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This paper concerns the analysis of a passive, broadband approximate cloaking
scheme for the Helmholtz equation in R? for d = 2 or d = 3. Using ideas
from transformation optics, we construct an approximate cloak by “blowing up”
a small ball of radius € > 0 to one of radius 1. In the anisotropic cloaking layer
resulting from the “blow-up” change of variables, we incorporate a Drude-Lorentz-
type model for the index of refraction, and we assume that the cloaked object is a
soft (perfectly conducting) obstacle. We first show that (for any fixed €) there are
no real transmission eigenvalues associated with the inhomogeneity representing the
cloak, which implies that the cloaking devices we have created will not yield perfect
cloaking at any frequency, even for a single incident time harmonic wave. Secondly,
we establish estimates on the scattered field due to an arbitrary time harmonic
incident wave. These estimates show that, as € approaches 0, the L?-norm of the
scattered field outside the cloak, and its far field pattern, approach 0 uniformly over
any bounded band of frequencies. In other words: our scheme leads to broadband
approximate cloaking for arbitrary incident time harmonic waves.

© 2024 Elsevier Masson SAS. All rights reserved.

RESUME

Cet article concerne I’analyse d’un schéma de masquage (cloaking) approximatif
passif pour I’équation de Helmholtz dans RY, pour d = 2 ou d = 3. En utilisant
des idées issues de l'optique de transformation, nous construisons un masquage
approximatif par un changement d’échelle d’une petite boule de rayon ¢ > 0
en une boule de rayon 1. Dans la couche de masquage anisotrope résultant du
changement “explosif” des variables (la cape), nous incorporons un modele de type
Drude-Lorentz pour l'indice de réfraction, et nous supposons que ’objet masqué
est un objet parfaitement conducteur. Premiérment nous montrons que (& e fixé)
il n’existe pas de valeur propre de transmission réelle associée & l'inhomogénéité
représentant la cape, ce qui implique que les dispositifs d’masquage que nous avons
crées pour toute fréquence ne produiront pas un masquage parfait, méme pour une
seule onde incidente, harmonique en temps. Deuxiémement, nous établissons des
estimations sur le champ dia a une onde incidente harmonique temporelle arbitraire.
Ces estimations montrent que, lorsque € tend vers 0, la norme L? du champ diffuseé
a Pextérieur (le champ lointain) se rapproche uniformément de 0 pour toute bande
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de fréquences bornée. En d’autres termes : notre schéma conduit & un masquage
approximatif & large bande pour les ondes incidentes arbitraires, harmoniques en
temps.

© 2024 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper we analyze a passive, broadband approximate cloaking scheme for the Helmholtz equation in
R4 for d = 2 or d = 3. Specifically, we are interested in making a bounded region approximately invisible to
a far field observer and to probing by incident fields at arbitrary frequencies, independently of the material
inside this region. Using ideas from transformation optics we achieve this by surrounding the region with a
layer of an appropriate anisotropic material. By including a layer of extremely high conductivity adjacent
to the region, we may without loss of generality assume that the region we want to cloak is “soft”, that is,
supports a homogeneous Dirichlet boundary condition. The approach of cloaking by mapping, also known
as transformation optics, has been popularized by Pendry, Schuring and Smith [29] and Leonhardt [23]
for Maxwell’s equations. The basic idea is to make a singular change of variables which blows up a point
(invisible to any probing incident wave) to a cloaked region. The same idea had previously been used
by Greenleaf, Lassas and Uhlmann to create anisotropic objects that were invisible to EIT [15] (see also
[14]). The singular nature of the perfect cloaks presents various difficulties: in practice this means they
are hard to fabricate, and from the analysis point of view in some cases the rigorous definition of the
corresponding electromagnetic fields is not obvious [12,33,34]. To avoid the use of singular materials in the
cloak, regularized schemes have been suggested [20,21,30,31]. The trade-off is that such schemes only lead
to approximate cloaking. We refer the reader to [2,8,13,16] for work on enhancement of approximate cloaks.

To design a passive approximate cloaking device, we blow up a small ball B, of radius € > 0 (the
regularization parameter) to the ball By of radius one, which represents the cloaked region (see Fig. 1 in
Section 2). To be more precise we actually map Bs\ Be onto By \ By, keeping fixed the outer boundary 0B,.
By \ By represents the cloak. As result of this change of variables one obtains an anisotropic layer in By \ Bj.
We include a Drude-Lorentz-type term (see e.g. [19]) in the refractive index of the cloaking layer. This
results in a frequency dependent and complex valued index of refraction which is consistent with causality.
Since the cloaked region B; is “soft” we impose a zero Dirichlet boundary condition on the boundary 0B;.
As mentioned earlier, this Dirichlet condition may be viewed as a limit of a highly conducting layer, and it
thus may be interpreted as “hiding” the contents of By. A main focus of this paper is to establish estimates
on the scattered field outside the cloak in terms of the small parameter € > 0 and the probing frequencies.
We remark that the choice of By and By \ By for the cloaked region and the cloak, respectively, is made
for convenience and one can use more general domains in the change of variables. We also note that, in
the context of approximate cloaking for the Helmholtz equation (the frequency domain wave equation), the
Drude-Lorentz model was previously used by Nguyen and Vogelius in [28]. The Drude-Lorentz model takes
into account the effect of the oscillations of free electrons on the electric permittivity by means of a simple
harmonic oscillator model. When viewed in (complex) frequency domain, the refractive index associated with
the Drude-Lorentz model may be extended analytically to the whole upper half plane. It is well-known that
an immediate consequence of this is causality for the associated non-local time-domain wave equation, see
[19,32]. This property is most essential for the well-posedness (and the physical relevance) of this equation.
Another well known consequence of this analyticity property are the so-called Kramers-Kronig relations
between the real and the imaginary part of the refractive index (they are essentially related by Hilbert
transforms). However, this fact is not explicitly used in our analysis.

We investigate two questions related to the scattering by the aforementioned cloak By \ B;. The first
one is whether, for a fixed € > 0, there are wave numbers (proportional to frequencies) and incident fields



F. Cakoni et al. / J. Math. Pures Appl. 182 (2024) 285-318 287

I; 1

F.I; F.14 o.(k)

Fig. 1. The “soft” cloaked region B; and the cloak Bs \ Bj.

for which the corresponding scattered field is zero, i.e., the cloak (and B;) is perfectly invisible to this
particular probing experiment. This question is related to the existence of real eigenvalues of the interior
transmission eigenvalue problem defined on By \ By [3], for which that part of the eigenfunction, which
corresponds to the incident field, is extendable as a solution to the Helmholtz equation in all of R [6,7]. In
particular, such non-scattering wave numbers, for which perfect cloaking is achieved for a particular incident
field, form a subset of the real transmission eigenvalues. We prove that, real transmission eigenvalues do
not exist for the inhomogeneity presented by the cloak, i.e., for the anisotropic inhomogeneity Bs \ By with
the complex-valued frequency dependent Drude-Lorentz term and a homogeneous Dirichlet condition on
the inner boundary 9B;. In addition, we show that all the (complex) transmission eigenvalues, that lie
outside a precisely characterized compact set of the lower half plane, form a countable set with no finite
accumulation points outside this compact set. Supported by some computational evidence, we conjecture
that a sequence of complex transmission eigenvalues accumulate at a point (as well as at its symmetric
counterpart) on the boundary of this compact set. These points have imaginary part equal to —1/2, but
real parts that depend on the resonant frequency of the Drude-Lorentz term. A complete analysis of the
transmission eigenvalue problem for inhomogeneities with such a Drude-Lorentz term is still open. This
eigenvalue problem, in addition to being non-selfadjoint, is nonlinear since the Drude-Lorentz term involves
the eigenvalue parameter in a non-linear fashion, and thus the known approaches do not apply [3]. If
the Drude-Lorentz term is not present, the existence of an infinite set of real transmission eigenvalues
accumulating at +oo for (anisotropic) inhomogeneities containing a Dirichlet obstacle is proven in [4,5].
Secondly, although perfect cloaking is impossible at any frequency (even for a single incident wave) we
prove that one can achieve approximate cloaking over any given finite band of wave numbers for sufficiently
small € > 0. In particular, we prove that provided the Drude-Lorentz resonant frequency k. is sufficiently
large, more precisely k2 > c.e=3 for d = 3, and k? > c.|Ine|/e for d = 2, then for any fixed R the L?-norm
of the scattered field in B\ Bs is of order € in R? and of order 1/|In¢| in R?, with a constant depending on
the given band of wave numbers, ¢, and R. These estimates hold for a large class of incident waves, including
plane waves and their superpositions (Herglotz waves). We note that point source waves with sources outside
the cloak, as well as their superpositions would also be admissible. Furthermore, we prove that the far field
pattern is uniformly O(e) in R? and O(1/|In€|) in R2, with constants depending on the given band of wave
numbers. These latter results are obtained by estimating the norm of the Lippmann-Schwinger volume
integral over By \ B; and using scattering estimates adapted from [27]. We should mention that cloaking via
change of variables for the Helmholtz equation at any frequency is investigated in [24-28], but in these papers
the region is cloaked to an active source compactly supported in the exterior of the cloak. The scattering
problem with incident field cannot be written in this framework. In fact, in that case the scattered field may
be viewed as satisfying an inhomogeneous Helmholtz equation with a source given by the incident field, but
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this source is supported inside the cloak. Finally let us mention that perfect cloaking for a penetrable obstacle
and the quasi-static Helmholtz equation (i.e., the limit when the probing wavelength is much larger than the
cloaking device) with incident plane waves is investigated in [9]. There, the authors show the impossibility
of perfect broadband cloaking (see also [18]) and using the theory of Herglotz-Nevanlinna functions they
derive lower bounds on the polarizability tensor,' in terms of the frequency band, and the geometry and
dielectric contrast of the obstacle. These bounds show the limitations of broadband quasi-static cloaking and
apply to a very wide class of passive cloaks. The fact that perfect quasi-static cloaking is possible only at a
discrete set of frequencies is entirely consistent with the fact that we in the present context show that there
are no real transmission eigenvalues. In contrast, our analysis demonstrates the possibility of broadband
approximate cloaking in the context of the full Helmholtz equation and for a specific transformation-optics-
based cloaking scheme. We mention that the lower bounds of [9] are not directly comparable to the upper
bounds derived here, as in the quasi-static regime the frequency dependence is in the principal part of the
operator, whereas in our context it is in the zeroth order term. However, our analysis shows that general
lower bounds in the spirit of [9] cannot be expected to hold for the full Helmholtz equation with a dissipative
refractive index (such as the one given by the Drude-Lorentz model).

