.1 also applies to w. Of course,
one could consider the imaginary part of the scattered field u, which satisfies the same equa-
tion as above with R(v) replaced by S(v). Accordingly, in what follows, everything holds true if
we replace R(v) by S(v).

To apply Theorem 3.1 to (5.1), we must first appeal to Theorem 3.3 in order to establish that w €
c*Dn B,(0)) and that dD N B,.(0) is of class C'. Proposition 5.1 (see also Remark 5.2) guarantees
that w € (D N B,(0)) and that g = —k2(nw + (n — 1)R(v)) has a C! extension to all of R".
The essential, missing step for application of Theorem 3.3 is therefore to show that w is of one
sign. This is established by the following proposition.

Proposition 5.3. Assume that 0D is Lipschitz, 0 € 0D, and the refractive index is given by
n € L*(D). Furthermore, suppose n lies in Cc(D n B,(0)) for some ball B,(0) of radius r cen-
tered at 0, and suppose (n(0) — 1)R(v(0)) #0. Let w € Hg(D) be a solution to (5.1). Then w < 0
in D N B,.(0) for some r > 0 if (n(0) — 1))R((0)) > 0, and w > 0 in D N B,(0) for some r > 0 if
(n(0) — DHR((0)) < 0.

Proof. The proof of this proposition follows almost verbatim the analysis by Williams in [30, Sec-
tion 5]. However, since [30] deals with a slightly simpler equation, and since we assume these
techniques may not be known to the reader, we provide the main steps of the proof. We provide
sufficient details where our case differs from the one considered in [30, Theorem 3], and otherwise
refer the reader to [30].

To fix ideas we consider the case (n(0) — 1)R(v(0)) > 0. In the case when (n(0) — 1)R(v(0)) <
0 the result is verified by considering —w (and —v) instead of w (and v). Since (n — 1)R(v) is
C'(B,(0)), by decreasing r if necessary, it now follows that

(n(x) — DR(v(x)) >y > 0 for all x € D N B,(0). (5.2)

We consider the cylindrical neighborhood N of 0 € 0D introduced in Section 4 in the paragraph
just before Lemma 4.2. We recall that N := N(p, h) = B;m_l)(o) X [=h, h], NndD is the graph

X, = f(x"D) of a Lipshitz continuous function f : Bf(jm_l)(o) — R with Lipschitz constant K,
h > Kp, and

NOD = {G",x,) 0 xmD € B V(0), f D) < xp < k.

The function w € HS(D), which in Proposition 5.1 is shown to have all its second derivatives
{w; j}i,j=1,m uniformly bounded in N N D, solves

Aw = —k*’(nw+ (n—1)R(@)) in NnD. (5.3)
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Set g := —k?(nw + (n — 1)R(v)). From our assumption about n and the analyticity of R(v) we
2
have that g; ; 1= aa—a‘g, i, j = 1.m, exist almost everywhere in N N D and are in L*(N n D).
> Xi Xj

Furthermore,
Aw; j =g j almost everywhere in N N D.

Using Lemma 4.1 we can (by means of a volume potential) construct functions g; ; € C L(R™) such
that

Ag;j = gij almost everywhere in N N D.

Thus each w; ; — g; j is a bounded harmonic function in N n D. By taking the radius p of the

ball Bém_l)(o) sufficiently small we can assume that N N D is starlike about some pointin N N D.
Therefore, from [17, Section 2, page 311] we can conclude that each w; ; — g; ; has non-tangential
limits at all points of N N 0D, except for a possible (Borel) subset of zero harmonic measure. Since
qi,j € C!'(R™), we can then conclude that each w;, ; has finite non-tangential limits on N n D
except for a possible subset of zero harmonic measure. From geometric measure theory it is
known (see e.g. [13, Theorem 1, page 275] or [11]) that the (Borel) boundary sets, of a Lipschitz
domain, which have harmonic measure zero, are exactly those boundary sets which have (m — 1)-
dimensional Hausdorff measure zero. Therefore, each w; ; has finite non-tangential limit at
(x(m=D | f(x(m=DY) for all x(m—1D e Bl(jm_l)(o), except for a possible subset of (m — 1)-dimensional
zero Lebesgue measure.

