
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/uasa20

Network Inference Using the Hub Model and
Variants

Zhibing He, Yunpeng Zhao, Peter Bickel, Charles Weko, Dan Cheng & Jirui
Wang

To cite this article: Zhibing He, Yunpeng Zhao, Peter Bickel, Charles Weko, Dan Cheng & Jirui
Wang (2024) Network Inference Using the Hub Model and Variants, Journal of the American
Statistical Association, 119:546, 1264-1273, DOI: 10.1080/01621459.2023.2183133

To link to this article:  https://doi.org/10.1080/01621459.2023.2183133

View supplementary material 

Published online: 22 Mar 2023.

Submit your article to this journal 

Article views: 727

View related articles 

View Crossmark data



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION

2024, VOL. 119, NO. 546, 1264–1273: Theory and Methods

https://doi.org/10.1080/01621459.2023.2183133

Network Inference Using the HubModel and Variants

Zhibing Hea, Yunpeng Zhaoa, Peter Bickelb, Charles Wekoc, Dan Chenga, and Jirui Wangd

aArizona State University, Tempe, AZ; bUniversity of California, Berkeley, Berkeley, CA; cU.S. Army, Arlington, TX; dMedpace, Cincinnati, OH

ABSTRACT

Statistical network analysis primarily focuses on inferring the parameters of an observed network. In many
applications, especially in the social sciences, the observed data is the groups formed by individual subjects.
In these applications, the network is itself a parameter of a statistical model. Zhao and Weko propose a
model-based approach, called the hub model, to infer implicit networks from grouping behavior. The hub
model assumes that each member of the group is brought together by a member of the group called the
hub. The set of members which can serve as a hub is called the hub set. The hubmodel belongs to the family
of Bernoulli mixture models. Identioability of Bernoulli mixture model parameters is a notoriously diocult
problem. This article proves identioability of the hub model parameters and estimation consistency under
mild conditions. Furthermore, this article generalizes thehubmodel by introducingamodel component that
allowshubless groups inwhich individual nodes spontaneously appear independent of any other individual.
We refer to this additional component as the null component. The new model bridges the gap between
the hub model and the degenerate case of the mixture model—the Bernoulli product. Identioability and
consistency are also proved for the new model. In addition, a penalized likelihood approach is proposed to
estimate the hub set when it is unknown. Supplementary materials for this article are available online.
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1. Introduction

In recent decades, network analysis has been applied in science
and engineering oelds including mathematics, physics, biology,
computer science, social sciences, and statistics (see Getoor and
Diehl 2005; Goldenberg et al. 2010; Newman 2010 for reviews).
Traditionally, statistical network analysis deals with parameter
estimation of an observed network, that, an observed adjacency
matrix. For example, community detection, a topic of broad
interest, studies how to partition the node set of an observed
network into cohesive overlapping or nonoverlapping commu-
nities (see Zhao 2017; Abbe 2018 for recent reviews). Other
well-studied statistical network models include the preferential
attachment model (Barabási and Albert 1999), exponential ran-
dom graph models (Frank and Strauss 1986; Robins et al. 2007),
latent space models (Hof, Ravery, and Handcock 2002; Hof
2007), and the graphon model (Diaconis and Janson 2007; Gao,
Lu, and Zhou 2015; Zhang, Levina, and Zhu 2017).

In contrast to traditional statistical network analysis, this arti-

cle focuses on inferring a latent network structure. Speciocally,

wemodel datawith the following format: each observation in the

dataset is a subset of nodes that are observed simultaneously. An

observation is called a group and a full dataset is called grouped

data. Wasserman and Faust (1994) introduced this format using

the toy example of a children’s birthday party. In their simple

example, children are treated as nodes and each party represents

a group—that is, a subset of children who attended the same

party is a group. The reader is referred to Zhao andWeko (2019)
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and Weko and Zhao (2017) for applications of such data to the

social sciences and animal behavior.

The observed grouping behavior presumably results from

a latent social structure that can be interpreted as a network

structure of associated individuals (Moreno 1934). The task

is therefore to infer a latent network structure from grouped

data. Existing methods mainly focus on ad-hoc descriptive

approaches from the social sciences literature, such as the co-

occurrence matrix (Wasserman and Faust 1994) or the half

weight index (Cairns and Schwager 1987). Zhao and Weko

(2019) propose the orst model-based approach, called the hub

model, which assumes that every observed group has a hub that

brings together the other members of the group. When the hub

nodes of grouped data are known, estimating the model param-

eters is a trivial task. In most research situations, hub nodes are

unknown and need to bemodeled as latent variables. Under this

setup, estimating themodel parameters becomes amore diocult

task.
This article has three aims: orst, to prove the identioability

of the canonical parameters and the asymptotic consistency for
the estimators of those parameters when hubs are unobserved.
The canonical parameters refer to the probabilities of being a
hub node of a group and the probabilities of being included
in a group formed by a particular hub node. The hub model
is a restricted class from the family of onite mixtures of mul-
tivariate Bernoulli (Zhao and Weko 2019). Gyllenberg et al.
(1994) showed that in general the parameters of onite mixture

© 2023 American Statistical Association
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models of multivariate Bernoulli are not identioable. Zhao and
Weko (2019) showed that the parameters are identioable under
two assumptions: the hub node of each group always appears
in the group it forms and relationships are reciprocal. That is,
the adjacency matrix is symmetric with diagonal entries as one.
This article considers identioabilitywhen adjacencymatrices are
asymmetric. The model is therefore referred as to the asymmet-
ric hub model. We prove that when the hub set (i.e., the set of
possible hubs) contains at least one fewermember than the node
set, the parameters are identioable under mild conditions. The
new setup is practical and less restrictive than the symmetry
assumption. Moreover, allowing the hub set to be smaller than
the node set can reduce model complexity as pointed out by
Weko and Zhao (2017). When proving the consistency of the
estimators, we orst prove the consistency of the hub estimates
and then show that the estimators of model parameters are
consistent as a corollary. Our proofs accommodate the most
general setup in which the number of groups (i.e., sample size),
the size of the node set, and the size of the hub set are all allowed
to grow.