2. Preliminaries

Let B, C R%, d =2 or d = 3 denote the open ball of radius r > 0 centered at the origin and let S, = 9B,..
For a small parameter ¢ > 0 consider the following continuous and piecewise smooth mapping;:

x, r €RY\ By

Fl@)={/2-2 |z \ = (2.1)
x B, \ B.
(2—6+2—6)|{L‘|7 v € B2\

For simplicity of notation we will suppress the dependence of F' on the parameter e. Note that F maps
By \ B, onto By \ By, S. onto Sy, and that F(x) = x on Si. Now, we design a cloaking device, occupying
By \ By, to approximately cloak the (soft) region B;. We incorporate a Drude-Lorentz type term to account
for a more physically relevant nonlinear dependence of the index of refraction on wavenumber.

The constitutive material properties are thus given by

I 1, z e R4\ B,
Ac(2); ge(z, k) = (2.2)
F.I; F.1+o.(k), x € Ba\ By,

where I denotes the d x d identity matrix and o, is the Drude-Lorentz term given by

1

oc(k) = Ry

(2.3)
cf. [19], page 331. Here k. > % represents the so-called resonant frequency of the Drude-Lorentz model. F

denotes the push-forward by the map F', defined by

_ DF(x)A(x)DFT ()
|det DF(z)|

Faly) = —%0 iy

F.A(y) ~ |det DF ()|’

for a matrix-valued function A, and for a scalar function ¢, respectively. The definition of the push-forward is
motivated by the following change of variables property, which can be proven by straightforward calculations
(cf. [15,20]).

! The analogue of the far field pattern in the quasi-static regime.
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Lemma 2.1. Let F be as defined in (2.1). Assume A € [L>(Bs \E)]dXd and ¢ € L=(By \ B.). Then
u€ HY(By\ Bo))N{u=0 on S.} solves the equation

div(AVu) + qu = 0, in By\ B,
iffv=uoF~t € H'(By\ B1)N{u=0 on Si} solves
div(FLAVv) + Fequ =0, in By \ B .
The functions u and v satisfy the boundary relations
u=wv, and AVu-v=F,AVv-v, on Sy, (2.4)

where v denotes the unit outward normal vector on So and the equality of the conormal derivatives is
understood in the sense of distributions in H™2(Sy).

Furthermore®

(F).[FA=A, and (F7).[Fq=q.

Let u' be an incident field at a given wave number k > 0 (we suppress the dependence of u’ on k for the
ease of notation), i.e.,

Au® + kb =0, in R% (2.5)
Given the incident wave u’ and the “cloaked” soft obstacle B;, consider now the associated Helmholtz

scattering problem. If A, and ¢. denote the constitutive material properties defined in (2.2), then the total
field u. € H} (R?\ By) is the unique solution to

div(A.Vue) + k2 geue = 0, in R\ By,
(2.6)
ue =0, on Sy,
of the form
'u,i’ in BQ El 5
u' + ul in R*\ B,

where u! is the transmitted field and u? is the scattered field, which satisfies the Sommerfeld radiation
condition

ILm riT (Orul —ikul) =0, as r=|z|] =00, (2.8)

uniformly in & = z/|z| (cf. [10] for more details about the scattering problem). As u. and its conormal

derivative are continuous across Se, the problem (2.6) can equivalently be written

2 Since similar formulas hold for F, [(F~').B| and F, [(F~!).p] it follows that (F~'), = (F.)™', and for that reason we
sometimes use the notation F}:1 for both.
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Aug + k?ug =0, in RY\ B,

u? satisfies the outgoing radiation condition

V- (A Vul) + k2qoul = 0, in B\ B

Aut + E2ut =0, in R? (2.9)
ul = ut + us, on Sy

ANVuL v = 0,ut + O us, on So

ul =0, on 5.

As the scattered field u? satisfies the constant coefficient Helmholtz equation, it is in fact real analytic and
admits the following asymptotic behavior as r — oc:

ikr L
ui(e) = S (@) + 0 (). (2.10)

r2

where the function ©*°, defined on Sj, is the so-called far field pattern of the scattered field u;. It is well-
known that the vanishing of u° on Sy, implies the vanishing of the scattered field u$ in R%\ By (cf. Rellich’s
Lemma in [10]). A non-trivial incident field u* and the wave number k > 0 for which the corresponding
far field pattern vanishes are referred to as non-scattering incident field and a non-scattering wave number,
respectively. If we regard u’ as a function defined in Bs, then from (2.9) it is clear that at a non-scattering
wave number k > 0, there exist non-trivial functions w, = uz and v = v’ defined in Bs \El and Bo,
respectively, such that

V- (AVw,.) + k2 qaw. =0, in By\ By

Av+ k20 =0, in By

we =, on S (2.11)
ANw, - v = 9dyv, on Sy

we =0, on Sj.

A wave number k for which (2.11) admits a non-trivial solution is called an interior transmission eigenvalue
with the corresponding eigenfunction (w., v). Thus, non-scattering wave numbers are necessarily real interior
transmission eigenvalues [3]. Conversely, a real interior transmission eigenvalue k > 0 is a non-scattering
wave number if the eigenvector v can be extended from Bs to a solution of the Helmholtz equation in all of
R4 [7,6].

3. Main results

For clarity and the reader’s convenience we now state the main results of our paper. The first theorem
addresses the question whether our cloak provides a perfect cloaking of the region By for even a single
incident wave.

Theorem 3.1. Consider the interior transmission eigenvalue problem (2.11).

(i) There are no interior transmission eigenvalues in R UiR.
(ii) k € C is an interior transmission eigenvalue if and only if so is —k.
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Ak

1
0 2 ke

Rek

A {

K

M

Rek = /(Imk)? + TJmk + k2

Fig. 2. The shaded compact region K, outside of which the interior transmission eigenvalues of (2.11) form a discrete set.
(iii) Assume ke > %, let kK = \/k? — i — % and let K be the shaded compact region in Fig. 2. The region K
is symmetric about the imaginary axis, the slanted line segment of the boundary in the right half-plane
has the equation Jmk = —Rek, the curved arc joining r to k. is given by Rek = \/(Imk)2 + Imk + k2.
Let G denote the open set G = C \ K. Then those interior transmission eigenvalues which lie inside G

form a discrete set (i.e., an at most countable set with no limit points in G ).

Part (7) of Theorem 3.1 will be proven in Section 4. As a consequence we conclude that perfect cloaking/non-
scattering is impossible at any wave number k > 0, since real transmission eigenvalues do not exist. One
of the main ingredients in deriving this result is the property Jmo.(k) > 0 for k > 0, i.e., passivity of the
material due to dissipation (the electromagnetic energy gets absorbed by the material as the electromagnetic
wave passes through). Therefore, the same conclusion will continue to hold for a more general o, provided
it exhibits passivity. It might be of interest to study the feasibility of perfect cloaking in a non-dissipative
Drude-Lorentz model. Part (i7) is an immediate consequence of the symmetry relation

oc(k) = o (—Fk) , VEeC.

As a result ¢.(x,k) has the same symmetry property and k is a transmission eigenvalue of (2.11) with
eigenfunction (w,,v), if and only if so is —k with eigenfunction (wg,v). The proof of part (iii) will be given
in the Appendix since the discreteness of complex eigenvalues is not central to the cloaking discussion. The
value k is one of the poles of o (k) (the other one is —%). Numerical evidence, presented in Section 4.2,
indicates that it is a limit point for the set of transmission eigenvalues of (2.11). Being bold, we venture

Conjecture 3.2. (Finite accumulation point of transmission eigenvalues) Let « be defined as in part (iii) of
Theorem 3.1. Then k is a limit point of transmission eigenvalues of (2.11).

