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This paper concerns the analysis of a passive, broadband approximate cloaking 
scheme for the Helmholtz equation in Rd for d = 2 or d = 3. Using ideas 
from transformation optics, we construct an approximate cloak by “blowing up” 
a small ball of radius ϵ > 0 to one of radius 1. In the anisotropic cloaking layer 
resulting from the “blow-up” change of variables, we incorporate a Drude-Lorentz-
type model for the index of refraction, and we assume that the cloaked object is a 
soft (perfectly conducting) obstacle. We first show that (for any fixed ϵ) there are 
no real transmission eigenvalues associated with the inhomogeneity representing the 
cloak, which implies that the cloaking devices we have created will not yield perfect 
cloaking at any frequency, even for a single incident time harmonic wave. Secondly, 
we establish estimates on the scattered field due to an arbitrary time harmonic 
incident wave. These estimates show that, as ϵ approaches 0, the L2-norm of the 
scattered field outside the cloak, and its far field pattern, approach 0 uniformly over 
any bounded band of frequencies. In other words: our scheme leads to broadband 
approximate cloaking for arbitrary incident time harmonic waves.

© 2024 Elsevier Masson SAS. All rights reserved.

r é s u m é

Cet article concerne l’analyse d’un schéma de masquage (cloaking) approximatif 
passif pour l’équation de Helmholtz dans Rd, pour d = 2 ou d = 3. En utilisant 
des idées issues de l’optique de transformation, nous construisons un masquage 
approximatif par un changement d’échelle d’une petite boule de rayon ϵ > 0
en une boule de rayon 1. Dans la couche de masquage anisotrope résultant du 
changement “explosif” des variables (la cape), nous incorporons un modèle de type 
Drude-Lorentz pour l’indice de réfraction, et nous supposons que l’objet masqué 
est un objet parfaitement conducteur. Premièrment nous montrons que (à ϵ fixé) 
il n’existe pas de valeur propre de transmission réelle associée à l’inhomogénéité 
représentant la cape, ce qui implique que les dispositifs d’masquage que nous avons 
crées pour toute fréquence ne produiront pas un masquage parfait, même pour une 
seule onde incidente, harmonique en temps. Deuxièmement, nous établissons des 
estimations sur le champ dû à une onde incidente harmonique temporelle arbitraire. 
Ces estimations montrent que, lorsque ϵ tend vers 0, la norme L2 du champ diffuseé 
à l’extérieur (le champ lointain) se rapproche uniformément de 0 pour toute bande 
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de fréquences bornée. En d’autres termes : notre schéma conduit à un masquage 
approximatif à large bande pour les ondes incidentes arbitraires, harmoniques en 
temps.

© 2024 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper we analyze a passive, broadband approximate cloaking scheme for the Helmholtz equation in 
Rd for d = 2 or d = 3. Specifically, we are interested in making a bounded region approximately invisible to 
a far field observer and to probing by incident fields at arbitrary frequencies, independently of the material 
inside this region. Using ideas from transformation optics we achieve this by surrounding the region with a 
layer of an appropriate anisotropic material. By including a layer of extremely high conductivity adjacent 
to the region, we may without loss of generality assume that the region we want to cloak is “soft”, that is, 
supports a homogeneous Dirichlet boundary condition. The approach of cloaking by mapping, also known 
as transformation optics, has been popularized by Pendry, Schuring and Smith [29] and Leonhardt [23]
for Maxwell’s equations. The basic idea is to make a singular change of variables which blows up a point 
(invisible to any probing incident wave) to a cloaked region. The same idea had previously been used 
by Greenleaf, Lassas and Uhlmann to create anisotropic objects that were invisible to EIT [15] (see also 
[14]). The singular nature of the perfect cloaks presents various difficulties: in practice this means they 
are hard to fabricate, and from the analysis point of view in some cases the rigorous definition of the 
corresponding electromagnetic fields is not obvious [12,33,34]. To avoid the use of singular materials in the 
cloak, regularized schemes have been suggested [20,21,30,31]. The trade-off is that such schemes only lead 
to approximate cloaking. We refer the reader to [2,8,13,16] for work on enhancement of approximate cloaks.

To design a passive approximate cloaking device, we blow up a small ball Bϵ of radius ϵ > 0 (the 
regularization parameter) to the ball B1 of radius one, which represents the cloaked region (see Fig. 1 in 
Section 2). To be more precise we actually map B2 \Bϵ onto B2 \B1, keeping fixed the outer boundary ∂B2. 
B2 \B1 represents the cloak. As result of this change of variables one obtains an anisotropic layer in B2\B1. 
We include a Drude-Lorentz-type term (see e.g. [19]) in the refractive index of the cloaking layer. This 
results in a frequency dependent and complex valued index of refraction which is consistent with causality. 
Since the cloaked region B1 is “soft” we impose a zero Dirichlet boundary condition on the boundary ∂B1. 
As mentioned earlier, this Dirichlet condition may be viewed as a limit of a highly conducting layer, and it 
thus may be interpreted as “hiding” the contents of B1. A main focus of this paper is to establish estimates 
on the scattered field outside the cloak in terms of the small parameter ϵ > 0 and the probing frequencies. 
We remark that the choice of B1 and B2 \ B1 for the cloaked region and the cloak, respectively, is made 
for convenience and one can use more general domains in the change of variables. We also note that, in 
the context of approximate cloaking for the Helmholtz equation (the frequency domain wave equation), the 
Drude-Lorentz model was previously used by Nguyen and Vogelius in [28]. The Drude-Lorentz model takes 
into account the effect of the oscillations of free electrons on the electric permittivity by means of a simple 
harmonic oscillator model. When viewed in (complex) frequency domain, the refractive index associated with 
the Drude-Lorentz model may be extended analytically to the whole upper half plane. It is well-known that 
an immediate consequence of this is causality for the associated non-local time-domain wave equation, see 
[19,32]. This property is most essential for the well-posedness (and the physical relevance) of this equation. 
Another well known consequence of this analyticity property are the so-called Kramers-Kronig relations 
between the real and the imaginary part of the refractive index (they are essentially related by Hilbert 
transforms). However, this fact is not explicitly used in our analysis.

We investigate two questions related to the scattering by the aforementioned cloak B2 \ B1. The first 
one is whether, for a fixed ϵ > 0, there are wave numbers (proportional to frequencies) and incident fields 
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Fig. 1. The “soft” cloaked region B1 and the cloak B2 \ B1.

for which the corresponding scattered field is zero, i.e., the cloak (and B1) is perfectly invisible to this 
particular probing experiment. This question is related to the existence of real eigenvalues of the interior 
transmission eigenvalue problem defined on B2 \ B1 [3], for which that part of the eigenfunction, which 
corresponds to the incident field, is extendable as a solution to the Helmholtz equation in all of Rd [6,7]. In 
particular, such non-scattering wave numbers, for which perfect cloaking is achieved for a particular incident 
field, form a subset of the real transmission eigenvalues. We prove that, real transmission eigenvalues do 
not exist for the inhomogeneity presented by the cloak, i.e., for the anisotropic inhomogeneity B2 \B1 with 
the complex-valued frequency dependent Drude-Lorentz term and a homogeneous Dirichlet condition on 
the inner boundary ∂B1. In addition, we show that all the (complex) transmission eigenvalues, that lie 
outside a precisely characterized compact set of the lower half plane, form a countable set with no finite 
accumulation points outside this compact set. Supported by some computational evidence, we conjecture 
that a sequence of complex transmission eigenvalues accumulate at a point (as well as at its symmetric 
counterpart) on the boundary of this compact set. These points have imaginary part equal to −1/2, but 
real parts that depend on the resonant frequency of the Drude-Lorentz term. A complete analysis of the 
transmission eigenvalue problem for inhomogeneities with such a Drude-Lorentz term is still open. This 
eigenvalue problem, in addition to being non-selfadjoint, is nonlinear since the Drude-Lorentz term involves 
the eigenvalue parameter in a non-linear fashion, and thus the known approaches do not apply [3]. If 
the Drude-Lorentz term is not present, the existence of an infinite set of real transmission eigenvalues 
accumulating at +∞ for (anisotropic) inhomogeneities containing a Dirichlet obstacle is proven in [4,5]. 
Secondly, although perfect cloaking is impossible at any frequency (even for a single incident wave) we 
prove that one can achieve approximate cloaking over any given finite band of wave numbers for sufficiently 
small ϵ > 0. In particular, we prove that provided the Drude-Lorentz resonant frequency kϵ is sufficiently 
large, more precisely k2

ϵ > c∗ϵ−3 for d = 3, and k2
ϵ > c∗| ln ϵ|/ϵ for d = 2, then for any fixed R the L2-norm 

of the scattered field in BR \B2 is of order ϵ in R3 and of order 1/| ln ϵ| in R2, with a constant depending on 
the given band of wave numbers, c∗ and R. These estimates hold for a large class of incident waves, including 
plane waves and their superpositions (Herglotz waves). We note that point source waves with sources outside 
the cloak, as well as their superpositions would also be admissible. Furthermore, we prove that the far field 
pattern is uniformly O(ϵ) in R3 and O(1/| ln ϵ|) in R2, with constants depending on the given band of wave 
numbers. These latter results are obtained by estimating the norm of the Lippmann-Schwinger volume 
integral over B2 \B1 and using scattering estimates adapted from [27]. We should mention that cloaking via 
change of variables for the Helmholtz equation at any frequency is investigated in [24–28], but in these papers 
the region is cloaked to an active source compactly supported in the exterior of the cloak. The scattering 
problem with incident field cannot be written in this framework. In fact, in that case the scattered field may 
be viewed as satisfying an inhomogeneous Helmholtz equation with a source given by the incident field, but 
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this source is supported inside the cloak. Finally let us mention that perfect cloaking for a penetrable obstacle 
and the quasi-static Helmholtz equation (i.e., the limit when the probing wavelength is much larger than the 
cloaking device) with incident plane waves is investigated in [9]. There, the authors show the impossibility 
of perfect broadband cloaking (see also [18]) and using the theory of Herglotz-Nevanlinna functions they 
derive lower bounds on the polarizability tensor,1 in terms of the frequency band, and the geometry and 
dielectric contrast of the obstacle. These bounds show the limitations of broadband quasi-static cloaking and 
apply to a very wide class of passive cloaks. The fact that perfect quasi-static cloaking is possible only at a 
discrete set of frequencies is entirely consistent with the fact that we in the present context show that there 
are no real transmission eigenvalues. In contrast, our analysis demonstrates the possibility of broadband 
approximate cloaking in the context of the full Helmholtz equation and for a specific transformation-optics-
based cloaking scheme. We mention that the lower bounds of [9] are not directly comparable to the upper 
bounds derived here, as in the quasi-static regime the frequency dependence is in the principal part of the 
operator, whereas in our context it is in the zeroth order term. However, our analysis shows that general 
lower bounds in the spirit of [9] cannot be expected to hold for the full Helmholtz equation with a dissipative 
refractive index (such as the one given by the Drude-Lorentz model).

