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Abstract

With the advent of massive data sets much of the computational science
and engineering community has moved toward data-intensive approaches
in regression and classification. However, these present significant chal-
lenges due to increasing size, complexity and dimensionality of the
problems. In particular, covariance matrices in many cases are numeri-
cally unstable and linear algebra shows that often such matrices cannot
be inverted accurately on a finite precision computer. A common ad
hoc approach to stabilizing a matrix is application of a so-called nugget.
However, this can change the model and introduce error to the original
solution. It is well known from numerical analysis that ill-conditioned
matrices cannot be accurately inverted. In this paper we develop a
multilevel computational method that scales well with the number of
observations and dimensions. A multilevel basis is constructed adapted to
a kD-tree partitioning of the observations. Numerically unstable covari-
ance matrices with large condition numbers can be transformed into well
conditioned multilevel ones without compromising accuracy. Moreover,
it is shown that the multilevel prediction exactly solves the Best Lin-
ear Unbiased Predictor (BLUP) and Generalized Least Squares (GLS)
model, but is numerically stable. The multilevel method is tested on
numerically unstable problems of up to 25 dimensions. Numerical results
show speedups of up to 42,050 times for solving the BLUP problem,
but with the same accuracy as the traditional iterative approach. For
very ill-conditioned cases the speedup is infinite. In addition, decay esti-
mates of the multilevel covariance matrices are derived based on high
dimensional interpolation techniques from the field of numerical analysis.
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1 Introduction

Massive data sets arise from many fields, including, but not limited to
commerce, astrophysical sky-surveys, environmental data, medical data, and
tsunami warning systems. With the advent of massive datasets, much of the
computational science and engineering community has moved toward data-
intensive approaches in regression and classification. However, these present
significant challenges due to increasing size, complexity, and dimensionality of
the problems.

Best Linear Unbiased Prediction (BLUP), or sometimes referred also the
best linear unbiased predictor is a well known technique in earth and environ-
mental sciences [1, 2]. It was originally developed by Henderson [3, 4] in the
context of biosciences and biostatistics. It is also popular in Longitudinal anal-
ysis. This field is very significant to gerontology as well as the biomedical, and
behavioral and social sciences [5, 6]. Stein’s book, referenced as [7], provides
valuable insights into the topic of BLUPs.

Since solving for the BLUP requires inverting the covariance matrix, this
in general requires O(N3) computational steps and O(N2) memory [1]. For
massive datasets this quickly becomes intractable since: (I) The covariance
matrix becomes too large, and (II) for spatial covariance functions, the problem
is further compounded by ill-conditioning of the covariance matrix. It is known
from linear algebra that ill-conditioned matrices cannot be accurately inverted
with accuracy on finite precision computers [8] and thus are difficult, if not
impossible, to solve numerically.

A common technique to correct the ill-conditioned covariance matrix C is
to add a scaled identity matrix I, e.g. C + σI, where σ > 0. The term σI
is a called a nugget. However, inverting the matrix C + σI is not equivalent
to inverting C. The solution of the BLUP will be incorrect. Thus a tradeoff
between accuracy and numerical stability is commonly accepted since if a
matrix is ill-conditioned, it cannot be accurately inverted.

Many techniques for inverting C concentrate on the first problem (I). They
rely on sparsification and/or identifying low rank approximations. In the con-
text of estimating the covariance function, many methods have been developed
using skeletonization factorizations [9], low-rank [10] and Hierarchical Matrices
(HM) [11–13] approaches. These methods are very promising. In particular,
for the HM approaches they have been shown to be near optimal. They work
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well for low dimensions. However, as the dimensions increases the computa-
tional burden explodes with each dimension. However, they are still subject to
ill-conditioning and usually a nugget is added to change the model to make it
more numerically stable, but does not solve the original problem. Thus these
approaches are limited to covariance matrices that are well conditioned. More-
over, the model of the data is assumed to have zero trend and a non-zero
nugget. For many practical cases this will not be valid. Note that in [14, 15]
the authors developed an approach for constructing sparse positive definite
kernel matrices with improved numerical stability.

In the approach developed in [16] it is shown that there exists a more sta-
ble form of the solution of the BLUP and the Generalized Least Square (GLS)
that solves these problems exactly. This approach is based on the work on
multilevel discrete basis developed in [17] for the radial basis function interpo-
lation problem for scattered data. A similar basis has been developed in [18].
These approaches are based on the idea of using wavelets to compress integral
operators [19].