We note that Theorem 3.1 asserts nothing about potential interior transmission eigenvalues in the set K\ R.
Their nature is a completely open problem.

Although perfect cloaking is impossible, we demonstrate that, under a suitable growth assumption on
ke, one can achieve approximate cloaking over any given finite band of wave numbers. We first state the
main estimate on the scattered field including its explicit dependence on k (and €). The broadband cloaking
estimates follow as a corollary from this. We define

M = F e = Ulpe B\ = |F 'oe(k) | L (Ba\B.) - (3.1)

where F ! denotes the push-forward by the map F~!, and we set

1 d=3
atk) =4 " 1 ’ (32)
min{l + |In k|, k" 1}, d=2.
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Theorem 3.3. Let R > 2 and ko > 0. Suppose 0 < ek < ko and suppose
[0 || Lo (B,) + €l VU] Lo (,) < C . (3.3)

Let ué be the scattered field from (2.9). There exists a constant ¢ = c(ko, R) > 0 such that, if k*a(k)M.; < ¢
then

il r2(Ba\Bs) S €+ kPalk)Meg||u'l 25y ford=3, (3.4)
and
. H(B)] ;
luglzeBa\p) S~y B a(k)Mek (1+ [0 l|L2(5r)) ford=2, (3:5)
|Hp ' (ek)]

where the implicit constants in (3.4) and (3.5) depend only on R, ko and C.

Remark 3.4. In the above theorem, H(gl) denotes the Hankel function of the first kind of order 0. We also
adopt the following notation: for two positive quantities A and B, we write A < B, if there exists a constant
d > 0 (independent of A and B) such that A < dB.

Imposing a suitable lower bound on the resonant frequency k. with respect to ¢, the quantity M, (for
bounded k) becomes of order € for d = 3, and of order 1/|In¢| for d = 2 (cf. (5.21)) and Theorem 3.3 implies
the following result:

Theorem 3.5. (Broadband approxzimate cloaking) Let R > 2, ky > k_ > 0, and set I' := [k_, ky]. Assume
that for some constant c, > 0, k2 > c,e™3 for d = 3, and k? > c.|In€|/e for d = 2. Furthermore, assume
that the incident field u* satisfies

vl L2(B) < Cr, Vkel. (3.6)

Let uf be the scattered field from (2.9). There exists a constant ¢y = ¢1(k—,ky, R,ci) > 0 such that, for all
e<crand kel

€ d=3,
||U“2HL2(BR\BQ) < { (3.7)

1/|In€| d=2,

where the implicit constant depends only on k_,ky, R,c. and Cr. Similarly, there exists a constant ca =
co(k_,ky,ce) >0, such that for alle < co, k €T, and |2] =1

wm@ns{“ =3 (3.8)

where U, 18 the far field pattern defined in (2.10), and the implicit constant depends only on k_, k4, c. and
Cs.

Remark 3.6.

(i) Note that k. — oo as € — 0. Therefore, the higher degree of invisibility is achieved at the cost of using
“extreme” materials throughout the cloak. These may be hard to manufacture.



F. Cakoni et al. / J. Math. Pures Appl. 182 (2024) 285-318 293

(ii) Most likely the implicit constants in the estimates (3.7) and (3.8) go to infinity as the length of the
frequency band, ky — k_, goes to infinity.

(iii) The results of the above two theorems do not use the radial geometry in any essential way and carry
over to the non-radial setting as well.

(iv) The assumption (3.6) (or (3.3)) is satisfied by incident plane waves as well as by their superpositions,
the so-called Herglotz waves u’ := u, given by

uy(x) = / g dsy, ge IX(S)) .
[g]=1

It is also satisfied by radiating point sources (outside of Bg) and their appropriate superpositions.
4. Transmission eigenvalues

In this section we study the interior transmission eigenvalue problem. We first eliminate the anisotropy
A, in the formulation (2.11) by using a change of variables to arrive at a new interior transmission eigenvalue
problem, which has the same eigenvalues as (2.11). Then we reformulate the resulting problem in terms of a
fourth order PDE, following [4] (see also [3]). Using this new formulation we prove part (i) of Theorem 3.1.
Furthermore, in Section 4.2 we present numerical evidence supporting Conjecture 3.2 in two dimension.

4.1. The variational formulation

In the interior transmission eigenvalue problem (2.11) let us change the variables in w.., while leaving v
unchanged. Namely, let

w = w0 F)|
where F' is defined by (2.1). Using the properties of the map F' (namely that F(z) = z on Sy, F maps

S. onto Sy and F 1A, = F71F,I = I in By \ B,) along with Lemma 2.1, we obtain that w,v solve the

following transmission problem:

Aw + k?quw =0, in By \ B,
Av+Ekv=0, in By
w=uv, on S (4.1)
o, w = 0,v on So
w=20, on S,

where

q(, k) = F lqe(w, k) = F U [Ful 4+ 0c(K)] = 1+ oc (k)| det DF ()], x € By \ Be .
Let us introduce the notation
O = BQ \Ee

It is clear that k € C is a transmission eigenvalue for (2.11) with eigenfunction (w.,v), if and only if, it is
a transmission eigenvalue for (4.1) with eigenfunction (w = w. o F,v). Thus (2.11) and (4.1) have the same
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set of transmission eigenvalues. We recall that the weak solution of (4.1) is a pair of functions® w € L% (O)
and v € L% (Bs) that satisfy the PDEs of (4.1) in the sense of distributions, such that w = 0 on S. and
u:=w —v € HX(O) satisfies the boundary conditions u = d,u = 0 on Ss.

Remark 4.1.

(i) We note that the trace (on S.) of a function w € L% (0O) makes sense as an element of H~2(S,) by
duality, using the identity

<w»T>H71/2,H1/2 = /(WASD — pAw)dz
o

where ¢ € H?(0O) is such that ¢ = 0 in a neighborhood of S5, and ¢ = 0 and dp/0v = 7 on S..
(ii) Similarly we note that for a function u € HX (O) the normal derivative d,u (on S2) makes sense as an
element of H™2 (S2) by duality, using the formula

(Ot W) gr2 grise = / (Dugp + VuV) dz |
(@)

where p € H!(O) is such that ¢ =0 on S,, and ¢ = 1) on S.

We can reformulate (4.1) as a fourth order problem. Indeed, given a weak solution w,v of (4.1), let us set

— in ©®
u{w v, in (4.2)

—v, in Be.
It is clear that
Au+ k2 qu = k*(1 — q)v, in O. (4.3)

Dividing both sides of the above equation by 1 — ¢ (note that 1 — g = —o.(k)|det DF| # 0 in O, as can be
seen by using the formula (4.8) of Lemma 4.2 below) and applying the operator A + k2 we can eliminate v
and obtain a fourth order equation for u. The boundary condition on w implies that u is continuous across
Se. Next, since v solves the Helmholtz equation in Bs, v and its normal derivative 0, v are continuous across
S.. We can rewrite these continuity conditions in terms of u using (4.2) and (4.3). Thus, we obtain that u
(weakly) solves the problem

1
Au+ k?u =0, in B,
u=0,u= 0, on Sy
ut =, on Se (4.4)
1 +
{—(A + qu)u] = —k*u", on S,
l—gq
o LL(A + qu)u] = k%0, u, on Se.
—q

3 We use the notation L3 (0) = {w € L?*(0) : Aw € L*(O)} and HA(O) = {w € H*(O) : Aw € L*(0)}.
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Note that as v € L?(Bs) solves the Helmholtz equation, by local elliptic regularity v € H'(B,). But as u is
continuous across S, we conclude that v € H'(B2) N HA(O). Incorporating the boundary conditions on Ss
we introduce the Hilbert space of functions

X={ueH"(By): Au€ L*(0) and u=d,u=0on S>}, (4.5)

where d,u € H™2(S5), and is defined as described in the earlier remark. Thus, given a non-trivial weak
solution w, v of (4.1), the function u € X, given by (4.2), is a non-trivial weak solution of (4.4). Conversely,
if u € X is a non-trivial weak solution of (4.4), then

1
v — Tq(A—i—k’Qq)u, an
—k?u, in B,

and w=k*u+wv, inO, (4.6)

satisfy w € L*(0), v € L*(Bz) and w—v € H)(O) and yield a non-trivial weak solution of (4.1). Integration
by parts easily yields a variational formulation of (4.4), namely: find u € X such that

1
/ T (Bu+t kPu) (Ap + k*9) do (4.7)
2 q
—k4/u¢dx+k32/Vu-V¢da::O, Vo € X.
B2 BQ

Before excluding the existence of real and purely imaginary transmission eigenvalues we need the following
formulas for the map F:

Lemma 4.2. Let F' be given by (2.1), and set & = z/|x|, then

I’ Z?’LRd\BQ
1
DF(z) = 276{1+2|;76(1—55®§:)}, in Bs \ B.
I/e, in B,

where I is the d x d identity matriz and for any two vectors a,b € R%, a ® b denotes the matriz whose
(i,j)-th element is a;b;. In particular,

1 m Rd\BQ
2 — 2¢ + |x])2 1L X

det DF(x) = <(2_€)d||$d)_1 in By \ Be (4.8)
1/ in B..