2. Preliminaries

Let Br ⊂ Rd, d = 2 or d = 3 denote the open ball of radius r > 0 centered at the origin and let Sr = ∂Br. 
For a small parameter ϵ > 0 consider the following continuous and piecewise smooth mapping:

F (x) =

⎧
⎪⎨

⎪⎩

x, x ∈ Rd \B2
(2 − 2ϵ

2 − ϵ
+ |x|

2 − ϵ

)
x

|x| , x ∈ B2 \Bϵ

(2.1)

For simplicity of notation we will suppress the dependence of F on the parameter ϵ. Note that F maps 
B2 \ Bϵ onto B2 \ B1, Sϵ onto S1, and that F (x) = x on S2. Now, we design a cloaking device, occupying 
B2 \B1, to approximately cloak the (soft) region B1. We incorporate a Drude-Lorentz type term to account 
for a more physically relevant nonlinear dependence of the index of refraction on wavenumber.

The constitutive material properties are thus given by

Ac(x); qc(x, k) =

⎧
⎨

⎩
I; 1, x ∈ Rd \B2

F∗I; F∗1 + σϵ(k), x ∈ B2 \B1,
(2.2)

where I denotes the d × d identity matrix and σϵ is the Drude-Lorentz term given by

σϵ(k) = 1
k2
ϵ − k2 − ik

, (2.3)

cf. [19], page 331. Here kϵ > 1
2 represents the so-called resonant frequency of the Drude-Lorentz model. F∗

denotes the push-forward by the map F , defined by

F∗A(y) = DF (x)A(x)DFT (x)
|detDF (x)| , F∗q(y) = q(x)

|detDF (x)| , x = F−1(y) ,

for a matrix-valued function A, and for a scalar function q, respectively. The definition of the push-forward is 
motivated by the following change of variables property, which can be proven by straightforward calculations 
(cf. [15,20]).

1 The analogue of the far field pattern in the quasi-static regime.
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Lemma 2.1. Let F be as defined in (2.1). Assume A ∈
[
L∞(B2 \Bϵ)

]d×d and q ∈ L∞(B2 \ Bϵ). Then 
u ∈ H1(B2 \Bϵ) ∩ {u = 0 on Sϵ} solves the equation

div(A∇u) + qu = 0, in B2 \Bϵ ,

iff v = u ◦ F−1 ∈ H1(B2 \B1) ∩ {u = 0 on S1} solves

div(F∗A∇v) + F∗qu = 0, in B2 \B1 .

The functions u and v satisfy the boundary relations

u = v, and A∇u · ν = F∗A∇v · ν, on S2 , (2.4)

where ν denotes the unit outward normal vector on S2 and the equality of the conormal derivatives is 
understood in the sense of distributions in H− 1

2 (S2).
Furthermore2

(F−1)∗ [F∗A] = A , and (F−1)∗ [F∗q] = q .

Let ui be an incident field at a given wave number k > 0 (we suppress the dependence of ui on k for the 
ease of notation), i.e.,

∆ui + k2ui = 0, in Rd. (2.5)

Given the incident wave ui and the “cloaked” soft obstacle B1, consider now the associated Helmholtz 
scattering problem. If Ac and qc denote the constitutive material properties defined in (2.2), then the total 
field uc ∈ H1

loc(Rd \B1) is the unique solution to

{
div(Ac∇uc) + k2qcuc = 0, in Rd \B1,

uc = 0, on S1 ,
(2.6)

of the form

uc =
{
ut
c, in B2 \B1 ,

ui + us
c in Rd \B2 ,

(2.7)

where ut
c is the transmitted field and us

c is the scattered field, which satisfies the Sommerfeld radiation 
condition

lim
r→∞

r
d−1
2 (∂rus

c − ikus
c) = 0, as r = |x| → ∞ , (2.8)

uniformly in x̂ = x/|x| (cf. [10] for more details about the scattering problem). As uc and its conormal 
derivative are continuous across S2, the problem (2.6) can equivalently be written

2 Since similar formulas hold for F∗
[
(F−1)∗B

]
and F∗

[
(F−1)∗p

]
it follows that (F−1)∗ = (F∗)−1, and for that reason we 

sometimes use the notation F−1
∗ for both.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆us
c + k2us

c = 0, in Rd \B2

us
c satisfies the outgoing radiation condition

∇ · (Ac∇ut
c) + k2qcut

c = 0, in B2 \B1

∆ui + k2ui = 0, in Rd

ut
c = ui + us

c, on S2

Ac∇ut
c · ν = ∂νui + ∂νus

c, on S2

ut
c = 0, on S1.

(2.9)

As the scattered field us
c satisfies the constant coefficient Helmholtz equation, it is in fact real analytic and 

admits the following asymptotic behavior as r → ∞:

us
c(x) = eikr

r
d−1
2

u∞(x̂) + O
(
r−

d+1
2

)
, (2.10)

where the function u∞, defined on S1, is the so-called far field pattern of the scattered field us
c. It is well-

known that the vanishing of u∞ on S1, implies the vanishing of the scattered field us
c in Rd \B2 (cf. Rellich’s 

Lemma in [10]). A non-trivial incident field ui and the wave number k > 0 for which the corresponding 
far field pattern vanishes are referred to as non-scattering incident field and a non-scattering wave number, 
respectively. If we regard ui as a function defined in B2, then from (2.9) it is clear that at a non-scattering 
wave number k > 0, there exist non-trivial functions wc = ut

c and v = ui defined in B2 \ B1 and B2, 
respectively, such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (Ac∇wc) + k2qcwc = 0, in B2 \B1

∆v + k2v = 0, in B2

wc = v, on S2

Ac∇wc · ν = ∂νv, on S2

wc = 0, on S1.

(2.11)

A wave number k for which (2.11) admits a non-trivial solution is called an interior transmission eigenvalue 
with the corresponding eigenfunction (wc, v). Thus, non-scattering wave numbers are necessarily real interior 
transmission eigenvalues [3]. Conversely, a real interior transmission eigenvalue k > 0 is a non-scattering 
wave number if the eigenvector v can be extended from B2 to a solution of the Helmholtz equation in all of 
Rd [7,6].

3. Main results

For clarity and the reader’s convenience we now state the main results of our paper. The first theorem 
addresses the question whether our cloak provides a perfect cloaking of the region B1 for even a single 
incident wave.

Theorem 3.1. Consider the interior transmission eigenvalue problem (2.11).

(i) There are no interior transmission eigenvalues in R ∪ iR.
(ii) k ∈ C is an interior transmission eigenvalue if and only if so is −k.
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Fig. 2. The shaded compact region K, outside of which the interior transmission eigenvalues of (2.11) form a discrete set.

(iii) Assume kϵ > 1√
2 , let κ =

√
k2
ϵ − 1

4 −
i
2 and let K be the shaded compact region in Fig. 2. The region K

is symmetric about the imaginary axis, the slanted line segment of the boundary in the right half-plane 
has the equation Imk = −ℜek, the curved arc joining κ to kϵ is given by ℜek =

√
(Imk)2 + Imk + k2

ϵ . 
Let G denote the open set G = C \K. Then those interior transmission eigenvalues which lie inside G
form a discrete set (i.e., an at most countable set with no limit points in G).

Part (i) of Theorem 3.1 will be proven in Section 4. As a consequence we conclude that perfect cloaking/non-
scattering is impossible at any wave number k > 0, since real transmission eigenvalues do not exist. One 
of the main ingredients in deriving this result is the property Imσϵ(k) > 0 for k > 0, i.e., passivity of the 
material due to dissipation (the electromagnetic energy gets absorbed by the material as the electromagnetic 
wave passes through). Therefore, the same conclusion will continue to hold for a more general σϵ, provided 
it exhibits passivity. It might be of interest to study the feasibility of perfect cloaking in a non-dissipative 
Drude-Lorentz model. Part (ii) is an immediate consequence of the symmetry relation

σϵ(k) = σϵ(−k) , ∀ k ∈ C .

As a result qc(x, k) has the same symmetry property and k is a transmission eigenvalue of (2.11) with 
eigenfunction (wc, v), if and only if so is −k with eigenfunction (wc, v). The proof of part (iii) will be given 
in the Appendix since the discreteness of complex eigenvalues is not central to the cloaking discussion. The 
value κ is one of the poles of σϵ(k) (the other one is −κ). Numerical evidence, presented in Section 4.2, 
indicates that it is a limit point for the set of transmission eigenvalues of (2.11). Being bold, we venture

Conjecture 3.2. (Finite accumulation point of transmission eigenvalues) Let κ be defined as in part (iii) of 
Theorem 3.1. Then κ is a limit point of transmission eigenvalues of (2.11).

We note that Theorem 3.1 asserts nothing about potential interior transmission eigenvalues in the set K \R. 
Their nature is a completely open problem.

Although perfect cloaking is impossible, we demonstrate that, under a suitable growth assumption on 
kϵ, one can achieve approximate cloaking over any given finite band of wave numbers. We first state the 
main estimate on the scattered field including its explicit dependence on k (and ϵ). The broadband cloaking 
estimates follow as a corollary from this. We define

Mϵ,k = ∥F−1
∗ qc − 1∥L∞(B2\Bϵ) = ∥F−1

∗ σϵ(k)∥L∞(B2\Bϵ) , (3.1)

where F−1
∗ denotes the push-forward by the map F−1, and we set

a(k) =
{

1, d = 3 ,

min{1 + | ln k|, k− 1
4 }, d = 2 .

(3.2)
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Theorem 3.3. Let R > 2 and k0 > 0. Suppose 0 < ϵk < k0 and suppose

∥ui∥L∞(Bϵ) + ϵ∥∇ui∥L∞(Bϵ) ≤ C . (3.3)

Let us
c be the scattered field from (2.9). There exists a constant c = c(k0, R) > 0 such that, if k2a(k)Mϵ,k < c

then

∥us
c∥L2(BR\B2) ! ϵ + k2a(k)Mϵ,k∥ui∥L2(BR) , for d = 3 , (3.4)

and

∥us
c∥L2(BR\B2) !

|H(1)
0 (k)|

|H(1)
0 (ϵk)|

+ k2a(k)Mϵ,k

(
1 + ∥ui∥L2(BR)

)
, for d = 2 , (3.5)

where the implicit constants in (3.4) and (3.5) depend only on R, k0 and C.

Remark 3.4. In the above theorem, H(1)
0 denotes the Hankel function of the first kind of order 0. We also 

adopt the following notation: for two positive quantities A and B, we write A ! B, if there exists a constant 
d > 0 (independent of A and B) such that A ≤ dB.