By Rademacher’s theorem f : Bgm_l)(o) — R s differentiable almost everywhere in Bém_l)(o).
We now introduce the subset

G:= {x(m_l) € B/(Jm_l)(o), where both V f and the
non-tangential limits of all w; jexist}.

Note that B;,m_l)(o) \ G haszero Lebesgue measure. We note that the non-tangential limit of w; ; at
axy .= (x(()m_l), f(x(()m_l))) (for x(()m_l) € G)is the limiting value as we approach x, by x € NN D
from inside any cone

Ce(xp) i={x 1 (x —xp) - my < —€|x — X0},

€ > 0, where n; denotes the outward normal vector to dD at x,. Next we compute the non-
tangential limits of w; ; at (x("=, f(x(m=D)) for xX("~Y € G. For a fixed x(()m_l) € G we can setup
a local coordinative system such that (x(()m_l), f (x(()m_l))) = (0D, 0), x,, = 0 coincides with the
tangential plane to the graph of f, and the points (0= ) for h > 0 small enough are in D.
0;, 1 <i < m —1with respect to this local coordinate system then denotes a tangential derivative
to dD. Following [7, Lemma 2.1(b’) page 82], we consider the (m — 1) dimensional disk regions
(inside D) with radius p,, defined as D, :=t, N C.(0) where {t,},<n is @ sequence of planes
parallel to the tangential plane to dD at 0, and converging to it. Then we have

1 1
/w,-~dx 5—/|w~|ds§Ce, ast — oo, (5.4)
m—1 ) m—1 J
P y Py h
7 t
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because w; is Lipshitz continuous and vanishes on the free boundary (and the distance to the
boundary is pj¢). Since w; ; has a limit, call it ; j, from within C(0) we may conclude from (5.4)
that |l; j| < Ce which implies that /; ; = 0 since € > 0 is arbitrary. There is only one remaining
second derivative, namely the one corresponding to differentiation twice with respect to the m'th
local variable, whose limit we need to calculate. This second derivative actually coincides with

2

a%w, where n, denotes the outward normal to 0D (at (x(()m_l), f (x(()m_l)))). Using (5.3), the fact
0

that w vanishes on the boundary and is uniformly continuous up to the boundary, together with

(m-1) c

(5.2) we may now conclude that limit of wy, 5, iS Iy, n, < —k?y < 0, and this holds for all X,

G.

Now we go back to the fixed global coordinate system with the fixed 0 € dD, and we denote by
n(x"~1) the (outward) normal vector to the tangent plane to the graph of f at (x("=1), f(x("~1))
for x(m=1) € G. Since f is Lipshitz we have that the angle between —n(x("~) and e, (the
unit vector in the m-direction) satisfies 6(—n(x~1), e,,) < 8, < /2 for all x"~1) € G. Then
from the above we obtain that w,, ,, (the non-tangential limit of the second derivative in the e,
direction) satisfies

Wiy (XY, f(xmD) < —k2y cos?(§) = —€ < 0 for all x(mD e G . (5.5)

The idea is now, based on the sign property (5.5), to construct a subharmonic function involving
Wy, , that takes negative values uniformly on the boundary of a neighborhood of 0 € 4D in D, and
then use a maximum principle for subharmonic functions to infer the same sign property inside
the neighborhood.

To this end, let P > 0 be a positive constant. Then from (5.3) we have

A(Wpy (%) + P|x|?) = Awyy, 1y (X) + 2mP = g (x) +2mP forx eNND.