Proof. The formulas for DF(x) inside B, and outside of By are trivial. In the region Bs \ B, it is a direct
consequence of the identity

1
Di=—(I-2®%)
|z|

Finally, using the identity det(I +a®b) = 1+a-b for any two vectors a, b € R?, we find that for z € By \ B.
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d—1
1 2 —2e
detDF(x):m |:|T+1:| s

which concludes the proof. O

Lemma 4.3. There are no non-trivial solutions to (2.11) for k € R U iR, i.e., there are no transmission
eigenvalues for (2.11) in R U4R.

Proof. First suppose k = i7 with 7 € R is a transmission eigenvalue. The above discussion shows that the
problem (4.4) has a non-trivial solution u € X for this value of k. Using the variational formulation (4.7)
with ¢ = u we get

1
0= [ A5lau=rnuf 4o [upde+r? [ 1Vafar. (1.9)
o 1 Bs Bs

Note that

1 (2 — 2¢ + |z])¢ 1

q(:z;ir)—1:U€(i7')|detDF(x)|:k2+7_2+7_ 2=zt T

reO.

If 7 > 0 the above quantity is obviously positive. For 7 < 0, it is still positive due to the assumption
2k. > 1. Thus ¢(z,it) —1 > 0 for all 7 € R and « € O. For 7 # 0 we now conclude from (4.9) that u = 0
in Bs, contradicting the non-triviality of u for 7 # 0. For 7 = 0 we conclude from (4.9) that Au =0 in O.
The Cauchy boundary conditions on Se now imply that « = 0 in O, and the continuity of u across S¢ in
combination with the fact that Au = 0 in B, yields that v = 0 in all of Bs, contradicting the non-triviality
of u also for 7 = 0.

Assume now that & € R\ {0} is a transmission eigenvalue; again let ¢ = u in the variational formulation
(4.7) and take the imaginary part of the resulting equation to conclude that

1 2 k (2 — 2e + |z])4t 2
— ) A 2 = A 2 )
0 /3m<q1>| u—&—ku‘ dz |k€2k22k|2/ @ )] T ] u—i—ku’ dz
o

Therefore Au + k?>u = 0 in O. Using the boundary conditions v = d,u = 0 on S», we conclude that u = 0
in O. Since k # 0 also conclude from the boundary conditions of (4.4) that v~ = 9, u = 0 on S.. The fact
that Au + k?u = 0 in B. now implies that v = 0 in B,, and thus « = 0 in all of B2. This contradicts the
non-triviality of u. 0O

4.2. Numerical evidence of finite accumulation points of transmission eigenvalues

In this section we assume that d = 2 and consider the transmission eigenvalue problem after change of
variables, i.e., the problem (4.1). In polar coordinates (r, ) we can expand the functions v and w as follows:

v(r,0) = Z Yy (kr) €™, w(r,0) = Z [n A (r) + BnBy(r)] ™ (4.10)

nezZ neZ

where a,, B, vn are complex constants, J,, is the Bessel function of order n and A,,, B,, (which also depend
on k and €) are linearly independent solutions of

r(r+ 2 — 2¢)

2 2,2 2
PR+ rR + |:k r°+ k%o (k) 2_02

—nﬂRzO.
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The boundary conditions of (4.1) can be rewritten as

W AL(2) + BuBL(2) = 3k (2K)
anAn(€) + BnBn(e) =0.

To obtain a nontrivial solution (v,w) (i.e., to ensure that k is an interior transmission eigenvalue) we need
that there exists some n € Z such that

fn k) :=det M =0,

where

A.(2) B
M=| 42 B

(2)  —Ju(2Kk)
(2)  —kJn(2F)

33

The functions A,,, B, can be expressed in terms of the Whittaker functions as follows:

2ik+/oe(k) + (2 — 6)2T> (4.11)
€—2 ’ ’

1
An(r) = WMMW\ (

where

tkoe(k)(1—¢)
(2—¢€)y/oc(k)+ (2 —¢)?

Ae(k) = , (4.12)

and B,, is given by the same formula except with Wy_x) |n in place of My _(x) |- The Whittaker functions
My n(z) and Wy ,,(x) (for any non-negative integer n) are linearly independent solutions of the equation [1]

1 A L1-n?
y'+ -+ + 4 y=0.
4 x 2

Let us take k. = % and € = %, then

p= k2= 4 - 5~ 1036 - i05

We show some numerical evidence that « is a limit point of transmission eigenvalues. We conjecture that
for each n = 1,2, ... there exists k, € C\ {x} such that f(n,k,) =0 and k, — & as n — co. In other words,
Kk is a limit point of the transmission eigenvalues {k,}.

For each of the values n = 1, n = 7, and n = 12 (see Figs. 3-5), we present two plots of the functions
Ref(n,z +ir) and Imf(n,z + i7) as functions of z, corresponding to two different values of 7. The two
values of 7 are chosen to be close to Jmx = —0.5, and such that they exhibit two different configurations:
one for which the intersection point of Ref and Jmf is below the horizontal axis, and one for which it is
above the horizontal axis. This shows that for some intermediate value of 7 both Ref and Jmf vanish.
It is reasonable to expect that this common vanishing occurs at a point x near the x values of the two
intersection points. One notes that as n increases the = values of the two intersection points get closer to
1.936 — 70.5 Computations for larger values of n were consistent with this.
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[—= — Ref(1,x-0.475) —— Imf(1,x-0.475 i)] [— — Ref(1,x-0.485{)) —— Imf(1,x-0.485 )]

Fig. 3. Plots of real and imaginary parts of f(n,x + i7) for n = 1 and two different values of 7 indicating where their intersection
point crosses the horizontal axis.
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Fig. 4. Plots of real and imaginary parts of f(n,z + i7) for n = 7 and two different values of 7 indicating where their intersection
point crosses the horizontal axis.
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Fig. 5. Plots of real and imaginary parts of f(n,z + i7) for n = 12 and two different values of 7 indicating where their intersection
point crosses the horizontal axis.
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5. The scattering estimates

In this section we prove Theorems 3.3 and 3.5. The first observation is that the anisotropy in (2.9) can
be eliminated, if we change the variables in the transmitted field uf, but leave the incident and scattered
fields unchanged. Namely, let

u' =uloF, (5.1)

where F is given by (2.1), then u’ is defined in Bs \ B..
Invoking Lemma 2.1 and using the facts that F' = Id on Sy, F maps S. onto S; and that F 1A, = I,
we see that (2.9) can be equivalently rewritten as

Au® + Kk*u® =0, in R?\ B,
u® satisfies the outgoing radiation condition
Aut + K2 qut =0, in B\ B.
Aut + Kt =0, in R? (5.2)
ut = ut +ut on Sy
Out = 0,ut + O,u® , on So
ul =0, on S.,
where
1 s in Rd \ B2
q(z, k) = F lqe(n, k) = (5.3)
1+ o.(k)|det DF(z)], in B\ B. .
Introducing
t in By \ B,
u={"" in- Bz \ (5.4)
ut 4 u®, in R\ By,
the problem (5.2) can be rewritten as u € H} (R?\ B)
Au+ K qu=0, in R\ B,
Aut + k2t =0, in R4
(5.5)
u=0 , on S€

u —u' satisfies the outgoing radiation condition.

Here we used that the boundary conditions on S from (5.2) simply become [u] = [d,u] = 0 on S, i.e., u
and its normal derivative are continuous across .Ss.
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5.1. The Lippmann-Schwinger equation

Consider the fundamental solution of the Helmholtz equation in free space: for any x # y
etklz—yl
d=3,

drle —y|

(2, y) = (5.6)

1

TH (ke =yl d=2.

We incorporate the homogeneous Dirichlet boundary condition of (5.5) into the fundamental solution, i.e.,
we let ®) be the Green’s function for the Helmholtz equation in the region R?\ B, with the Dirichlet
boundary condition in S,. For any fixed y € R?\ B, ®)(xz,y) satisfies

Awq)(li(x5y)+k2q)2(‘ray) = _6y ) x GRd\EE
@) (z,y) =0, z €S, (5.7)

Y (-,y) satisfies the outgoing radiation condition .
Clearly we can write
CI)%(ZL',y) = (bk(xay) + \Ijk(xa y) )

where the function Wy (-,y) is the unique solution to the following exterior Dirichlet boundary value problem
for the Helmholtz equation

Ay V(2 y) + k2 (x,y) =0, r € R4\ B,
\I’k(xvy) = —‘I)k(l',y) ) YIS Se (58)

Uy (-, y) satisfies the outgoing radiation condition .

Note that the boundary data —®;(z,y) is smooth, hence the function Wy (z,y) is smooth for x € R\ B,
and for any fixed y as above. Next, let us introduce the volume integral operator

Tu(z) = K / (a(y. k) — () (. y)dy. (5.9)
B2\B.