Imposing a suitable lower bound on the resonant frequency kϵ with respect to ϵ, the quantity Mϵ,k (for 
bounded k) becomes of order ϵ for d = 3, and of order 1/| ln ϵ| for d = 2 (cf. (5.21)) and Theorem 3.3 implies 
the following result:

Theorem 3.5. (Broadband approximate cloaking) Let R > 2, k+ > k− > 0, and set Γ := [k−, k+]. Assume 
that for some constant c∗ > 0, k2

ϵ > c∗ϵ−3 for d = 3, and k2
ϵ > c∗| ln ϵ|/ϵ for d = 2. Furthermore, assume 

that the incident field ui satisfies

∥ui∥L2(BR) ≤ CR, ∀ k ∈ Γ. (3.6)

Let us
c be the scattered field from (2.9). There exists a constant c1 = c1(k−, k+, R, c∗) > 0 such that, for all 

ϵ < c1 and k ∈ Γ

∥us
c∥L2(BR\B2) !

{
ϵ , d = 3 ,

1/| ln ϵ| , d = 2 ,
(3.7)

where the implicit constant depends only on k−, k+, R, c∗ and CR. Similarly, there exists a constant c2 =
c2(k−, k+, c∗) > 0, such that for all ϵ < c2, k ∈ Γ, and |x̂| = 1

|u∞(x̂)| !
{
ϵ , d = 3 ,

1/| ln ϵ| , d = 2 ,
(3.8)

where u∞ is the far field pattern defined in (2.10), and the implicit constant depends only on k−, k+, c∗ and 
C5.

Remark 3.6.

(i) Note that kϵ → ∞ as ϵ → 0. Therefore, the higher degree of invisibility is achieved at the cost of using 
“extreme” materials throughout the cloak. These may be hard to manufacture.
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(ii) Most likely the implicit constants in the estimates (3.7) and (3.8) go to infinity as the length of the 
frequency band, k+ − k−, goes to infinity.

(iii) The results of the above two theorems do not use the radial geometry in any essential way and carry 
over to the non-radial setting as well.

(iv) The assumption (3.6) (or (3.3)) is satisfied by incident plane waves as well as by their superpositions, 
the so-called Herglotz waves ui := ug given by

ug(x) =
∫

|ŷ|=1

g(ŷ)eikx·ŷ dsŷ , g ∈ L2(S1) .

It is also satisfied by radiating point sources (outside of B2) and their appropriate superpositions.

4. Transmission eigenvalues

In this section we study the interior transmission eigenvalue problem. We first eliminate the anisotropy 
Ac in the formulation (2.11) by using a change of variables to arrive at a new interior transmission eigenvalue 
problem, which has the same eigenvalues as (2.11). Then we reformulate the resulting problem in terms of a 
fourth order PDE, following [4] (see also [3]). Using this new formulation we prove part (i) of Theorem 3.1. 
Furthermore, in Section 4.2 we present numerical evidence supporting Conjecture 3.2 in two dimension.

4.1. The variational formulation

In the interior transmission eigenvalue problem (2.11) let us change the variables in wc, while leaving v
unchanged. Namely, let

w = wc ◦ F,

where F is defined by (2.1). Using the properties of the map F (namely that F (x) = x on S2, F maps 
Sϵ onto S1 and F−1

∗ Ac = F−1
∗ F∗I = I in B2 \ Bϵ) along with Lemma 2.1, we obtain that w, v solve the 

following transmission problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∆w + k2qw = 0 , in B2 \Bϵ

∆v + k2v = 0 , in B2

w = v , on S2

∂νw = ∂νv on S2

w = 0 , on Sϵ

(4.1)

where

q(x, k) = F−1
∗ qc(x, k) = F−1

∗ [F∗1 + σϵ(k)] = 1 + σϵ(k)|detDF (x)| , x ∈ B2 \Bϵ .

Let us introduce the notation

O := B2 \Bϵ.

It is clear that k ∈ C is a transmission eigenvalue for (2.11) with eigenfunction (wc, v), if and only if, it is 
a transmission eigenvalue for (4.1) with eigenfunction (w = wc ◦ F, v). Thus (2.11) and (4.1) have the same 
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set of transmission eigenvalues. We recall that the weak solution of (4.1) is a pair of functions3 w ∈ L2
∆(O)

and v ∈ L2
∆(B2) that satisfy the PDEs of (4.1) in the sense of distributions, such that w = 0 on Sϵ and 

u := w − v ∈ H1
∆(O) satisfies the boundary conditions u = ∂νu = 0 on S2.

Remark 4.1.

(i) We note that the trace (on Sϵ) of a function w ∈ L2
∆(O) makes sense as an element of H− 1

2 (Sϵ) by 
duality, using the identity

⟨w, τ⟩H−1/2,H1/2 =
∫

O

(w∆ϕ− ϕ∆w) dx ,

where ϕ ∈ H2(O) is such that ϕ = 0 in a neighborhood of S2, and ϕ = 0 and ∂ϕ/∂ν = τ on Sϵ.
(ii) Similarly we note that for a function u ∈ H1

∆(O) the normal derivative ∂νu (on S2) makes sense as an 
element of H− 1

2 (S2) by duality, using the formula

⟨∂νu,ψ⟩H−1/2,H1/2 =
∫

O

(∆uϕ + ∇u∇ϕ) dx ,

where ϕ ∈ H1(O) is such that ϕ = 0 on Sϵ, and ϕ = ψ on S2.

We can reformulate (4.1) as a fourth order problem. Indeed, given a weak solution w, v of (4.1), let us set

u =
{
w − v, in O
−v, in Bϵ.

(4.2)

It is clear that

∆u + k2qu = k2(1 − q)v, in O. (4.3)

Dividing both sides of the above equation by 1 − q (note that 1 − q = −σϵ(k)| detDF | ̸= 0 in O, as can be 
seen by using the formula (4.8) of Lemma 4.2 below) and applying the operator ∆ + k2 we can eliminate v
and obtain a fourth order equation for u. The boundary condition on w implies that u is continuous across 
Sϵ. Next, since v solves the Helmholtz equation in B2, v and its normal derivative ∂νv are continuous across 
Sϵ. We can rewrite these continuity conditions in terms of u using (4.2) and (4.3). Thus, we obtain that u
(weakly) solves the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∆ + k2) 1
1 − q

(∆ + k2q)u = 0, in O

∆u + k2u = 0, in Bϵ

u = ∂νu = 0, on S2

u+ = u−, on Sϵ[ 1
1 − q

(∆ + k2q)u
]+

= −k2u−, on Sϵ

∂+
ν

[ 1
1 − q

(∆ + k2q)u
]

= −k2∂−
ν u, on Sϵ.

(4.4)

3 We use the notation L2
∆(O) = {w ∈ L2(O) : ∆w ∈ L2(O)} and H1

∆(O) = {w ∈ H1(O) : ∆w ∈ L2(O)}.
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Note that as v ∈ L2(B2) solves the Helmholtz equation, by local elliptic regularity v ∈ H1(Bϵ). But as u is 
continuous across Sϵ, we conclude that u ∈ H1(B2) ∩H1

∆(O). Incorporating the boundary conditions on S2
we introduce the Hilbert space of functions

X =
{
u ∈ H1(B2) : ∆u ∈ L2(O) and u = ∂νu = 0 on S2

}
, (4.5)

where ∂νu ∈ H− 1
2 (S2), and is defined as described in the earlier remark. Thus, given a non-trivial weak 

solution w, v of (4.1), the function u ∈ X, given by (4.2), is a non-trivial weak solution of (4.4). Conversely, 
if u ∈ X is a non-trivial weak solution of (4.4), then

v =

⎧
⎨

⎩

1
1 − q

(
∆ + k2q

)
u, in O

−k2u, in Bϵ

and w = k2u + v, in O, (4.6)

satisfy w ∈ L2(O), v ∈ L2(B2) and w−v ∈ H1
∆(O) and yield a non-trivial weak solution of (4.1). Integration 

by parts easily yields a variational formulation of (4.4), namely: find u ∈ X such that
∫

O

1
1 − q

(
∆u + k2u

) (
∆ϕ + k2ϕ

)
dx (4.7)

−k4
∫

B2

uϕdx + k2
∫

B2

∇u ·∇ϕdx = 0, ∀ϕ ∈ X.

Before excluding the existence of real and purely imaginary transmission eigenvalues we need the following 
formulas for the map F :

Lemma 4.2. Let F be given by (2.1), and set x̂ = x/|x|, then

DF (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I, in Rd \B2

1
2 − ϵ

{
I + 2−2ϵ

|x| (I − x̂⊗ x̂)
}
, in B2 \Bϵ

I/ϵ, in Bϵ,

where I is the d × d identity matrix and for any two vectors a, b ∈ Rd, a ⊗ b denotes the matrix whose 
(i, j)-th element is aibj. In particular,

detDF (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 in Rd \B2

(2 − 2ϵ + |x|)d−1

(2 − ϵ)d|x|d−1 in B2 \Bϵ

1/ϵd in Bϵ.

(4.8)

Proof. The formulas for DF (x) inside Bϵ and outside of B2 are trivial. In the region B2 \ Bϵ it is a direct 
consequence of the identity

Dx̂ = 1
|x| (I − x̂⊗ x̂)

Finally, using the identity det(I+a ⊗ b) = 1 +a · b for any two vectors a, b ∈ Rd, we find that for x ∈ B2 \Bϵ
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detDF (x) = 1
(2 − ϵ)d

[2 − 2ϵ
|x| + 1

]d−1
,

which concludes the proof. !

Lemma 4.3. There are no non-trivial solutions to (2.11) for k ∈ R ∪ iR, i.e., there are no transmission 
eigenvalues for (2.11) in R ∪ iR.

Proof. First suppose k = iτ with τ ∈ R is a transmission eigenvalue. The above discussion shows that the 
problem (4.4) has a non-trivial solution u ∈ X for this value of k. Using the variational formulation (4.7)
with ϕ = u we get

0 =
∫

O

1
q − 1

∣∣∆u− τ2u
∣∣2 + τ4

∫

B2

|u|2dx + τ2
∫

B2

|∇u|2dx . (4.9)

Note that

q(x, iτ) − 1 = σϵ(iτ)|detDF (x)| = 1
k2
ϵ + τ2 + τ

(2 − 2ϵ + |x|)d−1

(2 − ϵ)d|x|d−1 , x ∈ O .

If τ ≥ 0 the above quantity is obviously positive. For τ < 0, it is still positive due to the assumption 
2kϵ > 1. Thus q(x, iτ) − 1 > 0 for all τ ∈ R and x ∈ O. For τ ̸= 0 we now conclude from (4.9) that u = 0
in B2, contradicting the non-triviality of u for τ ̸= 0. For τ = 0 we conclude from (4.9) that ∆u = 0 in O. 
The Cauchy boundary conditions on S2 now imply that u = 0 in O, and the continuity of u across Sϵ in 
combination with the fact that ∆u = 0 in Bϵ yields that u = 0 in all of B2, contradicting the non-triviality 
of u also for τ = 0.

Assume now that k ∈ R \ {0} is a transmission eigenvalue; again let ϕ = u in the variational formulation 
(4.7) and take the imaginary part of the resulting equation to conclude that

0 =
∫

O

Im

( 1
q − 1

) ∣∣∆u + k2u
∣∣2 dx = k

|k2
ϵ − k2 − ik|2

∫

O

(2 − 2ϵ + |x|)d−1

(2 − ϵ)d|x|d−1
∣∣∆u + k2u

∣∣2 dx .