Since g, ,,, is uniformly bounded in x € N n D, it is possible to choose P > 0 large enough so that
Zm.m(X) + 2mP > 0for x € N N D. Thus the function w,, ,, + P|x|? is subharmonic in N N D. Let
K be the Lipschitz constant of f. Now, pick a smaller neighborhood of 0, N* := N(p*, h*) with
p* < p,h* < h,h* > Kp* so that P|x|?> < €/2 in N* where ¢ is the constant in (5.5). The boundary
of N* n D can be split into d(N* n D) = T'; U T, where

I, = {(x<m—1>,xm) : x(m=D e BI(0), f(xm D) < xm} Nd(N* N D).
and
r = {(x<m—1>, xn) X € BITD(0), D) = xm} :

In particular we have that wy, ,, + P|x|*> < —¢/2 almost everywhere on T, (in the sense of non-
tangential limits). The next step is to control the sign on I';. For this purpose, we consider the
(exterior) cone C with vertex 0 and opening 7 with 0 < # < tan™'(1/K)

€ :={x:=(x""b x,) ER™ : x,, <0, |x" V| < |x,|tann} .

Note that D C R™ \ C. It is quite easy (see e.g. [15, Lemma 2.4, page 62]) to construct a barrier
function u defined and continuous in R” \ C, subharmonicin R™ \ C, and such that u(x) < 0 for
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x € R™\ C, with equality holding if and only if x = 0. Now consider the subharmonic function
Wym + P|x|? + Mu for some constant M > 0, to be chosen later. Since Mu < 0 we still have

Wy m(X) + Plx|* + Mu(x) < —¢/2 for almostall x €T, . (5.6)

Since I'; is away from 0, we have that sup, er, u(x) < 0. Therefore, thanks to the fact that w,, ,, is

uniformly bounded in N N D, we can find a constant M > 0 such that
Wy m(X) + Plx|* + Mu(x) < —¢/2 for xeT;. (5.7)

Lemma 5.4 (see below) now implies that the above inequality holds in the interior of N* n D, in
particular we may conclude

Wy m(X) < —€/2 — P|x|* — Mu(x) forall N*nD.

Since u(x) —» 0 as |x| — 0 for x € R™ \ C, we can therefore find a sufficiently small p, > 0 such
that

Wpym(x) < —€/4 forall x € N* N D with |x]| < po.

This, along with the fact that w = dw/dx,, = 0 on T',, implies that w < 0 along all lines in the
direction e,, (inside N* N D N {|x| < py}) which finally proves that w < 0 in a neighborhood of 0
in D. O

Lemma 5.4. Let the notations and assumptions be as in the proof of Proposition 5.3. If (5.6) and
(5.7) hold then

Wy m(X) + Plx|> + Mu(x) < —e/2  forallx e N*ND.

This result (though not directly stated as a lemma) is proven from bottom of page 366 through
the top of page 368 in Williams [30], and we refer the reader to that paper. This lemma amounts
to a “maximum principle” for the subharmonic function w, ,,(x) + P|x|* + Mu(x), the added
difficulty being the lack of apriori knowledge that this function is continuous on N* N D.

We are now ready to give the proof of the first main result of this paper.

Proof of Theorem 2.1. The proof proceeds by contradiction. Suppose the incident field v is not scat-
tered by (D, n). Without loss of generality we assume that (n(x,) — 1)R(v(xy)) # 0 and we choose
X, to be the origin of the coordinate system (the argument works similarly if (n(x,) — 1)J(v(xy)) #
0). The function w = R(u) is a solution to (5.1). Since the incident wave is an L? solution to
Av + k?v = 0 in a neighborhood of D, it follows that R(v) is a real analytic functions on D.
By assumption the refractive index n is also real analytic on Dg, and so the assumptions of
Proposition 5.1 and Proposition 5.3 are satisfied. In particular, Proposition 5.1 (and the remark
following) implies that w € C»(D n B,(0)) for some ball B,(0), and that it has a C! extension
to all of R™. Proposition 5.3 implies that w > 0 or w < 0 in D N B,(0) depending on whether
(n(0) = DR((0)) < 0 or (n(0) — 1DR(v(0)) > 0, respectively. We now introduce g := —k*(nw +
(n — DR(v)). Thanks to the C! extendability of w, and the analyticity of n and R(v), the func-
tion g has a C'-extension g* in a neighborhood of D N Bg(0). Since w vanishes at 4D, g(0) =
—k2(n(0) — )R (v(0)), and so it follows that g* >y > 0in D N B,(0) or g* < —y < 0in D N B,(0)
(with r sufficiently small) depending on whether (n(0) — 1)R(v(0)) < 0 or (n(0) — 1)R(v(0)) > 0,
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SINGULARITIES ALMOST ALWAYS SCATTER | 4039

