
Accepted: 14 July 2021

DOI: 10.1002/cpa.22117

RESEARCH ARTICLE

Singularities almost always scatter: Regularity
results for non-scattering inhomogeneities

Fioralba Cakoni Michael S. Vogelius

Department of Mathematics, Rutgers
University, New Jersey, New Brunswick,
USA

Correspondence
Michael S. Vogelius, Department of
Mathematics, Rutgers University, New
Brunswick, New Jersey, USA.
Email: vogelius@math.rutgers.edu

Funding information
AFOSR, Grant/Award Number:
FA9550-20-1-0024; NSF, Grant/Award
Numbers: DMS-21-06255, DMS-12-11330;
Nordea Foundation and the Otto
Mønsted Foundation

Abstract
In this paper we examine necessary conditions for an
inhomogeneity to be non-scattering, or equivalently, by
negation, sufficient conditions for it to be scattering. These
conditions are formulated in terms of the regularity of
the boundary of the inhomogeneity. We examine broad
classes of incident waves in both two and three dimen-
sions. Our analysis is greatly influenced by the analysis
carried out byWilliams in order to establish that a domain,
which does not possess the Pompeiu Property, has a real
analytic boundary. That analysis, as well as ours, relies cru-
cially on classical free boundary regularity results due to
Kinderlehrer and Nirenberg, and Caffarelli.
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1 INTRODUCTION

Aperplexing question in scattering theory is whether there are incoming time harmonic waves, at
particular frequencies, that are not scattered by a given inhomogeneity, in other words the inho-
mogeneity is invisible to probing by such waves. We refer to wave numbers, that correspond to
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SINGULARITIES ALMOST ALWAYS SCATTER 4023

frequencies for which there exists a non-scattering incomingwave, as non-scattering. The attempt
to provide an answer to this question has led to the so-called transmission eigenvalue problem
with the wave number as the eigen-parameter. This eigenvalue problem has a deceptively simple
formulation, namely two elliptic PDEs in a bounded domain (representing the inhomogeneity)
with a single set of Cauchy data on the boundary. However, the problem is a non-selfadjoint
eigenvalue problem with challenging mathematical structure. The non-scattering wave numbers
form a subset of the real transmission eigenvalues. We refer the reader to the monograph [8] for
a comprehensive discussion of the transmission eigenvalue problem, and to [22, 26] for the most
up-to-date results on the spectral analysis for the scalar problem considered here. A real transmis-
sion eigenvalue is not necessarily a non-scattering wave number, and it is desirable to understand
which (if any) are. Besides being mathematically appealing, this question is also important from
an application point of view. In particular, at a non-scattering wave number the relative scatter-
ing operator [21] (otherwise known as the far field operator [12]) is not injective. This causes the
failure of some reconstruction methods for solving the inverse scattering problem. Despite some
progress made for special geometries [4, 5, 10, 14, 16, 28], the question of existence/non-existence
of non-scattering wave numbers for a general inhomogeneity has been largely open until now.
The main contribution of our paper is that it provides finer necessary regularity conditions on
the geometry of an inhomogeneity in order that it be non-scattering, or equivalently, it provides
more general, sufficient conditions for it to be scattering. Let us proceed to formulate the specific
scattering problem.
We consider Helmholtz scattering by an inhomogeneous medium of bounded support. We

denote the inhomogeneity by 𝐷 ⊂ ℝ𝑚, 𝑚 = 2, 3, and assume that 𝐷 is a bounded and simply
connected region with a Lipschitz boundary 𝜕𝐷. 𝐧 denotes the outward unit normal vector to𝜕𝐷 defined almost everywhere on 𝜕𝐷. We assume that the inhomogeneity is situated in a homo-
geneous background and we denote by 𝑛 its refractive index. 𝑛 is a real valued function, with𝑛 ∈ 𝐿∞(𝐷), and 𝑛(𝑥) ≥ 𝑛0 > 0 almost everywhere in 𝐷.1 The propagation of a time harmonic
monochromatic wave in homogeneous free space is modeled by the Helmholtz equation

∆𝑣 + 𝑘2𝑣 = 0 (1.1)

where 𝑘 is proportional to the frequency (e.g., inℝ3, 𝑘 = 𝜔∕𝑐0 where 𝑐0 is the sound speed of the
homogeneous background). Let 𝑞 denote the function

𝑞(𝑥) = {𝑛(𝑥) 𝑥 ∈ 𝐷1 𝑥 ∈ ℝ𝑚 ⧵ 𝐷 .
We now formulate the direct scattering problem for the inhomogeneous media (𝐷,𝑛). By an inci-
dent wave 𝑣 we understand a function that satisfies (1.1) in ℝ𝑚, except for possibly a subset of
measure zero in the exterior of 𝐷; this could be a single point, for point sources, or a surface, for
surface potentials. We decompose the total field as 𝑢𝑡𝑜𝑡 = 𝑢 + 𝑣, where 𝑢 represents the scattered
field. The scattered field now satisfies

∆𝑢 + 𝑘2𝑞𝑢 = 𝑘2(1 − 𝑞)𝑣 in ℝ𝑚 , (1.2)

1 The assumptions about simply connectedness of 𝐷, and strict positivity of 𝑛, could be considerably relaxed, but for the
sake of clarity of exposition we have decided not to do so.
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4024 CAKONI and VOGELIUS

along with the outgoing Sommerfeld radiation condition

lim𝑟→∞ 𝑟𝑚−12 (𝜕𝑢𝜕𝑟 − 𝑖𝑘𝑢) = 0 , (1.3)

as 𝑟 ∶= |𝑥| →∞ uniformly with respect to 𝑥̂ ∶= 𝑥∕|𝑥| (see e.g. [12]). The scattered field 𝑢, which
is in 𝐻2𝑙𝑜𝑐(ℝ𝑚), assumes the following asymptotic behavior as 𝑟 ∶= |𝑥| →∞

𝑢(𝑥) = exp(𝑖𝑘𝑟)𝑟 𝑚−12 𝑢∞(𝑥̂) + 𝑂(𝑟−𝑚+12 ) ,
where the function 𝑢∞(𝑥̂) defined on the unit 𝑚 − 1 sphere is called the far field pattern of the
scattered field 𝑢. Rellich’s Lemma (see e.g. [12]) states that the vanishing of 𝑢∞(𝑥̂) on the unit𝑚 − 1 sphere for all directions 𝑥̂ implies vanishing of the scattered field 𝑢(𝑥) = 0 for all 𝑥 ∈ ℝ𝑚 ⧵𝐷. A natural question is: given the inhomogeneity (𝐷,𝑛), does there exist a wave number 𝑘 > 0
and an incident wave 𝑣 such that the far field pattern 𝑢∞ ∶= 𝑢∞𝑣 of the corresponding solution
of (1.2) is identically zero? Such an incident field is referred to as a non-scattering incident wave
and the corresponding 𝑘 > 0 as a non-scattering wave number. The non-scattering phenomenon
is equivalent to the existence of 𝑢 ∈ 𝐻20(𝐷) solving2∆𝑢 + 𝑘2𝑛𝑢 = 𝑘2(1 − 𝑛)𝑣 in 𝐷 (1.4)

where

𝐻20(𝐷) ∶= {𝑢 ∈ 𝐻2(𝐷), such that 𝑢 = 𝜕𝑢𝜕𝐧 = 0 on 𝜕𝐷}.2
If we include 𝑣, and focus on 𝐷, this may then be written

∆𝑢 + 𝑘2𝑛𝑢 = 𝑘2(1 − 𝑛)𝑣 in 𝐷 , (1.5)

∆𝑣 + 𝑘2𝑣 = 0 in 𝐷 , (1.6)

𝑢 = 𝜕𝑢𝜕𝐧 = 0 on 𝜕𝐷 , (1.7)

with 𝑢 ∈ 𝐻2(𝐷). Equations (1.5)–(1.7), with the requirement that 𝑣 ∈ 𝐿2(𝐷) ⧵ {0} and 𝑢 ∈ 𝐻2(𝐷),
are equivalent to the statement that 𝑘 is a transmission eigenvalue, with corresponding eigen-
vector (𝑢, 𝑣). 𝑘 being a transmission eigenvalue is therefore a necessary condition for 𝑘 being
a non-scattering wave number, corresponding to the incident wave 𝑣 (defined on all of ℝ𝑚).
Whereas transmission eigenvalues exist for quite general (non-smooth) domains, the results we
establish in this paper show that the existence of non-scattering wave numbers (for regular 𝑛)
imply some degree of regularity of the boundary 𝜕𝐷 (for quite general incident waves). In terms of

2𝐻20(𝐷) is the closure of 𝐶∞𝑐 (𝐷) in 𝐻2(𝐷) – for a Lipschitz domain it coincides with those 𝐻2(𝐷) functions, which when
extended by zero outside 𝐷 remain in 𝐻2(ℝ𝑚). For a Lipschitz domain 𝐻20(𝐷) also coincides with those functions 𝑢 ∈𝐻2(𝐷) for which 𝑢 and 𝜕𝑢𝜕𝐧 (defined in the sense of traces) vanish on 𝜕𝐷.
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SINGULARITIES ALMOST ALWAYS SCATTER 4025

the transmission eigenvalue problem (1.5)–(1.7), formulated only on 𝐷, similar regularity results
would follow if we were to insist that 𝑣 be appropriately regular up to the boundary (on top of
being in 𝐿2(𝐷)). This may also be seen as a reflection of the fact that a transmission eigenvalue
only is a non-scattering wave number if the corresponding 𝑣 ∈ 𝐿2(𝐷) can be extended to a solu-
tion of the Helmholtz equation in the exterior of 𝐷. We recall that, if 𝑛 − 1 is of one sign in a
neighborhood of the boundary 𝜕𝐷, then the set of transmission eigenvalues (possibly complex) is
at most discrete with infinity as the only possible accumulation point. Furthermore if 𝑛 − 1 is of
one sign in the entire 𝐷, then there exists an infinite sequence of real transmission eigenvalues
(see [9] and also [8]). However, this paper concerns the existence of non-scattering wave num-
bers, and our approach does not require any knowledge about the spectrum of the transmission
eigenvalue problem.
In the case of spherically symmetric media, that is, when 𝐷 is a ball of radius 𝑅 centered at

the origin, and 𝑛 ∶= 𝑛(𝑟) depends only on the radial variable, it is possible to show by separation
of variables that 𝑘 > 0 being a transmission eigenvalue is a necessary and sufficient condition
for 𝑘 being a non-scattering wave number. Furthermore, the non-scattering wave numbers form
an infinite discrete set with +∞ as the only accumulation point. In this case the non-scattering
incident waves are superposition of plane waves, otherwise known as Herglotz wave functions,
with particular densities; each density associated with an infinite set of non-scattering wave num-
bers (see e.g. [12, Chapter 10] and [28]). The spherically symmetric configuration is unstable with
respect to non-scattering. Vogelius and Xiao in [28] have shown inℝ2, and for constant refractive
index 𝑛 ≠ 1, that if the disk is perturbed even slightly to a proper ellipse with arbitrarily small
eccentricity, then there exist at most finitely many positive wave numbers for which a Herglotz
wave functionwith a fixed, smooth, non-trivial density can be non-scattering.When the boundary
of the inhomogeneity 𝐷 contains a corner, then the set of non-scattering wave numbers is empty,
provided 𝑛 − 1 ≠ 0 at the corner, and under some local regularity on 𝑛. This result was first proven
by Blåsten et al. in [5] for a right corner, followed by [24] for a convex corner, and their analysis
employs the so-called complex geometric solutions for the Helmholtz equation. This approach is
generalized in [10] to the scattering problem with a general operator of divergence form (instead
of the Laplacian). The most comprehensive analysis, implying that corner and edge singularities
always scatter in ℝ𝑚, is given by Elschner and Hu in [14], based on a refined corner singularity
analysis of the solution to (1.4). All these scattering results for geometries with corners are valid
without any restrictions on the incident wave, and they provide the foundation for proving that
a convex polygonal inhomogeneity is uniquely determined from scattering data corresponding
to one single incident wave [16]. Up to now there is a large gap, between spherically symmetric
media and inhomogeneities containing a corner, in which little is known about non-scattering.
In fact, nothing is known for general smooth domains 𝐷, with the exception of the partial results
in [28] and [4]. In [28] it is shown that given any smooth, strictly convex domain inℝ2, there exist
at most finitely many positive wave numbers 𝑘 for which an (arbitrary but fixed) incident plane
wave can be non-scattering. In [4] the authors prove that inhomogeneities, containing a bound-
ary point of high curvature (near which the inhomogeneity could be analytic) scatter any incident
field, whose modulus is bounded away from zero by a constant depending on the curvature and
the value of the contrast 𝑛 − 1 at this point. Our paper substantially contributes to filling this gap.
Our main results are stated precisely in the next section. Roughly speaking, under the global

assumptions of a Lipshitz boundary 𝜕𝐷, and 𝑛 ∈ 𝐿∞(𝐷), we show that if there is a point 𝑥0 ∈ 𝜕𝐷,
such that 𝑛 is analytic in a neighborhood of 𝑥0, but the boundary is not analytic in any neighbor-
hood of 𝑥0, then every incident field 𝑣 is scattered, provided (𝑛(𝑥0) − 1)𝑣(𝑥0) ≠ 0. We establish
a similar result for 𝑛 that are less regular locally near 𝑥0, but still in 𝐶1,1. In this case we show
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4026 CAKONI and VOGELIUS