Although an ill-conditioned covariance matrix leads to accuracy problems,
this can be avoided by constructing an alternative multilevel covariance matrix
CW that is used in the stable form. It is also shown how the covariance matrix
can be sparsified so that the covariance function can be estimated from the
data using a Maximum Likelihood Estimate method. Error estimates for the
decay of the covariance function are derived using derivative information of the
covariance function. However, this approach is limited to 2 or 3 dimensions.
The computational cost scales combinatorially fast with the spatial dimension,
thus making it impractical for high dimensional problems.

In this paper the approach from [16] is extended using binary trees, which
are well suited for high dimensional problems. The multilevel basis used in [16]
and originally proposed in [17] is extended to the high dimensional setting.
Ill-conditioned covariance matrices are transformed to numerically stable mul-
tilevel covariance matrices without compromising accuracy. In addition, a new
distance criterion is developed to build sparse multilevel covariance matrices.
Furthermore, sharper decay estimates of the coefficients of the multivariate
covariance matrix are derived based on analytic extensions that are well suited
for high dimensional problems.

In the research presented in [16], the authors establish the decay rates of
covariance matrix entries for multilevel matrices in Rd using Taylor’s theorem.
While this method is effective for lower-dimensional problems, its practical-
ity diminishes as the dimensionality, denoted as d, increases. This is due to
the combinatorial growth in the number of required derivatives in Taylor’s
theorem, alongside the expansion of the derivative domain concerning the
dimension d. In cases involving high-dimensional scenarios, the computation of
constants related to the derivatives in the results of [16] becomes increasingly
challenging. In contrast, the complex analytic approach offers the advantage
of uniformly bounding these constants, which depend on the region of analytic
extension. As a result, in the field of uncertainty quantification for stochastic
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Partial Differential Equations featuring high-dimensional random parameters,
complex analyticity is favored [20–24]. This approach is adopted in this paper.

The MLE estimation equations are transformed into a multilevel form
based on the numerically stable multilevel covariance matrix. In practice a
sparse version of the multilevel covariance matrix is used. A distance depen-
dent method is used to build to a sparse version. Sharp decay estimates
(sub-exponential) of the multilevel covariance matrices are derived using com-
plex analytic extensions of the covariance function instead of Taylor series
expansions, which are infeasible for relatively large dimensional problems. The
numerical results show that the estimation is solved to good accuracy for a
large number of observations.

The BLUP prediction step is remapped into an equivalent multilevel formu-
lation that is numerically stable. It is shown that the solution to the multilevel
prediction form exactly solves the BLUP problem. To my knowledge, this is
a feature that is unique to the multilevel approach. If the covariance matrix
C is ill-conditioned, then it is not possible to solve the problem accurately
on a computer with a fixed machine precision. However, the BLUP solution
arises from a constrained optimization problem. By taking advantage of this
fact, the multilevel approach side steps the inversion of the covariance matrix
and directly searches for the solution in a constrained space giving rise to a
significantly more stable multilevel covariance matrix. Moreover, by using an
iterative approach only one indirect matrix inversion of the multilevel covari-
ance CW matrix is required. This is in contrast to classical BLUP, including
the Generalized Least Squares (GLS) prediction, that at least p indirect matrix
inversions are required with an iterative approach, where p is the number
of columns of the design matrix (See Remark 1 and 7). Numerical results
show speedups of up to 42,050 for solving the BLUP problem to at least the
same accuracy. This approach has been also applied for imputation of medical
records [25].

In Section 2 the problem formulation is introduced. In section 3 it is shown
how to construct the multilevel basis based on kd-trees. In section 4 the con-
struction of the multilevel covariance matrix is discussed. In section 5 the
multilevel estimator and predictor are formulated and numerical computa-
tional issues are discussed in section 6. In section 7 a mathematical analysis
of the decay of the entries of the multilevel covariance matrix is developed.
This section can also be skipped for the less mathematically inclined reader.
In section 8 the multilevel BLUP method is tested on numerically unstable
problems of up to 25 dimensions. Furthermore, a direct accuracy compari-
son is done with the traditional BLUP formulae. Highly ill-conditioned BLUP
problems are solved to high accuracy. In the appendices all of the proofs are
described in detail and in Appendix A a the multivariate polynomial inter-
polation based on complex analytic extensions is discussed. These results are
used for to derive the decay of the entries of the multilevel covariance matrix.
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2 Problem setup

Consider the following model for a Gaussian random field Z:

Z(x) = k(x)Tβ + ε(x), x ∈ Rd, (1)

where d is the number of spatial dimensions, k : Rd → Rp is a functional vector
of the spatial location x, β ∈ Rp is an unknown vector of coefficients, and ε
is a stationary mean zero Gaussian random field with parametric covariance
function ϕ(x,x′; θ) = cov{ε(x), ε(x′)} with an unknown vector of positive
parameters θ ∈ Rw, where w is the number of parameters.