Therefore ∆u + k2u = 0 in O. Using the boundary conditions u = ∂νu = 0 on S2, we conclude that u = 0
in O. Since k ̸= 0 also conclude from the boundary conditions of (4.4) that u− = ∂−

ν u = 0 on Sϵ. The fact 
that ∆u + k2u = 0 in Bϵ now implies that u = 0 in Bϵ, and thus u = 0 in all of B2. This contradicts the 
non-triviality of u. !

4.2. Numerical evidence of finite accumulation points of transmission eigenvalues

In this section we assume that d = 2 and consider the transmission eigenvalue problem after change of 
variables, i.e., the problem (4.1). In polar coordinates (r, θ) we can expand the functions v and w as follows:

v(r, θ) =
∑

n∈Z

γnJn (kr) einθ, w(r, θ) =
∑

n∈Z

[αnAn(r) + βnBn(r)] einθ (4.10)

where αn, βn, γn are complex constants, Jn is the Bessel function of order n and An, Bn (which also depend 
on k and ϵ) are linearly independent solutions of

r2R′′ + rR′ +
[
k2r2 + k2σϵ(k)r(r + 2 − 2ϵ)

(2 − ϵ)2 − n2
]
R = 0 .
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The boundary conditions of (4.1) can be rewritten as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αnAn(2) + βnBn(2) = γnJn(2k)

αnA′
n(2) + βnB′

n(2) = γnkJ ′
n(2k)

αnAn(ϵ) + βnBn(ϵ) = 0 .

To obtain a nontrivial solution (v, w) (i.e., to ensure that k is an interior transmission eigenvalue) we need 
that there exists some n ∈ Z such that

f(n, k) := detM = 0 ,

where

M =

⎛

⎝
An(2) Bn(2) −Jn(2k)
A′

n(2) B′
n(2) −kJ ′

n(2k)
An(ϵ) Bn(ϵ) 0

⎞

⎠ .

The functions An, Bn can be expressed in terms of the Whittaker functions as follows:

An(r) = 1√
r
Mλϵ(k),|n|

(
2ik

√
σϵ(k) + (2 − ϵ)2

ϵ− 2 r

)
, (4.11)

where

λϵ(k) = ikσϵ(k)(1 − ϵ)
(2 − ϵ)

√
σϵ(k) + (2 − ϵ)2

, (4.12)

and Bn is given by the same formula except with Wλϵ(k),|n| in place of Mλϵ(k),|n|. The Whittaker functions 
Mλ,n(x) and Wλ,n(x) (for any non-negative integer n) are linearly independent solutions of the equation [1]

y′′ +
(
−1

4 + λ

x
+

1
4 − n2

x2

)
y = 0 .

Let us take kϵ = 1
ϵ and ϵ = 1

2 , then

κ =
√

k2
ϵ − 1

4 − i

2 ≈ 1.936 − i0.5

We show some numerical evidence that κ is a limit point of transmission eigenvalues. We conjecture that 
for each n = 1, 2, ... there exists kn ∈ C \ {κ} such that f(n, kn) = 0 and kn → κ as n → ∞. In other words, 
κ is a limit point of the transmission eigenvalues {kn}.

For each of the values n = 1, n = 7, and n = 12 (see Figs. 3–5), we present two plots of the functions 
ℜef(n, x + iτ) and Imf(n, x + iτ) as functions of x, corresponding to two different values of τ . The two 
values of τ are chosen to be close to Imκ = −0.5, and such that they exhibit two different configurations: 
one for which the intersection point of ℜef and Imf is below the horizontal axis, and one for which it is 
above the horizontal axis. This shows that for some intermediate value of τ both ℜef and Imf vanish. 
It is reasonable to expect that this common vanishing occurs at a point x near the x values of the two 
intersection points. One notes that as n increases the x values of the two intersection points get closer to 
1.936 − i0.5 Computations for larger values of n were consistent with this.
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Fig. 3. Plots of real and imaginary parts of f(n, x + iτ) for n = 1 and two different values of τ indicating where their intersection 
point crosses the horizontal axis.

Fig. 4. Plots of real and imaginary parts of f(n, x + iτ) for n = 7 and two different values of τ indicating where their intersection 
point crosses the horizontal axis.

Fig. 5. Plots of real and imaginary parts of f(n, x + iτ) for n = 12 and two different values of τ indicating where their intersection 
point crosses the horizontal axis.
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5. The scattering estimates

In this section we prove Theorems 3.3 and 3.5. The first observation is that the anisotropy in (2.9) can 
be eliminated, if we change the variables in the transmitted field ut

c, but leave the incident and scattered 
fields unchanged. Namely, let

us = us
c, ut = ut

c ◦ F, (5.1)

where F is given by (2.1), then ut is defined in B2 \Bϵ.
Invoking Lemma 2.1 and using the facts that F = Id on S2, F maps Sϵ onto S1 and that F−1

∗ Ac = I, 
we see that (2.9) can be equivalently rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆us + k2us = 0 , in Rd \B2

us satisfies the outgoing radiation condition

∆ut + k2qut = 0 , in B2 \Bϵ

∆ui + k2ui = 0 , in Rd

ut = ui + us , on S2

∂νut = ∂νui + ∂νus , on S2

ut = 0, on Sϵ ,

(5.2)

where

q(x, k) = F−1
∗ qc(x, k) =

⎧
⎨

⎩

1 , in Rd \B2

1 + σϵ(k)|detDF (x)|, in B2 \Bϵ .
(5.3)

Introducing

u =
{
ut , in B2 \Bϵ

ui + us, in Rd \B2 ,
(5.4)

the problem (5.2) can be rewritten as u ∈ H1
loc(Rd \Bϵ)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∆u + k2qu = 0 , in Rd \Bϵ

∆ui + k2ui = 0 , in Rd

u = 0 , on Sϵ

u− ui satisfies the outgoing radiation condition.

(5.5)

Here we used that the boundary conditions on S2 from (5.2) simply become !u" = !∂νu" = 0 on S2, i.e., u
and its normal derivative are continuous across S2.
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5.1. The Lippmann-Schwinger equation

Consider the fundamental solution of the Helmholtz equation in free space: for any x ̸= y

Φk(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

eik|x−y|

4π|x− y| , d = 3 ,

i

4H
(1)
0 (k|x− y|) , d = 2 .

(5.6)

We incorporate the homogeneous Dirichlet boundary condition of (5.5) into the fundamental solution, i.e., 
we let Φ0

k be the Green’s function for the Helmholtz equation in the region Rd \ Bϵ with the Dirichlet 
boundary condition in Sϵ. For any fixed y ∈ Rd \Bϵ Φ0

k(x, y) satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∆xΦ0
k(x, y) + k2Φ0

k(x, y) = −δy , x ∈ Rd \Bϵ

Φ0
k(x, y) = 0 , x ∈ Sϵ

Φ0
k(·, y) satisfies the outgoing radiation condition .

(5.7)

Clearly we can write

Φ0
k(x, y) = Φk(x, y) + Ψk(x, y) ,

where the function Ψk(·, y) is the unique solution to the following exterior Dirichlet boundary value problem 
for the Helmholtz equation

⎧
⎪⎪⎨

⎪⎪⎩

∆xΨk(x, y) + k2Ψk(x, y) = 0 , x ∈ Rd \Bϵ

Ψk(x, y) = −Φk(x, y) , x ∈ Sϵ

Ψk(·, y) satisfies the outgoing radiation condition .

(5.8)

Note that the boundary data −Φk(x, y) is smooth, hence the function Ψk(x, y) is smooth for x ∈ Rd \ Bϵ

and for any fixed y as above. Next, let us introduce the volume integral operator

Tu(x) = k2
∫

B2\Bϵ

(q(y, k) − 1)u(y)Φ0
k(x, y)dy. (5.9)

Then the solution u of (5.5) satisfies the integral equation

u− Tu = ui + uis, (5.10)

where uis is the scattered field from the ball Bϵ due to the incident field ui, i.e., it is the unique solution of
⎧
⎪⎪⎨

⎪⎪⎩

∆uis + k2uis = 0, in Rd \Bϵ

uis = −ui, on Sϵ

uis satisfies the outgoing radiation condition.

(5.11)

The equation (5.10) is known as the Lippmann-Schwinger equation for the scattering problem (5.5) written 
in terms of the Green’s function Φ0

k. It can be derived the same way as done for example in [10] (without 
Dirichlet boundary conditions and using the kernel Φk). In Lemma 5.1 (see also (5.23) and (5.24)) we prove 
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that for any fixed interval of wave numbers [k−, k+], 0 < k− < k+ < ∞, and any fixed R > 2 there exists 
an ϵ0 > 0 (depending on k+ and R) such that

∥T∥L2(BR\Bϵ)→L2(BR\Bϵ) ≤
1
2 , (5.12)

for any k ∈ [k−, k+], and ϵ < ϵ0. Therefore the operator I − T is invertible on L2(BR \Bϵ) and the integral 
equation (5.10) has a unique solution uR ∈ L2(BR \Bϵ). Furthermore uR = u|BR\Bϵ

where u is the solution 
of (5.5). This follows from the fact that u|BR\Bϵ

is in L2(BR \Bϵ) and as already noted satisfies the integral 
equation (5.10). It now follows immediately from (5.10), and the fact that the domain of integration for the 
operator T is B2 \Bϵ, that the solution to (5.5) is given by

u = TuR + ui + uis

in all of Rd \Bϵ. Note that due to the mapping properties of the volume potential TuR is in H1
loc(Rd \Bϵ). 

The above argument shows that solving (5.5) is equivalent to solving the Lippmann-Schwinger equation 
(5.10) on BR \Bϵ (for any bounded set of wave numbers [k−, k+] and ϵ sufficiently small).

5.2. Proof of Theorems 3.3 and 3.5

The main ingredients of the proofs of Theorems 3.3 and 3.5 are ϵ-explicit estimates for the scattered field 
uis and the operator T in appropriate Sobolev spaces. We state these estimates in the two lemmata below, 
however, for clarity of exposition their proofs are postponed to subsequent sections (see Section 5.3 and 
Section 5.4, respectively).

Lemma 5.1. Let T be defined by (5.9), and let Mϵ,k and a(k) be defined by (3.1) and (3.2), respectively. 
Suppose R > 1, k0 > 0, and 0 < ϵk < k0. Then for any u ∈ L2(B2 \Bϵ)

∥Tu∥L2(BR\Bϵ) ! k2a(k)Mϵ,k∥u∥L2(B2\Bϵ) ,

where the implicit constant depends only on R and k0.

Lemma 5.2. Let uis be defined by (5.11), let R > 1, and k0 > 0. Assume 0 < ϵk < k0 and that ui satisfies 
(3.3), then

∥uis∥L2(BR\B1) !