that if the boundary is not sufficiently smooth locally (related to the order of smoothness of 𝑛),
then every incident wave is scattered, again provided (𝑛(𝑥0) − 1)𝑣(𝑥0) ≠ 0. Although our results
address domains with corners (in fact we only require Lipschitz boundaries) they are only valid
provided the incident field 𝑣 is non-vanishing at 𝑥0 (here: the corner). This is not required by
the prior results on corners, mentioned above. A non-vanishing condition on the incident fields
is essential to our approach. Such non-vanishing holds for plane waves or point sources; it is
unclear exactly what limitations this imposes for generic Herglotz waves or for generic real ana-
lytic solutions to the Helmholtz equation. However, inℝ2 and for analytic refractive index 𝑛 near
the boundary, we prove that there exist at most finitely many positive wave numbers 𝑘 for which
one may find a non-scattering Herglotz wave function (with density in a fixed compact subset of𝐶1), unless 𝜕𝐷 is almost everywhere analytic (see Section 6 for the appropriate definition).
As a direct consequence of the proof of our main results, we conclude that at a transmission

eigenvalue, the part 𝑣 of the transmission eigenfunction lacks sufficient regularity near a singular
boundary point 𝑥0, unless it vanishes at this point, thus recovering similar results for the case of
corners in [2] and [3]. For a precise statement of this result, see the end of Section 5. Our analysis
also yields results concerning the regularity of the support of non-radiating sources [20]. These
results are discussed in the last section of this paper; they substantially generalize similar results
in [2] for sources whose support contains corner singularities.
At the core, our analysis relies on viewing the boundary with vanishing Cauchy data as a free

boundary, and applying the free boundary regularity results of Caffarelli [6], and Kinderlehrer
and Nirenberg [18] for second order elliptic equations. There is a striking similarity in the mathe-
matical structure of the problem of non-scattering inhomogeneities, and the problem of domains
that do not possess the Pompeiu property [1, 27, 29]. Regularity properties of the latter are estab-
lished by Williams [30], and the analysis here in several places borrows significantly from his
original work.

2 STATEMENT OF OURMAIN RESULTS

In this section we state themain results of this paper. These results are stated in terms of sufficient
conditions of non-smoothness of 𝜕𝐷 for scattering to occur for a given incident wave. By negation
they could as well have been stated as necessary smoothness conditions that follow from non-
scattering. In the formulation the incident wave is a solution to

∆𝑣 + 𝑘2𝑣 = 0 (2.1)

inℝ𝑚, except possibly a set of measure zero, external to 𝐷. Actually it suffices that 𝑣 is a solution
to this equation in 𝐷, with 𝑣 real analytic on 𝐷. In the formulation of our main results we also
refer to the region 𝐷𝛿 ⊂ 𝐷, defined by

𝐷𝛿 ∶= {𝑥 ∈ 𝐷, 𝑑𝑖𝑠𝑡(𝑥, 𝜕𝐷) < 𝛿} for some fixed 𝛿 > 0.
The proof of these results is postponed to Section 5.

Theorem 2.1. Let 𝑘 > 0 be a fixed wave number. Assume the positive refractive index 𝑛 is in 𝐿∞(𝐷),
and that the boundary 𝜕𝐷 is Lipschitz. Consider an incident field 𝑣 satisfying (2.1). Assume that 𝑛
is real analytic in 𝐷𝛿 , and there exists 𝑥0 ∈ 𝜕𝐷 such (𝑛(𝑥0) − 1)𝑣(𝑥0) ≠ 0. Assume furthermore that
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SINGULARITIES ALMOST ALWAYS SCATTER 4027

𝜕𝐷 ∩ 𝐵𝑟(𝑥0) is not real analytic for any ball 𝐵𝑟(𝑥0) of radius 𝑟 centered at 𝑥0. Then the incident field𝑣 is scattered by the inhomogeneity (𝐷,𝑛). In other words: there exists no𝐻20(𝐷) solution to (1.4).
For less regular refractive index 𝑛 there is a similar result.

Theorem 2.2. Let 𝑘 > 0 be a fixed wave number. Assume the positive refractive index 𝑛 is in 𝐿∞(𝐷),
and that the boundary 𝜕𝐷 is Lipschitz. Consider an incident field 𝑣 satisfying (2.1). Assume that 𝑛 ∈𝐶𝑚,𝜇(𝐷𝛿) ∩ 𝐶1,1(𝐷𝛿) for𝑚 ≥ 1, 0 < 𝜇 < 1, and there exists 𝑥0 ∈ 𝜕𝐷 such that (𝑛(𝑥0) − 1)𝑣(𝑥0) ≠ 0.
Assume furthermore that 𝜕𝐷 ∩ 𝐵𝑟(𝑥0) is not of class 𝐶𝑚+1,𝜇, for any ball 𝐵𝑟(𝑥0) of radius 𝑟 centered
at 𝑥0. Then the incident field 𝑣 is scattered by the inhomogeneity (𝐷,𝑛). In other words: there exists
no𝐻20(𝐷) solution to (1.4).
Remark 2.3. The smoothness assumptions on the refractive index 𝑛 in Theorem 2.1 and The-
orem 2.2 are only needed locally in 𝐷 ∩ 𝐵𝑅(𝑥0) for some ball centered at 𝑥0 of radius 𝑅 >0.
Of course Theorems 2.1 and 2.2 only add insight if the wave number 𝑘 is a real transmission

eigenvalue (which is a necessary condition for the incident field to produce a vanishing scattered
field). At any 𝑘 other than a transmission eigenvalue, every incident field is scattered by the given
inhomogeneity. However, it is important to emphasize that we do not need to know a priori that𝑘 > 0 is a transmission eigenvalue, and therefore our results hold under weaker conditions on the
contrast than those (currently) needed to prove the existence of real transmission eigenvalues. If𝑘 > 0 is a transmission eigenvalue, the assumptions in Theorems 2.1 and 2.2 imply that the part 𝑣
of the transmission eigenfunction (1.5)–(1.7) cannot be extended into the exterior of 𝐷 as solution
of the Helmholtz equation, provided 𝑛 ≠ 1 on 𝜕𝐷 and that this eigenfunction does not vanish at
the point 𝑥0 ∈ 𝜕𝐷 (see Corollary 5.5).

3 A FREE BOUNDARY REGULARITY RESULT

With 𝑎(𝑥) = 𝑘2𝑛(𝑥), and 𝑏(𝑥) = 𝑘2(1 − 𝑛(𝑥))𝑣(𝑥), the problem (1.4) becomes

∆𝑢 + 𝑎(𝑥)𝑢 = 𝑏(𝑥) in 𝐷 (3.1)

𝑢 = 𝜕𝑢𝜕𝐧 = 0 on 𝜕𝐷. (3.2)

In order to prove our main results we shall make use of two classical free boundary regularity
results. The first result is due to Kinderlehrer and Nirenberg in [18, Theorem 1’ on page 377]. In
[18] the Theorem is proven for more general nonlinear second-order elliptic partial differential
operators, but in the following we state it as it applies to our linear equation (3.1).

Theorem 3.1. Suppose that 0 ∈ 𝜕𝐷, and 𝜕𝐷 ∩ 𝐵𝑅(0) is of class 𝐶1 for some ball 𝐵𝑅(0) of radius 𝑅
centered at 0. Suppose 𝑎 and 𝑏 are real valued functions in 𝐶1(𝐷 ∩ 𝐵𝑅(0)), with 𝑎(0) ≠ 0 and 𝑏(0) ≠0. Furthermore suppose there exists a real valued solution 𝑢 to (3.1)–(3.2), with 𝑢 ∈ 𝐶2(𝐷 ∩ 𝐵𝑅(0)).
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4028 CAKONI and VOGELIUS

Then

(1) 𝜕𝐷 ∩ 𝐵𝑅′(0) is of class 𝐶1,𝛼 for every positive 𝛼 < 1, and some 𝑅′ < 𝑅.
(2) If additionally 𝑎 ∈ 𝐶𝑚,𝜇(𝐷 ∩ 𝐵𝑅(0)) and 𝑏 ∈ 𝐶𝑚,𝜇(𝐷 ∩ 𝐵𝑅(0)) for𝑚 ≥ 1, 0 < 𝜇 < 1 then 𝜕𝐷 ∩𝐵𝑅′(0) is of class 𝐶𝑚+1,𝜇, for some 𝑅′ < 𝑅.
(3) If 𝑎 and 𝑏 are real analytic in 𝐷 ∩ 𝐵𝑅(0) then 𝜕𝐷 ∩ 𝐵𝑅′(0) is real analytic for some 𝑅′ < 𝑅.
Remark 3.2. The regularity of the free boundary is a local property. Correspondingly, the result of
Theorem 3.1 holds for 𝑢 solving (3.1) in 𝐷 ∩ 𝐵𝑅(0) with zero Cauchy data (3.2) only on the part of
boundary 𝜕𝐷 ∩ 𝐵𝑅(0). However, in our particular applications the solution 𝑢 will be defined on
all of 𝐷.
In this paper we initially assume that 𝜕𝐷 is only Lipschitz regular. In order to apply Theorem 3.1

we must first show that the free boundary 𝜕𝐷 ∩ 𝐵𝑅(0) is indeed 𝐶1, and then verify that the solu-
tion 𝑢 to (3.1)–(3.2) is in 𝐶2(𝐷 ∩ 𝐵𝑅(0)). This intermediate regularity is achieved with the help of
a classical result on regularity of the free boundary due to Caffarelli [6, Section 1.2 and Theorem 3
on page 166], whichwe state in the following theorem,modified to the framework of our problem.
This result refers to a function 𝑤 that satisfies

∆𝑤 = 𝑔 in 𝐷 ∩ 𝐵𝑅(0), such that 𝑤 = 𝜕𝑤𝜕𝐧 = 0 on 𝜕𝐷 ∩ 𝐵𝑅(0) , (3.3)

where again 0 ∈ 𝜕𝐷 and 𝐵𝑅(0) is some ball of radius 𝑅 centered at 0.
Theorem 3.3. Suppose that 𝜕𝐷 ∩ 𝐵𝑅(0) is Lipschitz and the function𝑤 satisfying (3.3) is in𝐶1,1(𝐷 ∩𝐵𝑅(0)). Furthermore, assume that 𝑤 ≤ 0 in 𝐷 ∩ 𝐵𝑅(0), and 𝑔 has a 𝐶1-extension 𝑔∗ in a neighbor-
hood of 𝐷 ∩ 𝐵𝑅(0) such that 𝑔∗ ≤ −𝛼 < 0. Then there exists 𝑅′ < 𝑅 such that 𝜕𝐷 ∩ 𝐵𝑅′(0) is of class𝐶1 and all second derivatives of 𝑤 are continuous up to 𝜕𝐷 ∩ 𝐵𝑅′(0), that is, 𝑤 ∈ 𝐶2(𝐷 ∩ 𝐵𝑅′(0)).
The first obstacle to the application of Theorem 3.3 is to verify that the𝐻20(𝐷) solution 𝑢 to (1.4)

has all second derivatives uniformly bounded in𝐷 ∩ 𝐵𝑅(𝑥0). For this purpose, we next investigate
the regularity of the volume potential.

4 A REGULARITY RESULT FOR THE VOLUME POTENTIAL

Let Φ(𝑥, 𝑦) be the free space fundamental solution to the Laplace operator, given by
Φ(𝑥, 𝑦) ∶= ⎧

⎪
⎨
⎪⎩

14𝜋|𝑥 − 𝑦| in ℝ312𝜋 ln 1
|𝑥 − 𝑦| in ℝ2. (4.1)

For later use we note the following estimates:

for 1 ≤ 𝑗 ≤ 𝑚 |||||
𝜕Φ𝜕𝑥𝑗 (𝑥, 𝑦)||||| ≤ 𝐶

|𝑥 − 𝑦|(𝑚−1) in ℝ𝑚,𝑚 = 2, 3,
for 1 ≤ 𝑖, 𝑗 ≤ 𝑚 |||||

𝜕2Φ𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥, 𝑦)||||| ≤ 𝐶
|𝑥 − 𝑦|𝑚 in ℝ𝑚,𝑚 = 2, 3.
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SINGULARITIES ALMOST ALWAYS SCATTER 4029

In this section we study the regularity of the (weighted) volume potential

𝑤𝜓(𝑥) = ∫𝐷 𝜓(𝑦)Φ(𝑥, 𝑦)𝑑𝑦.
The following lemma is proven in [19, Lemma 3.7] in the case ofℝ3. For completeness we include
here the proof in ℝ𝑚,𝑚 = 2, 3.
Lemma 4.1. For 𝜓 ∈ 𝐿∞(𝐷) we have that 𝑤𝜓 ∈ 𝐶1(ℝ𝑚),𝑚 = 2, 3 and

𝜕𝑤𝜓𝜕𝑥𝑗 (𝑥) = ∫𝐷 𝜓(𝑦) 𝜕Φ𝜕𝑥𝑗 (𝑥, 𝑦)𝑑𝑦, 𝑥 ∈ ℝ𝑚, 𝑗 = 1,…𝑚.
Proof. It easy to see that 𝑤𝜓 is in 𝐶0(ℝ𝑚). Now, consider a smooth cut-off function 𝜉 such that0 ≤ 𝜉(𝑡) ≤ 1, 𝜉(𝑡) = 1 for 𝑡 ≥ 2 and 𝜉(𝑡) = 0 for 𝑡 ≤ 1 and set