The second aim is to generalize the hub model to accommo-
date hubless groups and then prove identioability and consis-
tency of this generalizedmodel. The classical hubmodel requires
each group to have a hub. As observed inWeko andZhao (2017),
when otting the hubmodel to data, one sometimes has to choose
an unnecessarily large hub set due to this requirement. For
example, a node that appears infrequently in general but appears
once as a singleton must be included in the hub set. To relax the
one-hub restriction, we add a component to the hub model that
allows hubless groups in which nodes appear independently.We
call this additional component the null component and call the
newmodel the hubmodel with the null component. The proofs of
identioability and consistency for the newmodel do not parallel
the orst set of proofs and are more challenging.

Since the new models assume the hub set is a subset of the
nodes, this raises a natural question: how to estimate the hub set
from data, which is the third aim of the article. We formulate
this problem as model selection for Bernoulli mixture models.
We borrow the log penalty in Huang, Peng, and Zhang (2017),
originally designed for Gaussian mixture models, to propose
a penalized likelihood approach to select the hub set for the
hub model with the null component. Instead of penalizing the
mixing probability of every component as in Huang, Peng, and
Zhang (2017), we modify the penalty function such that the
probability of the null component is not penalized. The null
component does not exist in the setup of Gaussian mixture
models, but it creates a natural connection between the hub
model and a null model in our scenario. That is, when all other
mixing probabilities are shrunken to zero, the model naturally
degenerates to the model in which nodes appear independently
in a group—in other words, each group is modeled by indepen-
dent Bernoulli trials.

2. HubModel and Variants

2.1. Model Setup

First, we review the grouped data structure and then propose a
modioed version of the hub model, called the asymmetric hub

model. For a set of n individuals, V = {1, . . . , n}, we observe T
subsets, called groups.

In this article, groups are treated as a random sample of sizeT
with each group being an observation. Each group is represented
by an n length row vector G(t), where

G
(t)
i =

{
1 if node i appears in group t,
0 otherwise,

for i = 1, . . . , n and t = 1, . . . ,T. The full dataset is a T × n
matrix G with G(t) being its rows.

Let V0 be the set of all nodes which can serve as a hub and
let nL = |V0|. We refer to V0 as the hub set and call the nodes
in this set hub set member. In contrast to the setup in Zhao and
Weko (2019) where the hub set contains all nodes, we assume
that the hub set contains fewer members than the whole set of
nodes, that is, nL < n. We assume in this section that V0 is
known and consider the problem of estimating V0 in Section 3.
For simplicity of notation, we further assume V0 = {1, . . . , nL}
in this section. We refer to nodes from nL + 1 to n as followers.

Given this notation, the true hub of G(t) is represented by z
(t)
∗

which takes on values from 1, . . . , nL.
Under the hub model, each group G(t) is independently gen-

erated by the following two-step process:

(i) The hub is sampled from amultinomial trial with parameter

ρ = (ρ1, . . . , ρnL), that is, P(z
(t)
∗ = i) = ρi, with

∑nL
i=1 ρi =

1.
(ii) Given the hub node i, each node j appears in the group inde-

pendently with probability Aij, that is, P(G
(t)
j = 1|z

(t)
∗ =

i) = Aij.

Note that multiple hub set members may appear in the same
group although only one of them will be the hub of that group.

A key assumption from Zhao and Weko (2019) which we
adopt in this article is that a hub node must appear in any group
that it forms (i.e., Aii ≡ 1, for i = 1, . . . , nL). The parameters for
the hub model are thus

ρ = (ρ1, . . . , ρnL),

AnL×n =

»
¼¼¼½

1 A12 · · · A1,nL A1,nL+1 · · · A1,n

A21 1 · · · A2,nL A2,nL+1 · · · A2,n

...
...

. . .
...

...
. . .

...
AnL,1 AnL,2 . . . 1 AnL,nL+1 · · · AnL,n

¾
¿¿¿À.

As in Zhao and Weko (2019), we interpret Aij as the strength
of the relationship between node i and j. We difer from Zhao
and Weko (2019) in that A is a non-square matrix and Aij is
not necessarily equal to Aji. The setting in this article is more
natural. Social relationships are usually nonreciprocal and in
most organizations there are members who do not have the
authority or willingness to initiate groups.

Webeginwith the casewhere bothG and z∗ = (z
(1)
∗ , . . . , z

(T)
∗ )

are observed. The likelihood function is

P(G, z∗|A, ρ) =

T∏

t=1

nL∏

i=1

n∏

j=1

[
A
G

(t)
j

ij (1 − Aij)
(1−G

(t)
j )]1(z(t)∗ =i)

nL∏

i=1

ρ
1(z

(t)
∗ =i)

i ,
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where 1(·) is the indicator function. With both G and z∗ being
observed, it is straightforward to estimate A and ρ by their
respective Maximum Likelihood Estimators (MLEs):

Âz∗
ij =

∑
t G

(t)
j 1(z

(t)
∗ = i)

∑
t 1(z

(t)
∗ = i)

, i = 1, . . . , nL, j = 1, . . . , n,

ρ̂
z∗
i =

∑
t 1(z

(t)
∗ = i)

T
, i = 1, . . . , nL.

When the hub node of each group is latent, that is, when
z∗ is unobserved, the estimation problem becomes challenging.
Integrating out z∗, the marginal likelihood of G is

P(G|A, ρ) =

T∏

t=1

nL∑

i=1

ρi

n∏

j=1

A
G

(t)
j

ij (1 − Aij)
1−G

(t)
j , (1)

which has the form of a Bernoulli mixture model. Hereaver the
term hubmodel refers to the case where z∗ is unobserved, unless
otherwise specioed.