respectively. Since w satisfies Aw = g in D, the assumptions of Theorem 3.3 are now satisfied for
w, if (n(0) — 1)R(v(0)) > 0, and for —w if (n(0) — 1)R(v(0)) < 0. In both cases we may therefore
conclude that w € C2(D n B,(0)) and D n B,(0) is of class C'.

We now apply Theorem 3.1. We set a(x) = k?n(x) and b(x) = k?(1 — n(x))R(v(x)), then a and
b are both real analytic, by assumption a(0), b(0) # 0 and w € c*(Dn B,(0)) satisfies

Aw+aw=binD,withw=g—l::=00n6D,

where 8D N B,(0) is known to be of class C'. The third case in Theorem 3.1 yields that D N B,(0) is
real analytic for r sufficiently small. However, this represents a contradiction, and so we conclude
that the incident field v is scattered by (D, n), thus completing the proof of Theorem 2.1. O

Our second main result, Theorem 2.2, which applies to less regular refractive index n is proven
in the exact same manner. The regularity result of Proposition 5.1 and Proposition 5.3 are still
applicable, since we have assumed that n € C!(Dj). For the free boundary regularity we rely on
the case 2 of Theorem 3.1.

We close this section with a remark on up-to-the-boundary regularity of the v-part of the trans-
mission eigenfunction. At a real transmission eigenvalue k > 0, there exist nonzero u € Hg(D)
and v € L*(D), which solve

Au+ k*nu =k*(1—n)v in D (5.8)
Av+k*v=0inD (5.9)

Without loss of generality, we may assume that the eigenfunction (u, v) is real valued. In general,
since v assumes no boundary condition, it is not possible from the equations to conclude any
regularity for v up to the boundary. Our free boundary regularity results provide some insight into
this issue. Recall that Theorem 2.1 and Theorem 2.2 state necessary regularity conditions on D,
in order that (5.8) can have a Hé(D) solution (v being defined and regular in a R” neighborhood
of dD). It is clear from our analysis that the statements of Theorem 2.1 and Theorem 2.2 are valid
if v is only defined on one side of dD, and the regularity of v up to the boundary matches that
of n; simply notice that our arguments rely only on the local regularity of the source term (1 —
n)v in D N Br(x,). We thus have the following consequence of the proofs of Theorem 2.1 and
Theorem 2.2.

Corollary 5.5. Assume k > 0 is a real transmission eigenvalue with eigenfunction (u,v), 0D is
Lipshitz, n € L®(D), and there exits x, € 0D such that n(xy) — 1 # 0. The following assertions
hold:

(1) If n is real analytic in a neighborhood of x, and 0D N B,(x,) is not real analytic for any ball
B,(xy), then v can not be real analytic in any neighborhood of x,, unless v(x,) = 0.

(2) If n € C™H*(D N Br(x,)) N CL(D N Br(xy)) for m > 1, 0 < u < 1 and some ball Bx(x,), and
8D N B,(x,) is not of class ™+ for any ball B,(x,), then v cannot lie in C"™*(D N B,(x,)) N
CY(D N B,(x,)) for any ball B,(x,), unless v(x,) = O.
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4040 | CAKONI and VOGELIUS