𝑑𝑗(𝑥) ∶= ∫𝐷 𝜓(𝑦) 𝜕Φ𝜕𝑥𝑗 (𝑥, 𝑦)𝑑𝑦,
which exists from the above estimates of the derivatives of the fundamental solutions. Next, let us
denote by

𝑤𝜖(𝑥) ∶= ∫𝐷 𝜓(𝑦)𝜉(|𝑥 − 𝑦|∕𝜖)Φ(𝑥, 𝑦)𝑑𝑦 ;
notice that 𝑤𝜖 ∈ 𝐶∞(ℝ𝑚) and that 𝑤𝜖 → 𝑤𝜓 in 𝐶0(ℝ𝑚) as 𝜖 → 0. We have

𝑑𝑗(𝑥) − 𝜕𝑤𝜖𝜕𝑥𝑗 (𝑥) = ∫𝐷 𝜓(𝑦) 𝜕𝜕𝑥𝑗 {Φ(𝑥, 𝑦)[1 − 𝜉(|𝑥 − 𝑦|∕𝜖)]}𝑑𝑦,
and so in ℝ3 we estimate

|||||
𝑑𝑗(𝑥) − 𝜕𝑤𝜖𝜕𝑥𝑗 (𝑥)||||| ≤ ‖𝜓‖∞ ∫|𝑦−𝑥|≤2𝜖

(|||||
𝜕Φ𝜕𝑥𝑗 (𝑥, 𝑦)||||| + ‖𝜉′‖∞𝜖 |Φ(𝑥, 𝑦)|)𝑑𝑦

≤ 𝐶 ∫
2𝜖

0
( 1𝑟2 + 1𝜖𝑟)𝑟2 𝑑𝑟 = 𝐶1𝜖 ,

whereas in ℝ2
|||||
𝑑𝑗(𝑥) − 𝜕𝑤𝜖𝜕𝑥𝑗 (𝑥)||||| ≤ ‖𝜓‖∞ ∫|𝑦−𝑥|≤2𝜖

(|||||
𝜕Φ𝜕𝑥𝑗 (𝑥, 𝑦)||||| + ‖𝜉′‖∞𝜖 |Φ(𝑥, 𝑦)|)𝑑𝑦

≤ 𝐶 ∫
2𝜖

0
(1𝑟 + 1𝜖 ln 1𝑟)𝑟 𝑑𝑟 ≤ 𝐶2𝜖 ln 1𝜖 .

In both cases 𝜕𝑤𝜖𝜕𝑥𝑗 → 𝑑𝑗 uniformly inℝ𝑚 as 𝜖 → 0, which shows that𝑤𝜓 ∈ 𝐶1(ℝ𝑚) and that 𝜕𝑤𝜓𝜕𝑥𝑗 =𝑑𝑗 . This completes the proof. □
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4030 CAKONI and VOGELIUS

All second derivatives of 𝑤𝜓 exist for 𝑥 ∈ ℝ𝑚 ⧵ 𝐷, and one can differentiate twice inside the
integral to obtain

𝜕2𝑤𝜓𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥) = ∫𝐷 𝜓(𝑦) 𝜕2Φ𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥, 𝑦)𝑑𝑦
= ∫𝐷 [𝜓(𝑦) − 𝜓(𝑥)] 𝜕2Φ𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥, 𝑦)𝑑𝑦 + 𝜓(𝑥)∫𝐷 𝜕2Φ𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥, 𝑦)𝑑𝑦
= ∫𝐷 [𝜓(𝑦) − 𝜓(𝑥)] 𝜕2Φ𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥, 𝑦)𝑑𝑦 − 𝜓(𝑥)∫𝜕𝐷 𝜕Φ𝜕𝑥𝑗 (𝑥, 𝑦)𝐧𝑖(𝑦)𝑑𝑦 , (4.2)

provided𝜓 extends intoℝ𝑚 ⧵ 𝐷. Here the last integral over 𝜕𝐷 is obtained by using the divergence
theorem (the minus sign arises when one replaces an 𝑥𝑖 derivative with a 𝑦𝑖 derivative). Note that
unit normal vector 𝐧 = (𝐧𝑖)𝑖=1,𝑚 is well-defined for almost all 𝑦 ∈ 𝜕𝐷. We show next that if 𝜓, in
addition to being bounded on 𝐷, is in 𝐶𝛼(𝐵𝑅(0)), then (4.2) holds true for 𝑥 ∈ 𝐷 ∩ 𝐵𝑅(0). To this
end, we set

𝑑𝑖𝑗(𝑥) ∶= ∫𝐷 [𝜓(𝑦) − 𝜓(𝑥)] 𝜕2Φ𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥, 𝑦)𝑑𝑦 − 𝜓(𝑥)∫𝜕𝐷 𝜕Φ𝜕𝑥𝑗 (𝑥, 𝑦)𝐧𝑖(𝑦)𝑑𝑦 .
Note that 𝑑𝑖𝑗(𝑥) is well defined for 𝑥 ∈ 𝐷 ∩ 𝐵𝑅(0), since for 𝜓 ∈ 𝐶𝛼(𝐵𝑅(0)) the integrand inside
the volume integral behaves as

|||||
[𝜓(𝑦) − 𝜓(𝑥)] 𝜕2Φ𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥, 𝑦)||||| ≤ 𝐶|𝑥 − 𝑦|𝛼−𝑚 , for 𝑦 near 𝑥, (4.3)

and is bounded for 𝑦 away from 𝑥; the surface integral exists since 𝑥 is not on 𝜕𝐷. Now we choose2𝜖 < 𝑑𝑖𝑠𝑡(𝑥, 𝜕𝐷) and again consider a smooth cut-off function 𝜉 such that 0 ≤ 𝜉(𝑡) ≤ 1, 𝜉(𝑡) = 1
for 𝑡 ≥ 2 and 𝜉(𝑡) = 0 for 𝑡 ≤ 1. Set

𝑑𝑗,𝜖(𝑥) ∶= ∫𝐷 𝜓(𝑦)𝜉(|𝑥 − 𝑦|∕𝜖) 𝜕Φ𝜕𝑥𝑗 (𝑥, 𝑦)𝑑𝑦 .
We obtain 𝜕𝑑𝑗,𝜖𝜕𝑥𝑖 (𝑥) = ∫𝐷 [𝜓(𝑦) − 𝜓(𝑥)] 𝜕𝜕𝑥𝑖(𝜉(|𝑥 − 𝑦|∕𝜖) 𝜕Φ𝜕𝑥𝑗 (𝑥, 𝑦))𝑑𝑦

−𝜓(𝑥)∫𝜕𝐷 𝜕Φ𝜕𝑥𝑗 (𝑥, 𝑦)𝐧𝑖(𝑦)𝑑𝑦 ,
and therefore

|||||
𝑑𝑖𝑗(𝑥) − 𝜕𝑑𝑗,𝜖𝜕𝑥𝑖 (𝑥)||||| ≤ 𝐶 ∫|𝑦−𝑥|≤2𝜖

( 1
|𝑦 − 𝑥|𝑚 + ‖𝜉′‖∞𝜖|𝑦 − 𝑥|𝑚−1)|𝑦 − 𝑥|𝛼𝑑𝑦

= 𝐶 ∫
2𝜖

0
( 1𝑟1−𝛼 + ‖𝜉′‖∞𝜖 𝑟𝛼)𝑑𝑟 ≤ 𝐶𝜖𝛼 .
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SINGULARITIES ALMOST ALWAYS SCATTER 4031

Hence, as 𝜖 → 0, 𝑑𝑗,𝜖(𝑥) converges to 𝜕𝑤𝜓𝜕𝑥𝑗 (𝑥), and 𝜕𝑑𝑗,𝜖𝜕𝑥𝑖 (𝑥) converges to 𝑑𝑖𝑗(𝑥), both uniformly on
compact subsets of 𝐷 ∩ 𝐵𝑅(0). Thus 𝑑𝑖𝑗(𝑥) = 𝜕2𝑤𝜓𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥) for 𝑥 ∈ 𝐵𝑅(0) ∩ 𝐷.
Even for smooth 𝜓, but with 𝜓 ≠ 0 on 𝜕𝐷, the second derivatives of 𝑤𝜓 maybe become

unbounded as 𝑥 approaches a boundary point from either inside or outside 𝐷. Thus the vol-
ume potential is not necessarily in 𝐶2(𝐷 ∩ 𝐵𝑅(0)). However, we can show that symmetric jumps
of the second derivative (to become precise later) are uniformly bounded near 0 ∈ 𝜕𝐷, when𝜓 ∈ 𝐶𝛼(𝐵𝑅(0)) for 0 < 𝛼 < 1. A similar result is proven in [30, Theorem 2] for 𝜓 ≡ 1. Our method
of proof of Lemma 4.2 below is in many ways very similar to that in [30]. We provide the details
for completeness.
First we introduce some notations. Denote 𝑥 ∶= (𝑥(𝑚−1),𝑥𝑚) ∈ ℝ𝑚 where 𝑥(𝑚−1) ∈ ℝ𝑚−1, and

consider a cylindrical neighborhood of 0 defined by 𝑁 ∶= 𝑁(𝜌,ℎ) = 𝐵(𝑚−1)𝜌 (0) × [−ℎ,ℎ], where𝐵(𝑚−1)𝜌 (0) is the𝑚 − 1 dimensional ball of radius 𝜌 centered at the origin.We assume that𝐵2𝑟(0) ⊂𝑁 ⊂ 𝑁 ⊂ 𝐵𝑅(0). Furthermore, we assume (by appropriate rotation and selection of 𝜌 and ℎ) that𝑁 ∩ 𝜕𝐷 is the graph 𝑥𝑚 = 𝑓(𝑥(𝑚−1)) of a Lipshitz continuous function 𝑓 ∶ 𝐵(𝑚−1)𝜌 (0)→ ℝ, with
Lipschitz constant 𝐾. We also assume that ℎ > 𝐾𝜌 and

𝑁 ∩ 𝐷 = {(𝑥(𝑚−1),𝑥𝑚) ∶ 𝑥(𝑚−1) ∈ 𝐵(𝑚−1)𝜌 (0), 𝑓(𝑥(𝑚−1)) < 𝑥𝑚 < ℎ},
Finally we denote by 𝑒𝑚 the unit vector in the 𝑚-direction. We can now prove the following
lemma.

Lemma 4.2. Assume that 𝜓 ∈ 𝐶𝛼(𝐵𝑅(0)), for 0 < 𝛼 < 1, in addition to being bounded on 𝐷. Then
there exist 0 < 𝑟 so that the symmetric jumps𝜕2𝑤𝜓𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥 + 𝜂𝑒𝑚) − 𝜕2𝑤𝜓𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥 − 𝜂𝑒𝑚), 1 ≤ 𝑖, 𝑗 ≤ 𝑚
across the boundary at 𝑥 are uniformly bounded with respect to 0 < 𝜂 ≤ 𝑟 and 𝑥 ∈ 𝜕𝐷 ∩ 𝐵𝑟(0).
Proof. Using (4.2), outside and inside 𝐷, we write𝜕2𝑤𝜓𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥 + 𝜂𝑒𝑚) − 𝜕2𝑤𝜓𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥 − 𝜂𝑒𝑚)

= ∫𝐷 [𝜓(𝑦) − 𝜓(𝑥 + 𝜂𝑒𝑚)] 𝜕2Φ𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥 + 𝜂𝑒𝑚, 𝑦)𝑑𝑦
−∫𝐷 [𝜓(𝑦) − 𝜓(𝑥 − 𝜂𝑒𝑚)] 𝜕2Φ𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥 − 𝜂𝑒𝑚, 𝑦)𝑑𝑦
−𝜓(𝑥 + 𝜂𝑒𝑚)∫𝜕𝐷 𝜕Φ𝜕𝑥𝑗 (𝑥 + 𝜂𝑒𝑚, 𝑦)𝐧𝑖(𝑦)𝑑𝑠𝑦
+𝜓(𝑥 − 𝜂𝑒𝑚)∫𝜕𝐷 𝜕Φ𝜕𝑥𝑗 (𝑥 − 𝜂𝑒𝑚, 𝑦)𝐧𝑖(𝑦)𝑑𝑠𝑦

for 𝑥 ∈ 𝜕𝐷 ∩ 𝐵𝑟(0). In the above integral expressions the part of the integrals taken over𝐷 ⧵ 𝐵𝑅(0)
and 𝜕𝐷 ⧵ 𝐵𝑅(0) are uniformly bounded with respect to 𝜂 in [0, 𝑟] and for all 𝑥 ∈ 𝜕𝐷 ∩ 𝐵𝑟(0). So it
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4032 CAKONI and VOGELIUS

suffices to consider only the integrals over 𝐵𝑅(0) ∩ 𝐷 and 𝐵𝑅(0) ∩ 𝜕𝐷. Next we have the following
estimates for the integrands of the volume integrals

|||||
[𝜓(𝑦) − 𝜓(𝑥 ± 𝜂𝑒𝑚)] 𝜕2Φ𝜕𝑥𝑖𝜕𝑥𝑗 (𝑥 ± 𝜂𝑒𝑚, 𝑦)||||| ≤ 𝐶|𝑥 ± 𝜂𝑒𝑚 − 𝑦|𝛼−𝑚 , 𝑦 ∈ 𝐵𝑅(0)

for 𝑥 ∈ 𝜕𝐷 ∩ 𝐵𝑟(0) and 𝜂 < 𝑟 (note that 𝑥 ± 𝜂𝑒𝑚 ∈ 𝐵2𝑟(0) ⊂ 𝐵𝑅(0)). Therefore, the integrals over𝐷 ∩ 𝐵𝑅(0) are boundeduniformly in 𝜂 ∈ [0, 𝑟] and𝑥 ∈ 𝜕𝐷 ∩ 𝐵𝑟(0). Nextwe consider the boundary
integral terms