Although less stringent than the original symmetric hub
model, the asymmetric hub model has a signiocant limitation:
it cannot naturally transition to a null model. In general, a
null model generates data that match the basic features of the
observed data, but which is otherwise a random process without
structured patterns. In other words, a null model is the degen-
erate case of the model class being studied. The null model for
grouped data, naturally, generates each group by independent
Bernoulli trials. That is, if the grouping behavior is not governed
by a network structure then every node is assumed to appear
independently in a group. The likelihood of G(t) under the null
model is

P(G(t)) =

n∏

j=1

π
G

(t)
j

j (1 − πj)
1−G

(t)
j ,

where πj is the probability that node j appears in a group.
The asymmetric hub model needs generalization to accom-

modate the null model because if there is only one component
in (1), say, node i is the only hub set member, the likelihood of
G(t) becomes

P(G(t)) =

n∏

j=1

A
G

(t)
j

ij (1 − Aij)
1−G

(t)
j ,

which is not a proper nullmodel because the assumptionAii ≡ 1
forces node i to appear in every group.

To allow the hub model to degenerate to the null model, we
add the null component. This null component allows groups
without hubswhere nodes independently appear in such groups.
We call this model the hub model with the null component. We

use z
(t)
∗ = 0 to represent a hubless group.

The parameters for the hub model with the null component
are ρ = (ρ0, ρ1, . . . , ρnL),A(nL+1)×n = [Aij]i=0,1,...,nL,j=1,...,n.
Here the row indices of A start from 0, that is, A0j ≡ πj for
j = 1, . . . , n. We will use A0j and πj interchangeably below.
As before we assume Aii ≡ 1 for i = 1, . . . , nL. The marginal
likelihood of G under the new model is

P(G|A, ρ) =

T∏

t=1

nL∑

i=0

ρi

n∏

j=1

A
G

(t)
j

ij (1 − Aij)
1−G

(t)
j . (2)

The above model degenerates to the null model when ρ0 = 1.
For simplicity of notation, we use the same notation such as
ρ and A for both the hub model with and without the null
component when the meaning is clear from context.

The new model has an advantage in data analysis in addi-
tion to the theoretical beneot. Grouped data usually contain
a number of tiny groups such as singletons and doubletons.
When otting the asymmetric hub model to such a dataset, one
sometimes has to include these nodes in the hub set due to the
one-hub restriction. Doing so may result in an unnecessarily
large hub set (see Section 4 in the supplemental materials). In
the hub model with the null component, these small groups can
be treated as hubless groups and the corresponding nodes may
be removed from the hub set. Therefore, the model complexity
is signiocantly reduced.

2.2. Model Identioability

Before considering estimation of ρ and A under (1) and (2),
we need to establish the identioability of parameters ρ and
A. Zhao and Weko (2019) proved model identioability under
the symmetry condition. We seek a new set of identioabil-
ity conditions as the new models do not assume symmetry
of A.

To precisely deone identioability, let P be the parameter
space of the hub model with the null component, where P =

{(ρ,A)|0 < ρi < 1, i = 0, . . . , nL;Aii = 1, i = 1, . . . , nL; 0 ≤

Aij ≤ 1, i = 0, . . . , nL, j = 1, . . . , n, i �= j}. The parameter space
of the hub model without the null component is similar except

that the index i always begins with 1. Let g = (g
(t)
j )t=1,...,T,j=1,...,n

be any realization of G under the hub model.

Deonition 1. The parameters (ρ,A) within the parameter space
P are identioable (under the hubmodel with or without the null
component) if the following holds:

∀g,∀(ρ̃, Ã) ∈ P(G = g|ρ,A) = P(G = g|ρ̃, Ã)

⇐⇒ (ρ,A) = (ρ̃, Ã).

We deone identioability in the strictest sense and the above
deonition does not allow label swapping of latent classes. In
cluster analysis label swapping refers to the fact that nodes can
be successfully partitioned into latent classes, but individual
classes cannot be uniquely identioed. For example, community
detectionmay correctly partition voters into communities based
on their political preferences, but cannot identify which political
party each community prefers. This is not an issue in the hub
model due to the constraint Aii = 1. In addition, note that
we only need to consider identioability for the distribution of
a single observation, that is, T = 1 because the data are
independently and identically distributed. Let g be a realization
of a single observation hereaver.

We now give the identioability result for the asymmetric hub
model.

Theorem 1. The parameters (ρ,A) of the asymmetric hubmodel
are identioable under the following conditions:

(i) Aij < 1, for i = 1, . . . , nL, j = 1, . . . , n, i �= j;
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(ii) for all i = 1, . . . , nL, i
′ = 1, . . . , nL, i �= i′, the vectors

(Ai,nL+1,Ai,nL+2, . . . ,Ai,n) and (Ai′,nL+1,Ai′,nL+2, . . . ,Ai′,n)

are not identical.

Condition (ii) implies that for any pair of nodes in the hub
set, there exists a follower with diferent probability of being
included in groups formed by the two hubs, respectively. All
proofs are given in the supplementary materials.

Identioability under the model with the null component is
more diocult to prove than the case of the asymmetric hub
model due to the extra null component in the model. In par-
ticular, there is no constraint such as πi = 1 on parameters of
the null component. The conditions for identioability in the fol-
lowing theorem are; however, as natural as those in Theorem 1.

Theorem 2. The parameters (ρ,A) of the hub model with the
null component are identioable under conditions (1) and (ii) in
Theorem 1 (index i begins with 0 in (1)), and

(iii) for any i = 1, . . . , nL, the vectors (Ai,nL+1,Ai,nL+2, . . . ,Ai,n)

and (πnL+1,πnL+2, . . . ,πn) are diferent by at least two
entries.

Condition (3) adds the requirement that for any hub i, there
exist two followers which each has diferent probabilities of
appearing in a group led by hub i than of appearing in a hubless
group. This condition implies that there should exist at least
two more nodes in the node set than in the hub set. This
condition is natural if one compares it to condition (ii), as
both imply that there exists at least one more column than
rows in A.