6 | APPLICATIONS TO SPECIAL INCIDENT WAVES

In this section we describe some applications of our main results to broad classes of incident
waves. To illustrate our results from a different perspective we shall formulate these applications
in terms of the boundary regularity of D implied by a lack of scattering. For an incident plane
wave

ve(x) = e,

and an index of refraction n with the property that n(x) # 1 for all x € dD, one has
k(1 —n(x))vg(x) #0, x€dD, k#0,

and so the non-degeneracy condition of our main results is satisfied for all x € dD. As a
consequence we have the following corollary to Theorem 2.1

Corollary 6.1. Suppose 0D is Lipshitz. Suppose the index of refraction n € L*°(D), n(x) > ng > 0,
is real analytic in Ds, with n(x) # 1 for all x € 3D. Let u € HIZOC(R'") denote the solution to the
problem (1.2)(1.3), given the incident planewave vg (x) = e'**, & € S™~1 Ifk > 0, and ifu vanishes
identically in R™ \ D, then the boundary 8D is real analytic.

Remark 6.2. We have two remarks related to Corollary 6.1:

(1) Let @, denote the fundamental solution to the Helmholtz equation give by

eiklx—y|

m in R3
Oy(x,y) 1= Y :

i .
ZH(()l)(klx —yD in R2.

where H(()l) denotes the Hankel function of the first kind of order zero. The result in
Corollary 6.1 can be stated verbatim if the incident field v is a point source, that is,

Uz, (X) 1= Pp(x, 29) 2o € R"\ D,

since v, (x) # 0 for all x € dD.

(2) If the refractive index n € C"™*(Ds) N C1(Dg), for m > 1, 0 < u < 1 and under the same
additional assumptions one can conclude that if u vanishes identically in R™ \ D, then the
boundary dD is of class C™+1H,

A natural question arises concerning the possible appearance of non-scattering for plane waves
and obstacles with real analytic boundaries as well as real analytic index of refraction. A result
in that direction is found in [28]. In that paper it is shown that if D C R? is strictly convex (pos-
itive curvature) and with constant index of refraction, then given any direction & there exists at
most finitely many positive wave-numbers k for which the plane wave in the direction £ does
not scatter. If D is a disk it is quite easy to see that a plane wave will scatter at any positive
wave-number.
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For the next application we consider the two dimensional case, and incident waves obtained by
superposition of plane waves, so-called Herglotz wave functions, of the form

vg(x) = % /51 P(£)elkex ds, (6.1)

where we take ¢ to be a C! function. While the free boundary regularity result in Theorem 2.1
does not insure that non-scattering for such incident waves can only occur for obstacles with real
analytic boundaries, it does imply that (for real analytic internal index of refraction) infinitely
many non-scattering positive wave-numbers can only occur if the boundary of the obstacle is real
analytic, except possibly at a nowhere dense (rare) set of points.> To make this statement precise
we introduce the real analytic “part” of the boundary

0D, = {x € dD : dD is real analytic in a neighborhood of x}.

Corollary 6.3. Suppose 3D, the boundary of the domain 1D C R?, is Lipschitz. Suppose the index of
refraction n € L®(D), n(x) > ng > 0, is real analytic on Dg, with n(x) # 1 for all x € dD. For fixed
Ky and ey > 0, let ® denote the set

®={peC'(SY, ligllct <Ko , and |$| 2 g onS" },

and let uy € HIZOC(R’”) denote the solution to the scattering problem (1.2)-(1.3), given an incident
Herglotz wave function vg of the form (6.1). Suppose there exists an infinite sequence of positive wave-
numbers k; and associated scattering solutions us,» with ¢; € @, for which

ug, vanishes identically in R* \ D,

then 8D 4 is a dense open set, or equivalently: the complement of dD 4 is a closed nowhere dense set.

Proof. The set dD 4 is clearly an open subset of D. Let x* be an arbitrary point on 6D, we proceed
to show any neighborhood of x* contains a point from 8D 4. For this purpose we may without loss
of generality assume x* # 0 (since a set which is dense in 0D minus a point is also dense in 6D).
We analyze two exhaustive, but mutually exclusive possibilities

* The map x — |x| is constant in a neighborhood of x*.
* For any D neighborhood w of x*, the image of w under the map x — |x| contains an open
interval.