Then the solution w of (5.5) satisfies the integral equation
u—Tu=u'+u", (5.10)

where u*® is the scattered field from the ball B, due to the incident field u?, i.e., it is the unique solution of

Au’® + k2u’® =0, in R?\ B,
u't = —u, on S, (5.11)
u’® satisfies the outgoing radiation condition.

The equation (5.10) is known as the Lippmann-Schwinger equation for the scattering problem (5.5) written
in terms of the Green’s function ®9. It can be derived the same way as done for example in [10] (without
Dirichlet boundary conditions and using the kernel ®). In Lemma 5.1 (see also (5.23) and (5.24)) we prove
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that for any fixed interval of wave numbers [k_,k;], 0 < k_ < ky < oo, and any fixed R > 2 there exists
an €y > 0 (depending on k4 and R) such that

1
ITllz2(Br\ B~ 12(BR\BS < 5 (5.12)

for any k € [k_, k4], and € < €. Therefore the operator I — T is invertible on L?(Bg \ B¢) and the integral
equation (5.10) has a unique solution ugr € L?(Bg \ Be). Furthermore ur = u|p,\ g, where u is the solution
of (5.5). This follows from the fact that u|p,\ p. is in L?(Bg\ Be) and as already noted satisfies the integral
equation (5.10). It now follows immediately from (5.10), and the fact that the domain of integration for the
operator T' is By \ B, that the solution to (5.5) is given by

uw="Tup+u" +u*

in all of R?\ B.. Note that due to the mapping properties of the volume potential Tup is in HlloC (R4\ B,).
The above argument shows that solving (5.5) is equivalent to solving the Lippmann-Schwinger equation
(5.10) on Bg \ B (for any bounded set of wave numbers [k_, k] and e sufficiently small).

5.2. Proof of Theorems 3.3 and 3.5

The main ingredients of the proofs of Theorems 3.3 and 3.5 are e-explicit estimates for the scattered field
u** and the operator T' in appropriate Sobolev spaces. We state these estimates in the two lemmata below,
however, for clarity of exposition their proofs are postponed to subsequent sections (see Section 5.3 and
Section 5.4, respectively).

Lemma 5.1. Let T be defined by (5.9), and let Mcy, and a(k) be defined by (3.1) and (3.2), respectively.
Suppose R > 1, kg >0, and 0 < ek < ko. Then for any u € L*(Bs \ B.)

[ Tull 2B\ S K2a(k)Mekllull 28,8, -
where the implicit constant depends only on R and ky.

Lemma 5.2. Let u®® be defined by (5.11), let R > 1, and ko > 0. Assume 0 < ek < ko and that u’ satisfies
(3.3), then
€, d=3,
is <
l|lu ||L2(BR\31) N \H(gl)(k)|

—0 L d=2,
|H (k)|
and

”uiS”LQ(BR\Be) Set?,

where the implicit constants depend only on R, ky and C (the constant from the inequality (3.3) for the
incident field u®).

With the help of the above lemmata we now prove the following scattering estimate:
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Theorem 5.3. Let M, ;, and a(k) be defined by (3.1) and (3.2), respectively. Suppose R > 2, ko > 0, and
0 < ek < ko, and suppose u' satisfies (3.3). Let u be the solution to (5.5). There exists a constant ¢ =
c(ko, R) > 0 such that, if k*a(k)M. x < c, then

||’lL - uiHLQ(BR\BE) rg €d72 + kza’(k)ME,kHui”L2(BR) ) fOT d= 27 3 ’ (513)

and

1H (k)|
|HD (k)|

where the implicit constants depend only on R, ko and C' (the constant from the inequality (3.3)).

llu — Ui”L?(BR\Bl) < + k‘Qa(k)M67k (1 + Hui||L2(BR)) , ford=2, (5.14)

Remark 5.4. As an immediate corollary we obtain Theorem 3.3, because u — u’ = u* = u$ outside Bs.

Proof. Consider the Lippmann-Schwinger equation (5.10) in the space L?(Bg\ B.). Lemma 5.1 implies that
there exists a constant Cy = Cy(ko, R) > 0, such that

TN t2(Br\B)—L2(BR\B.) < C1k*a(k) M.y =: 7

Assume that r < 3, or equivalently k®a(k)Mcy < 54 =: ¢. Then the operator I — T is invertible on

L?(Bg \ B.) and using (5.10) and the Neumann series expansion we obtain
o0
w=(I—T)"(u' +u") =u" +u" + Z T"(u® + u*).
n=1
Upon summation of the geometric series, the above equation implies the bound

r
1—1r

lu—u'llL2Ban) < L2 Be\B) + Il + | 2 (5,5,

< N2 sasy +2r ('l 22a) + 10"l 2(0\5.))
S 2 sa\Boy + rllw'l L2 52
S et rlulllze s,
where in the last step we used Lemma 5.2. This concludes the proof of the inequality (5.13).

To prove (5.14), we take d = 2. From the Lippmann-Schwinger equation u — u® = u** + Tu, and hence,
using Lemma 5.2 we have,

11 (k)|

+7llullL2(Br\B.)-
1 R €
[H (ek))|

flu — uiHLz(BR\Bl) < Nwlle2BavBy) + 1 Tull 2B\ S

From (5.13) with d = 2 we have

lullL2spvs) < U2 + v —u'll2sa sy S U lle2sr + 1+ K a(k)Meg|u'l L2,

S 1+l llz2za),

where in the last step we used the assumption that k2a(k)M. ; < c. A combination of the last two estimates
and insertion of r = C1k?a(k) M, leads to (5.14). O
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Before proceeding to the proof of Theorem 3.5, we first estimate the far field pattern uq., given by (2.10),
in terms of the L?(B5 \ Bz)-norm of the scattered field u*, given by (5.1) and (2.9).

In the following, by using the term “an absolute implicit constant”, we signify that, the inequality in question
holds with a positive constant independent of the involved parameters.

Lemma 5.5. With an absolute implicit constant, for any |£| =1 and k > 0,

oo ()] S (1 + k%) l|u’l| 2235\ (5.15)

1
) d:3a
. 4
Uoo(Z) =T x
et 9
Sk ’

where

7= / (us(y)a,,ye_iki'y — 8,,u5(y)e_ik5”'y) ds(y) ,
Sy

and Sy is the d — 1-sphere of radius 4 centered at the origin (note that one could use any d — 1 manifold
circumscribing B, in its interior). Using Holder’s inequality and the duality H ~2 C L? C H? with the
pivot space L?, we can bound

IZ] SEllu®pegsy + le™™ V0 g g 100wl

H%(S4) H™3(S4)

Skl sass) + el (B 10047 -3 g,

S/kHusHHl(BABs) +(1+ k)”a”usHH*%(S@ ’

where in the second step we used trace estimates. Next we bound the H~z-norm of 8,u*. Given any
¢ € Hz(Sy), consider its extension to By \ Bs via a bounded right inverse of the trace operator:

We EHl(B4\§3)
we =0, on Ss , (5.16)
we = ¢ , on Sy .

As this defines a bounded operator from Hz (S3US,) to H' (B4 \ Bs), we have that with an absolute implicit
constant

lwllzrmavss) S Yl 3 g, - (5.17)

Now using the fact that u® satisfies the Helmholtz equation in By \ Bz, we obtain

(Opu®, Py = / Vu® - Vwy + wgAudy = / Vu® - Vwg — krwgudy |

B4\B3 B4\BS
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where (-, -) denotes the dual pairing between H 2 (S;) and Hz (Sy). Using the Hélder’s inequality and (5.17)
we arrive at

|<6y’u,s, ¢>‘ S ||¢||H%(S4) (|‘VUSHL2(B4\B3) + k2||uSHL2(B4\B3)) )

which readily implies

||3uus||H7§(54) N ||VUS||L2(B4\133) + k2\|us||L2(B4\Bg) :
Using that k + k? + k2 < k + k3, we obtain the bound

IZ] S (k + k) w2 ss) + (14 B) V@ | L2 (0 5y)- (5.18)
It remains to bound the L?-norm of Vu®, which can be done via the L?-norm of u* over a larger domain by
introducing a cut-off function and using the equation that u° satisfies. Indeed, let 0 < ¢ < 1 be a cut-off
function such that supp 1 C Bs\ Ba, ¥ = 1 on By \ Bz and |V#| < C on B;\ Bs, with an absolute constant
C > 0. Since

Au® + k2u® =0, in Bs \ By ,

multiplication by ?u® and integration by parts leads to

/ | Vs [P dy = k> / |u®|?ep%dy — 2 / YVu - usVpdy

Bs\Bs Bs\Bs Bs\B:
1
<@ [ wPedyey [ wePedgrz [ pvepdy.
Bs\ B2 Bs\ B> Bs\B2

which implies
1
— / |Vl [2p2dy < (k* 4 2C?) / u [Pdy .