2.3. Consistency of theMaximumProole Likelihood

Estimator

We consider the asymptotic consistency for the hub model in
the most general setting. That is, we allow the number of groups
(T), the size of the node set (n), and the size of the hub set (nL)
to grow. As mentioned in Section 1, we reformulate the problem
as a clustering problem where a cluster is deoned as the groups
formed by the same hub node. We borrow the techniques from
the community detection literature to prove the consistency of
class labels, that is, the consistency of hub labels. The consistency
of parameter estimation then holds as a corollary. Note that n
is necessarily to go to inonity for proving the consistency of
hub labels because when n is oxed, the posterior probability
of the hub label of a group given the data cannot concentrate
on a single node. If one is only interested in the consistency
of parameter estimation, it is possible to allow n oxed. The
problem degenerates to the classical case, that is, estimating a
nongrowing number of parameters, and the classical theory of
MLE is expected to be applicable.

We orst consider the asymmetric hubmodel without the null
component. Let z = (z(t))t=1,...,T be an assignment of hub labels.
Given z, the log-likelihood of the full dataset G is

LG(A|z) =

T∑

t=1

n∑

j=1

G
(t)
j logAz(t),j + (1 − G

(t)
j )

log(1 − Az(t),j). (3)

For i = 1, . . . , nL, let ti =
∑

t 1(z
(t) = i) be the number of

groups with hub i. Given z, the MLE of A is

Âz
ij =

∑
t G

(t)
j 1(z(t) = i)

ti
, for ti > 0.

If ti = 0, deone Âz
ij = 0. We will omit the upper index z when

it is clear from the context. Plugging Âij back into (3), we obtain
the proole log-likelihood

LG(z) = max
A

LG(A|z) =
∑

t

∑

j

G
(t)
j log Âz(t),j

+ (1 − G
(t)
j ) log(1 − Âz(t),j).

Furthermore, let

ẑ = argmaxzLG(z).

The framework of proole likelihoods are adopted from the com-
munity detection literature (Bickel and Chen 2009; Choi, Wolfe,
and Airoldi 2012), where z is treated as an unknown parameter
and we search for the z that optimizes the proole likelihood.

Recall that z∗ is the true class assignment. We will treat z∗
as a random vector to maintain continuity with the previous
section.

Let P
(t)
j = P(G

(t)
j = 1|z

(t)
∗ ) = A

z
(t)
∗ ,j

. Then by replacing G
(t)
j

by P
(t)
j , we obtain a <population version= of LG(z):

LP(z) =
∑

t

∑

j

P
(t)
j log Āz(t),j + (1 − P

(t)
j ) log(1 − Āz(t),j),

where

Āij =

∑
t P

(t)
j 1(z(t) = i)

ti
, for ti > 0. (4)

Otherwise, deone Āij = 0. Let Te =
∑

t 1(z
(t)
∗ �= ẑ(t)) be

the number of groups with incorrect hub labels. As discussed
previously, we do not allow label swapping in the deonition of
Te. Our aim is to prove

Te/T = op(1), as nL → ∞, n → ∞,T → ∞.

We make the following assumptions throughout the proof of
consistency under the asymmetric hub model:

H1: Tcmin/nL ≤ ti∗ ≤ Tcmax/nL for i = 1, . . . , nL, where ti∗ =∑
t 1(z

(t)
∗ = i) and cmin and cmax are constants.

H2: Aij = sijd for i = 1, . . . , nL, j = 1, . . . , n and i �= j where sij
are unknown constants satisfying 0 < smin ≤ sij ≤ smax <

∞ while d goes to zero as n goes to inonity.
H3: There exists a set Vi ⊂ {nL + 1, . . . , n} for i = 1, . . . , nL

with1 |Vi| ≥ vn/nL such that τ = mini,i′=1,...,nL,i �=i′,j∈Vi (sij−
si′j) is bounded away from 0.

H4: Aii′ ≤ c0/nL for i = 1, . . . , nL, i
′ = 1, . . . , nL, i �= i′, where

c0 is a positive constant.

1| · | is the cardinality of a set.
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H1 ensures that no hub set members appear too infrequently.
The assumption in fact automatically holdswith high probability
if (n2L log nL)/T = o(1), which can be proved by applying
Hoefding’s inequality. Here we directly assume the condition
for simplicity.H2 allows the expected density of A to shrink as n
grows, which is a common setup in the community literature.H3

implies that for every hub set member there exists a set of nodes
that are more likely to join groups initiated by this particular
hub set member than others. The size of this set is innuenced
by v and the magnitude of this preference is innuenced by d
(since Aij = dsij). The decay rates of d and v, as well as the
growth rates of nL, n and T, will be specioed in the following
consistency results. H4 is a technical assumption that prevents
label swapping from innuencing the consistency results.

Now we state a lemma that Te/T is bounded by LP(z∗) −

LP(ẑ). That is, z∗ is a well-separated point of maximum of LP.
The reader is referred to Section 5.2 in Van der Vaart (2000) for
the classical case of this concept.

Lemma 1. Under H1 – H4, for some positive constant δ,

P

(
δnL

dvnT
(LP(z∗) − LP(ẑ)) ≥

Te

T

)
→ 1,

as nL → ∞, n → ∞,T → ∞.

We consider the most general setup in which nL, n, and T all
go to inonity in the main text. For the easier case of nL being
oxed, we give the corresponding results (Theorem 3′ and 4′ for
the asymmetric hub model and Theorem 5′ and 6′ for the hub
modelwith the null component) in the supplementarymaterials.
Based on Lemma 1, we establish label consistency:

Theorem 3. Under H1 – H4, if n2L logT/(dTv) = o(1),
(log d)2n2L log nL/(dnv

2) = o(1), and (logT)2n2L log nL/(dnv
2)

= o(1), then

Te/T = op(1), as nL → ∞, n → ∞,T → ∞.