Suppose that we obtain N observations and stack them in the data vector
Z = (Z(x1), . . . , Z(xN ))T from locations S := {x1, . . . ,xN}, where the ele-
ments in S are restricted such that the design matrix defined below, X, has
full column rank. Furthermore, without loss of generality all the locations in
S are contained in the unit hypercube Γd ≡ [−1, 1]d. Let C(θ) = cov(Z,ZT) ∈
RN×N be the covariance matrix of Z and assume it is positive definite for all

θ ∈ Rw. Define X =
(︁
k(x1) . . . k(xN )

)︁T ∈ RN×p and assume it is of full rank
p. Since the model (1) is a Gaussian random field, then from the samples of S
the following vectorial model is obtained

Z = Xβ + ε, (2)

where ε is a Gaussian random vector, ε ∼ N (0,C(θ)) and p < N . The aim now
is to: i) Estimate the unknown vectors β and θ; and ii) Predict Z(x0), where
x0 is a new spatial location. These two tasks are particularly computationally
challenging when the sample size N and number of dimensions d are large.

There is a very large literature on Gaussian process regression that deal
with this problem. Please see [16] for a brief literature review. The unknown
vectors β and θ are estimated with the log-likelihood function ℓ(β,θ) =
−n2 log(2π)− 1

2 log det{C(θ)} − 1
2 (Z−Xβ)TC(θ)−1(Z−Xβ). To reduce the

dimensionality of the optimization problem, β is replaced with GLS estimate:

β̂(θ) = {XTC(θ)−1X}−1XTC(θ)−1Z. (3)

In general this is not a good choice, since replacing with the Maximum
Likelihood Estimator (MLE) of θ is prone to be biased [16].

For the prediction part, consider the BLUP Ẑ(x0) = λ0 + λTZ where
λ = (λ1, . . . , λN )T. The unbiased constraint implies λ0 = 0 and XTλ = k(x0).
The minimization of the mean squared prediction error E[{Z(x0) − λTZ}2]
under the unbiased constraint XTλ = k(x0) yields

Ẑ(x0) = k(x0)
Tβ̂ + c(θ)TC(θ)−1(Z−Xβ̂), (4)

where c(θ) = cov{Z, Z(x0)} ∈ RN and β̂ is defined in (3).
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Remark 1 Notice that solving for β̂(θ) requires computing C(θ)−1X. Since X ∈
RN×p by using an iterative approach it would require p indirect inversions of the
matrix C(θ)−1.

Now, let α := (α1, . . . , αd) ∈ Zd, |α| := α1+ · · ·+αd, x := [x1, . . . , xd]. For
any w ∈ N+ (where N+ := N ∪ {0}) let Qdw be the set of Total Degree (TD)
monomials {xα1

1 . . . xαd

d | |α| ≤ w}. The typical choice for the matrix X is to

build it from the monomials of Qdw with cardinality p(d,w) :=

(︃
d+ w
w

)︃
.

The challenge is that the covariance matrix C(θ) in many practical cases
is ill-conditioned, leading to slow and inaccurate estimates of θ. Following the
approach in [16] the data vector Z is transformed into decoupled multilevel
description of the model (1). This multilevel representation leads to signifi-
cant computational benefits, including numerical stability, when computing the
multilevel predictor Ẑ(x0) in (4) for large sample size N and high dimensions
d. Note, that in this paper we shall refer to the single level approach to solv-
ing the estimation and prediction steps directly to the data Z and covariance
matrix C(θ).

3 Multilevel approach

The general approach of this paper and multilevel basis construction are now
presented. We mostly follow the exposition laid out in [16]. The proof of
Proposition 1 is repeated, but clarified with more details.

Let Pp(S) be the span of the columns of the design matrix X. Suppose
that there exists the orthogonal projections L : RN → Pp(S) and W : RN →
Pp(S)⊥, where Pp(S)⊥ is the orthogonal complement of Pp(S). The operator[︃
W
L

]︃
is assumed to be unitary.