2
Bs\ B2 Bs\ B2

Consequently,
VU2 By) S (L4 E)|[w’llL2(Bs\B2) -
Combining with (5.18) we obtain
IZ| < (k+ kg)”usHL?(Bg)\Bz) + (1 + k)2||uSI|L2(B5\Bz) S+ k3)||uSHL2(B5\Bz) ) (5.19)
which concludes the proof. O
We are ready to establish the following broadband approximate cloaking estimates:

Theorem 5.6. Let R > 2 and kv > k_ > 0, and set T' = [k_,ky|. Assume that for some constant c, > 0,
k2 > cue™3 for d =3, and k? > c.|Ine€|/e for d = 2. Assume further that u® satisfies the estimate (3.6). Let
u be the solution to (5.5) with q given by (5.3). There exists a constant ¢c; = ¢1(k—, ko, R, ci) > 0 such that,
foralle <cy and kel
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€, d=3,

‘|U_Ui||LzB B) S
BB~ 1 e i=2,

where the implicit constant depends only on k_, k4, R, ¢, and Cg (the constants from (3.6)). Furthermore,
there exists a constant ca = ca(k_,ky,c.) > 0, such that for alle < co, k €T and |2] =1,

€, d=3,
luse (2)] S
1/|1lne| , d=2,

where the implicit constant depends only on k_, ki, c. and Cs.

Remark 5.7.

(i) Since u — u® = u$ outside of By Theorem 3.5 follows as an immediate corollary of the above result.
(ii) For d = 3 the following proof can be easily modified to show we can bound u — u® up to the inner
boundary S, i.e.,

lu—v'l| 2By S € -

Proof. We note that since u’ is a solution to Au’ + k?u’ = 0 in all of R?, it follows by interior elliptic
regularity estimates that for k € T, [|[u’|| o (p,) + [[Vu'| oo (8,) < Cllu’||L2(B,), With a constant that only
depends on k4. Due to (3.6) we thus conclude that u*, k € T, satisfies the condition (3.3) as well (for € < 1)
with a constant that only depends on Cs and k..

We proceed to estimate M, . In view of (3.1), (5.3) and Lemma 4.2,

d—1
o (k)] 2 -2 o ()]
My = |oe(k)||| det DF || (B,\B.) = 20,50, 1+— RO

Assume that € < 1 is so small that
k2 > max {k3,2(k% —ky)}, (5.20)
then for any k € [0, k4]

V2 V2

ek < = 5
oMl S e R T Rk

where in the last step we used that k2 > k3. The function k — k? — k* + k is positive and increasing on
[0, 3], and it is positive and decreasing on [3, k4] (if k4 > 1). Thus it follows that

k)2
k? — k? + k > min{k? k2—ki+k+}27€ for k € [0,ky] ,

€’ 'e

where in the second inequality we have used that k2 > 2(k3 — k;.). As a consequence

2v2 22 3, d=3,
max |o. (k)| < V2 f.{e

ker k27 e |e/|lne, d=2.

€

We now conclude that there exist positive constants cg, Cy depending only on ¢, and k4, such that
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) d= 37
max M¢, < Cp - ¢ Ve<ecy. (5.21)
kel 1/|1ne|, d=2,

Let us further assume € < 1/ky so that 0 < ek < 1 for k € I". By Theorem 5.3 there exists a constant
¢ = c¢(R) > 0 such that if k?a(k)M, < ¢ (and k is in T') then

lu — u'|| 2B\ By)

6+k2Me,kHui”L2(BR) ford=3 5
< (1) (5.22)
~ Y Hy (k)| 2 : -1 '
———— + k*M, min{l + |Ink|, 7%} (1 + ||u’||z2(B ford=2.
|Hél)(ek)| ( ( R))
Consider first the case d = 3. If we assume that e < ¢/Cok?, then
max k2 M., < k3 Coe < c, (5.23)

kel

and consequently (5.22) can be applied for all k£ € T'. Using the hypothesis (3.6) and (5.21) we conclude
that for € small enough

%QLXHU_UZHL?(BR\&) <e ford=3,
where the implicit constant depends only on k4, R, ¢, and Cg.
Let us now consider d = 2. The function a(k) = min{1 + |Ink|, k= 4} is decreasing, therefore, assuming
that e < e~Cokta(k-)/c we have
Co

2 < — k2 . .
I]?Ealqu a(k)M., < |lne\k+a(k_) <c (5.24)

Similarly, as before we conclude that, for k € T,

: HO KR 1
u— )| L2 (Ba\Br) S .
BB~ gD (k| Tine

The function \Hél)(t)| is decreasing and H(()l)(t) ~ Z|Int| as t — 0 (cf. [22]). Hence we have the following
basic estimates: \H(gl)(k)| < \Hél)(k,ﬂ and

=P ()] 2 [ Int], vie(0,1).

These readily imply the inequality

) 1 1
[|w — ’U’Z”Lz(BR\Bl) S m

|Ine|’

Since by assumption ek < 1 we get
min | In(ek)| = |In(eky)| = 1|ln |
her RN= i gl e

where the last inequality holds, provided ¢ < 1/ ki Putting everything together we conclude that for e
sufficiently small



F. Cakoni et al. / J. Math. Pures Appl. 182 (2024) 285-318 307

1
[Ine|

max |u — 'l 2(sa\5y) S
The corresponding estimates for the far field pattern readily follow from Lemma 5.5. O
5.8. Scattering from a small obstacle: Proof of Lemma 5.2

In this section we show that Lemma 5.2 is a direct consequence of the following result due to Nguyen
and Vogelius [27] (see also [24]):

Lemma 5.8. Let D C By C R? be a smooth open subset with R%\ D connected. Let f € H%(aD), ko >0
and 0 < k < kg. Let u be the outward radiating solution to the problem

Au+k?u=0, in R\ D ,
u=f on 0D .

Then for any 8 > 1

Bilflytiopy =3,

(5.25)
il - d=2,

llull 1 (B \D) S

where the implicit constant depends only on kg and D but is independent of B and k. Furthermore, for
R>1,>1

\HS (Bk)

| _
|H(()1)(k‘)‘ HfHH%(aD) ) d=2, (5.26)

HUHLZ(B’R/a\B/a) 5 B

where the implicit constant depends only on ko, D, and R but is independent of 8 and k.

Remark 5.9. The estimate (5.25) for the L2-norm of v and (5.26), in the case R = 2, is proven in Lemma 3
of [27] under the assumption that kg is sufficiently small (see also the beginning of the proof of Lemma 4).
The subsequent Remark 4 of [27] explains that these estimates hold without any smallness assumption on
ko. The extension of (5.26) to any R > 1 is immediate. Finally, the extension from an L? estimate of u to
an H! estimate, as in (5.25), is guaranteed by Lemma 4 of [27].

As a straightforward consequence of Lemma 5.8 (with D = B, C B;) we obtain the following corollary.

Corollary 5.10. (Scattering from a small ball) Let € < 3, R > 1,ko > 0 with 0 < 2k < ko. Let f € Hz(S,)
and u be the outward radiating solution of the problem

Au + k*u =0, in RY\ B,
u=f on S,
Let R > 1 and set fo = f(2¢), then
€, d=3,
||u||L2(BR\Bl) S ”‘fE”H%(S%) : |H(gl)(k)| B (5.27)
[Hg" (eh)]

where the implicit constant depends only on R and kg.
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Remark 5.11.

(i) We will see in the proof of Corollary 5.10 below that one can also obtain the following bounds up to
the inner boundary Se:

lullre sy S €21l IVull L2 (Ba\sy S €I fel (5.28)

HY(Sy) HY(5y)

where again the implicit constants depend only on R and kg. These estimates for d = 3 are as good as

the bound in (5.27), in terms of being of the same order e. However, for d = 2 the smallness in € is lost.
(ii) For scattering estimates in other frequency regimes (e.g. the high frequency case) we refer to [27], and

also to [17] concerning asymptotically precise estimates for a small circular inhomogeneity and d = 2.

Proof. Let u.(y) = u(2ey), then u, is the radiating solution of the problem

1
2

{Au6 + (2€)?k*u. = 0, in R4\ B

Ue = fe on S1
Let us start with the case d = 2. By scaling the norm and using the estimate (5.26) of Lemma 5.8 we obtain

1
1= (k)]

|Hy ™ (2€k)| 3

lullL2(Br\BY) = 2€|\Ue||L2<BQE\B%) S (5.29)

It remains to use the estimate
(D (k)| S [HSY (2¢k),

which holds true with an absolute implicit constant as the function Hél) has no real zeros, and as the

functions H(gl)(~) and Hél)(2~) have the same asymptotics at 0 and at oco.

In the case d = 3 the argument works analogously, giving the bound
lullL2(Br\By) S erEHH%(S%)'
To prove bounds up to the inner boundary S. we first note that
4 4_q
lullL2(Br\B.) = (2€)° ||UeHL2(B§\B%)7 IVullL2(pp\B.) = (2€)* ||VUeHL2(B§\B%)~ (5.30)

The estimate (5.25) implies the bound

N

) d:37

_
oo g oy + Vel g oy = el s gy € 1ol s, { N

with an implicit constant that depends only on R and kg. In combination with (5.30) this now leads to the
bounds (5.28). O

To conclude the proof of Lemma 5.2 we apply the above corollary and the first estimate in (5.28) to the
function u’*. That way we obtain the desired estimates of Lemma 5.2, but with the additional factor

el s,y = 10 Gy

1
2
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on the right-hand sides of the inequalities. It thus remains to prove that the above quantity is bounded by
a constant depending only on kg. To this end, the standard trace estimate and a rescaling of the norms give

\\Ui(QE')||H%(Sl) < ||ui(26')||H1(B%) = Hui(QE')HLz(B%) + 26||VUZ'(2€')||L2(B%)
2
—4y i -4 i i i
= (207 F|[u'llr2(m.y + (20 2V [ L2m.) S Nl (my + el VUl =) ST
For the last inequality we used the assumption (3.3).