The next result addresses the consistency for parameter esti-
mation of A, which is based upon a faster decay rate of Te/T
than Theorem 3 (see the proof of Theorem 4 in the supplemental
materials for details).

Theorem4. UnderH1 –H4, ifnL log n/T = o(1),n3L logT/(dTv)
= o(1), (log d)2n4L log nL/(dnv

2) = o(1), and (logT)2n4L log
nL/(dnv

2) = o(1), then

max
i∈{1,...,nL},j∈{1,...,n}

∣∣∣Âẑ
ij − Aij

∣∣∣ = op(1),

as nL → ∞, n → ∞,T → ∞.

We now establish the consistency for the hub model with
the null component. The proofs are more challenging due to
the extra null component. We make the following assumptions
throughout the proofs, parallel to H1 – H4:

H∗
1 : Tcmin/nL ≤ ti∗ ≤ Tcmax/nL for i = 0, . . . , nL, where ti∗ =∑

t 1(z
(t)
∗ = i) and cmin and cmax are constants.

H∗
2 : Aij = sijd for i = 0, . . . , nL, j = 1, . . . , n and i �= j where sij

are unknown constants satisfying 0 < smin ≤ sij ≤ smax <

∞ while d goes to zero as n goes to inonity.

H∗
3 : There exists a setVi ⊂ {nL+1, . . . , n} for i = 1, . . . , nL with

|Vi| ≥ vn/nL such that τ = mini=1...,nL,i′=0,...,nL,i �=i′,j∈Vi

(sij − si′j) is bounded away from 0.
H∗
4 : Aii′ ≤ c0/nL for i = 0, . . . , nL, i

′ = 1, . . . , nL, i �= i′, where
c0 is a positive constant.

The main diference between the two sets of assumptions is on
the range of the indices. For example, index i is from 0 to nL in
H∗
1 . In particular, t0∗ is the true number of hubless groups. Index

i starts from 1 in H∗
3 because we only deone the set Vi for each

hub set member i but not for the hubless case.
We need a result on the separation of LP(z∗) from LP(ẑ)

which is similar to Lemma 1. However, the technique in the
original proof cannot be directly applied to the new model. A
key step in the proof of Lemma 1 relies on the fact that we
can obtain a nonzero lower bound for the number of correctly
classioed groups with node i as the hub node in the asymmetric

hub model. Speciocally, let tii′ =
∑

t 1(z
(t)
∗ = i, ẑ(t) = i′)

for i = 0, . . . , nL, i
′ = 0, . . . , nL. Thus, tii is the number of

correctly classioed groups where node i is the hub node. For the
asymmetric hub model, we obtain a lower bound for tii/ti∗ (i =

1, . . . , nL) from the fact that a node cannot be labeled as the hub
of a particular group if the node does not appear in the group.
This is due to the assumption Aii ≡ 1 for i = 1, . . . , nL. For the
hub model with the null component, the lower bound for tii/ti∗
cannot be proved by the same technique because all groups can
be classioed as hubless groups without violating the assumption
Aii ≡ 1.

We take a diferent path in the proof to overcome this issue
and other technical dioculties due to the null component. We
orst bound ti0/ti∗ for i = 1, . . . , n.

Lemma 2. Under H∗
1 – H∗

4 , if n4L logT/(dTv) = o(1),
(log d)2n6L log nL/(dnv

2) = o(1) and (logT)2n6L log nL/(dnv
2) =

o(1), then for all η > 0,

ti0

ti∗
≤ η, i = 1, . . . , nL,

with probability approaching 1.

Based on the result in Lemma 2, we establish the label con-
sistency for the hub model with the null component.

Theorem 5. Under the conditions of Lemma 2,

Te

T
= op(1), as nL → ∞, n → ∞,T → ∞.

We conclude this section by the result on consistency for
parameter estimation of A under the hub model with the null
component.

Theorem6. UnderH∗
1 –H

∗
4 , ifnL log n/T = o(1),n5L logT/(dTv)

= o(1), (log d)2n8L log nL/(dnv
2) = o(1) and (logT)2n8L log

nL/(dnv
2) = o(1), then

max
i∈{0,...,nL},j∈{1,...,n}

∣∣∣Âẑ
ij − Aij

∣∣∣ = op(1),

as nL → ∞, n → ∞,T → ∞.
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3. The HubModel with the Null Component and

Unknown Hub Set

3.1. Model Setup

The asymmetric hub model (with or without the null compo-
nent) assumes that the hub set is a subset of the nodes. The
previous section addressed the estimation problem when the
hub set is known, but in practice, the hub set is usually not
known a priori. In this section, we study the selection of the hub
set under the hub model with the null component.

Recall that V0 denotes the hub set with |V0| = nL. In the
following, we no longer assume V0 = {1, . . . , nL} and the
goal is to estimate V0. We begin with a known potential hub
set, denoted by V̄0, which is subset containing all nodes that
can potentially serve as hub set members. One might assume
that the ideal V̄0 would be the same as the entire node set V ;
however, to prove identioability of parameters when the hub set
is unknown (see Theorem S1 in the supplemental materials), we
require the potential hub set V̄0 to be smaller thanV . In practice,
this means we have prior knowledge that certain nodes do not
play an important role in group formation and are therefore not
included in the hub set. Let M = |V̄0| with nL < M < n.
Without loss of generality, assume V̄0 = {1, . . . ,M}.

The data generation mechanism is the same as the hub
model with the null component. The parameters are ρ =

(ρ0, ρ1, . . . , ρM), A(M+1)×n = [Aij]i=0,1,...,M,j=1,...,n. For i =

1, . . . ,M, ρi = 0 if i /∈ V0. The corresponding {Aij}j=1,...,n

therefore do not play a role in the model and will not be
estimated. If all ρi = 0, i = 1, . . . ,M, the model degenerates
to the null model in which nodes appear independently in all
groups. The marginal likelihood of G is

P(G|A, ρ) =

T∏

t=1

M∑

i=0

ρi

n∏

j=1

A
G

(t)
j

ij (1 − Aij)
1−G

(t)
j .