The first step is to filter out the effect of the trend by projecting the obser-
vations onto the orthogonal subspace. Let ZW := WZ, thus from equation (2)
it follows that ZW = W(Xβ+ε) = Wε. Notice that the trend component Xβ
is removed from the data Z. The new log-likelihood function for ZW becomes

ℓW(θ) = −n

2
log(2π)− 1

2
log det{CW(θ)} − 1

2
ZT

WCW(θ)−1ZW, (5)

where CW(θ) := WC(θ)WT and ZW ∼ NN−p(0, CW(θ)). A consequence of
the filtering is that we obtain an unbiased estimator [16]. The decoupling of the
likelihood function is not the only advantage of using CW(θ). The following
theorem also shows that CW(θ) is more numerically stable than C(θ).

Proposition 1 Let κ(A) → R be the condition number of the matrix A ∈ RN×N
then κ(CW(θ)) ≤ κ(C(θ)).
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Proposition 1 states that the condition number of CW(θ) is less or equal to
the condition number of C(θ). Thus computing the inverse of CW(θ) (using a
direct or iterative method) will generally be more stable. In practice, comput-
ing the inverse of CW(θ) can be significantly more stable than C(θ) depending
on the choice of Qdw. This has many significant implications as it will now be
possible to solve numerically unstable problems.

There are other advantages to the structure of the matrix CW(θ). In
section 7 it is shown that for a good choice of the Pp(S) the entries of CW(θ)
decay rapidly, and most of the entries can be safely eliminated. A level depen-
dent criterion approach is shown in Section 4 that indicates which entries are
computed and which ones are not. With this approach a sparse covariance
matrix C̃W can be constructed such that it is close to CW in a matrix norm
sense, even if the observations are highly correlated with distance.

3.1 Binary multilevel basis

In this section the construction of Multilevel Basis (MB) is shown. The
approach followed in this section is a based on the MB construction in [17].
The MB can then be used to: (i) form the multilevel likelihood (5); (ii) spar-
sify the covariance matrix CW(θ); and (iii) improve the numerical stability of
the covariance matrix C(θ) in it’s multilevel form. But first, let us establish
notations and definitions:

i) For any index i, j ∈ N0, 1 ≤ i ≤ N , 1 ≤ j ≤ N , let ei[j] = δ[i− j], where
δ[·] is the discrete Kronecker delta function.

ii) Let ϕ(x,y; θ) : Rd × Rd → R be the covariance function and assumed
to be a positive definite. Let C(θ) be the covariance matrix that is formed
from all the interactions between the observation locations S i.e. C(θ) :=
{ϕ(xi,yj ; θ)}, where i, j,= 1, . . . , N . We shall assume that the covariance
function can be restricted to the following form: There exists a function φ :
[0,∞) → R such that ϕ(x,y; θ) = ϕ(r; θ) := φ(r), where r(θ) = ((x − y)T

diag(θ)(x − y))
1
2 , θ = [θ1, . . . , θd] ∈ Rd+, and diag(θ) ∈ Rd×d is a diagonal

matrix with the vector θ on the diagonal.

Definition 1 Denote the Matérn covariance function:

ϕ(r; θ) =
1

Γ(ν)2ν−1

(︃√
2ν

r

ρ

)︃ν
Kν

(︃√
2ν

r

ρ

)︃
,

where with a slight abuse of notation Γ is the gamma function, r ∈ R+, 0 < ν, 0 <
ρ < ∞, and Kν is the modified Bessel function of the second kind. It is understood
from context when Γ is the gamma function.

Remark 2 The Matérn covariance function is a good choice for the random field
model. The parameter ρ controls the length correlation and the parameter ν changes
the shape. For example, if ν = 1/2 + n, where n ∈ N+, then (see [26]) ϕ(r; ρ) =

exp

(︃
−
√
2νr
ρ

)︃
Γ(n+1)
Γ(2n+1)

∑︁n
k=1

(n+1)!
k!(n−k)!

(︃√
8vr
ρ

)︃n−k
and ν → ∞ ⇒ ϕ(r; θ) → exp

(︃
−
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r2

2ρ2

)︃
. Note that even for a moderate number of derivatives the number of terms will

grow exponentially fast leading to a very complex expression. This motivates the
study of complex analytical extensions of the covariance function. See Section 7 for
more details.

The first step is to decompose the observation locations of S in the hyper-
cube domain Γd into a multilevel domain decomposition. A good choice is based
on the a kD-tree decomposition of the space Rd [27]. Other choices include
Projection (RP) trees. Kd-trees are usually applied for searching algorithms
such as range and nearest neighbor. Kd-tree is a particular case of a binary
tree, which are also used as decisions trees, sorting and classification, among
many other applications.