In the first case the boundary dD is part of a circle near x*, therefore locally real analytic, and so
x*itselfliesin 6D 4. In order to deduce that any neighborhood of x* also contains a point from 6D 4
in the second case, we shall apply the result from Theorem 2.1. Now suppose any neighborhood
of x* contains a point z with

05 @) = 57 | 815 ds 0

3 Shortly after the completion of this paper an interesting complementary result was proven in [25]. The authors show
that, given any real analytic domain it is for most wave numbers possible to find an incident Herglotz wave function and
an associated C* index of refraction, which renders this wave non-scattering.
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4042 | CAKONI and VOGELIUS

for some j. Since Vg, is not scattered, it follows from Theorem 2.1 that dD is analytic near the point
z, and so it follows that any neighborhood of x* contains a point from D ,. We are thus left to
consider the second case when we also know that there exists a neighborhood w of x* such that

% / ¢j(§)eikf§'z ds; =0, forall jandforallz € w. (6.2)
S1

By decreasing w, if necessary, we may assume |z| > ¢ > 0 in w. In the following we show, by
contradiction, that this situation is vacuous, and having done so, we may conclude that any
neighborhood of x* contains a point from 6D, also in case two. This will complete the proof
that 0D 4 is dense in dD. Now to establish the contradiction: note that wave numbers associ-
ated with non-scattering (nontrivial) incident waves are automatically transmission eigenvalues.
Because n(x) # 1 on 0D, and because of the regularity of n near oD, it follows that either (1)
min,ep, n(x) > 1, or (2) max,ep, n(x) < 1, for some § sufficiently small. Due to this “sign” con-
dition on n it is known that the only accumulation point of the transmission eigenvalues is at oo,
in other words, we know that k; — co as j — co. The stationary phase approximation (see e.g.
[23]) to integrals such as that in (6.2) asserts that, for any ¢ € C',

1 - 1 T o i
% ,/51 ¢(§)elk]§z ds§ E [ﬂ ¢(6)elk1|z|503(9 6,) o

1/2

1 ikjlzl ,—iz/a [ 27
77 $(62)e e k2]

1/2
1 —ik;lz| jiz/a [ 27 < —1/2)
—_ j k.

+ 2ﬂ¢(ez + e e e +o(k; ,
for any z € dD, z # 0. Here we have parametrized £ € S by angle 6 € (—x, 7): £ = (cos 0, sin9),
and interpreted ¢ as a periodic function of 8. We have also written z = |z|(cos 8,, sin 8,). Further-
more the remainder term o(k._l/ 2) is uniform over ||¢||c1 < K, (and |z| > ¢ > 0). By insertion of
p=¢ j € @, use of (6.2), and rearrangement we now get

$:(6,)e? il i (6, + 1) - 0as j — oo, (6.3)
J J

for any z € w. Since the ¢; are bounded in C !, we may extract a subsequence (for simplicity, still
indexed by j) that converges to some ¢ in C?; this limit ¢ also satisfies |¢(8)| > ¢, for all 6. From
the limiting statement (6.3) we conclude that

$(6,)e* ki1l +ip(6, + m) —» 0as j — o,

for any z € w. Since the image under the map z — |z| of any (6D) neighborhood of x* contains an
open interval, Lemma 6.1 in [27] asserts that there exists points z; and z, in w so (after extraction
of a subsequence)

e?kilal 5 1 and e?Milzl & -1,
For the convenience of the reader we have included the statement of this lemma in Appendix A.2.