3.2. Penalized Likelihood

We propose to maximize the following penalized log-likelihood
function to estimate V0:

L(A, ρ) − Tλ

M∑

i=1

[log(ε + ρi) − log ε], (5)

subject to ρi ≥ 0, i = 0, 1, . . . ,M,

M∑

i=0

ρi = 1,

where

L(A, ρ) = logP(G|A, ρ)

=

T∑

t=1

log

⎡
£

M∑

i=1

ρi

n∏

j=1

A
G

(t)
j

ij (1 − Aij)
1−G

(t)
j

¤
⎦ .

λ is the tuning parameter which controls the penalty on the
mixing weights. ε is a small positive number. We use ε = 10−8

in all numerical studies. The estimated hub setV0 includes node
i (i = 1, . . . ,M) if and only if ρ̂i �= 0 in the maximizer of (5).

The penalty function in (5) was inspired by a similar penalty
function proposed byHuang, Peng, and Zhang (2017) for select-
ing the number of components in Gaussian mixture models.

However, our penalty function has a subtle but substantial dif-
ference: the hub node index m in the penalty function begins
with 1 instead of 0—that is, we do not penalize the coeocient of
the null component ρ0. Themodel is therefore penalized toward
the null model, that is, the independent Bernoulli model, when
λ is suociently large. The penalty function uses log(ε + ρi)

instead of log ρi as in Huang, Peng, and Zhang (2017), because
log(ε + ρi) will not go to inonity when ρi goes to zero, which
makes it possible for ρ̂i to reach exactly zero.

Gu and Xu (2019a) studied model selection under another
constrained class of Bernoulli mixture models—structured
latent attribute models (SLAMs). Gu and Xu (2019a) proposed
a penalty function similar to Huang, Peng, and Zhang (2017)
but with a hard threshold. Huang, Peng, and Zhang (2017) and
Gu and Xu (2019a) proved the selection consistency under their
respective assumed models which we will study for our model
in future work. That is, in the context of hub models, whether
the selected hub set is identical to the true hub set with high
probability when the size of the potential hub set (M) diverges.

3.3. Algorithm

We propose a modioed expectation-maximization (EM) algo-
rithm for optimizing (5).

Algorithm 1 (Modioed EM).

Iteratively update Â and ẑ by the following E-step and M-step
until convergence.
Deone hti = P(z(t) = i|G,A) for t = 1, . . . ,T and i =

0, . . . ,M.

E-step: Given Â and ρ̂,

ĥti =
ρ̂iP(G(t)|z(t) = i, Â)

∑M
i=0 ρ̂iP(G(t)|z(t) = i, Â)

, for i = 0, . . . ,M.

M-step: For i such that ρ̂i �= 0, given ĥti,

Âij =

∑T
t=1 ĥtiG

(t)
j∑T

t=1 ĥti
, for j = 1, . . . , n.

Update ρ̂ by solving the following optimization
problem:

ρ̂ = argmaxρL(Â, ρ) − Tλ

M∑

i=1

log(ε + ρi), (6)

subject to ρi ≥ 0, i = 0, . . . ,M,

M∑

i=0

ρi = 1.

The only diference between Algorithm 1 and the standard
EM algorithm is the update of ρ̂ in the M-step. In the standard
EM algorithm for the likelihoodwithout the penalty term, ρ̂i has

a closed-form solution, that is, ρ̂i =
∑T

t=1 ĥti/T, i = 0, . . . ,M.
By contrast, (6) is a nonlinear optimization problem with
inequality constraints, whichwe use a numerical technique—the
augmented Lagrange multiplier (Ghalanos and Theussl 2015)
method to solve the problem. In addition, since (5) is a non-
convex optimization problem, we use multiple diferent initial
values (20 random initial values are used in this article) to help
guard against local maxima.
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4. Numerical Studies

4.1. Numerical StudiesWhen the Hub Set is Known

In this section, we examine the performance of the estimators
for the asymmetric hub model and the hub model with the null
component when the hub set is known, under varying nL, n
and T. Hub set selection will be considered in the next section.
The parameters are estimated by the standard EMalgorithm and
the estimated hub labels are determined according to the largest
posterior probabilities.

For the asymmetric hub model, let ρi be generated indepen-
dently from U(0, 1) and renormalize ρi such that

∑nL
i=1 ρi = 1.

Let the size of the node set, n, be 100 or 500. We partition
the follower set {nL + 1, . . . , n} into nL nonoverlapping sets
V1, . . . ,VnL . Each set Vi is the set of followers with a preference
for hub set member i over other hub set members. As in The-
orem 1, we assume diferent ranges of probabilities of joining a
group for followers that prefer a specioc hub set member than
for followers which do not prefer that member. Speciocally, for
j ∈ Vi, the parameters Aij are generated independently from
U(0.2, 0.4), and for j /∈ Vi, the parameters Aij are generated
independently fromU(0, 0.2). The numerical results for sparser
A will be given in Section 4 of the supplemental materials. For
clariocation, we will not use prior information about how Awas
generated in the estimating procedure. That is, we still treatA as
unknown oxed parameters in the estimation. We generate these
probabilities from uniform distributions for the sole purpose of
addingmore variations to the parameter setup. In each setup, we
consider four diferent sample sizes, T = 500, 1000, 1500, and
2000, and two diferent values of the size of hub set, nL = 10
and 20.

For the hub model with the null component, let the proba-
bility of hubless groups ρ0 = 0.2, and let ρi be generated inde-
pendently fromU(0, 1) and renormalize ρi such that

∑nL
i=1 ρi =

0.8 for i = 1, . . . , nL. For a hubless group, each node will
independently join the group with probability πj ≡ 0.05 for
j = 1, . . . , n. The setups on nL, n, {V1, . . . ,VnL}, A, nL and T
are identical to the asymmetric hub model case.