We refer the reader to [28] for the construction of the kd-tree. However,
usually a kd-tree has at most one location point for each of the leaves. Instead,
the leaf is set to a maximum of p observations for the version that is used in
this paper. First start with the root zero node and corresponding to cell B0

0

at level 0 that contains all the observation nodes in S. Now, split these nodes
into two children cells B1

1 and B1
2 at level 1 according to the following rule:

i) Choose a unit vector v in Rd along the axis of Rd. This choice is the direction
that leads to the maximum variance of the data in the cell along the direction
of v. ii) Project all the nodes x ∈ S in the cell onto the unit vector v. iii) Split
the cell with respect to the median of the projections. For each non empty cell
Bk
l with ST points this procedure is repeated until the full binary tree is built.

This rule corresponds to Algorithm 1. We now described the construction of
the kd-tree by using this rule.

Algorithm 1 Rule function for cell-split

procedure Rule(ST )
vrs← variance of each coordinate direction of the data ST
v ← direction of maximal entry of vrs
projS← projection of ST on v
threshold ← median of projST
return threshold, v, Rule(x) ← x · v ≤ threshold

end procedure

Algorithm 2 initializes the tree by setting the node number and depth of
the tree to zero. All of the original observations points S belong at node zero
of the tree. The MakeTree function from Algorithm 3 is then executed to start
the tree construction.

Algorithm 2 InitialTree function
procedure InitialTree(S,n0)

node ← 0, depth ← 0
Tree ← MakeTree(S, node, depth + 1, n0)

end procedure
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Algorithm 3 splits the observation into binary cells at each level of the tree
depth. Given the input observation locations in ST they are split into two cells:
Left and right according to the Rule. The tree is constructed by calling the
MakeTree function recursively, both left and right. Note that the MakeTree
function will construct all the left cells first until a leaf is reached. At this point
the recursion is unwrapped one step and then the right cell is constructed.
This is repeated many times over until all of the leafs are reached and the final
tree is produced.

Algorithm 3 MakeTree function
procedure MakeTree(ST , node, depth, n0)

Tree.node ← node, Tree.depth ← depth - 1, node ← node + 1
if |ST | < n0 then return ▷ Leaf of the tree
end if
(Rule, threshold, v) ← ChooseRule(S)
(Tree.LeftTree, node) ← MakeTree(x ∈ ST : Rule(x) = True, node, depth + 1, n0)
(Tree.RightTree, node) ← MakeTree(x ∈ ST : Rule(x) = false, node, depth + 1, n0)
Tree.threshold = threshold, Tree.v = v
return Tree

end procedure

A binary tree is produced, which is of the form B0
0 , B

1
1 , B

1
2 , B

2
3 , B

2
4 , B

2
5 , B

2
6 ,

. . . , where t is the maximal depth (level) of the tree. Note that each non zero
cell Bl

k will correspond to a particular node and depth number. In Figure 1 an
example illustration of the kd-tree is shown with a maximal set of locations at
the leaves set to four.

Now, let B be the set of all the cells in the tree and Bn be the set of all the
cells at level 0 ≤ n ≤ t. In addition, for each cell a unique node number, current
tree depth, threshold level and projection vector are also assigned to the node.
In the Matlab code, this will be useful for searching the tree. Algorithms 1, 2,
and 3 describe in more detail the construction of the kD-tree.

Using the binary tree a multilevel basis for RN is constructed. Sup-
pose there is a one-to-one mapping between the set of unit vectors E :=
{e1, . . . , eN}, which is denoted as leaf unit vectors, and the set of locations
{x1, . . . ,xN}, i.e. xn ←→ en for all n = 1, . . . , N . It is clear that the span of
the vectors {e1, . . . , eN} is RN . The next step is to construct a new basis of
RN that is multilevel and orthonormal.
1. Start at the maximum level of the random projection tree, i.e. q = t.
2. For each leaf cell Bq

k ∈ Bq assume without loss of generality that there
are s observations nodes Sqk := {x1, . . . ,xs} with associated vectors Cq

k :=
{e1, . . . , es}. Denote Cqk as the span of the vectors in Cq

k .