𝜓(𝑥 + 𝜂𝑒𝑚)∫𝜕𝐷∩𝐵𝑅(0) 𝜕Φ𝜕𝑥𝑗 (𝑥 + 𝜂𝑒𝑚, 𝑦)𝐧𝑖(𝑦)𝑑𝑠𝑦
−𝜓(𝑥 − 𝜂𝑒𝑚)∫𝜕𝐷∩𝐵𝑅(0) 𝜕Φ𝜕𝑥𝑗 (𝑥 − 𝜂𝑒𝑚, 𝑦)𝐧𝑖(𝑦)𝑑𝑠𝑦

for 1 ≤ 𝑖, 𝑗 ≤ 𝑚. The above expression can be written as
𝕀1 + 𝕀2 + 𝕀3

where

𝕀1 ∶= ∫𝜕𝐷∩𝐵𝑅(0) [𝜓(𝑥 + 𝜂𝑒𝑚) − 𝜓(𝑦)] 𝜕Φ𝜕𝑥𝑗 (𝑥 + 𝜂𝑒𝑚, 𝑦)𝐧𝑖(𝑦)𝑑𝑠𝑦
𝕀2 ∶= ∫𝜕𝐷∩𝐵𝑅(0) [𝜓(𝑦) − 𝜓(𝑥 − 𝜂𝑒𝑚)] 𝜕Φ𝜕𝑥𝑗 (𝑥 − 𝜂𝑒𝑚, 𝑦)𝐧𝑖(𝑦)𝑑𝑠𝑦

and

𝕀3 ∶= ∫𝜕𝐷∩𝐵𝑅(0)
[ 𝜕Φ𝜕𝑥𝑗 (𝑥 + 𝜂𝑒𝑚, 𝑦) − 𝜕Φ𝜕𝑥𝑗 (𝑥 − 𝜂𝑒𝑚, 𝑦)]𝜓(𝑦)𝐧𝑖(𝑦)𝑑𝑠𝑦 .

Using the fact that 𝜓 ∈ 𝐶𝛼(𝐵𝑅(0)), and that 𝑥̃ ∶= 𝑥 ± 𝜂𝑒𝑚 ∈ 𝐵2𝑟(0) ⊂ 𝑁 for 𝑥 ∈ 𝜕𝐷 ∩ 𝐵𝑟(0) and𝜂 < 𝑟, we obtain
||𝕀1,2|| ≤ 𝐶1 ∫𝜕𝐷∩𝐵𝑅(0) 1

|(𝑥 ± 𝜂𝑒𝑚) − 𝑦|𝑚−1−𝛼 𝑑𝑠𝑦 = 𝐶 + 𝐶1 ∫𝜕𝐷∩𝑁 1
|𝑥̃ − 𝑦|𝑚−1−𝛼 𝑑𝑠𝑦

≤ 𝐶 + 𝐶2 ∫𝐵(𝑚−1)𝜌 (0) 1
|𝑥̃(𝑚−1) − 𝑦(𝑚−1)|𝑚−1−𝛼√1 + |∇𝑓(𝑦(𝑚−1)|2 𝑑𝑦(𝑚−1)

≤ 𝐶 + 𝐶3 ∫𝐵(𝑚−1)𝜌 (0) 1
|𝑥̃(𝑚−1) − 𝑦(𝑚−1)|𝑚−1−𝛼 𝑑𝑦(𝑚−1) 𝑚 = 2, 3 .

Note that by Rademacher’s theorem ∇𝑓(𝑦(𝑚−1)) is well defined and is bounded at all points in𝑦(𝑚−1) ∈ 𝐵(𝑚−1)𝜌 (0) except for a subset of Lebesgue measure zero. Hence 𝕀1,2 are also bounded
uniformly in 𝜂 ∈ [0, 𝑟] and 𝑥 ∈ 𝜕𝐷 ∩ 𝐵𝑟(0). To prove our lemma it thus suffices to estimate the
term 𝕀3, with the symmetric jumps. We provide the details of this estimation for 𝑥 = 0. For 𝑥 near
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SINGULARITIES ALMOST ALWAYS SCATTER 4033

0 (i.e., in 𝜕𝐷 ∩ 𝐵𝑟(0)) the same approach works with obvious modifications. Since
𝜕Φ(𝑥, 𝑦)𝜕𝑥𝑗 = −(𝑥𝑗 − 𝑦𝑗)𝜔𝑚|𝑥 − 𝑦|𝑚 , 𝑚 = 2, 3, 𝑗 = 1⋯𝑚, 𝜔2 = 2𝜋, 𝜔3 = 4𝜋 ,

the integrals we need to study take the form

∫𝐵(𝑚−1)𝜌 (0)
⎡
⎢
⎢⎣

𝑦𝑗
(|𝑦(𝑚−1)|2 + (𝑓(𝑦(𝑚−1)) − 𝜂)2)𝑚∕2

− 𝑦𝑗
(|𝑦(𝑚−1)|2 + (𝑓(𝑦(𝑚−1)) + 𝜂)2)𝑚∕2

⎤
⎥
⎥⎦
𝐹(𝑦(𝑚−1))𝑑𝑦(𝑚−1),

for 𝑗 = 1,… , (𝑚 − 1) and
∫𝐵(𝑚−1)𝜌 (0)

⎡
⎢
⎢⎣

(𝑓(𝑦(𝑚−1)) − 𝜂)
(|𝑦(𝑚−1)|2 + (𝑓(𝑦(𝑚−1)) − 𝜂)2)𝑚∕2

− (𝑓(𝑦(𝑚−1)) + 𝜂)
(|𝑦(𝑚−1)|2 + (𝑓(𝑦(𝑚−1)) + 𝜂)2)𝑚∕2

⎤
⎥
⎥⎦
𝐹(𝑦(𝑚−1))𝑑𝑦(𝑚−1),

for 𝑗 = 𝑚. Here
𝐹(𝑦(𝑚−1)) ∶= √1 + |∇𝑓(𝑦(𝑚−1))|2 𝜓(𝑦(𝑚−1),𝑓(𝑦(𝑚−1)))𝐧𝑖(𝑦(𝑚−1),𝑓(𝑦(𝑚−1))

is a function in 𝐿∞(𝐵(𝑚−1)𝜌 (0)), and hence there is a 𝐶 > 0 such that |𝐹(𝑦(𝑚−1))| ≤ 𝐶 for almost all𝑦(𝑚−1) ∈ 𝐵(𝑚−1)𝜌 (0). In order to estimate the above integrals, it therefore suffices to estimate
∫𝐵(𝑚−1)𝜌 (0)

|||||||

𝑦𝑗
(|𝑦(𝑚−1)|2 + (𝑓(𝑦(𝑚−1)) − 𝜂)2)𝑚∕2 − 𝑦𝑗

(|𝑦(𝑚−1)|2 + (𝑓(𝑦(𝑚−1)) + 𝜂)2)𝑚∕2
|||||||
𝑑𝑦(𝑚−1) (4.4)

for 𝑗 = 1,… , (𝑚 − 1), and
∫𝐵(𝑚−1)𝜌 (0)

|||||||

(𝑓(𝑦(𝑚−1)) − 𝜂)
(|𝑦(𝑚−1)|2 + (𝑓(𝑦(𝑚−1)) − 𝜂)2)𝑚∕2 − (𝑓(𝑦(𝑚−1)) + 𝜂)

(|𝑦(𝑚−1)|2 + (𝑓(𝑦(𝑚−1)) + 𝜂)2)𝑚∕2
|||||||
𝑑𝑦(𝑚−1) (4.5)

In fact these are exactly the integrands estimated in [30, page 363-364] using simple algebraic
manipulations, which we have included in Appendix A.1 for the reader’s convenience. Upon sub-
stitution of 𝑦(𝑚−1) = 𝜂𝑢(𝑚−1) these calculations imply that the integrals (4.4) and (4.5) are bounded
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4034 CAKONI and VOGELIUS

by

∫𝐵(𝑚−1)𝜌∕𝜂 (0)
1

(|𝑢(𝑚−1)|2 + 1)𝑚∕2 𝑑𝑢(𝑚−1) < +∞, ,
uniformly in 0 < 𝜂 ≤ 𝑟 and 𝑥 ∈ 𝜕𝐷 ∩ 𝐵𝑟(0). This completes the proof of Lemma 4.2. □
5 PROOF OF OURMAIN RESULTS

In our proof of the main results we shall make use of a regularity result about 𝐻20(𝐷) solutions
to (1.4). A central ingredient in the proof of this regularity result is the regularity analysis for the
volume potential found in the previous section.

Proposition 5.1. Assume that 𝜕𝐷 is Lipschitz, 0 ∈ 𝜕𝐷, and the refractive index is given by 𝑛 ∈𝐿∞(𝐷). Furthermore, we assume that 𝑛 ∈ 𝐶𝛼(𝐷 ∩ 𝐵𝑅(0)) for some ball 𝐵𝑅(0) of radius 𝑅 centered
at 0 and some 0 < 𝛼 ≤ 1. Then 𝑢 ∈ 𝐻20(𝐷), that satisfies (1.4), lies in 𝐶1(𝐷), and has all its second
derivatives {𝑢𝑖,𝑗}𝑖,𝑗=1,𝑚 uniformly bounded in 𝐷 ∩ 𝐵𝑟(0) for some 𝑟 > 0.
Proof. First we remark that the incident field 𝑣 is real analytic in 𝐷, as it is an (𝐿2) solution of
Helmholtz equation in a region containing 𝐷. Introduce the function

𝑈(𝑥) = {𝑢(𝑥) for 𝑥 ∈ 𝐷 ,0 for 𝑥 ∈ ℝ𝑚 ⧵ 𝐷 .
This function is in 𝐻2(ℝ𝑚) (since 𝑢 ∈ 𝐻20(𝐷)) and since 𝑚 = 2 or 3, it follows from the Sobolev
embedding Theorem that 𝑈 ∈ 𝐶𝛼(ℝ𝑚) for some 0 < 𝛼 < 1. 𝑈 is a solution of

∆𝑈 = Ψ in ℝ𝑚 , where Ψ(𝑥) = {𝜓(𝑥) for 𝑥 ∈ 𝐷0 for 𝑥 ∈ ℝ𝑚 ⧵ 𝐷
with 𝜓(𝑥) = 𝑘2(1 − 𝑛(𝑥))𝑣(𝑥) − 𝑘2𝑛(𝑥)𝑢(𝑥), 𝑥 ∈ 𝐷. The function 𝜓 is clearly in 𝐿∞(𝐷), and due
to the assumptions about 𝑛 and 𝑣, and the 𝐶𝛼 extendability of 𝑢, it has an extension that lies in𝐶𝛼(𝐵𝑟(0)). The solution 𝑈 is now given by the formula

𝑈(𝑥) = −∫𝐷 𝜓(𝑦)Φ(𝑥, 𝑦)𝑑𝑦 = −𝑤𝜓(𝑥)
with 𝜓 = 𝑘2(1 − 𝑛)𝑣 − 𝑘2𝑛𝑢 ∈ 𝐿∞(𝐷) ∩ 𝐶𝛼(𝐵𝑟(0)). Lemma 4.1 and Lemma 4.2 of the preceding
section therefore apply to 𝑈. Lemma 4.1 implies that 𝑈 ∈ 𝐶1(ℝ𝑚) and, since 𝑈 = 0 outside 𝐷,
Lemma 4.2 implies that all second derivatives of 𝑢 are uniformly bounded in 𝐷 ∩ 𝐵𝑟(0) for some𝑟 > 0. □
Remark 5.2. In the above proof of Proposition 5.1 it is shown that 𝑈 is in 𝐶1(ℝ𝑚); as a conse-
quence 𝑢 has an extension (by zero) which is in 𝐶1(ℝ𝑚). We also note that, the fact that all
second derivatives of 𝑢 are shown to be uniformly bounded in 𝐷 ∩ 𝐵𝑟(0) implies that 𝑢 is in𝐶1,1(𝐷 ∩ 𝐵𝑟(0)).
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SINGULARITIES ALMOST ALWAYS SCATTER 4035

To obtain themain results of our paperwe need to use Theorem 3.1, which requires a real valued
solution. With this in mind, we note that the real valued function 𝑤 = ℜ(𝑢) is an𝐻2(𝐷) solution
to

∆𝑤 + 𝑘2𝑛𝑤 = −𝑘2(𝑛 − 1)ℜ(𝑣) with 𝑤 = 𝜕𝑤𝜕𝐧 = 0 on 𝜕𝐷 . (5.1)

Since the incident wave is an 𝐿2 solution to ∆𝑣 + 𝑘2𝑣 = 0 in a neighborhood of 𝐷, it follows thatℜ(𝑣) is a real analytic function on 𝐷. In particular, Proposition 5.1 also applies to 𝑤. Of course,
one could consider the imaginary part of the scattered field 𝑢, which satisfies the same equa-
tion as above withℜ(𝑣) replaced by ℑ(𝑣). Accordingly, in what follows, everything holds true if
we replaceℜ(𝑣) by ℑ(𝑣).
To apply Theorem 3.1 to (5.1), wemust first appeal to Theorem 3.3 in order to establish that𝑤 ∈𝐶2(𝐷 ∩ 𝐵𝑟(0)) and that 𝜕𝐷 ∩ 𝐵𝑟(0) is of class 𝐶1. Proposition 5.1 (see also Remark 5.2) guarantees

that 𝑤 ∈ 𝐶1,1(𝐷 ∩ 𝐵𝑟(0)) and that 𝑔 = −𝑘2(𝑛𝑤 + (𝑛 − 1)ℜ(𝑣)) has a 𝐶1 extension to all of ℝ𝑚.
The essential, missing step for application of Theorem 3.3 is therefore to show that 𝑤 is of one
sign. This is established by the following proposition.