It thus follows that

¢ (6,,) +igp (6, +7) =0 and — ¢ (6,,) +ip (65, +7) =0.
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Since the above argument remains valid when we decrease the x* neighborhood w, we may
achieve that both z; and z, are arbitrarily close to x*. Therefore, by continuity

P(Oy+) +ip(Oy+ + ) =0 and — ¢(O4+) +i¢p(6+ + 1) = 0.
or

$0x) = P + 1) =0,

in contradiction to the fact that |¢(60)] is always positive. O

For inhomogeneities with real analytic boundaries some recent results about the number of
positive non-scattering wave-numbers associated to incident Herglotz wave function (and con-
stant index of refraction # 1) are found in [28]. For a circle there are infinitely many such
wave-numbers associated to each density ¢;(6) = e+ However, when the circle is perturbed
(ever so slightly) to an ellipse, there can at most be finitely many such wave-numbers associated
to any fixed ¢ (or any compact class of ¢’s). The finiteness remains stable to perturbations of
the ellipse.

We close this section with applications of our main results by establishing a scattering result for
an inhomogeneous media (D, n) ata wave number k > 0, for which k? is not a Dirichlet eigenvalue
of the negative Laplacian in D C R™.

Corollary 6.4. Suppose dD is Lipschitz. Suppose k? > 0 is not a Dirichlet eigenvalue of —A in D,
and that the index of refraction n € L*(D) is real analytic on Dy, with n(x) # 1 for all x € 3D.
Furthermore, assume that 0D 4 is the empty set. Then every (non-trivial) incident wave v is scattered
by this inhomogeneity.

Proof. v is a (real-) analytic solution of the Helmhotz equation, Av + k?v = 0, in a region con-
taining D. Since k? is not a Dirichlet eigenvalue, there is an open subset @ C 3D of the boundary
where v does not vanish. In particular there exists a point x, € @ C D where the assumptions of
Theorem 2.1 are satisfied, and thus v produces a non-zero scattered field. O

If k > 0 is not a transmission eigenvalue, we know that the inhomogeneity always scatters,
hence the statement of Corollary 6.4 asserts that, non-scattering (with D4 = @) can only occur for
wave numbers k > 0, that are transmission eigenvalues, and for which k? is a Dirichlet eigenvalue
for —A in D. The cardinality of this set is not known.

7 | REMARKS ON NON-RADIATING SOURCES

Our analysis has some implications for the scattering problem given a compactly supported
source. More specifically, the scattered field due to a given source f € L2(R™) of compact support
satisfies

Au+k’u=f inR™ (7.1)
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4044 | CAKONI and VOGELIUS

together with the outgoing Sommerfeld radiation condition (1.3). Again the outgoing scattered

field u exhibits the following asymptotic behavior asr := |x| — o
ik _mtl
u(x) = Wu“(fc) + O(r 2 > ,
r 2z

which defines the far field pattern u*(X) as a function on the unit m — 1 sphere. There are plenty
of compactly supported sources that produce zero far field patterns. For instance, the set

{f 1= Av + k?v, for any function v € C§°(|Rm)}

consists of so-called non-radiating sources. A non-radiating source of this type has the property
that f vanishes on the boundary of its support (which may have singularities). Our analysis, on
the other hand can be used to determine necessary local regularity properties for the boundary of
the support of a non-radiating source, provided it satisfies a non-vanishing condition. The analysis
leading to Theorem 2.1 and Theorem 2.2 implies the following results for the source problem (7.1).

Theorem 7.1. Assume that f = 0in R™ \ D, f|, € L®(D) and that the boundary 8D is Lipschitz.
Suppose there exists x, € dD such that f(x,) # 0, and f is real analytic in D N Bg(x,) for some ball
Bg(x) centered at x of fixed radius R > 0, and furthermore suppose D N B,(x,) is not real analytic
foranyr > 0. Then the source f radiates.

In fact, for less regular sources we can prove a similar result.