(a) Let ϕq,kj :=
∑︁

ei∈Cq
k
cq,ki,j ei, j = 1, . . . , a; ψq,kj :=∑︁

ei∈Cq
k
dq,ki,j ei, j = a + 1, . . . , s, where cq,ki,j , d

q,k
i,j ∈ R and for some

a ∈ N+. Note that a is unknown up to this point, but will be com-
puted from the data. It is desired that the new discrete MB vector



Springer Nature 2021 LATEX template

10 Spatial best linear unbiased prediction for massive datasets

B0
0

B3
7

B3
8

B0
0

B1
2

B2
6

B3
14B3

13

B2
5

B3
12B3

11

B1
1

B2
4

B3
10B3

9

B2
3

B3
8B3

7

Fig. 1 Multilevel domain decomposition of the observations locations example. All of the
initial points in S are split using Algorithms 1, 2, and 3 until at most 4 points are left in
each of the cells corresponding to the leaves of the binary tree.

ψq,kj be orthogonal to Pp(S), i.e., for all g ∈ Pp(S):

n∑︂
i=1

g[i]ψq,kj [i] = 0 (6)

(b) Form the matrix Mq,k := XTVq,k, where Mq,k ∈ Rp×s, Vq,k ∈
RN×s, and Vq,k := [e1, . . . , ei, . . . , es] for all ei ∈ Cq

k . Now, suppose
that the matrixMq,k has rank a and then perform the Singular Value
Decomposition (SVD). Denote by UDV the SVD of Mq,k, where
U ∈ Rp×p, D ∈ Rp×s, and V ∈ Rs×s.

Remark 3 Note that in practice we only keep track of the non-zero elements
of the vectors e1, . . . , es. Thus the computational cost is reduced signifi-
cantly. This is taken into account in the complexity analysis in Lemma 2
and 3

(c) Following the same argument as in [16] but adapted to the kd-tree
decomposition equation (6) is satisfied with the following choice⎡⎢⎢⎢⎢⎣

cq,k1,1 . . . cq,k1,a dq,k1,a+1 . . . dq,k1,s

cq,k2,1 . . . cq,k2,a dq,k2,a+1 . . . dq,k2,s
...

...
...

...
...

...

cq,ks,1 . . . cq,ks,a dq,ka+1,s . . . dq,ks,s

⎤⎥⎥⎥⎥⎦ := V.

For this choice the coefficient a is equal to the number of non-zero
singular values. Thus the columns a+ 1, . . . , s form an orthonormal
basis of the nullspace N0(Mq,k). Similarly, the columns 1, . . . , a form
an orthonormal basis of Rs\N0(Mq,k). Since the vectors in Cq

k are

orthonormal then ϕq,k1 , . . . ,ϕq,ka , ψq,ka+1, . . . , ψ
q,k
s form an orthonor-

mal basis of Cqk. Moreover ψq,ka+1, . . . ,ψ
q,k
s satisfy equation (6), i.e.,
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are orthogonal to Pp(S) and are locally adapted to the locations
contained in the cell Bq

k.

(d) Denote byDq,k
k the collection of all the vectors ψq,ka+1, . . . ,ψ

q,k
s . Notice

that the vectors ϕq,k1 , . . . , ϕq,ka , which are denoted with a slight abuse
of notation as the scaling vectors, are not orthogonal to Pp(S). They
need to be further processed.

(e) Let Dq be the union of the vectors in Dq
k for all the cells Bq

k ∈ B
q
k.

Denote by Wq(S) as the span of all the vectors in Dq.
3. For any two sibling cells denote Bq

left and Bq
right at level q denote Cq−1

k̃

as the collection of the scaling functions from both cells, for some index k̃.
4. Let q := q − 1. If Bq

k ∈ Bq is a leaf cell then repeat steps (b) to (d).
However, if Bq

k ∈ Bq is not a leaf cell, then repeat steps (b) to (d), but
replace the leaf unit vectors with the scaling vectors contained in Cq

k with

Cq−1
k̃

.
5. When q = −1 is reached stop.
When the algorithm stops a series of orthogonal subspaces

V0(S),W0(S), . . . ,Wt(S) (and their corresponding basis vectors) are obtained.
These subspaces are orthogonal to V0(S) := span{ϕ0

1, . . . , ϕ
0
p}. Note that the

orthonormal basis vectors of V0(S) also span the space Pp(S).

Remark 4 Following Lemma 2 in [17] it can be shown that RN = Pp(S)⊕W0(S)⊕
W1(S)⊕ · · · ⊕Wt(S), Also, it can then be shown that at most O(Nt) computational
steps are needed to construct the multilevel basis of RN .