Proposition 5.3. Assume that 𝜕𝐷 is Lipschitz, 0 ∈ 𝜕𝐷, and the refractive index is given by𝑛 ∈ 𝐿∞(𝐷). Furthermore, suppose 𝑛 lies in 𝐶1,1(𝐷 ∩ 𝐵𝑟(0)) for some ball 𝐵𝑟(0) of radius 𝑟 cen-
tered at 0, and suppose (𝑛(0) − 1)ℜ(𝑣(0)) ≠ 0. Let 𝑤 ∈ 𝐻20(𝐷) be a solution to (5.1). Then 𝑤 < 0
in 𝐷 ∩ 𝐵𝑟(0) for some 𝑟 > 0 if (𝑛(0) − 1)ℜ(𝑣(0)) > 0, and 𝑤 > 0 in 𝐷 ∩ 𝐵𝑟(0) for some 𝑟 > 0 if(𝑛(0) − 1)ℜ(𝑣(0)) < 0.
Proof. The proof of this proposition follows almost verbatim the analysis by Williams in [30, Sec-
tion 5]. However, since [30] deals with a slightly simpler equation, and since we assume these
techniques may not be known to the reader, we provide the main steps of the proof. We provide
sufficient details where our case differs from the one considered in [30, Theorem 3], and otherwise
refer the reader to [30].
To fix ideas we consider the case (𝑛(0) − 1)ℜ(𝑣(0)) > 0. In the case when (𝑛(0) − 1)ℜ(𝑣(0)) <0 the result is verified by considering −𝑤 (and −𝑣) instead of 𝑤 (and 𝑣). Since (𝑛 − 1)ℜ(𝑣) is𝐶1(𝐵𝑟(0)), by decreasing 𝑟 if necessary, it now follows that

(𝑛(𝑥) − 1)ℜ(𝑣(𝑥)) ≥ 𝛾 > 0 for all 𝑥 ∈ 𝐷 ∩ 𝐵𝑟(0). (5.2)

We consider the cylindrical neighborhood𝑁 of 0 ∈ 𝜕𝐷 introduced in Section 4 in the paragraph
just before Lemma 4.2. We recall that 𝑁 ∶= 𝑁(𝜌,ℎ) = 𝐵(𝑚−1)𝜌 (0) × [−ℎ,ℎ], 𝑁 ∩ 𝜕𝐷 is the graph𝑥𝑚 = 𝑓(𝑥(𝑚−1)) of a Lipshitz continuous function 𝑓 ∶ 𝐵(𝑚−1)𝜌 (0)→ ℝ with Lipschitz constant 𝐾,ℎ > 𝐾𝜌, and

𝑁 ∩ 𝐷 = {(𝑥(𝑚−1),𝑥𝑚) ∶ 𝑥(𝑚−1) ∈ 𝐵(𝑚−1)𝜌 (0), 𝑓(𝑥(𝑚−1)) < 𝑥𝑚 < ℎ}.
The function 𝑤 ∈ 𝐻20(𝐷), which in Proposition 5.1 is shown to have all its second derivatives{𝑤𝑖,𝑗}𝑖,𝑗=1,𝑚 uniformly bounded in 𝑁 ∩ 𝐷, solves

∆𝑤 = −𝑘2(𝑛𝑤 + (𝑛 − 1)ℜ(𝑣)) in 𝑁 ∩ 𝐷. (5.3)
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4036 CAKONI and VOGELIUS

Set 𝑔 ∶= −𝑘2(𝑛𝑤 + (𝑛 − 1)ℜ(𝑣)). From our assumption about 𝑛 and the analyticity of ℜ(𝑣) we
have that 𝑔𝑖,𝑗 ∶= 𝜕2𝑔𝜕𝑥𝑖𝜕𝑥𝑗 , 𝑖, 𝑗 = 1..𝑚, exist almost everywhere in 𝑁 ∩ 𝐷 and are in 𝐿∞(𝑁 ∩ 𝐷).
Furthermore,

∆𝑤𝑖,𝑗 = 𝑔𝑖,𝑗 almost everywhere in 𝑁 ∩ 𝐷.
Using Lemma 4.1we can (bymeans of a volume potential) construct functions 𝑞𝑖,𝑗 ∈ 𝐶1(ℝ𝑚) such
that

∆𝑞𝑖,𝑗 = 𝑔𝑖,𝑗 almost everywhere in 𝑁 ∩ 𝐷.
Thus each 𝑤𝑖,𝑗 − 𝑞𝑖,𝑗 is a bounded harmonic function in 𝑁 ∩ 𝐷. By taking the radius 𝜌 of the
ball 𝐵(𝑚−1)𝜌 (0) sufficiently small we can assume that𝑁 ∩ 𝐷 is starlike about some point in𝑁 ∩ 𝐷.
Therefore, from [17, Section 2, page 311] we can conclude that each 𝑤𝑖,𝑗 − 𝑞𝑖,𝑗 has non-tangential
limits at all points of𝑁 ∩ 𝜕𝐷, except for a possible (Borel) subset of zero harmonic measure. Since𝑞𝑖,𝑗 ∈ 𝐶1(ℝ𝑚), we can then conclude that each 𝑤𝑖,𝑗 has finite non-tangential limits on 𝑁 ∩ 𝜕𝐷
except for a possible subset of zero harmonic measure. From geometric measure theory it is
known (see e.g. [13, Theorem 1, page 275] or [11]) that the (Borel) boundary sets, of a Lipschitz
domain, which have harmonicmeasure zero, are exactly those boundary sets which have (𝑚 − 1)-
dimensional Hausdorff measure zero. Therefore, each 𝑤𝑖,𝑗 has finite non-tangential limit at(𝑥(𝑚−1),𝑓(𝑥(𝑚−1))) for all 𝑥(𝑚−1) ∈ 𝐵(𝑚−1)𝜌 (0), except for a possible subset of (𝑚 − 1)-dimensional
zero Lebesgue measure.
By Rademacher’s theorem 𝑓 ∶ 𝐵(𝑚−1)𝜌 (0)→ ℝ is differentiable almost everywhere in 𝐵(𝑚−1)𝜌 (0).

We now introduce the subset

𝐺 ∶= {𝑥(𝑚−1) ∈ 𝐵(𝑚−1)𝜌 (0), where both ∇𝑓 and the
non-tangential limits of all 𝑤𝑖,𝑗exist}.

Note that𝐵(𝑚−1)𝜌 (0) ⧵ 𝐺 has zero Lebesguemeasure.Wenote that the non-tangential limit of𝑤𝑖,𝑗 at
a 𝑥0 ∶= (𝑥(𝑚−1)0 ,𝑓(𝑥(𝑚−1)0 )) (for 𝑥(𝑚−1)0 ∈ 𝐺) is the limiting value as we approach 𝑥0 by 𝑥 ∈ 𝑁 ∩ 𝐷
from inside any cone

𝐶𝜖(𝑥0) ∶= {𝑥 ∶ (𝑥 − 𝑥0) ⋅ 𝐧0 ≤ −𝜖|𝑥 − 𝑥0|} ,𝜖 > 0, where 𝐧0 denotes the outward normal vector to 𝜕𝐷 at 𝑥0. Next we compute the non-
tangential limits of𝑤𝑖,𝑗 at (𝑥(𝑚−1),𝑓(𝑥(𝑚−1))) for 𝑥(𝑚−1) ∈ 𝐺. For a fixed 𝑥(𝑚−1)0 ∈ 𝐺 we can setup
a local coordinative system such that (𝑥(𝑚−1)0 ,𝑓(𝑥(𝑚−1)0 )) = (0(𝑚−1), 0), 𝑥𝑚 = 0 coincides with the
tangential plane to the graph of 𝑓, and the points (0(𝑚−1),ℎ) for ℎ > 0 small enough are in 𝐷.𝜕𝑖 , 1 ≤ 𝑖 ≤ 𝑚 − 1with respect to this local coordinate system then denotes a tangential derivative
to 𝜕𝐷. Following [7, Lemma 2.1(b’) page 82], we consider the (𝑚 − 1) dimensional disk regions
(inside 𝐷) with radius 𝜌𝓁, defined as 𝐷𝓁 ∶= 𝑡𝓁 ∩ 𝐶𝜖(0) where {𝑡𝓁}𝓁∈ℕ is a sequence of planes
parallel to the tangential plane to 𝜕𝐷 at 0, and converging to it. Then we have

1𝜌𝑚−1𝑙
|||||||
∫𝐷𝓁 𝑤𝑖,𝑗 𝑑𝑥||||||| ≤ 1𝜌𝑚−1𝑙 ∫𝜕𝐷𝓁

|||𝑤𝑗||| 𝑑𝑠 ≤ 𝐶𝜖 , as 𝓁 → ∞ , (5.4)
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SINGULARITIES ALMOST ALWAYS SCATTER 4037

because 𝑤𝑗 is Lipshitz continuous and vanishes on the free boundary (and the distance to the
boundary is 𝜌𝑙𝜖). Since 𝑤𝑖,𝑗 has a limit, call it 𝑙𝑖,𝑗 , from within 𝐶𝜖(0) we may conclude from (5.4)
that |𝑙𝑖,𝑗| < 𝐶𝜖 which implies that 𝑙𝑖,𝑗 = 0 since 𝜖 > 0 is arbitrary. There is only one remaining
second derivative, namely the one corresponding to differentiation twice with respect to the𝑚′𝑡ℎ
local variable, whose limit we need to calculate. This second derivative actually coincides with𝜕2𝜕𝐧20𝑤, where 𝐧0 denotes the outward normal to 𝜕𝐷 (at (𝑥(𝑚−1)0 ,𝑓(𝑥(𝑚−1)0 ))). Using (5.3), the fact
that 𝑤 vanishes on the boundary and is uniformly continuous up to the boundary, together with
(5.2) wemay now conclude that limit of𝑤𝐧0,𝐧0 is 𝑙𝐧0,𝐧0 ≤ −𝑘2𝛾 < 0, and this holds for all 𝑥(𝑚−1)0 ∈𝐺.
Now we go back to the fixed global coordinate system with the fixed 0 ∈ 𝜕𝐷, and we denote by𝐧(𝑥(𝑚−1)) the (outward) normal vector to the tangent plane to the graph of 𝑓 at (𝑥(𝑚−1),𝑓(𝑥(𝑚−1)))

for 𝑥(𝑚−1) ∈ 𝐺. Since 𝑓 is Lipshitz we have that the angle between −𝐧(𝑥(𝑚−1)) and 𝑒𝑚 (the
unit vector in the 𝑚-direction) satisfies 𝜃(−𝐧(𝑥(𝑚−1)), 𝑒𝑚) ≤ 𝜃0 < 𝜋∕2 for all 𝑥(𝑚−1) ∈ 𝐺. Then
from the above we obtain that 𝑤𝑚,𝑚 (the non-tangential limit of the second derivative in the 𝑒𝑚
direction) satisfies

𝑤𝑚,𝑚(𝑥(𝑚−1),𝑓(𝑥(𝑚−1)) ≤ −𝑘2𝛾 cos2(𝜃0) = −𝜖 < 0 for all 𝑥(𝑚−1) ∈ 𝐺 . (5.5)

The idea is now, based on the sign property (5.5), to construct a subharmonic function involving𝑤𝑚,𝑚 that takes negative values uniformly on the boundary of a neighborhood of 0 ∈ 𝜕𝐷 in𝐷, and
then use a maximum principle for subharmonic functions to infer the same sign property inside
the neighborhood.
To this end, let 𝑃 > 0 be a positive constant. Then from (5.3) we have