Tables 1 and 2 show the performance of the estimators for
the asymmetric hub model and the hub model with the null
component, respectively. The orst measure of performance we
are interested in is the proportion ofmislabeled groups,Te/T. As

Table 1. Asymmetric hub model results.

nL = 10 n = 100 n = 500

Mislabels RMSE(Âij) RMSE* Mislabels RMSE(Âij) RMSE*
T = 500 0.0479 0.0501 0.0475 0.0011 0.0483 0.0483
T = 1000 0.0335 0.0344 0.0332 0.0000 0.0337 0.0337
T = 1500 0.0295 0.0280 0.0272 0.0000 0.0274 0.0274
T = 2000 0.0262 0.0243 0.0236 0.0000 0.0235 0.0235

nL = 20 n = 100 n = 500

Mislabels RMSE(Âij) RMSE* Mislabels RMSE(Âij) RMSE*
T = 500 0.2396 0.0791 0.0662 0.0605 0.0686 0.0673
T = 1000 0.1528 0.0548 0.0463 0.0096 0.0466 0.0463
T = 1500 0.1186 0.0433 0.0375 0.0029 0.0380 0.0379
T = 2000 0.0998 0.0366 0.0325 0.0013 0.0328 0.0328

NOTE: Mislabels: the fraction of groupswith incorrect hub labels. RMSE(Âij): average
RMSEs when the hub labels are unknown. RMSE*: average RMSEs when the hub
labels are known.

Table 2. Hub model with null component results.

nL = 10 n = 100 n = 500

Mislabels RMSE(Âij) RMSE* Mislabels RMSE(Âij) RMSE*
T = 500 0.0842 0.0542 0.0511 0.0058 0.0516 0.0516
T = 1000 0.0595 0.0376 0.0357 0.0006 0.0362 0.0362
T = 1500 0.0512 0.0308 0.0294 0.0001 0.0292 0.0292
T = 2000 0.0489 0.0264 0.0253 0.0001 0.0253 0.0253

nL = 20 n = 100 n = 500

Mislabels RMSE(Âij) RMSE* Mislabels RMSE(Âij) RMSE*
T = 500 0.3206 0.0839 0.0734 0.1146 0.0732 0.0719
T = 1000 0.2102 0.0607 0.0506 0.0229 0.0510 0.0509
T = 1500 0.1598 0.0488 0.0411 0.0076 0.0418 0.0416
T = 2000 0.1419 0.0414 0.0355 0.0022 0.0359 0.0359

NOTE:Mis-labels: the fractionof groupswith incorrect hub labels. RMSE(Âij): average
RMSEs when the hub labels are unknown. RMSE*: average RMSEs when the hub
labels are known.

the proportion of mislabeled groups approaches zero, we expect
the parameter estimates to approach the accuracy achievable if
the hubnodes are known. The secondmeasure of performance is
the RMSE(Âij). As a reference point, we also provide the RMSE
achieved when we treat the hub nodes as known, RMSE*. All
results are averaged by 1000 replicates.

From the tables, the estimators for the asymmetric hubmodel
generally outperform those for the hub model with the null
component as the latter is a more complex model. The patterns
within the two tables are, however, similar. First, the perfor-
mance becomes better as the sample size T grows, which is in
line with common sense in statistics. Second, the performance
becomes worse as nL grows because nL is the number of compo-
nents in themixturemodel, and thus a larger nL indicates amore
complex model. Third, the efect of n is more complicated: the
RMSE* for the case that hub labels are known slightly increases
as n grows because the model contains more parameters. What
we are interested in is the case where hub labels are unknown,
and this is what our theoretical studies focused on. In this case,
the RMSE(Âij) signiocantly improves as n grows. This is because
the clustered pattern becomes clearer as the number of followers
increases, which is in line with the label consistency results in
Section 2.3.

4.2. Numerical Results for Hub Set Selection

We study the performance of hub set selection by the penal-
ized log-likelihood (5), which is optimized by the modioed EM
algorithm (Algorithm 1). We use the same settings as the hub
model with the null component in the previous section. The
only diference is we need to specify the potential hub set V̄0 =

{1, . . . ,M}: we considerM = 80 for n = 100 andM = 80, 200
and 300 for n = 500. In each setup, AIC and BIC are used
to select the tunning parameter, λ. Let V̂0 be the estimate of
V0. The performance of hub set selection is evaluated by the
True Positive Rate (TPR) and the False Positive Rate (FPR),
where

TPR =

∑M
i=1 1(i ∈ V0, i ∈ V̂0)

nL
,

FPR =

∑M
i=1 1(i /∈ V0, i ∈ V̂0)

M − nL
.
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Table 3. TPR and FPR for hub set selection.

nL T Parameter tuning n = 100 n = 500

M = 80 M = 80 M = 200 M = 300

TPR FPR TPR FPR TPR FPR TPR FPR

10 1000 AIC 0.6438 0.0719 0.9460 0.0128 0.7338 0.0081 0.6986 0.0128
BIC 0.5787 0.0283 0.9381 0.0127 0.6831 0.0042 0.6472 0.0081

20 1000 AIC 0.5140 0.1410 0.6972 0.0249 0.4831 0.0229 0.4780 0.0370
BIC 0.5100 0.1350 0.6859 0.0239 0.4494 0.0132 0.4673 0.0318

10 2000 AIC 0.8613 0.0187 0.9909 0.0010 0.9130 0.0018 0.8585 0.0015
BIC 0.7675 0.0043 0.9883 0.0005 0.8956 0.0007 0.8400 0.0004

20 2000 AIC 0.6560 0.1050 0.8551 0.0074 0.6770 0.0155 0.6250 0.0140
BIC 0.4438 0.0344 0.7884 0.0034 0.5848 0.0058 0.5519 0.0056

Table 3 shows the TPR and FPR for hub set selection under
various settings. The patterns in the table with respect to nL, n
and T are similar to Tables 1 and 2. That is, the performance of
hub set selection is better for smaller nL, larger n, and/or larger
T. Among all settings, the model with nL = 10,T = 2000 and
n = 500 is the simplest for hub set selection purpose, which has
the largest TPR and smallest FPR with λ selected by either AIC
or BIC. Furthermore, the selection performance becomes worse
asM grows because a largerM corresponds to a larger potential
hub set and hence a larger candidate set of models.