From the basis vectors of the subspaces Pp(S)⊥ = ∪ti=0Wi(S) an orthogonal
projection matrix W : RN → (Pp(S))⊥ can be built. The dimensions of W is
(N − p) × N since the total number of orthonormal vectors that span Pp(S)
is p. Conversely, the total number of orthonormal vectors that span Pp(S)⊥ is
N − p. Let L be a matrix where each row is an orthonormal basis vector of
Pp(S). For i = 0, . . . , t let Wi be a matrix where each row is a basis vector
of the space Wi(S). The matrix W ∈ R(N−p)×N can now be formed, where

W :=
[︁
WT

t , . . . ,W
T
0

]︁T
. Following a similar approach to Lemma 2.11 in [17] it

can be shown that: i) The matrix P :=

[︃
W
L

]︃
is orthonormal, i.e., PPT = I.

ii) Any vector v ∈ Rn can be written as v = LTvL +WTvW where vL ∈ Rp
and vW ∈ RN−p are unique. The following useful lemmas are proved:

Lemma 2 Assuming that n0 < 2p, for any level q = 0, . . . , t there is at most p2q

multilevel basis vectors.

Lemma 3 Assuming that n0 < 2p for any level q = 0, . . . , t any multilevel vector
ψqm associated with a cell Bqk ∈ Bq has at most 2t−q+1p non zero entries.



Springer Nature 2021 LATEX template

12 Spatial best linear unbiased prediction for massive datasets

From Lemma 2 and 3 it can be shown that the matrix W contains at most
O(Nt) non-zero entries and L contains at most O(Np) non-zero entries. Thus
for any vector v ∈ Rn the matrix vector products Wv and Lv are respectively
calculated with at most O(Nt) and O(Np) computational steps.

4 Multilevel covariance matrix

The multilevel covariance matrix CW(θ) and sparse version C̃W(θ) can be
now constructed. Recall from the discussion in Section 3 that CW(θ) :=
WC(θ)WT. From the multilevel basis construct in Section 3.1 the following

operator is built: W :=
[︁
WT

t , . . . ,W
T
0

]︁T
. Thus the covariance matrix C(θ) is

transformed into CW(θ), where each of the blocks Ci,j
W(θ) = WiC(θ)WT

j are
formed from all the interactions of the MB vectors between levels i and j, for
all i, j = 0, . . . , t. The structure ofCW(θ) is shown in Figure 2(a). Thus for any
ψi
l̃
and ψj

k̃
vectors there is a unique entry of Ci,j

W of the form (ψi
k̃
)TC(θ)ψj

l̃
.

In Section 7 we show that far field entries of CW(θ), i.e. (ψi
k̃
)TC(θ)ψj

l̃
, decay

sub-exponentially with respect to p(d,w) if there exists an analytic extension
of the covariance function on a well defined domain in Cd. Thus it is not nec-
essary to compute all the entries. We introduce a distance criterion approach
to produce a sparse matrix C̃W(θ).

4.1 Sparsification of multilevel covariance matrix

A sparse version of the covariance matrix CW(θ) can be built by using a level
and distance dependent strategy: i) Given a cell Bi

k at level i ≥ 0 identify the
corresponding tree node value Tree.node and the tree depth Tree.depth. Note
that the Tree.depth and the MB level q are the same for q = 0, . . . , t. ii) Let
K ⊂ S be all the observations nodes contained in the cell Bi

k. iii) Let τi,j ≥ 0
be the distance parameter given by the user corresponding to the level i, j
from the block Ci,j

W(θ). iv) Let the Targetdepth be equal to the desired level
of the tree.

The objective now is to find all the cells at the Targetdepth that overlap
a hyper rectangle which is extended from Bi

k. For all observations x ∈ Bi
l

along each dimension k = 1, . . . , d let xmink := minxk∈Bi
m
xk and xmaxk :=

maxxk∈Bi
m
xk. Any cell that intersects the interval [xmink − τi,j , x

max + τi,j ]
is included. This is done by searching the tree from the root node. At each
traversed node check that all the nodes x ∈ K satisfy the following rule: If
x ·Tree.v+ τi,j ≤ Tree.threshold then search down the left tree. If x ·Tree.v−
τi,j > Tree.threshold. the search down the right tree. Otherwise search both
trees. The full search algorithm is described in Algorithms 4, 5, and 6.