∆(𝑤𝑚,𝑚(𝑥) + 𝑃|𝑥|2) = ∆𝑤𝑚,𝑚(𝑥) + 2𝑚𝑃 = 𝑔𝑚,𝑚(𝑥) + 2𝑚𝑃 for 𝑥 ∈ 𝑁 ∩ 𝐷 .
Since 𝑔𝑚,𝑚 is uniformly bounded in 𝑥 ∈ 𝑁 ∩ 𝐷, it is possible to choose 𝑃 > 0 large enough so that𝑔𝑚,𝑚(𝑥) + 2𝑚𝑃 ≥ 0 for 𝑥 ∈ 𝑁 ∩ 𝐷. Thus the function𝑤𝑚,𝑚 + 𝑃|𝑥|2 is subharmonic in𝑁 ∩ 𝐷. Let𝐾 be the Lipschitz constant of 𝑓. Now, pick a smaller neighborhood of 0, 𝑁∗ ∶= 𝑁(𝜌∗,ℎ∗) with𝜌∗ < 𝜌, ℎ∗ < ℎ, ℎ∗ > 𝐾𝜌∗ so that 𝑃|𝑥|2 ≤ 𝜖∕2 in𝑁∗ where 𝜖 is the constant in (5.5). The boundary
of 𝑁∗ ∩ 𝐷 can be split into 𝜕(𝑁∗ ∩ 𝐷) = Γ1 ∪ Γ2 where

Γ1 ∶= {(𝑥(𝑚−1),𝑥𝑚) ∶ 𝑥(𝑚−1) ∈ 𝐵(𝑚−1)𝜌∗ (0), 𝑓(𝑥(𝑚−1)) < 𝑥𝑚} ∩ 𝜕(𝑁∗ ∩ 𝐷) .
and

Γ2 ∶= {(𝑥(𝑚−1),𝑥𝑚) ∶ 𝑥(𝑚−1) ∈ 𝐵(𝑚−1)𝜌∗ (0), 𝑓(𝑥(𝑚−1)) = 𝑥𝑚} .
In particular we have that 𝑤𝑚,𝑚 + 𝑃|𝑥|2 ≤ −𝜖∕2 almost everywhere on Γ2 (in the sense of non-
tangential limits). The next step is to control the sign on Γ1. For this purpose, we consider the
(exterior) cone  with vertex 0 and opening 𝜂 with 0 < 𝜂 < tan−1(1∕𝐾)

 ∶= {𝑥 ∶= (𝑥(𝑚−1),𝑥𝑚) ∈ ℝ𝑚 ∶ 𝑥𝑚 < 0, |𝑥(𝑚−1)| < |𝑥𝑚| tan 𝜂} .
Note that 𝐷 ⊆ ℝ𝑚 ⧵ . It is quite easy (see e.g. [15, Lemma 2.4, page 62]) to construct a barrier
function 𝑢 defined and continuous inℝ𝑚 ⧵ , subharmonic inℝ𝑚 ⧵ , and such that 𝑢(𝑥) ≤ 0 for
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4038 CAKONI and VOGELIUS

𝑥 ∈ ℝ𝑚 ⧵ , with equality holding if and only if 𝑥 = 0. Now consider the subharmonic function𝑤𝑚,𝑚 + 𝑃|𝑥|2 +𝑀𝑢 for some constant𝑀 > 0, to be chosen later. Since𝑀𝑢 ≤ 0 we still have𝑤𝑚,𝑚(𝑥) + 𝑃|𝑥|2 +𝑀𝑢(𝑥) ≤ −𝜖∕2 for almost all 𝑥 ∈ Γ2 . (5.6)

Since Γ1 is away from 0, we have that sup𝑥∈Γ1 𝑢(𝑥) < 0. Therefore, thanks to the fact that 𝑤𝑚,𝑚 is
uniformly bounded in 𝑁 ∩ 𝐷, we can find a constant𝑀 > 0 such that𝑤𝑚,𝑚(𝑥) + 𝑃|𝑥|2 +𝑀𝑢(𝑥) ≤ −𝜖∕2 for 𝑥 ∈ Γ1 . (5.7)

Lemma 5.4 (see below) now implies that the above inequality holds in the interior of 𝑁∗ ∩ 𝐷, in
particular we may conclude𝑤𝑚,𝑚(𝑥) ≤ −𝜖∕2 − 𝑃|𝑥|2 −𝑀𝑢(𝑥) for all 𝑁∗ ∩ 𝐷 .
Since 𝑢(𝑥)→ 0 as |𝑥| → 0 for 𝑥 ∈ ℝ𝑚 ⧵ , we can therefore find a sufficiently small 𝜌0 > 0 such
that 𝑤𝑚,𝑚(𝑥) ≤ −𝜖∕4 for all 𝑥 ∈ 𝑁∗ ∩ 𝐷 with |𝑥| ≤ 𝜌0.
This, along with the fact that 𝑤 = 𝜕𝑤∕𝜕𝑥𝑚 = 0 on Γ2, implies that 𝑤 < 0 along all lines in the
direction 𝑒𝑚 (inside 𝑁∗ ∩ 𝐷 ∩ {|𝑥| < 𝜌0}) which finally proves that 𝑤 < 0 in a neighborhood of 0
in 𝐷. □
Lemma 5.4. Let the notations and assumptions be as in the proof of Proposition 5.3. If (5.6) and
(5.7) hold then 𝑤𝑚,𝑚(𝑥) + 𝑃|𝑥|2 +𝑀𝑢(𝑥) ≤ −𝜖∕2 for all 𝑥 ∈ 𝑁∗ ∩ 𝐷 .

This result (though not directly stated as a lemma) is proven from bottom of page 366 through
the top of page 368 in Williams [30], and we refer the reader to that paper. This lemma amounts
to a “maximum principle” for the subharmonic function 𝑤𝑚,𝑚(𝑥) + 𝑃|𝑥|2 +𝑀𝑢(𝑥), the added
difficulty being the lack of apriori knowledge that this function is continuous on 𝑁∗ ∩ 𝐷.
We are now ready to give the proof of the first main result of this paper.

Proof of Theorem 2.1. The proof proceeds by contradiction. Suppose the incident field 𝑣 is not scat-
tered by (𝐷,𝑛). Without loss of generality we assume that (𝑛(𝑥0) − 1)ℜ(𝑣(𝑥0)) ≠ 0 and we choose𝑥0 to be the origin of the coordinate system (the argumentworks similarly if (𝑛(𝑥0) − 1)ℑ(𝑣(𝑥0)) ≠0). The function 𝑤 = ℜ(𝑢) is a solution to (5.1). Since the incident wave is an 𝐿2 solution to∆𝑣 + 𝑘2𝑣 = 0 in a neighborhood of 𝐷, it follows that ℜ(𝑣) is a real analytic functions on 𝐷.
By assumption the refractive index 𝑛 is also real analytic on 𝐷𝛿, and so the assumptions of
Proposition 5.1 and Proposition 5.3 are satisfied. In particular, Proposition 5.1 (and the remark
following) implies that 𝑤 ∈ 𝐶1,1(𝐷 ∩ 𝐵𝑟(0)) for some ball 𝐵𝑟(0), and that it has a 𝐶1 extension
to all of ℝ𝑚. Proposition 5.3 implies that 𝑤 ≥ 0 or 𝑤 ≤ 0 in 𝐷 ∩ 𝐵𝑟(0) depending on whether(𝑛(0) − 1)ℜ(𝑣(0)) < 0 or (𝑛(0) − 1)ℜ(𝑣(0)) > 0, respectively. We now introduce 𝑔 ∶= −𝑘2(𝑛𝑤 +(𝑛 − 1)ℜ(𝑣)). Thanks to the 𝐶1 extendability of 𝑤, and the analyticity of 𝑛 and ℜ(𝑣), the func-
tion 𝑔 has a 𝐶1-extension 𝑔∗ in a neighborhood of 𝐷 ∩ 𝐵𝑅(0). Since 𝑤 vanishes at 𝜕𝐷, 𝑔(0) =−𝑘2(𝑛(0) − 1)ℜ(𝑣(0)), and so it follows that 𝑔∗ ≥ 𝛾 > 0 in 𝐷 ∩ 𝐵𝑟(0) or 𝑔∗ ≤ −𝛾 < 0 in 𝐷 ∩ 𝐵𝑟(0)
(with 𝑟 sufficiently small) depending onwhether (𝑛(0) − 1)ℜ(𝑣(0)) < 0 or (𝑛(0) − 1)ℜ(𝑣(0)) > 0,
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SINGULARITIES ALMOST ALWAYS SCATTER 4039

respectively. Since 𝑤 satisfies ∆𝑤 = 𝑔 in 𝐷, the assumptions of Theorem 3.3 are now satisfied for𝑤, if (𝑛(0) − 1)ℜ(𝑣(0)) > 0, and for −𝑤 if (𝑛(0) − 1)ℜ(𝑣(0)) < 0. In both cases we may therefore
conclude that 𝑤 ∈ 𝐶2(𝐷 ∩ 𝐵𝑟(0)) and 𝜕𝐷 ∩ 𝐵𝑟(0) is of class 𝐶1.
We now apply Theorem 3.1. We set 𝑎(𝑥) = 𝑘2𝑛(𝑥) and 𝑏(𝑥) = 𝑘2(1 − 𝑛(𝑥))ℜ(𝑣(𝑥)), then 𝑎 and𝑏 are both real analytic, by assumption 𝑎(0), 𝑏(0) ≠ 0 and 𝑤 ∈ 𝐶2(𝐷 ∩ 𝐵𝑟(0)) satisfies

∆𝑤 + 𝑎𝑤 = 𝑏 in 𝐷 , with 𝑤 = 𝜕𝑤𝜕𝐧 = 0 on 𝜕𝐷 ,
where 𝜕𝐷 ∩ 𝐵𝑟(0) is known to be of class𝐶1. The third case in Theorem 3.1 yields that 𝜕𝐷 ∩ 𝐵𝑟(0) is
real analytic for 𝑟 sufficiently small. However, this represents a contradiction, and so we conclude
that the incident field 𝑣 is scattered by (𝐷,𝑛), thus completing the proof of Theorem 2.1. □
Our second main result, Theorem 2.2, which applies to less regular refractive index 𝑛 is proven

in the exact same manner. The regularity result of Proposition 5.1 and Proposition 5.3 are still
applicable, since we have assumed that 𝑛 ∈ 𝐶1,1(𝐷𝛿). For the free boundary regularity we rely on
the case 2 of Theorem 3.1.
We close this section with a remark on up-to-the-boundary regularity of the 𝑣-part of the trans-

mission eigenfunction. At a real transmission eigenvalue 𝑘 > 0, there exist nonzero 𝑢 ∈ 𝐻20(𝐷)
and 𝑣 ∈ 𝐿2(𝐷), which solve

∆𝑢 + 𝑘2𝑛𝑢 = 𝑘2(1 − 𝑛)𝑣 in 𝐷 (5.8)

∆𝑣 + 𝑘2𝑣 = 0 in 𝐷 (5.9)

Without loss of generality, we may assume that the eigenfunction (𝑢, 𝑣) is real valued. In general,
since 𝑣 assumes no boundary condition, it is not possible from the equations to conclude any
regularity for 𝑣 up to the boundary. Our free boundary regularity results provide some insight into
this issue. Recall that Theorem 2.1 and Theorem 2.2 state necessary regularity conditions on 𝜕𝐷,
in order that (5.8) can have a 𝐻20(𝐷) solution (𝑣 being defined and regular in a ℝ𝑚 neighborhood
of 𝜕𝐷). It is clear from our analysis that the statements of Theorem 2.1 and Theorem 2.2 are valid
if 𝑣 is only defined on one side of 𝜕𝐷, and the regularity of 𝑣 up to the boundary matches that
of 𝑛; simply notice that our arguments rely only on the local regularity of the source term (1 −𝑛)𝑣 in 𝐷 ∩ 𝐵𝑅(𝑥0). We thus have the following consequence of the proofs of Theorem 2.1 and
Theorem 2.2.

Corollary 5.5. Assume 𝑘 > 0 is a real transmission eigenvalue with eigenfunction (𝑢, 𝑣), 𝜕𝐷 is
Lipshitz, 𝑛 ∈ 𝐿∞(𝐷), and there exits 𝑥0 ∈ 𝜕𝐷 such that 𝑛(𝑥0) − 1 ≠ 0. The following assertions
hold:

(1) If 𝑛 is real analytic in a neighborhood of 𝑥0 and 𝜕𝐷 ∩ 𝐵𝑟(𝑥0) is not real analytic for any ball𝐵𝑟(𝑥0), then 𝑣 can not be real analytic in any neighborhood of 𝑥0, unless 𝑣(𝑥0) = 0.
(2) If 𝑛 ∈ 𝐶𝑚,𝜇(𝐷 ∩ 𝐵𝑅(𝑥0)) ∩ 𝐶1,1(𝐷 ∩ 𝐵𝑅(𝑥0)) for 𝑚 ≥ 1, 0 < 𝜇 < 1 and some ball 𝐵𝑅(𝑥0), and𝜕𝐷 ∩ 𝐵𝑟(𝑥0) is not of class 𝐶𝑚+1,𝜇 for any ball 𝐵𝑟(𝑥0), then 𝑣 cannot lie in 𝐶𝑚,𝜇(𝐷 ∩ 𝐵𝑟(𝑥0)) ∩𝐶1,1(𝐷 ∩ 𝐵𝑟(𝑥0)) for any ball 𝐵𝑟(𝑥0), unless 𝑣(𝑥0) = 0.
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4040 CAKONI and VOGELIUS

6 APPLICATIONS TO SPECIAL INCIDENTWAVES

In this section we describe some applications of our main results to broad classes of incident
waves. To illustrate our results from a different perspective we shall formulate these applications
in terms of the boundary regularity of 𝐷 implied by a lack of scattering. For an incident plane
wave

𝑣𝜉(𝑥) = 𝑒𝑖𝑘𝜉⋅𝑥 ,
and an index of refraction 𝑛 with the property that 𝑛(𝑥) ≠ 1 for all 𝑥 ∈ 𝜕𝐷, one has

𝑘2(1 − 𝑛(𝑥))𝑣𝜉(𝑥) ≠ 0 , 𝑥 ∈ 𝜕𝐷 , 𝑘 ≠ 0 ,
and so the non-degeneracy condition of our main results is satisfied for all 𝑥 ∈ 𝜕𝐷. As a
consequence we have the following corollary to Theorem 2.1

Corollary 6.1. Suppose 𝜕𝐷 is Lipshitz. Suppose the index of refraction 𝑛 ∈ 𝐿∞(𝐷), 𝑛(𝑥) ≥ 𝑛0 > 0,
is real analytic in 𝐷𝛿 , with 𝑛(𝑥) ≠ 1 for all 𝑥 ∈ 𝜕𝐷. Let 𝑢 ∈ 𝐻2𝑙𝑜𝑐(ℝ𝑚) denote the solution to the
problem (1.2)-(1.3), given the incident planewave 𝑣𝜉(𝑥) = 𝑒𝑖𝑘𝜉⋅𝑥 , 𝜉 ∈ 𝑆𝑚−1. If 𝑘 > 0, and if𝑢 vanishes
identically inℝ𝑚 ⧵ 𝐷, then the boundary 𝜕𝐷 is real analytic.