5. Analysis of Passerine Data

We apply the hub model with the null component to ana-
lyze a dataset on grouping behavior of passerines (Shizuka and
Farine 2016). The dataset includes 63 color-marked passerines
in Australia for daily observations, which are 2 scarlet robins
(Petroica boodang), 13 striated thornbills (Acanthiza lineata),
26 buf-rumped thornbills (Acanthiza reguloides), 14 yellow-
rumped thornbills (Acanthiza chrysorrhoa), 4 speckled warblers
(Chthonicola sagittatus), 2 white-throated treecreepers (Cormo-
bates leucophaea), one white-eared honeyeater (Lichenostomous
leucotis), and one unkown bird. A group is deoned as individuals
observed together in a nock, and in total there are 109 groups,
that is, T = 109. Species information is summarized in Table 4.

In the following analysis, we set the potential hub set V̄0

with M = 55 as the collection of birds in the orst four species
(Table 4) and the other eight birds belonging to small-scale
species as followers.2 Table 5 shows the estimated hub set under
various λ values where a gray block indicates that a node is
included in the hub set. As λ increases, nodes are removed
gradually from the hub set and at λ = 0.065, the hub model
degenerates to the null model where the hub set is empty. The
BIC selects λ = 0.055, where the estimated hub set includes
v9, v30, and v42, each belonging to one of the three large-scale
species.

6. Summary and Discussion

In this article we studied the theoretical properties of the hub
model and its variants from the perspective of Bernoulli mixture
models. The contributions of the article are four-fold. First, we

2Nodes v1 and v2 appear frequently so we include them in the potential hub
set.

Table 4. Summary of passerine species.

Species Binomial nomenclature Number Label

Scarlet robin Petroica boodang 2 v1 − v2
Striated thornbill Acanthiza lineata 13 v3 − v15
Buf-rumped thornbill Acanthiza reguloides 26 v16 − v41
Yellow-rumped thornbill Acanthiza chrysorrhoa 14 v42 − v55
Speckled warbler Chthonicola sagittatus 4 v56 − v59
White-throated treecreeper Cormobates leucophaea 2 v60 − v61
White-eared honeyeater Lichenostomus leucotis 1 v62
Unknown unknown 1 v63

Table 5. Estimated hub set for passerine data.

λ v7 v9 v10 v20 v30 v33 v37 v42 v46

0.045
0.050
0.055
0.060
0.065

proved the model identioability of the hub model. Bernoulli
mixture models are a notoriously diocult model to prove
identioability on, especially under mild conditions. Second, we
proved the label consistency and estimation consistency of the
hub model. Third, we generalized the hub model by adding
the null component that allows nodes to independently appear
in hubless groups. The new model can naturally degenerate
to the null model—the Bernoulli product. We also proved
identioability and consistency of the newly proposed model.
Finally, we proposed a penalized likelihood method to select
the hub set, which estimates not only the size of the hub set,
nL, but also which nodes belong to the set. The new method
can handle data with no prior knowledge of the hub set and
hence greatly expands the domain of the applicability of the hub
model.

A natural constraint from Zhao and Weko (2019) that we
apply in this article is Aii = 1 (i = 1, . . . , nL), which turns
out to be a key condition for ensuring model identioability and
avoiding the label swapping issue in the proof of consistency.
On the other hand, this constraint prevents the asymmetric hub
model from naturally degenerating to the null model because
one node always appear in every group when there is only one
component in the hub model, which motivated adding the null
component to the model.

We consider the proole likelihood estimator in the proofs
of consistency. The marginal likelihood MLE could also be
studied using a diferent framework. Bickel et al. (2013) and
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Brault, Keribin, andMariadassou (2020) proved the consistency
of the Marginal Llikelihood MLE under the block models for
undirected and directed networks, respectively. Their approach
is to orst prove the consistency of the MLE under the complete
data likelihood and to further show that the marginal likelihood
is asymptotically equivalent to the complete data likelihood,
which implies the consistency of the MLE under the marginal
likelihood. We plan to extend the above framework to the hub
model for future works. Moreover, we plan to study the model
selection consistency of the proposed hub set selection method,
especially when nL, n, and T are all allowed to grow. What
we would also like to explore is to go beyond the indepen-
dence assumption and to develop theories and model selection
methodologies for correlated or temporally dependent groups
(Zhao 2022).

Finally, we brieny review other work on Bernoulli mixture
models. Gyllenberg et al. (1994) orst showed that onite mixtures
of Bernoulli products are not identioable. Allman, Matias, and
Rhodes (2009) introduced and studied the concept of generic
identioability, which means that the set of non-identioable
parameters has Lebesgue measure zero. Identioability under
another class of mixture Bernoulli models has been recently
studied (Xu 2017; Gu and Xu 2019a, 2019b). This class of mod-
els, for example, Structured Latent Attribute Models (SLAMs),
has applications in psychological and educational research.
The motivation, the model setup, and the proof techniques
presented in this article are all diferent from previous research,
and the result of neither implies the other. Gu and Xu (2019a)
further established the selection consistency in SLAMs when
the number of potential latent patterns goes to inonity. It is
intriguing to combine the techniques in the present paper and
in Gu and Xu (2019a) to study the selection consistency in the
hub model with the null component, especially for the case that
both the size of the true hub set (nL) and the size of the potential
hub set (M) go to inonity.

Supplementary Materials

The supplementary materials contain proofs of all technical results in the
article, additional numerical studies, and an analysis of extended bakery
data.
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