⎧
⎪⎪⎨

⎪⎪⎩

ϵ , d = 3 ,

|H(1)
0 (k)|

|H(1)
0 (ϵk)|

, d = 2 ,

and

∥uis∥L2(BR\Bϵ) ! ϵd−2 ,

where the implicit constants depend only on R, k0 and C (the constant from the inequality (3.3) for the 
incident field ui).

With the help of the above lemmata we now prove the following scattering estimate:
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Theorem 5.3. Let Mϵ,k and a(k) be defined by (3.1) and (3.2), respectively. Suppose R > 2, k0 > 0, and 
0 < ϵk < k0, and suppose ui satisfies (3.3). Let u be the solution to (5.5). There exists a constant c =
c(k0, R) > 0 such that, if k2a(k)Mϵ,k < c, then

∥u− ui∥L2(BR\Bϵ) ! ϵd−2 + k2a(k)Mϵ,k∥ui∥L2(BR) , for d = 2, 3 , (5.13)

and

∥u− ui∥L2(BR\B1) !
|H(1)

0 (k)|
|H(1)

0 (ϵk)|
+ k2a(k)Mϵ,k

(
1 + ∥ui∥L2(BR)

)
, for d = 2 , (5.14)

where the implicit constants depend only on R, k0 and C (the constant from the inequality (3.3)).

Remark 5.4. As an immediate corollary we obtain Theorem 3.3, because u − ui = us = us
c outside B2.

Proof. Consider the Lippmann-Schwinger equation (5.10) in the space L2(BR \Bϵ). Lemma 5.1 implies that 
there exists a constant C1 = C1(k0, R) > 0, such that

∥T∥L2(BR\Bϵ)→L2(BR\Bϵ) ≤ C1k
2a(k)Mϵ,k =: r

Assume that r < 1
2 , or equivalently k2a(k)Mϵ,k < 1

2C1
=: c. Then the operator I − T is invertible on 

L2(BR \Bϵ) and using (5.10) and the Neumann series expansion we obtain

u = (I − T )−1(ui + uis) = ui + uis +
∞∑

n=1
Tn(ui + uis).

Upon summation of the geometric series, the above equation implies the bound

∥u− ui∥L2(BR\Bϵ) ≤ ∥uis∥L2(BR\Bϵ) + r

1 − r
∥ui + uis∥L2(BR\Bϵ)

≤ ∥uis∥L2(BR\Bϵ) + 2r
(
∥ui∥L2(BR) + ∥uis∥L2(BR\Bϵ)

)

! ∥uis∥L2(BR\Bϵ) + r∥ui∥L2(BR)

! ϵd−2 + r∥ui∥L2(BR),

where in the last step we used Lemma 5.2. This concludes the proof of the inequality (5.13).
To prove (5.14), we take d = 2. From the Lippmann-Schwinger equation u − ui = uis + Tu, and hence, 

using Lemma 5.2 we have,

∥u− ui∥L2(BR\B1) ≤ ∥uis∥L2(BR\B1) + ∥Tu∥L2(BR\Bϵ) !
|H(1)

0 (k)|
|H(1)

0 (ϵk)|
+ r∥u∥L2(BR\Bϵ).

From (5.13) with d = 2 we have

∥u∥L2(BR\Bϵ) ≤ ∥ui∥L2(BR) + ∥u− ui∥L2(BR\Bϵ) ! ∥ui∥L2(BR) + 1 + k2a(k)Mϵ,k∥ui∥L2(BR)

! 1 + ∥ui∥L2(BR),

where in the last step we used the assumption that k2a(k)Mϵ,k < c. A combination of the last two estimates 
and insertion of r = C1k2a(k)Mϵ,k leads to (5.14). !
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Before proceeding to the proof of Theorem 3.5, we first estimate the far field pattern u∞, given by (2.10), 
in terms of the L2(B5 \B2)-norm of the scattered field us, given by (5.1) and (2.9).

In the following, by using the term “an absolute implicit constant”, we signify that, the inequality in question 
holds with a positive constant independent of the involved parameters.

Lemma 5.5. With an absolute implicit constant, for any |x̂| = 1 and k > 0,

|u∞(x̂)| ! (1 + k3)∥us∥L2(B5\B2) ·

⎧
⎨

⎩

1 , d = 3 ,

k−
1
2 , d = 2 .

(5.15)

Proof. The far field pattern has the following representation [10]:

u∞(x̂) = I ·

⎧
⎪⎪⎨

⎪⎪⎩

1
4π , d = 3 ,

ei
π
4

√
8πk

, d = 2 ,

where

I =
∫

S4

(
us(y)∂νye

−ikx̂·y − ∂νu
s(y)e−ikx̂·y) ds(y) ,

and S4 is the d − 1-sphere of radius 4 centered at the origin (note that one could use any d − 1 manifold 
circumscribing B2 in its interior). Using Hölder’s inequality and the duality H− 1

2 ⊂ L2 ⊂ H
1
2 with the 

pivot space L2, we can bound

|I| !k∥us∥L2(S4) + ∥e−ikx̂·y∥
H

1
2 (S4)

∥∂νus∥
H− 1

2 (S4)

!k∥us∥H1(B4\B3) + ∥e−ikx̂·y∥H1(B4\B3)∥∂νu
s∥

H− 1
2 (S4)

!k∥us∥H1(B4\B3) + (1 + k)∥∂νus∥
H− 1

2 (S4)
,

where in the second step we used trace estimates. Next we bound the H− 1
2 -norm of ∂νus. Given any 

φ ∈ H
1
2 (S4), consider its extension to B4 \B3 via a bounded right inverse of the trace operator:

⎧
⎪⎪⎨

⎪⎪⎩

wφ ∈ H1(B4 \B3)
wφ = 0 , on S3 ,

wφ = φ , on S4 .

(5.16)

As this defines a bounded operator from H
1
2 (S3∪S4) to H1(B4\B3), we have that with an absolute implicit 

constant

∥wφ∥H1(B4\B3) ! ∥φ∥
H

1
2 (S4)

. (5.17)

Now using the fact that us satisfies the Helmholtz equation in B4 \B3, we obtain

⟨∂νus,φ⟩ =
∫

B4\B3

∇us ·∇wφ + wφ∆usdy =
∫

B4\B3

∇us ·∇wφ − k2wφu
sdy ,
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where ⟨·, ·⟩ denotes the dual pairing between H− 1
2 (S4) and H

1
2 (S4). Using the Hölder’s inequality and (5.17)

we arrive at

|⟨∂νus,φ⟩| ! ∥φ∥
H

1
2 (S4)

(
∥∇us∥L2(B4\B3) + k2∥us∥L2(B4\B3)

)
,

which readily implies

∥∂νus∥
H− 1

2 (S4)
! ∥∇us∥L2(B4\B3) + k2∥us∥L2(B4\B3) .

Using that k + k2 + k3 ! k + k3, we obtain the bound

|I| ! (k + k3)∥us∥L2(B4\B3) + (1 + k)∥∇us∥L2(B4\B3). (5.18)

It remains to bound the L2-norm of ∇us, which can be done via the L2-norm of us over a larger domain by 
introducing a cut-off function and using the equation that us satisfies. Indeed, let 0 ≤ ψ ≤ 1 be a cut-off 
function such that supp ψ ⊂ B5 \B2, ψ ≡ 1 on B4 \B3 and |∇ψ| ≤ C on B5 \B2, with an absolute constant 
C > 0. Since

∆us + k2us = 0, in B5 \B2 ,

multiplication by ψ2us and integration by parts leads to
∫

B5\B2

|∇us|2ψ2dy = k2
∫

B5\B2

|us|2ψ2dy − 2
∫

B5\B2

ψ∇us · us∇ψdy

≤ k2
∫

B5\B2

|us|2ψ2dy + 1
2

∫

B5\B2

|∇us|2ψ2dy + 2
∫

B5\B2

|us|2|∇ψ|2dy ,

which implies

1
2

∫

B5\B2

|∇us|2ψ2dy ≤ (k2 + 2C2)
∫

B5\B2

|us|2dy .

Consequently,

∥∇us∥L2(B4\B3) ! (1 + k)∥us∥L2(B5\B2) .

Combining with (5.18) we obtain

|I| ! (k + k3)∥us∥L2(B5\B2) + (1 + k)2∥us∥L2(B5\B2) ! (1 + k3)∥us∥L2(B5\B2) , (5.19)

which concludes the proof. !

We are ready to establish the following broadband approximate cloaking estimates:

Theorem 5.6. Let R > 2 and k+ > k− > 0, and set Γ = [k−, k+]. Assume that for some constant c∗ > 0, 
k2
ϵ > c∗ϵ−3 for d = 3, and k2

ϵ > c∗| ln ϵ|/ϵ for d = 2. Assume further that ui satisfies the estimate (3.6). Let 
u be the solution to (5.5) with q given by (5.3). There exists a constant c1 = c1(k−, k+, R, c∗) > 0 such that, 
for all ϵ < c1 and k ∈ Γ
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∥u− ui∥L2(BR\B1) !
{
ϵ , d = 3 ,

1/| ln ϵ| , d = 2 ,

where the implicit constant depends only on k−, k+, R, c∗ and CR (the constants from (3.6)). Furthermore, 
there exists a constant c2 = c2(k−, k+, c∗) > 0, such that for all ϵ < c2, k ∈ Γ and |x̂| = 1,

|u∞(x̂)| !
{
ϵ , d = 3 ,

1/| ln ϵ| , d = 2 ,

where the implicit constant depends only on k−, k+, c∗ and C5.

Remark 5.7.

(i) Since u − ui = us
c outside of B2 Theorem 3.5 follows as an immediate corollary of the above result.

(ii) For d = 3 the following proof can be easily modified to show we can bound u − ui up to the inner 
boundary Sϵ, i.e.,

∥u− ui∥L2(BR\Bϵ) ! ϵ .

Proof. We note that since ui is a solution to ∆ui + k2ui = 0 in all of Rd, it follows by interior elliptic 
regularity estimates that for k ∈ Γ, ∥ui∥L∞(B1) + ∥∇ui∥L∞(B1) ≤ C∥ui∥L2(B2), with a constant that only 
depends on k+. Due to (3.6) we thus conclude that ui, k ∈ Γ, satisfies the condition (3.3) as well (for ϵ < 1) 
with a constant that only depends on C2 and k+.

We proceed to estimate Mϵ,k. In view of (3.1), (5.3) and Lemma 4.2,

Mϵ,k = |σϵ(k)|∥ detDF∥L∞(B2\Bϵ) = |σϵ(k)|
(2 − ϵ)d sup

r∈(ϵ,2)

(
1 + 2 − 2ϵ

r

)d−1
= |σϵ(k)|

(2 − ϵ)ϵd−1 .