Remark 6.2. We have two remarks related to Corollary 6.1:

(1) Let Φ𝑘 denote the fundamental solution to the Helmholtz equation give by
Φ𝑘(𝑥, 𝑦) ∶= ⎧

⎪
⎨
⎪⎩

𝑒𝑖𝑘|𝑥−𝑦|4𝜋|𝑥 − 𝑦| in ℝ3
𝑖4𝐻(1)0 (𝑘|𝑥 − 𝑦|) in ℝ2. ,

where 𝐻(1)0 denotes the Hankel function of the first kind of order zero. The result in
Corollary 6.1 can be stated verbatim if the incident field 𝑣 is a point source, that is,

𝑣𝑧0 (𝑥) ∶= Φ𝑘(𝑥, 𝑧0) 𝑧0 ∈ ℝ𝑚 ⧵ 𝐷 ,
since 𝑣𝑧0 (𝑥) ≠ 0 for all 𝑥 ∈ 𝜕𝐷.

(2) If the refractive index 𝑛 ∈ 𝐶𝑚,𝜇(𝐷𝛿) ∩ 𝐶1,1(𝐷𝛿), for 𝑚 ≥ 1, 0 < 𝜇 < 1 and under the same
additional assumptions one can conclude that if 𝑢 vanishes identically in ℝ𝑚 ⧵ 𝐷, then the
boundary 𝜕𝐷 is of class 𝐶𝑚+1,𝜇.

A natural question arises concerning the possible appearance of non-scattering for plane waves
and obstacles with real analytic boundaries as well as real analytic index of refraction. A result
in that direction is found in [28]. In that paper it is shown that if 𝐷 ⊂ ℝ2 is strictly convex (pos-
itive curvature) and with constant index of refraction, then given any direction 𝜉 there exists at
most finitely many positive wave-numbers 𝑘 for which the plane wave in the direction 𝜉 does
not scatter. If 𝐷 is a disk it is quite easy to see that a plane wave will scatter at any positive
wave-number.
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SINGULARITIES ALMOST ALWAYS SCATTER 4041

For the next application we consider the two dimensional case, and incident waves obtained by
superposition of plane waves, so-called Herglotz wave functions, of the form

𝑣𝜙(𝑥) = 12𝜋 ∫𝑆1 𝜙(𝜉)𝑒𝑖𝑘𝜉⋅𝑥 𝑑𝑠𝜉 , (6.1)

where we take 𝜙 to be a 𝐶1 function. While the free boundary regularity result in Theorem 2.1
does not insure that non-scattering for such incident waves can only occur for obstacles with real
analytic boundaries, it does imply that (for real analytic internal index of refraction) infinitely
many non-scattering positive wave-numbers can only occur if the boundary of the obstacle is real
analytic, except possibly at a nowhere dense (rare) set of points.3 To make this statement precise
we introduce the real analytic “part” of the boundary𝜕𝐷𝐴 = {𝑥 ∈ 𝜕𝐷 ∶ 𝜕𝐷 is real analytic in a neighborhood of 𝑥}.
Corollary 6.3. Suppose 𝜕𝐷, the boundary of the domain 𝐷 ⊂ ℝ2, is Lipschitz. Suppose the index of
refraction 𝑛 ∈ 𝐿∞(𝐷), 𝑛(𝑥) ≥ 𝑛0 > 0, is real analytic on 𝐷𝛿 , with 𝑛(𝑥) ≠ 1 for all 𝑥 ∈ 𝜕𝐷. For fixed𝐾0 and 𝜖0 > 0, let Φ denote the setΦ = {𝜙 ∈ 𝐶1(𝑆1) , ‖𝜙‖𝐶1 ≤ 𝐾0 , and |𝜙| ≥ 𝜀0 on 𝑆1 } ,
and let 𝑢𝜙 ∈ 𝐻2𝑙𝑜𝑐(ℝ𝑚) denote the solution to the scattering problem (1.2)-(1.3), given an incident
Herglotz wave function 𝑣𝜙 of the form (6.1). Suppose there exists an infinite sequence of positive wave-
numbers 𝑘𝑗 and associated scattering solutions 𝑢𝜙𝑗 , with 𝜙𝑗 ∈ Φ, for which

𝑢𝜙𝑗 vanishes identically inℝ2 ⧵ 𝐷,
then 𝜕𝐷𝐴 is a dense open set, or equivalently: the complement of 𝜕𝐷𝐴 is a closed nowhere dense set.
Proof. The set 𝜕𝐷𝐴 is clearly an open subset of 𝜕𝐷. Let 𝑥∗ be an arbitrary point on 𝜕𝐷, we proceed
to show any neighborhood of 𝑥∗ contains a point from 𝜕𝐷𝐴. For this purpose wemay without loss
of generality assume 𝑥∗ ≠ 0 (since a set which is dense in 𝜕𝐷 minus a point is also dense in 𝜕𝐷).
We analyze two exhaustive, but mutually exclusive possibilities

∙ The map 𝑥 ↦ |𝑥| is constant in a neighborhood of 𝑥∗.∙ For any 𝜕𝐷 neighborhood 𝜔 of 𝑥∗, the image of 𝜔 under the map 𝑥 ↦ |𝑥| contains an open
interval.

In the first case the boundary 𝜕𝐷 is part of a circle near 𝑥∗, therefore locally real analytic, and so𝑥∗ itself lies in 𝜕𝐷𝐴. In order to deduce that any neighborhood of𝑥∗ also contains a point from 𝜕𝐷𝐴
in the second case, we shall apply the result from Theorem 2.1. Now suppose any neighborhood
of 𝑥∗ contains a point 𝑧 with

𝑣𝜙𝑗 (𝑧) = 12𝜋 ∫𝑆1 𝜙𝑗(𝜉)𝑒𝑖𝑘𝑗𝜉⋅𝑧 𝑑𝑠𝜉 ≠ 0
3 Shortly after the completion of this paper an interesting complementary result was proven in [25]. The authors show
that, given any real analytic domain it is for most wave numbers possible to find an incident Herglotz wave function and
an associated 𝐶∞ index of refraction, which renders this wave non-scattering.

 10970312, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22117 by R

utgers U
niversity Libraries, W

iley O
nline Library on [20/06/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



4042 CAKONI and VOGELIUS

for some 𝑗. Since 𝑣𝜙𝑗 is not scattered, it follows fromTheorem 2.1 that 𝜕𝐷 is analytic near the point𝑧, and so it follows that any neighborhood of 𝑥∗ contains a point from 𝜕𝐷𝐴. We are thus left to
consider the second case when we also know that there exists a neighborhood 𝜔 of 𝑥∗ such that12𝜋 ∫𝑆1 𝜙𝑗(𝜉)𝑒𝑖𝑘𝑗𝜉⋅𝑧 𝑑𝑠𝜉 = 0 , for all 𝑗 and for all 𝑧 ∈ 𝜔 . (6.2)

By decreasing 𝜔, if necessary, we may assume |𝑧| > 𝑐 > 0 in 𝜔. In the following we show, by
contradiction, that this situation is vacuous, and having done so, we may conclude that any
neighborhood of 𝑥∗ contains a point from 𝜕𝐷𝐴 also in case two. This will complete the proof
that 𝜕𝐷𝐴 is dense in 𝜕𝐷. Now to establish the contradiction: note that wave numbers associ-
ated with non-scattering (nontrivial) incident waves are automatically transmission eigenvalues.
Because 𝑛(𝑥) ≠ 1 on 𝜕𝐷, and because of the regularity of 𝑛 near 𝜕𝐷, it follows that either (1)min𝑥∈𝐷𝛿 𝑛(𝑥) > 1, or (2)max𝑥∈𝐷𝛿 𝑛(𝑥) < 1, for some 𝛿 sufficiently small. Due to this “sign” con-
dition on 𝑛 it is known that the only accumulation point of the transmission eigenvalues is at∞,
in other words, we know that 𝑘𝑗 → ∞ as 𝑗 → ∞. The stationary phase approximation (see e.g.
[23]) to integrals such as that in (6.2) asserts that, for any 𝜙 ∈ 𝐶1,12𝜋 ∫𝑆1 𝜙(𝜉)𝑒𝑖𝑘𝑗𝜉⋅𝑧 𝑑𝑠𝜉 = 12𝜋 ∫

𝜋
−𝜋 𝜙(𝜃)𝑒𝑖𝑘𝑗|𝑧|𝑐𝑜𝑠(𝜃−𝜃𝑧) 𝑑𝜃

= 12𝜋𝜙(𝜃𝑧)𝑒𝑖𝑘𝑗|𝑧|𝑒−𝑖𝜋∕4( 2𝜋𝑘𝑗|𝑧|)1∕2

+ 12𝜋𝜙(𝜃𝑧 + 𝜋)𝑒−𝑖𝑘𝑗|𝑧|𝑒𝑖𝜋∕4( 2𝜋𝑘𝑗|𝑧|)1∕2 + 𝑜 (𝑘−1∕2𝑗 ) ,
for any 𝑧 ∈ 𝜕𝐷, 𝑧 ≠ 0. Here we have parametrized 𝜉 ∈ 𝑆1 by angle 𝜃 ∈ (−𝜋,𝜋): 𝜉 = (cos 𝜃, sin 𝜃),
and interpreted 𝜙 as a periodic function of 𝜃. We have also written 𝑧 = |𝑧|(cos 𝜃𝑧, sin 𝜃𝑧). Further-
more the remainder term 𝑜(𝑘−1∕2𝑗 ) is uniform over ‖𝜙‖𝐶1 ≤ 𝐾, (and |𝑧| > 𝑐 > 0). By insertion of𝜙 = 𝜙𝑗 ∈ Φ, use of (6.2), and rearrangement we now get

𝜙𝑗(𝜃𝑧)𝑒2𝑖𝑘𝑗|𝑧| + 𝑖𝜙𝑗(𝜃𝑧 + 𝜋)→ 0 as 𝑗 → ∞, (6.3)

for any 𝑧 ∈ 𝜔. Since the 𝜙𝑗 are bounded in 𝐶1, we may extract a subsequence (for simplicity, still
indexed by 𝑗) that converges to some 𝜙 in 𝐶0; this limit 𝜙 also satisfies |𝜙(𝜃)| ≥ 𝜀0 for all 𝜃. From
the limiting statement (6.3) we conclude that𝜙(𝜃𝑧)𝑒2𝑖𝑘𝑗|𝑧| + 𝑖𝜙(𝜃𝑧 + 𝜋)→ 0 as 𝑗 → ∞,
for any 𝑧 ∈ 𝜔. Since the image under themap 𝑧 → |𝑧| of any (𝜕𝐷) neighborhood of 𝑥∗ contains an
open interval, Lemma 6.1 in [27] asserts that there exists points 𝑧1 and 𝑧2 in 𝜔 so (after extraction
of a subsequence) 𝑒2𝑖𝑘𝑗|𝑧1| → 1 and 𝑒2𝑖𝑘𝑗|𝑧2| → −1 .
For the convenience of the reader we have included the statement of this lemma in Appendix A.2.
It thus follows that𝜙 (𝜃𝑧1) + 𝑖𝜙 (𝜃𝑧1 + 𝜋) = 0 and − 𝜙 (𝜃𝑧2) + 𝑖𝜙 (𝜃𝑧2 + 𝜋) = 0.
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SINGULARITIES ALMOST ALWAYS SCATTER 4043

Since the above argument remains valid when we decrease the 𝑥∗ neighborhood 𝜔, we may
achieve that both 𝑧1 and 𝑧2 are arbitrarily close to 𝑥∗. Therefore, by continuity

𝜙(𝜃𝑥∗) + 𝑖𝜙(𝜃𝑥∗ + 𝜋) = 0 and − 𝜙(𝜃𝑥∗) + 𝑖𝜙(𝜃𝑥∗ + 𝜋) = 0 .
or

𝜙(𝜃𝑥∗) = 𝜙(𝜃𝑥∗ + 𝜋) = 0 ,
in contradiction to the fact that |𝜙(𝜃)| is always positive. □
For inhomogeneities with real analytic boundaries some recent results about the number of

positive non-scattering wave-numbers associated to incident Herglotz wave function (and con-
stant index of refraction ≠ 1) are found in [28]. For a circle there are infinitely many such
wave-numbers associated to each density 𝜙𝑗(𝜃) = 𝑒±𝑖𝑗𝜃. However, when the circle is perturbed
(ever so slightly) to an ellipse, there can at most be finitely many such wave-numbers associated
to any fixed 𝜙 (or any compact class of 𝜙′𝑠). The finiteness remains stable to perturbations of
the ellipse.
We close this section with applications of ourmain results by establishing a scattering result for

an inhomogeneousmedia (𝐷,𝑛) at awave number 𝑘 > 0, forwhich 𝑘2 is not aDirichlet eigenvalue
of the negative Laplacian in 𝐷 ⊂ ℝ𝑚.
Corollary 6.4. Suppose 𝜕𝐷 is Lipschitz. Suppose 𝑘2 > 0 is not a Dirichlet eigenvalue of −∆ in 𝐷,
and that the index of refraction 𝑛 ∈ 𝐿∞(𝐷) is real analytic on 𝐷𝛿 , with 𝑛(𝑥) ≠ 1 for all 𝑥 ∈ 𝜕𝐷.
Furthermore, assume that 𝜕𝐷𝐴 is the empty set. Then every (non-trivial) incident wave 𝑣 is scattered
by this inhomogeneity.