5.4. Bounds for the operator T': Proof of Lemma 5.1

Let us split the operator T into two parts: T' =T} + T», where

Thu(z Ju(y)®r (2, y)dy , (5.31)

ml\

and

Tou(z) = k° (a(y, k) — Du(y) Vi (z,y)dy , (5.32)

Bg\

o]

€

with Uy, given by (5.8). Thus, to bound Tw on L?(Bg \ B.), it suffices to bound Tyu and Tou. We start
by deriving some estimates for the fundamental solution, @, in Lemma 5.12 below. These are then used
in Lemma 5.13 to obtain bounds for Tiu. To bound Tyu we need L?(B.)-norm bounds for Tju and VTju,
with explicit dependence on the small parameter e. Parts (i¢) and (iv) of Lemma 5.13 serve that purpose,
and this is where the estimates on the derivatives of the fundamental solution from part (i¢) of Lemma 5.12
will be used. The bound for Thu is given in Lemma 5.14. Finally, Lemma 5.1 is a direct consequence of
Lemmas 5.13 and 5.14

Lemma 5.12. Let @y, be given by (5.6).

(i) Let R,r > 0. With implicit constants depending only on R and r,

1
su D (x dy <
a:eEI:)R/| kl y)‘ v {mln{1+ln k k=1, d

I
b

(ii) Let R,r > 0. With an absolute implicit constant (i.e. independent of all the involved parameter R,r
and k)

sup /|Vx®k(:£,y)|dy Sr <1 + (rk)%) .

rEBR

Proof. The case d = 3: Let us start by showing that for any 2 € R? with implicit constants independent
of x and r,

d d
/71/257"7 o5 (5.33)
e |z -yl

T



310 F. Cakoni et al. / J. Math. Pures Appl. 182 (2024) 285-318

We prove only the first inequality, the second follows analogously. Assume first that © € Bs,., then B, C
Bs,.(z) and hence

3r

dy / dy / dz /
< = — =4xw | dp = 127r .
/ [z = yP? [z = yP? EE
B, B

B37‘ (7")

3r 0

If now x ¢ Bs, we use that |y — x| > |z| — |y| > 2r —r = r for any y € B,, so that

Consequently, we immediately obtain

dy
B2,y Qdys/ <r.
B/| ()| =

This concludes the proof of part (7). Let us turn to gradient bounds. Direct calculation shows that

T —y
lz —yl?

Vi@ (z,y) = g™ ikl —y| - 1)

and hence

1+ k2|x — yl2 1 k
Vo (2, y)| = P (5.34)

Infe—yP " adnfe—yP @ dml—yl
From (5.33) we conclude that
[ 19 ldy S 7 vk
B,

The case d = 2: Analogously to (5.33), for any x € R? with implicit constants independent of = and r,

[

d d
/73/57", /7y§r. (5.35)
|z — y] 2 Ve =yl

r

We use the asymptotic relations [22]

Hél)(t)w,—|lnt| , ast—0, and Hél)(t)ww/?we’(tfz) , ast— o0,
s
to obtain the bound
1
1
[y (O S M thxgo () + 22X, () VE >0,

which then implies
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1
J 1wty 5 [ bl s (e = o) + okl = o)

|z —
T B,
9 1
= In“(k|z — y|)dy + ——dy=5L+1,.
klz -yl
B,NB 1 (x) B,.NBY (z)
2k 2k

Let us start by bounding I. Using that |z —y| > 5 it is clear that I> < 1 with implicit constant depending
only on r. This bound can be improved when k is large. Indeed, to get a better bound in that case, observe
that

1 1 1
supfgg—sup/—dyg—,
rEBR k rEBR |]" - y| k

r

where the last inequality follows from (5.35). Combining, the two estimates, we have (with an implicit
constant depending only on )

sup Iy Smin{l, k™ '} .
z€BR

Let us turn to bounding I;. Dropping B, from the integration and changing the variables z = y — x inside
the integral, we get

1 1
I < / b=z = g [ WP(edz < 7 (5.36)

B B

1 1
2k 2

where in the last step we used that In? |2| has an integrable singularity at z = 0. This bound can be improved
when k is small. Dropping Bﬁ( x) from the integral I; and using the inequality

In?(klz —y|) <In? k4 1In? |z — ),
we arrive at the estimate

sup I; <In*k + sup /ln2 |z —yldy <In®k+1 . (5.37)
z€BR wEBRB

s

The last inequality is easily established, based on the estimate

1
In®t < ZX(O,I)(LL) + 1X1,00) (1), vt >0.

Indeed,

1
sup /1n2 |z —yldy < sup / dy + sup / |z — yldy
r€BR rEBR |aj - y' rEBR

B, B,NB;(x) B,.NBY (z)

/—dz—i— (r+R)IB <1

Combining the two estimates (5.36) and (5.37), we arrive at

sup I} <min{l +In?k k72} .
xEBR
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Finally, a combination of the bounds for I; and I yields that

sup / |®p(x,y)*dy < min{l + 10k, k~2} + min{1, k~*} < min{l + In® k, k~1} .
zE€EBR

r

For gradient bounds in 2d we use the asymptotic relations

/ 2 / 2 ; s
HY t)~——, ast—0, and b2 (t) ~1 T eit=3) , ast— oo,
0 1t 0 t

along with the bound

/ 1 1
HY (1) < = )+ — t VE> 0.
|Hy " (1) < tX(O,l)()+\/ZX(1,oo)()> >
Since
Vatu(o,y) = TH (ka - yl)
X k\Ly = - - IR
470 |z —y|
we obtain, with the help of (5.35), that
dy dy
V2@ (x,y)|dy < — 4+ VE / A
/ ’ |z =yl Vg =yl
B, BTQB% (z) B,.NBY (z)
k

< min{r, k™' + VEkr?
=7 [min{l, (rk)~} + \/Tk;] <r (1 + \/rk) ,
with an implicit constant independent of » and x. O

Lemma 5.13. Let Ti be defined by (5.31), R > 1, € < 1 and M., be given by (3.1). Then for any u €
L2(B2 \BG);

d=3

i Tl s SkQMek wll 2 . ’ ’

() I Tvull z2(3r\.) liullzacam) {min{1+lnkl,k5}7 d=2.
1 d=3

i) | Tvull2s,) S €2k M gl|ul 12 R ! ’
(i) | Tyull 2, wlulzzzam min{l + |Ink|, k" 2} , d=2.

d—1
(iii) |[VTiullr2aasy S K (L +E 7 )M llull 2, 5.

) a-1 a—1
(iv) IVNTyull2py S Ve (L+ k5 )1+ (k) T )Megllull 2,05,

where all the implicit constants are independent of u, e and k. The implicit constants in (i) and (ii1) depend
only on R; and those in (ii) and (iv) are absolute constants.

Proof. We set Qp = Br \ Be, in particular Q9 = By \ Be. Note that, by Holder’s inequality we have

ITyu(z)] < k> Me gllull 20| Px (@, )] L2(0,),

which implies the estimate
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2

[ThullL20p) < k2Me,k||U||L2(QQ) /H‘I’k(ﬂca')uiz(szz)dfﬂ . (5.38)

R

Using part (¢) of Lemma 5.12; we obtain that

1,
Oy (z,y)|>dyde < |B sup/@ z,y)|?dy <
Q/Q/| e(@y) | R|we Br [ ) mln{l—l—ln k k=), d
R 2

where the implicit constant depends only on R. This concludes the proof of part (7).
The proof of (i7) proceeds analogously, with B, in place of g, and the conclusion follows from the
estimate

/||<I>k Wrando < B swp [ (@t p)Pdy < e sup/|¢>k<m,y>\2dy

r€B. z€B1
B»\B.
1, =3,
Sel
min{1 + In® k, k~1} d=2.

The above direct estimation argument cannot be used to bound the L%-norm of VThu, as VTiu is an
integral operator whose kernel is not square integrable. However, we can obtain bounds using interpolation.
To this end, differentiating inside the integral we have

VTiu(z /K z,y)u(y)dy =: T{u(z) , K(z,y) = k*(q(y, k) — 1)V, ®x(z,y) .