Assume that ϵ < 1 is so small that

k2
ϵ ≥ max

{
k2
+, 2(k2

+ − k+)
}
, (5.20)

then for any k ∈ [0, k+]

|σϵ(k)| ≤
√

2
|k2

ϵ − k2| + k
=

√
2

k2
ϵ − k2 + k

,

where in the last step we used that k2
ϵ ≥ k2

+. The function k 7→ k2
ϵ − k2 + k is positive and increasing on 

[0, 12 ], and it is positive and decreasing on [ 12 , k+] (if k+ > 1
2 ). Thus it follows that

k2
ϵ − k2 + k ≥ min{k2

ϵ , k
2
ϵ − k2

+ + k+} ≥ k2
ϵ

2 for k ∈ [0, k+] ,

where in the second inequality we have used that k2
ϵ ≥ 2(k2

+ − k+). As a consequence

max
k∈Γ

|σϵ(k)| ≤ 2
√

2
k2
ϵ

≤ 2
√

2
c∗

·
{
ϵ3, d = 3,
ϵ/| ln ϵ|, d = 2.

We now conclude that there exist positive constants c0, C0 depending only on c∗ and k+, such that
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max
k∈Γ

Mϵ,k ≤ C0 ·
{
ϵ, d = 3,
1/| ln ϵ|, d = 2,

∀ ϵ ≤ c0 . (5.21)

Let us further assume ϵ < 1/k+ so that 0 < ϵk < 1 for k ∈ Γ. By Theorem 5.3 there exists a constant 
c = c(R) > 0 such that if k2a(k)Mϵ,k < c (and k is in Γ) then

∥u− ui∥L2(BR\B1)

!

⎧
⎪⎪⎨

⎪⎪⎩

ϵ + k2Mϵ,k∥ui∥L2(BR) for d = 3 ,

|H(1)
0 (k)|

|H(1)
0 (ϵk)|

+ k2Mϵ,k min{1 + | ln k|, k− 1
4 }

(
1 + ∥ui∥L2(BR)

)
for d = 2 .

(5.22)

Consider first the case d = 3. If we assume that ϵ < c/C0k2
+, then

max
k∈Γ

k2Mϵ,k ≤ k2
+C0ϵ < c , (5.23)

and consequently (5.22) can be applied for all k ∈ Γ. Using the hypothesis (3.6) and (5.21) we conclude 
that for ϵ small enough

max
k∈Γ

∥u− ui∥L2(BR\B1) ! ϵ for d = 3 ,

where the implicit constant depends only on k+, R, c∗ and CR.
Let us now consider d = 2. The function a(k) = min{1 + | ln k|, k− 1

4 } is decreasing, therefore, assuming 
that ϵ < e−C0k

2
+a(k−)/c we have

max
k∈Γ

k2a(k)Mϵ,k ≤ C0
| ln ϵ|k

2
+a(k−) < c . (5.24)

Similarly, as before we conclude that, for k ∈ Γ,

∥u− ui∥L2(BR\B1) !
|H(1)

0 (k)|
|H(1)

0 (ϵk)|
+ 1

| ln ϵ| .

The function |H(1)
0 (t)| is decreasing and H(1)

0 (t) ∼ 2
iπ | ln t| as t → 0 (cf. [22]). Hence we have the following 

basic estimates: |H(1)
0 (k)| ≤ |H(1)

0 (k−)| and

|H(1)
0 (t)| " | ln t|, ∀ t ∈ (0, 1

2 ).

These readily imply the inequality

∥u− ui∥L2(BR\B1) !
1

| ln(ϵk)| + 1
| ln ϵ| .

Since by assumption ϵk+ < 1 we get

min
k∈Γ

| ln(ϵk)| = | ln(ϵk+)| ≥ 1
2 | ln ϵ| ,

where the last inequality holds, provided ϵ < 1/k2
+. Putting everything together we conclude that for ϵ

sufficiently small
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max
k∈Γ

∥u− ui∥L2(BR\B1) !
1

| ln ϵ| .

The corresponding estimates for the far field pattern readily follow from Lemma 5.5. !

5.3. Scattering from a small obstacle: Proof of Lemma 5.2

In this section we show that Lemma 5.2 is a direct consequence of the following result due to Nguyen 
and Vogelius [27] (see also [24]):

Lemma 5.8. Let D ⊂ B1 ⊂ Rd be a smooth open subset with Rd \ D connected. Let f ∈ H
1
2 (∂D), k0 > 0

and 0 < k < k0. Let u be the outward radiating solution to the problem
{

∆u + k2u = 0, in Rd \D ,

u = f on ∂D .

Then for any β ≥ 1

∥u∥H1(Bβ\D) !

⎧
⎨

⎩
β

1
2 ∥f∥

H
1
2 (∂D) , d = 3 ,

β∥f∥
H

1
2 (∂D) , d = 2 ,

(5.25)

where the implicit constant depends only on k0 and D but is independent of β and k. Furthermore, for 
R > 1, β ≥ 1

∥u∥L2(BRβ\Bβ) ! β
|H(1)

0 (βk)|
|H(1)

0 (k)|
∥f∥

H
1
2 (∂D) , d = 2 , (5.26)

where the implicit constant depends only on k0, D, and R but is independent of β and k.

Remark 5.9. The estimate (5.25) for the L2-norm of u and (5.26), in the case R = 2, is proven in Lemma 3 
of [27] under the assumption that k0 is sufficiently small (see also the beginning of the proof of Lemma 4). 
The subsequent Remark 4 of [27] explains that these estimates hold without any smallness assumption on 
k0. The extension of (5.26) to any R > 1 is immediate. Finally, the extension from an L2 estimate of u to 
an H1 estimate, as in (5.25), is guaranteed by Lemma 4 of [27].

As a straightforward consequence of Lemma 5.8 (with D = B 1
2
⊂ B1) we obtain the following corollary.

Corollary 5.10. (Scattering from a small ball) Let ϵ < 1
2 , R > 1, k0 > 0 with 0 < 2ϵk < k0. Let f ∈ H

1
2 (Sϵ)

and u be the outward radiating solution of the problem
{

∆u + k2u = 0, in Rd \Bϵ

u = f on Sϵ

Let R > 1 and set fϵ = f(2ϵ·), then

∥u∥L2(BR\B1) ! ∥fϵ∥H 1
2 (S 1

2
) ·

⎧
⎪⎪⎨

⎪⎪⎩

ϵ , d = 3 ,

|H(1)
0 (k)|

|H(1)
0 (ϵk)|

, d = 2 ,
(5.27)

where the implicit constant depends only on R and k0.
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Remark 5.11.

(i) We will see in the proof of Corollary 5.10 below that one can also obtain the following bounds up to 
the inner boundary Sϵ:

∥u∥L2(BR\Bϵ) ! ϵd−2∥fϵ∥H 1
2 (S 1

2
) , ∥∇u∥L2(BR\Bϵ) ! ϵd−3∥fϵ∥H 1

2 (S 1
2
) , (5.28)

where again the implicit constants depend only on R and k0. These estimates for d = 3 are as good as 
the bound in (5.27), in terms of being of the same order ϵ. However, for d = 2 the smallness in ϵ is lost.

(ii) For scattering estimates in other frequency regimes (e.g. the high frequency case) we refer to [27], and 
also to [17] concerning asymptotically precise estimates for a small circular inhomogeneity and d = 2.

Proof. Let uϵ(y) = u(2ϵy), then uϵ is the radiating solution of the problem
{

∆uϵ + (2ϵ)2k2uϵ = 0, in Rd \B 1
2

uϵ = fϵ on S 1
2

Let us start with the case d = 2. By scaling the norm and using the estimate (5.26) of Lemma 5.8 we obtain

∥u∥L2(BR\B1) = 2ϵ∥uϵ∥L2(B R
2ϵ

\B 1
2ϵ

) !
|H(1)

0 (k)|
|H(1)

0 (2ϵk)|
∥fϵ∥H 1

2 (S 1
2
). (5.29)

It remains to use the estimate

|H(1)
0 (ϵk)| ! |H(1)

0 (2ϵk)|,

which holds true with an absolute implicit constant as the function H(1)
0 has no real zeros, and as the 

functions H(1)
0 (·) and H(1)

0 (2·) have the same asymptotics at 0 and at ∞.
In the case d = 3 the argument works analogously, giving the bound

∥u∥L2(BR\B1) ! ϵ∥fϵ∥H 1
2 (S 1

2
).

To prove bounds up to the inner boundary Sϵ we first note that

∥u∥L2(BR\Bϵ) = (2ϵ)
d
2 ∥uϵ∥L2(B R

2ϵ
\B 1

2
), ∥∇u∥L2(BR\Bϵ) = (2ϵ)

d
2−1 ∥∇uϵ∥L2(B R

2ϵ
\B 1

2
). (5.30)

The estimate (5.25) implies the bound

∥uϵ∥L2(B R
2ϵ

\B 1
2
) + ∥∇uϵ∥L2(B R

2ϵ
\B 1

2
) = ∥uϵ∥H1(B R

2ϵ
\B 1

2
) ! ∥fϵ∥H 1

2 (S 1
2
) ·

{
ϵ−

1
2 , d = 3,

ϵ−1, d = 2,

with an implicit constant that depends only on R and k0. In combination with (5.30) this now leads to the 
bounds (5.28). !

To conclude the proof of Lemma 5.2 we apply the above corollary and the first estimate in (5.28) to the 
function uis. That way we obtain the desired estimates of Lemma 5.2, but with the additional factor

∥fϵ∥H 1
2 (S 1

2
) = ∥ui(2ϵ·)∥

H
1
2 (S 1

2
)
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on the right-hand sides of the inequalities. It thus remains to prove that the above quantity is bounded by 
a constant depending only on k0. To this end, the standard trace estimate and a rescaling of the norms give

∥ui(2ϵ·)∥
H

1
2 (S 1

2
) ! ∥ui(2ϵ·)∥H1(B 1

2
) = ∥ui(2ϵ·)∥L2(B 1

2
) + 2ϵ∥∇ui(2ϵ·)∥L2(B 1

2
)

= (2ϵ)− d
2 ∥ui∥L2(Bϵ) + (2ϵ)1− d

2 ∥∇ui∥L2(Bϵ) ! ∥ui∥L∞(Bϵ) + ϵ∥∇ui∥L∞(Bϵ) ! 1 .

For the last inequality we used the assumption (3.3).

5.4. Bounds for the operator T : Proof of Lemma 5.1

Let us split the operator T into two parts: T = T1 + T2, where

T1u(x) = k2
∫

B2\Bϵ

(q(y, k) − 1)u(y)Φk(x, y)dy , (5.31)

and

T2u(x) = k2
∫

B2\Bϵ

(q(y, k) − 1)u(y)Ψk(x, y)dy , (5.32)

with Ψk given by (5.8). Thus, to bound Tu on L2(BR \ Bϵ), it suffices to bound T1u and T2u. We start 
by deriving some estimates for the fundamental solution, Φk, in Lemma 5.12 below. These are then used 
in Lemma 5.13 to obtain bounds for T1u. To bound T2u we need L2(Bϵ)-norm bounds for T1u and ∇T1u, 
with explicit dependence on the small parameter ϵ. Parts (ii) and (iv) of Lemma 5.13 serve that purpose, 
and this is where the estimates on the derivatives of the fundamental solution from part (ii) of Lemma 5.12
will be used. The bound for T2u is given in Lemma 5.14. Finally, Lemma 5.1 is a direct consequence of 
Lemmas 5.13 and 5.14.