Theorem 7.2. Assume that f = 0in R™ \ D, f|,, € L®(D) and that the boundary 8D is Lipschitz.
Suppose there exists x, € D such that f(xq) # 0, and f € C™*(D N Bg(x,)) N C21(D N Bg(x))
form>1, 0 < u <1 for some ball Br(x,) centered at x, of fixed radius R > 0, and furthermore
suppose 3D N B,.(x,) is not of class C"™ L for any r > 0. Then the source f radiates.
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APPENDIX A

Al

| Estimation of integrals (4.4) and (4.5)

Our calculations here follow almost verbatim [30, page 363-364]. We include these for the conve-
nience of the reader, but we show only the calculations for the more complicated integral (4.5).
After the change of variable y"—1) = pu("=1, f(y(m=1Dy) = |y(m=1)|g(y(m=1) the integrand in (4.5)
takes the form

LU= DR+ U 12) " = U+ D (DR + = 12)"

nm—l

(A1)
/2
[(|u<m—1>|2 +U2+1) - 4U2]m
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with U = [u~D|g(nu™=D). The denominator of the (second) fraction in (A.1) is equal to
m/2
(m-1))2 2 2|um-D| 2
m-vz 4 )" | T ey | {2 e
(lu®™=DP +1) { [ T aeeops )| | s )

This can be estimated from below by using the fact that for all real numbers a and b we have

a? ? 2a 2 4
[1+ bz] —[ b] > (A2)

1+ a2 1+a2 | ~ b2+4°

with equalityata = +1/v/b? + 3.Indeed, we apply (A.2) witha := [u™ V]and b := gpu™D),
and notice that g(pu(™=V) = |g(y("™~V)| < K (independently of 5, for y*—1 e Bém_l)) since f is
Lipschitz with constant K and f(0) = 0. As a consequence it follows that the denominator of (A.1)
is bounded below by

4 m/2 m

With a := [u™ V| and b := g(pu(™V), the numerator of (A.1) reads

22 2ab \"? a2 2ab \"?
2412 (@b -1+ 22 4+ 22 —(@b+1D[1+ — - =— .
(@+1) l(a )< +1+a2+1+a2 (ab+1) +1+a2 1+ a2

2p? 2ab
f andB 1= ==

+a? 1+a2’

We now define A :=1+ both of which are obviously uniformly bounded in

n for y(m=1 e Bf,m_l), since |b| = |g(nu™V)| < K. We can now write
((A+BYy"? — AM/2)((A+B)™? + A™/?) = (A+ B)" — A™ = BP,(A,B)

where P, (A, B) are polynomials on A and B of total order m — 1. Noting that 1 < A <K and
|B| < K we get

-1
(A+B)"/? = Am/2 + BP,(A,B)((A+B)™? + A™?) = A™? +BQ,
where Q. are uniformly bounded in # for ym=b e Bgn_l). The numerator thus becomes

(a? + 1)™/?[(ab — 1)(A™? + BQ,) — (ab + 1)(A™/? + BQ_)]

= (a’ + )"/?[-2A™/> —B(Q, + Q) + abB(Q, — Q)] .

Since we also have |abB| < K it follows, that in terms of the original notations, the absolute value
of the numerator of (A.1) is bounded by

c(lumop+ 1)
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uniformly in 7 for 1 e Bg”_l). Finally, combining the above estimates we obtain

_ m/2

. . c (™D +1) C 1
integrant in (4.5) < — = :
7 (Jutm=D2 + 1) 7 (|u(m—1)|2+1)m/

where C > 0 stands for some positive constant independent of u(™~1). The desired estimate for
the integral (4.5) now follows by the change of variables y("—1) = yu(m=1),

The bound for the integral (4.4) can be obtained in a similar way; we leave the details to
the reader.

A2 | An algebraic lemma

Below we provide the full statement of the algebraic lemma, which was used in Section 6. The
lemma is taken directly from [27], where it appears as Lemma 6.1. We refer to [27] for a simple
proof of this lemma.

Lemma A.1. Leta < band L > 0 be three real numbers. Let {c,},_, be a monotonically increasing
sequence of positive numbers tending to infinity and starting with 1 < c,. Let {u,}7 | be a sequence
of positive numbers which satisfy c, i, < tn41- Given anyt € R there exists a numbers : a <s<b
such that

UpS = t moduloL asn - .
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