Clearly,

T8l gy < sup / K (2, y)ldy - [l o) < K2Mo gl o) s / IV ai (2, y)ldy |
z€QR z€QR

1TV ull 21 (0p) < sup /IK(x,y)\de-IIUIILl(Qz) < kMg |lull L (y) sup /IVz@k(ﬂc,y)ldfﬂ-
y€Q2Q yEQo

R

Using part (i7) of Lemma 5.12, we get

d—1
swp [ IVatualidy < sup [ IV.0n(apldy S 141
CEGQRQ IGBRB

2 2

and noting that V,®y(z,y) = =V, i (y, z), we similarly get

sup /|V O (x,y)|dx < sup /|Vy<1>k(y,x)\dx§ 1+k%
yeﬂz yeB 2

where the implicit constants depend only on R. Thus we obtain that Tg : LY(Q2) — LY(Qgr) and T :
L>=(Qy) — L®(Qg) both have operator norms bounded by Ck2(1 + k“z" )M, e,ks where C is a constant
depending only on R. The Marcinkiewicz interpolation theorem [11] now implies that T} maps L?(22) into
L?(Qgr) with the operator norm bound
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ITY 1| 2200 £2(2) < 2V2CR (14 k7 )M
which concludes the proof of part (ii7).

The proof of part (iv) proceeds analogously, with B, in place of Qg. Part (i7) of Lemma 5.12 implies the
estimate

yEN,

s / Vi (. y)lde < e(1+ (ch) 7)),
B.

with an absolute implicit constant. We then conclude that
d—1 d—1
||Tiq||Loo(Qz)*>Loo(Be) S Ck2(1 + ]{:T)Meyk and ||Tlg||L1(Q2)~>L1(BE) S Ck‘26(1 + (Gk,‘)T)ME’k,

where C' is an absolute constant. Again using the Marcinkiewicz interpolation theorem we obtain

D=

d—1
2

17711121208 < 2VECK M [0+ KT 1+ (k)] " 0

Lemma 5.14. Let Ty be defined by (5.32), ko > 0 and R > 1. Suppose 0 < ek < ko and let M, ) be given by
(3.1). Then for any u € L*(Bs \ B)

\/E, d=3,
Tg’u, 2 5 kzMe’k ul| 2 ) 5.39
I Toull L2 (Br\B.) [ullz2(B2\B.) win{1 & | Tkl k=1, a2 (5.39)
where the implicit constant depends only on R and ky.
Proof. Let v = Thu and f = —Thu then, using that Tu vanishes on S, we conclude that v is the outward

radiating solution to the problem
Av + k*v =0, in RY\ B,
v=f, on S..

As before we introduce the notation f.(z) = f(2ex). Using Corollary 5.10 (and the remark following)
specifically the first estimate of (5.28) we now get, for d = 3,

ol S el s, ) S T sy

1
S Il + VeV Tl
S ek*Mep(1+ VE) |l 205, »

where in the last step we used the parts (i7) and (iv) of Lemma 5.13. To conclude the proof, it remains to
observe that (1 + vk) < /e, due to the bound ek < k.
Similarly, for d = 2 we have

lollza s S el gy, ) S IT0@e) sy
2

1
S clTullzaes,) + IVTiull2(8,)

< k?QMe,kCe,k ||UHL2(B2\Be) ’
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where
Cep =min{l + |Ink|, k= 2} + v/e(1+ k) .
Using that e < 1 and ek < ko we have /e < min{1,k 2}, which then implies
Cer Smin{l+ |Ink|,k~2} + (1 + k") min{1,k~ 2} < min{l + [Ink|, k" 7}
This completes the proof of Lemma 5.14. O
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Appendix A
A.1. Discreteness of the transmission eigenvalues

Here we prove part (iii) of Theorem 3.1. The proof is based on the lemma below.

Lemma A.l1. Assume /2k. > 1, let R > 0 be large, and h,ho > 0 be small enough, such that, with the
notation k = a + ib, the following sets are nonempty

Rpn={keC:|kl<R}n ({k:a,b>0}U{k:a>max{|b\,\/b2+b+k€2}+h}>
Lrnn ={keC:|kl<R}n ({k:a<0,b< —%fho}u{k:a< fmax{\b|,\/b2+b+k§}fh}>

MR7h:{k€C:|k|<R}ﬂ({k:b>\a|+h}u{k:b<f\a|7handb>f%(kf+%)})

Then the interior transmission eigenvalues of (4.1) that lie inside Rr,n U LR h.1h, UUR L form a discrete set
(i.e., an at most countable set with no limit points in Rep U Lr hn, YURL).

To see that this lemma concludes the proof of Theorem 3.1 consider the following unions:
oo o0 o0 o0 o0 o0 o0
R: U URR,L7 EZ U U U£R7l7i7 U: U UUR7L7
R=1n=1 ' R=1n=1m=1 ' R=1n=1

Lemma A.l guarantees the discreteness of the interior transmission eigenvalues inside the union of these
sets. We note that

R:{k:a,b>O}U{k:a>max(|b|,\/b2+b+k§)}
ﬁz{k:a<0,b<—%}U{k:a<—max(\b|,\/b2+b+k§)}

U={k:|b|>|a|and b> -2 (k2 +1)}.

Finally, the symmetry of the set of interior transmission eigenvalues implies that the discreteness also holds
in —R and —L, where the bar denotes complex conjugation. Since G C RULUUU —RU —L UR U iR,
a combination of these discreteness results and (i) of Theorem 3.1 yields the proof of the last assertion in

Theorem 3.1.
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Proof of Lemma A.1. We start by showing the discreteness in the sets Rg n, Lr,h,h,, Which are open, con-
nected and disjoint. Let A = Ay + idy € C with A;, A2 > 0 to be chosen later. Consider the bounded
sesquilinear forms on X (cf. (4.5)) given by

1
Ap(u, ) = / T (Au+ k*u) (A + k%) dz + k? / Vu - Vgdr + A/u@dm,
O 1 Bs Bs
Bulug) =~k + ) [ upds

B>

In terms of Aj and By, the variational form of the interior transmission eigenvalue problem (4.7) reads:
Ar(u,0) + Br(u,) = 0 for all ¢ € X. Since By yields a compact operator, the discreteness of these
eigenvalues, in the regions where both A and By depend analytically on k, will follow from the Analytic
Fredholm Theory, as in [10, Section 8.5], once we prove that A = A(R, h, hg) can be chosen such that Ay
becomes coercive [4]. For shorthand let us introduce the notation

1

_ 22 i g2 _
)—vkp(a:), v =k + ik —kZ and p(x) 7detDF(m)'

1—q(x, k
Let m, M be such that
0<m<plx) <M, Vo € Bo\B. =0 .

We consider cases:

e Let k = a + ib be such that |[k| < Rand (I) a >0, b>0or (II) a <0, b < —3 — hy.
Then

A (u, w) :%/p|Au|2dm—&—k;2||VuHQB2 +27kk2/p%e(ﬂAu)dac

o o
k[ plufd + Aul, (A1)
o
where we use the notation [|ullq = |luz2(q). In both cases (I) and (II) we see that

Jmy, = a(2b+1) >0, and Jm(k?) = 2ab >0 .

Hence

|ImAg (u, w)| >Tmy, /p|Au|2dsc + 3m(k2)HVu||2B2 + )\2||u||232
o

— 2|Im(vek?)] - /p%Re(EAu)dx — |3m(vkk4)|/p|u|2dx .
o o

Let us use the lower bound p > m in the first integral. In the integral of the term 2Re(uAw) we use Holder’s
inequality along with the estimate p < M, and then apply Cauchy’s inequality with § > 0 to the resulting
term. The result becomes
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|Im Ay (u, w)| =(mTImye — 2M | Im(yik?)[8) [ Aul[E + Tm(E*) [ Vull3,

+ (A2 = M[am(ykt)| — EmRE

If Jm(yxk?2) = 0, then coercivity follows for any Ao > max{M|Jm(vik*)| : |k| < R}. Otherwise, let us choose
§ such that 4M|Jm(y,k?)|§ = mImy,. Then the first term of above inequality is positive and the third term
will be positive if

2M2 [Jm(vyk2)]”

Ao > M|Tm (v k*
2 > sup § M|Im(yxk™)| + o

:|k] < R and (I) or (II) holds

It remains to see that the above supremum is finite. The first term inside the supremum is bounded and
establishing the boundedness of the second term amounts to showing that

[Jm(k?)]”  a[4a2b — 463 — 20k2 + a2 — 30%]
Jmy, 20+ 1

is bounded. Clearly, in the case (I) this is bounded with a constant depending only on R and k., and in
the case (II) it is bounded with a constant depending on R, k. and hg. Finally, the coercivity follows upon
applying Poincare’s inequality as X C H}(Bs).

e Let k = a+ ib be such that k] < R and
laf > max {[b], /B + b+ K2 |+ (A.2)
Then
Reypy =a® — (V> +b+ k) >0, and Re(k?) =a®>—-0*>>0.

Repeating the argument of the previous case, only taking real parts in (A.1), we obtain that coercivity
follows after choosing

2M2 [Re(yxk?)]”
m%evk

A1 > sup { M|Re(vek?)| + k| < R and (A.2) holds

Clearly this supremum is finite as Rey, > h2.

It remains to prove the discreteness in the set g . This can be done analogously, only now A in the
sesquilinear forms must be chosen to be a real and negative number with very large absolute value. Coercivity
then follows by deriving a lower bound on |ReAg(u,u)|. O
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