Lemma 5.12. Let Φk be given by (5.6).

(i) Let R, r > 0. With implicit constants depending only on R and r,

sup
x∈BR

∫

Br

|Φk(x, y)|2dy !
{

1 , d = 3 ,

min{1 + ln2 k , k−1}, d = 2 .

(ii) Let R, r > 0. With an absolute implicit constant (i.e. independent of all the involved parameter R, r
and k)

sup
x∈BR

∫

Br

|∇xΦk(x, y)|dy ! r
(
1 + (rk) d−1

2

)
.

Proof. The case d = 3: Let us start by showing that for any x ∈ R3 with implicit constants independent 
of x and r,

∫

Br

dy

|x− y|2 ! r ,

∫

Br

dy

|x− y| ! r2 . (5.33)
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We prove only the first inequality, the second follows analogously. Assume first that x ∈ B2r, then Br ⊂
B3r(x) and hence

∫

Br

dy

|x− y|2 ≤
∫

B3r(x)

dy

|x− y|2 =
∫

B3r

dz

|z|2 = 4π
3r∫

0

dρ = 12πr .

If now x /∈ B2r we use that |y − x| ≥ |x| − |y| ≥ 2r − r = r for any y ∈ Br, so that

∫

Br

dy

|x− y|2 ≤ 1
r2 |Br| ! r .

Consequently, we immediately obtain

∫

Br

|Φk(x, y)|2dy !
∫

Br

dy

|x− y|2 ! r .

This concludes the proof of part (i). Let us turn to gradient bounds. Direct calculation shows that

∇xΦk(x, y) = 1
4π e

ik|x−y| (ik|x− y|− 1) x− y

|x− y|3 ,

and hence

|∇xΦk(x, y)| =
√

1 + k2|x− y|2
4π|x− y|2 ≤ 1

4π|x− y|2 + k

4π|x− y| . (5.34)

From (5.33) we conclude that

∫

Br

|∇xΦk(x, y)|dy ! r + r2k .

The case d = 2: Analogously to (5.33), for any x ∈ R2 with implicit constants independent of x and r,

∫

Br

dy

|x− y| ! r,

∫

Br

dy√
|x− y|

! r
3
2 . (5.35)

We use the asymptotic relations [22]

H(1)
0 (t) ∼ 2

iπ
| ln t| , as t → 0 , and H(1)

0 (t) ∼
√

2π
t
ei(t−

π
4 ) , as t → ∞ ,

to obtain the bound

|H(1)
0 (t)| ! | ln t|χ(0, 12 )(t) + 1√

t
χ( 1

2 ,∞)(t) , ∀t ≥ 0 ,

which then implies
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∫

Br

|Φk(x, y)|2dy !
∫

Br

[
ln2(k|x− y|)χ(0, 12 )(k|x− y|) + 1

k|x− y|χ( 1
2 ,∞)(k|x− y|)

]
dy

=
∫

Br∩B 1
2k

(x)

ln2(k|x− y|)dy +
∫

Br∩BC
1
2k

(x)

1
k|x− y|dy =: I1 + I2 .

Let us start by bounding I2. Using that |x −y| > 1
2k it is clear that I2 ! 1 with implicit constant depending 

only on r. This bound can be improved when k is large. Indeed, to get a better bound in that case, observe 
that

sup
x∈BR

I2 ≤ 1
k

sup
x∈BR

∫

Br

1
|x− y|dy ! 1

k
,

where the last inequality follows from (5.35). Combining, the two estimates, we have (with an implicit 
constant depending only on r)

sup
x∈BR

I2 ! min{1, k−1} .

Let us turn to bounding I1. Dropping Br from the integration and changing the variables z = y − x inside 
the integral, we get

I1 ≤
∫

B 1
2k

ln2(k|z|)dz = 1
k2

∫

B 1
2

ln2(|z|)dz ! 1
k2 , (5.36)

where in the last step we used that ln2 |z| has an integrable singularity at z = 0. This bound can be improved 
when k is small. Dropping B 1

2k
(x) from the integral I1 and using the inequality

ln2(k|x− y|) ! ln2 k + ln2 |x− y|,

we arrive at the estimate

sup
x∈BR

I1 ! ln2 k + sup
x∈BR

∫

Br

ln2 |x− y|dy ! ln2 k + 1 . (5.37)

The last inequality is easily established, based on the estimate

ln2 t ! 1
t
χ(0,1)(t) + tχ1,∞)(t), ∀t ≥ 0 .

Indeed,

sup
x∈BR

∫

Br

ln2 |x− y|dy ! sup
x∈BR

∫

Br∩B1(x)

1
|x− y|dy + sup

x∈BR

∫

Br∩BC
1 (x)

|x− y|dy

≤
∫

B1

1
|z|dz + (r + R)|Br| ! 1 .

Combining the two estimates (5.36) and (5.37), we arrive at

sup
x∈BR

I1 ! min{1 + ln2 k, k−2} .
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Finally, a combination of the bounds for I1 and I2 yields that

sup
x∈BR

∫

Br

|Φk(x, y)|2dy ! min{1 + ln2 k, k−2} + min{1, k−1} ! min{1 + ln2 k, k−1} .

For gradient bounds in 2d we use the asymptotic relations

H(1)
0

′
(t) ∼ − 2

iπt
, as t → 0 , and H(1)

0
′
(t) ∼ i

√
2π
t
ei(t−

π
4 ) , as t → ∞ ,

along with the bound

|H(1)
0

′
(t)| ! 1

t
χ(0,1)(t) + 1√

t
χ(1,∞)(t) , ∀t ≥ 0 .

Since

∇xΦk(x, y) = ik

4 H(1)
0

′
(k|x− y|) x− y

|x− y| ,

we obtain, with the help of (5.35), that
∫

Br

|∇xΦk(x, y)|dy !
∫

Br∩B 1
k

(x)

dy

|x− y| +
√
k

∫

Br∩BC
1
k

(x)

dy√
|x− y|

! min{r, k−1} +
√
kr

3
2

= r
[
min{1, (rk)−1} +

√
rk

]
≤ r

(
1 +

√
rk

)
,

with an implicit constant independent of r and x. !

Lemma 5.13. Let T1 be defined by (5.31), R > 1, ϵ < 1 and Mϵ,k be given by (3.1). Then for any u ∈
L2(B2 \Bϵ),

(i) ∥T1u∥L2(BR\Bϵ) ! k2Mϵ,k∥u∥L2(B2\Bϵ) ·
{

1 , d = 3 ,

min{1 + | ln k|, k− 1
2 } , d = 2 .

(ii) ∥T1u∥L2(Bϵ) ! ϵ
d
2 k2Mϵ,k∥u∥L2(B2\Bϵ) ·

{
1 , d = 3 ,

min{1 + | ln k|, k− 1
2 } , d = 2 .

(iii) ∥∇T1u∥L2(BR\Bϵ) ! k2(1 + k
d−1
2 )Mϵ,k∥u∥L2(B2\Bϵ)

(iv) ∥∇T1u∥L2(Bϵ) !
√
ϵk2(1 + k

d−1
4 )(1 + (ϵk) d−1

4 )Mϵ,k∥u∥L2(B2\Bϵ)

where all the implicit constants are independent of u, ϵ and k. The implicit constants in (i) and (iii) depend 
only on R; and those in (ii) and (iv) are absolute constants.

Proof. We set ΩR = BR \Bϵ, in particular Ω2 = B2 \Bϵ. Note that, by Hölder’s inequality we have

|T1u(x)| ≤ k2Mϵ,k∥u∥L2(Ω2)∥Φk(x, ·)∥L2(Ω2),

which implies the estimate
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∥T1u∥L2(ΩR) ≤ k2Mϵ,k∥u∥L2(Ω2)

⎛

⎝
∫

ΩR

∥Φk(x, ·)∥2
L2(Ω2)dx

⎞

⎠

1
2

. (5.38)

Using part (i) of Lemma 5.12, we obtain that

∫

ΩR

∫

Ω2

|Φk(x, y)|2dydx ≤ |BR| sup
x∈BR

∫

B2

|Φk(x, y)|2dy !
{

1 , d = 3 ,

min{1 + ln2 k, k−1} , d = 2 ,

where the implicit constant depends only on R. This concludes the proof of part (i).
The proof of (ii) proceeds analogously, with Bϵ in place of ΩR, and the conclusion follows from the 

estimate
∫

Bϵ

∥Φk(x, ·)∥2
L2(Ω2)dx ≤ |Bϵ| sup

x∈Bϵ

∫

B2\Bϵ

|Φk(x, y)|2dy ! ϵd sup
x∈B1

∫

B2

|Φk(x, y)|2dy

! ϵd ·

⎧
⎨

⎩
1 , d = 3 ,

min{1 + ln2 k, k−1} , d = 2 .

The above direct estimation argument cannot be used to bound the L2-norm of ∇T1u, as ∇T1u is an 
integral operator whose kernel is not square integrable. However, we can obtain bounds using interpolation. 
To this end, differentiating inside the integral we have

∇T1u(x) =
∫

Ω2

K(x, y)u(y)dy =: T g
1 u(x) , K(x, y) = k2(q(y, k) − 1)∇xΦk(x, y) .

Clearly,

∥T g
1 u∥L∞(ΩR) ≤ sup

x∈ΩR

∫

Ω2

|K(x, y)|dy · ∥u∥L∞(Ω2) ≤ k2Mϵ,k∥u∥L∞(Ω2) sup
x∈ΩR

∫

Ω2

|∇xΦk(x, y)|dy ,

∥T g
1 u∥L1(ΩR) ≤ sup

y∈Ω2

∫

ΩR

|K(x, y)|dx · ∥u∥L1(Ω2) ≤ k2Mϵ,k∥u∥L1(Ω2) sup
y∈Ω2

∫

ΩR

|∇xΦk(x, y)|dx .