Proof. 𝑣 is a (real-) analytic solution of the Helmhotz equation, ∆𝑣 + 𝑘2𝑣 = 0, in a region con-
taining 𝐷. Since 𝑘2 is not a Dirichlet eigenvalue, there is an open subset  ⊂ 𝜕𝐷 of the boundary
where 𝑣 does not vanish. In particular there exists a point 𝑥0 ∈  ⊂ 𝜕𝐷 where the assumptions of
Theorem 2.1 are satisfied, and thus 𝑣 produces a non-zero scattered field. □
If 𝑘 > 0 is not a transmission eigenvalue, we know that the inhomogeneity always scatters,

hence the statement of Corollary 6.4 asserts that, non-scattering (with 𝜕𝐷𝐴 = ∅) can only occur for
wave numbers 𝑘 > 0, that are transmission eigenvalues, and for which 𝑘2 is a Dirichlet eigenvalue
for −∆ in 𝐷. The cardinality of this set is not known.
7 REMARKS ON NON-RADIATING SOURCES

Our analysis has some implications for the scattering problem given a compactly supported
source. More specifically, the scattered field due to a given source 𝑓 ∈ 𝐿2𝑐 (ℝ𝑚) of compact support
satisfies

∆𝑢 + 𝑘2𝑢 = 𝑓 in ℝ𝑚 (7.1)
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4044 CAKONI and VOGELIUS

together with the outgoing Sommerfeld radiation condition (1.3). Again the outgoing scattered
field 𝑢 exhibits the following asymptotic behavior as 𝑟 ∶= |𝑥| →∞

𝑢(𝑥) = exp(𝑖𝑘𝑟)𝑟 𝑚−12 𝑢∞(𝑥̂) + 𝑂(𝑟−𝑚+12 ) ,
which defines the far field pattern 𝑢∞(𝑥̂) as a function on the unit𝑚 − 1 sphere. There are plenty
of compactly supported sources that produce zero far field patterns. For instance, the set

{𝑓 ∶= ∆𝑣 + 𝑘2𝑣, for any function 𝑣 ∈ 𝐶∞𝑐 (ℝ𝑚)}
consists of so-called non-radiating sources. A non-radiating source of this type has the property
that 𝑓 vanishes on the boundary of its support (which may have singularities). Our analysis, on
the other hand can be used to determine necessary local regularity properties for the boundary of
the support of a non-radiating source, provided it satisfies a non-vanishing condition. The analysis
leading to Theorem 2.1 and Theorem 2.2 implies the following results for the source problem (7.1).

Theorem 7.1. Assume that 𝑓 = 0 inℝ𝑚 ⧵ 𝐷, 𝑓|𝐷 ∈ 𝐿∞(𝐷) and that the boundary 𝜕𝐷 is Lipschitz.
Suppose there exists 𝑥0 ∈ 𝜕𝐷 such that 𝑓(𝑥0) ≠ 0, and 𝑓 is real analytic in 𝐷 ∩ 𝐵𝑅(𝑥0) for some ball𝐵𝑅(𝑥0) centered at 𝑥0 of fixed radius𝑅 > 0, and furthermore suppose 𝜕𝐷 ∩ 𝐵𝑟(𝑥0) is not real analytic
for any 𝑟 > 0. Then the source 𝑓 radiates.
In fact, for less regular sources we can prove a similar result.

Theorem 7.2. Assume that 𝑓 = 0 inℝ𝑚 ⧵ 𝐷, 𝑓|𝐷 ∈ 𝐿∞(𝐷) and that the boundary 𝜕𝐷 is Lipschitz.
Suppose there exists 𝑥0 ∈ 𝜕𝐷 such that 𝑓(𝑥0) ≠ 0, and 𝑓 ∈ 𝐶𝑚,𝜇(𝐷 ∩ 𝐵𝑅(𝑥0)) ∩ 𝐶1,1(𝐷 ∩ 𝐵𝑅(𝑥0))
for 𝑚 ≥ 1, 0 < 𝜇 < 1 for some ball 𝐵𝑅(𝑥0) centered at 𝑥0 of fixed radius 𝑅 > 0, and furthermore
suppose 𝜕𝐷 ∩ 𝐵𝑟(𝑥0) is not of class 𝐶𝑚+1,𝜇 for any 𝑟 > 0. Then the source 𝑓 radiates.
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APPENDIX A
A.1 Estimation of integrals (4.4) and (4.5)
Our calculations here follow almost verbatim [30, page 363–364]. We include these for the conve-
nience of the reader, but we show only the calculations for the more complicated integral (4.5).
After the change of variable 𝑦(𝑚−1) = 𝜂𝑢(𝑚−1),𝑓(𝑦(𝑚−1)) = |𝑦(𝑚−1)|𝑔(𝑦(𝑚−1)) the integrand in (4.5)
takes the form

1𝜂𝑚−1 (𝑈 − 1)(|𝑢(𝑚−1)|2 + (𝑈 + 1)2)𝑚∕2 − (𝑈 + 1)(|𝑢(𝑚−1)|2 + (𝑈 − 1)2)𝑚∕2
[(|𝑢(𝑚−1)|2 +𝑈2 + 1)2 − 4𝑈2]𝑚∕2 (A.1)
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4046 CAKONI and VOGELIUS

with 𝑈 = |𝑢(𝑚−1)|𝑔(𝜂𝑢(𝑚−1)). The denominator of the (second) fraction in (A.1) is equal to
(|𝑢(𝑚−1)|2 + 1)𝑚{[1 + |𝑢(𝑚−1)|21 + |𝑢(𝑚−1)|2 𝑔2(𝜂𝑢(𝑚−1))]2 − [ 2|𝑢(𝑚−1)|1 + |𝑢(𝑚−1)|2 𝑔(𝜂𝑢(𝑚−1))]2

}𝑚∕2.
This can be estimated from below by using the fact that for all real numbers 𝑎 and 𝑏 we have

[1 + 𝑎21 + 𝑎2 𝑏2]2 − [ 2𝑎1 + 𝑎2 𝑏]2 ≥ 4𝑏2 + 4 , (A.2)

with equality at 𝑎 = ±1∕√𝑏2 + 3. Indeed,we apply (A.2) with 𝑎 ∶= |𝑢(𝑚−1)| and 𝑏 ∶= 𝑔(𝜂𝑢(𝑚−1)),
and notice that 𝑔(𝜂𝑢(𝑚−1)) = |𝑔(𝑦(𝑚−1))| ≤ 𝐾 (independently of 𝜂, for 𝑦(𝑚−1) ∈ 𝐵(𝑚−1)𝜌 ) since 𝑓 is
Lipschitz with constant𝐾 and 𝑓(0) = 0. As a consequence it follows that the denominator of (A.1)
is bounded below by

𝜂𝑚−1( 4𝐾2 + 4)𝑚∕2(|𝑢(𝑚−1)|2 + 1)𝑚
With 𝑎 ∶= |𝑢(𝑚−1)| and 𝑏 ∶= 𝑔(𝜂𝑢(𝑚−1)), the numerator of (A.1) reads

(𝑎2 + 1)𝑚∕2[(𝑎𝑏 − 1)(1 + 𝑎2𝑏21 + 𝑎2 + 2𝑎𝑏1 + 𝑎2)𝑚∕2 − (𝑎𝑏 + 1)(1 + 𝑎2𝑏21 + 𝑎2 − 2𝑎𝑏1 + 𝑎2)𝑚∕2] .
We now define𝐴 ∶= 1 + 𝑎2𝑏21+𝑎2 and 𝐵 ∶= 2𝑎𝑏1+𝑎2 , both of which are obviously uniformly bounded in𝜂 for 𝑦(𝑚−1) ∈ 𝐵(𝑚−1)𝜌 , since |𝑏| = |𝑔(𝜂𝑢(𝑚−1))| ≤ 𝐾. We can now write

((𝐴 ± 𝐵)𝑚∕2 − 𝐴𝑚∕2)((𝐴 ± 𝐵)𝑚∕2 + 𝐴𝑚∕2) = (𝐴 ± 𝐵)𝑚 − 𝐴𝑚 = 𝐵±(𝐴,𝐵)
where ±(𝐴,𝐵) are polynomials on 𝐴 and 𝐵 of total order 𝑚 − 1. Noting that 1 ≤ 𝐴 ≤ 𝐾 and
|𝐵| ≤ 𝐾 we get

(𝐴 ± 𝐵)𝑚∕2 = 𝐴𝑚∕2 + 𝐵±(𝐴,𝐵)((𝐴 ± 𝐵)𝑚∕2 + 𝐴𝑚∕2)−1 = 𝐴𝑚∕2 + 𝐵±
where ± are uniformly bounded in 𝜂 for 𝑦(𝑚−1) ∈ 𝐵(𝑚−1)𝜌 . The numerator thus becomes

(𝑎2 + 1)𝑚∕2[(𝑎𝑏 − 1)(𝐴𝑚∕2 + 𝐵+) − (𝑎𝑏 + 1)(𝐴𝑚∕2 + 𝐵−)]= (𝑎2 + 1)𝑚∕2[−2𝐴𝑚∕2 − 𝐵(+ +−) + 𝑎𝑏𝐵(+ −−)] .
Since we also have |𝑎𝑏𝐵| ≤ 𝐾 it follows, that in terms of the original notations, the absolute value
of the numerator of (A.1) is bounded by

𝐶(|𝑢(𝑚−1)|2 + 1)𝑚∕2 ,
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SINGULARITIES ALMOST ALWAYS SCATTER 4047

uniformly in 𝜂 for 𝑦(𝑚−1) ∈ 𝐵(𝑚−1)𝜌 . Finally, combining the above estimates we obtain

integrant in (4.5) ≤ 𝐶𝜂𝑚−1
(|𝑢(𝑚−1)|2 + 1)𝑚∕2
(|𝑢(𝑚−1)|2 + 1)𝑚 = 𝐶𝜂𝑚−1 1

(|𝑢(𝑚−1)|2 + 1)𝑚∕2
where 𝐶 > 0 stands for some positive constant independent of 𝑢(𝑚−1). The desired estimate for
the integral (4.5) now follows by the change of variables 𝑦(𝑚−1) = 𝜂𝑢(𝑚−1).
The bound for the integral (4.4) can be obtained in a similar way; we leave the details to

the reader.

A.2 An algebraic lemma
Below we provide the full statement of the algebraic lemma, which was used in Section 6. The
lemma is taken directly from [27], where it appears as Lemma 6.1. We refer to [27] for a simple
proof of this lemma.

LemmaA.1. Let 𝑎 < 𝑏 and 𝐿 > 0 be three real numbers. Let {𝑐𝑛}∞𝑛=1 be a monotonically increasing
sequence of positive numbers tending to infinity and starting with 1 < 𝑐1. Let {𝜇𝑛}∞𝑛=1 be a sequence
of positive numbers which satisfy 𝑐𝑛𝜇𝑛 < 𝜇𝑛+1. Given any 𝑡 ∈ ℝ there exists a number 𝑠 ∶ 𝑎 < 𝑠 < 𝑏
such that 𝜇𝑛𝑠 → 𝑡 modulo 𝐿 as 𝑛 → ∞ .

 10970312, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22117 by R

utgers U
niversity Libraries, W

iley O
nline Library on [20/06/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License


	Singularities almost always scatter: Regularity results for non-scattering inhomogeneities
	Abstract
	1 | INTRODUCTION
	2 | STATEMENT OF OUR MAIN RESULTS
	3 | A FREE BOUNDARY REGULARITY RESULT
	4 | A REGULARITY RESULT FOR THE VOLUME POTENTIAL
	5 | PROOF OF OUR MAIN RESULTS
	6 | APPLICATIONS TO SPECIAL INCIDENT WAVES
	7 | REMARKS ON NON-RADIATING SOURCES
	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A
	A.1 | Estimation of integrals (4.4) and (4.5)
	A.2 | An algebraic lemma