Using part (ii) of Lemma 5.12, we get

sup
x∈ΩR

∫

Ω2

|∇xΦk(x, y)|dy ≤ sup
x∈BR

∫

B2

|∇xΦk(x, y)|dy ! 1 + k
d−1
2 ,

and noting that ∇xΦk(x, y) = −∇yΦk(y, x), we similarly get

sup
y∈Ω2

∫

ΩR

|∇xΦk(x, y)|dx ≤ sup
y∈B2

∫

BR

|∇yΦk(y, x)|dx ! 1 + k
d−1
2 ,

where the implicit constants depend only on R. Thus we obtain that T g
1 : L1(Ω2) → L1(ΩR) and T g

1 :
L∞(Ω2) → L∞(ΩR) both have operator norms bounded by Ck2(1 + k

d−1
2 )Mϵ,k, where C is a constant 

depending only on R. The Marcinkiewicz interpolation theorem [11] now implies that T1 maps L2(Ω2) into 
L2(ΩR) with the operator norm bound
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∥T g
1 ∥L2(Ω2)→L2(ΩR) ≤ 2

√
2Ck2(1 + k

d−1
2 )Mϵ,k ,

which concludes the proof of part (iii).
The proof of part (iv) proceeds analogously, with Bϵ in place of ΩR. Part (ii) of Lemma 5.12 implies the 

estimate

sup
y∈Ω2

∫

Bϵ

|∇xΦk(x, y)|dx ! ϵ(1 + (ϵk) d−1
2 ),

with an absolute implicit constant. We then conclude that

∥T g
1 ∥L∞(Ω2)→L∞(Bϵ) ≤ Ck2(1 + k

d−1
2 )Mϵ,k and ∥T g

1 ∥L1(Ω2)→L1(Bϵ) ≤ Ck2ϵ(1 + (ϵk) d−1
2 )Mϵ,k,

where C is an absolute constant. Again using the Marcinkiewicz interpolation theorem we obtain

∥T g
1 ∥L2(Ω2)→L2(Bϵ) ≤ 2

√
2Ck2Mϵ,k

[
ϵ(1 + k

d−1
2 )(1 + (ϵk) d−1

2 )
] 1

2
. !

Lemma 5.14. Let T2 be defined by (5.32), k0 > 0 and R > 1. Suppose 0 < ϵk < k0 and let Mϵ,k be given by 
(3.1). Then for any u ∈ L2(B2 \Bϵ)

∥T2u∥L2(BR\Bϵ) ! k2Mϵ,k∥u∥L2(B2\Bϵ) ·
{√

ϵ, d = 3,
min{1 + | ln k|, k− 1

4 }, d = 2 ,
(5.39)

where the implicit constant depends only on R and k0.

Proof. Let v = T2u and f = −T1u then, using that Tu vanishes on Sϵ, we conclude that v is the outward 
radiating solution to the problem

⎧
⎨

⎩
∆v + k2v = 0, in Rd \Bϵ

v = f, on Sϵ.

As before we introduce the notation fϵ(x) = f(2ϵx). Using Corollary 5.10 (and the remark following) 
specifically the first estimate of (5.28) we now get, for d = 3,

∥v∥L2(BR\Bϵ) ! ϵ∥fϵ∥H 1
2 (S 1

2
) ! ϵ∥T1u(2ϵ·)∥H1(B 1

2
)

! 1√
ϵ
∥T1u∥L2(Bϵ) +

√
ϵ∥∇T1u∥L2(Bϵ)

! ϵk2Mϵ,k(1 +
√
k)∥u∥L2(B2\Bϵ) ,

where in the last step we used the parts (ii) and (iv) of Lemma 5.13. To conclude the proof, it remains to 
observe that ϵ(1 +

√
k) ! √

ϵ, due to the bound ϵk < k0.
Similarly, for d = 2 we have

∥v∥L2(BR\Bϵ) ! ∥fϵ∥H 1
2 (S 1

2
) ! ∥T1u(2ϵ·)∥H1(B 1

2
)

! 1
ϵ
∥T1u∥L2(Bϵ) + ∥∇T1u∥L2(Bϵ)

! k2Mϵ,kCϵ,k∥u∥L2(B2\Bϵ) ,
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where

Cϵ,k = min{1 + | ln k|, k− 1
2 } +

√
ϵ(1 + k

1
4 ) .

Using that ϵ < 1 and ϵk ≤ k0 we have 
√
ϵ ! min{1, k− 1

2 }, which then implies

Cϵ,k ! min{1 + | ln k|, k− 1
2 } + (1 + k

1
4 ) min{1, k− 1

2 } ! min{1 + | ln k|, k− 1
4 }

This completes the proof of Lemma 5.14. !
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Appendix A

A.1. Discreteness of the transmission eigenvalues

Here we prove part (iii) of Theorem 3.1. The proof is based on the lemma below.

Lemma A.1. Assume 
√

2kϵ > 1, let R > 0 be large, and h, h0 > 0 be small enough, such that, with the 
notation k = a + ib, the following sets are nonempty

RR,h = {k ∈ C : |k| < R} ∩
(
{k : a, b > 0} ∪

{
k : a > max{|b|,

√
b2 + b + k2

ϵ} + h
})

LR,h,h0 = {k ∈ C : |k| < R} ∩
(
{k : a < 0, b < −1

2 − h0} ∪
{
k : a < −max{|b|,

√
b2 + b + k2

ϵ}− h
})

UR,h = {k ∈ C : |k| < R} ∩
(
{k : b > |a| + h} ∪

{
k : b < −|a|− h and b > −1

2
(
k2
ϵ + 1

2
)})

Then the interior transmission eigenvalues of (4.1) that lie inside RR,h ∪LR,h,h0 ∪UR,h form a discrete set 
(i.e., an at most countable set with no limit points in RR,h ∪ LR,h,h0 ∪ UR,h).

To see that this lemma concludes the proof of Theorem 3.1 consider the following unions:

R =
∞⋃

R=1

∞⋃

n=1
RR, 1

n
, L =

∞⋃

R=1

∞⋃

n=1

∞⋃

m=1
LR, 1

n , 1
m
, U =

∞⋃

R=1

∞⋃

n=1
UR, 1

n
,

Lemma A.1 guarantees the discreteness of the interior transmission eigenvalues inside the union of these 
sets. We note that

R = {k : a, b > 0} ∪
{
k : a > max(|b|,

√
b2 + b + k2

ϵ )
}

L = {k : a < 0, b < −1
2} ∪

{
k : a < −max(|b|,

√
b2 + b + k2

ϵ )
}

U =
{
k : |b| > |a| and b > −1

2
(
k2
ϵ + 1

2
)}

.

Finally, the symmetry of the set of interior transmission eigenvalues implies that the discreteness also holds 
in −R and −L, where the bar denotes complex conjugation. Since G ⊂ R ∪ L ∪ U ∪ −R ∪ −L ∪ R ∪ iR, 
a combination of these discreteness results and (i) of Theorem 3.1 yields the proof of the last assertion in 
Theorem 3.1.



316 F. Cakoni et al. / J. Math. Pures Appl. 182 (2024) 285–318

Proof of Lemma A.1. We start by showing the discreteness in the sets RR,h, LR,h,h0 , which are open, con-
nected and disjoint. Let λ = λ1 + iλ2 ∈ C with λ1, λ2 > 0 to be chosen later. Consider the bounded 
sesquilinear forms on X (cf. (4.5)) given by

Ak(u,ϕ) =
∫

O

1
1 − q

(
∆u + k2u

) (
∆ϕ + k2ϕ

)
dx + k2

∫

B2

∇u ·∇ϕdx + λ

∫

B2

uϕdx,

Bk(u,ϕ) = −(k4 + λ)
∫

B2

uϕdx

In terms of Ak and Bk, the variational form of the interior transmission eigenvalue problem (4.7) reads: 
Ak(u, ϕ) + Bk(u, ϕ) = 0 for all ϕ ∈ X. Since Bk yields a compact operator, the discreteness of these 
eigenvalues, in the regions where both Ak and Bk depend analytically on k, will follow from the Analytic 
Fredholm Theory, as in [10, Section 8.5], once we prove that λ = λ(R, h, h0) can be chosen such that Ak

becomes coercive [4]. For shorthand let us introduce the notation

1
1 − q(x, k) = γkp(x) , γk = k2 + ik − k2

ϵ and p(x) = 1
detDF (x) .

Let m, M be such that

0 < m ≤ p(x) ≤ M, ∀x ∈ B2 \Bϵ = O .

We consider cases:

• Let k = a + ib be such that |k| < R and (I) a > 0, b > 0 or (II) a < 0, b < −1
2 − h0.

Then

Ak(u, u) = γk

∫

O

p|∆u|2dx + k2∥∇u∥2
B2 + 2γkk2

∫

O

pℜe(u∆u)dx

+γkk
4
∫

O

p|u|2dx + λ∥u∥2
B2 , (A.1)

where we use the notation ∥u∥Ω = ∥u∥L2(Ω). In both cases (I) and (II) we see that

Imγk = a(2b + 1) > 0, and Im(k2) = 2ab > 0 .

Hence

|ImAk(u, u)| ≥Imγk

∫

O

p|∆u|2dx + Im(k2)∥∇u∥2
B2 + λ2∥u∥2

B2

− 2|Im(γkk2)| ·

∣∣∣∣∣∣

∫

O

pℜe(u∆u)dx

∣∣∣∣∣∣
− |Im(γkk4)|

∫

O

p|u|2dx .

Let us use the lower bound p ≥ m in the first integral. In the integral of the term 2ℜe(u∆u) we use Hölder’s 
inequality along with the estimate p ≤ M , and then apply Cauchy’s inequality with δ > 0 to the resulting 
term. The result becomes
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|ImAk(u, u)| ≥(mImγk − 2M |Im(γkk2)|δ)∥∆u∥2
O + Im(k2)∥∇u∥2

B2

+
(
λ2 −M |Im(γkk4)|− M |Im(γkk

2)|
2δ

)
∥u∥2

O

If Im(γkk2) = 0, then coercivity follows for any λ2 > max{M |Im(γkk4)| : |k| < R}. Otherwise, let us choose 
δ such that 4M |Im(γkk2)|δ = mImγk. Then the first term of above inequality is positive and the third term 
will be positive if

λ2 > sup
{
M |Im(γkk4)| +

2M2 [Im(γkk2)
]2

mImγk
: |k| < R and (I) or (II) holds

}
.

It remains to see that the above supremum is finite. The first term inside the supremum is bounded and 
establishing the boundedness of the second term amounts to showing that

[
Im(γkk2)

]2

Imγk
=

a
[
4a2b− 4b3 − 2bk2

ϵ + a2 − 3b2
]2

2b + 1

is bounded. Clearly, in the case (I) this is bounded with a constant depending only on R and kϵ, and in 
the case (II) it is bounded with a constant depending on R, kϵ and h0. Finally, the coercivity follows upon 
applying Poincare’s inequality as X ⊂ H1

0 (B2).

• Let k = a + ib be such that |k| < R and

|a| > max
{
|b|,

√
b2 + b + k2

ϵ

}
+ h . (A.2)

Then

ℜeγk = a2 − (b2 + b + k2
ϵ ) > 0, and ℜe(k2) = a2 − b2 > 0 .

Repeating the argument of the previous case, only taking real parts in (A.1), we obtain that coercivity 
follows after choosing

λ1 > sup
{
M |ℜe(γkk4)| +

2M2 [ℜe(γkk2)
]2

mℜeγk
: |k| < R and (A.2) holds

}
.

Clearly this supremum is finite as ℜeγk > h2.
It remains to prove the discreteness in the set UR,h. This can be done analogously, only now λ in the 

sesquilinear forms must be chosen to be a real and negative number with very large absolute value. Coercivity 
then follows by deriving a lower bound on |ℜeAk(u, u)|. !
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