In Figure 2 (b) & (c) an example for searching local neighborhood cells of
randomly placed observations in R2 is shown. The orange nodes correspond
to the source cell. By choosing a suitable value for τi,j the blue nodes in the
immediate cell neighborhood are found by using Algorithms 4, 5, and 6. The
sparse matrix blocks Ci,j

W(θ) can be built from all the cells that are obtained
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Algorithm 4 SearchTree function
procedure SearchTree(Tree, K, Targetdepth, τi,j)

Targetnodes← ∅, Targetnodes← LocalSearchTree(Tree, K, Targetdepth, τi,j , Targetnodes)
return Targetnodes

end procedure

Algorithm 5 LocalSearchTree function
procedure LocalSearchTree(Tree, K, Targetdepth, τi,j , Targetnodes)

if Targetdepth = Tree.depth then
return Targetnodes ← Targetnodes ∪ Tree.node

end if
if Targetdepth = Leaf then return
end if
LeftRule = ChooseLeftRule(K, Tree, τi,j), RightRule = ChooseRightRule(K, Tree, τi,j)
Targetnodes ← LocalSearchTree(Tree.LeftTree, K, Targetdepth, τi,j , Targetnodes)
Targetnodes ← LocalSearchTree(Tree.RightTree, K, Targetdepth, τi,j , Targetnodes)
return Targetnodes

end procedure

Algorithm 6 ChooseLeftRule and ChooseRightRule rule functions
procedure ChooseLeftRule(K,Tree,τi,j)

return Rule(x) := x · Tree.v + τi,j ≤ Tree.threshold
end procedure
procedure ChooseRightRule(K,Tree,τi,j)

return Rule(x) := x · Tree.v + τi,j > Tree.threshold
end procedure

from SearchTree function of Algorithm 6. Compute all the entries of Ci,j
W(θ)

that correspond to the interactions between any two cellsBi
k ∈ Bi andBj

l ∈ Bj .
In Algorithm 7) the construction of the sparse matrix C̃

i,j

W(θ) is shown.

Remark 5 Since the matrix C̃W(θ) is symmetric it is only necessary to compute the

blocks Ci,jW(θ) for i = 1, . . . , t and j = i, . . . t.

4.2 Computational cost of the multilevel matrix blocks
of C̃W

The cost of computing the multilevel blocks C̃
i,j

W will in general be O(N2).
However, for the special case that d = 2 and d = 3 it is possible to use a fast
summation method such as the Kernel Independent Fast Multipole Method
(KIFMM) by [29] to compute the blocks more efficiently. To my knowledge,
there exists no equivalent fast summation method in higher dimensions that
works satisfactorily. This KIFMM algorithm is flexible and efficient for com-
puting the matrix vector products C(θ)x for a large class of kernel functions,
including the Matérn covariance function. Given Ñ sources and M̃ targets,
experimental results show a computational cost of about O(Ñ + M̃), α ≈ 1
with good accuracy (εFMM between 10−6 to 10−8) with a slight degrade in
the accuracy with increased source nodes.
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Algorithm 7 Construction of sparse matrix C̃
i,j

W(θ)

procedure Construction(Tree, i, j, τi,j , Bi, Bj , Di, Di, C(θ))
Targetnodes ← ∅
for Bi

m ∈ B
i do

K← Bi
m

for Bj
qgets SearchTree(Tree, K, Targetdepth (i), τi,j , Targetnodes) do

for ψi
k ∈ D

i do

for ψj
l ∈ D

j do

Compute (ψi
k)

TC(θ)ψj
l in C̃

i,j
W (θ)

end for
end for

end for
end for

end procedure

Assumption 1 Let A(θ) ∈ RM̃×Ñ be a kernel matrix formed from Ñ source
observation nodes and M̃ target nodes in the space Rd. Suppose that there exists
a fast summation method that computes the matrix-vector products A(θ)x with
εFMM > 0 accuracy in O((Ñ+M̃)α) computations, for some α ≥ 1 and any x ∈ Rd.

For the kD-tree it is not possible to determine a-priori the sparsity of the

blocks C̃
i,j

W(θ). However, for a given a value τi,j ≥ 0 by running Algorithm
4 on every cell Bi

k ∈ Bi, at level i, with the Targetdepth corresponding for
level j it is possible to determine the computational cost of constructing the

sparse blocks C̃
i,j

W(θ) under the following assumption. Suppose that maximum
number of cells Bj

k ∈ Bj given by Algorithm 4 is bounded by some γi,j ∈ N+.

Proposition 4 The cost of computing each block C̃
i,j
W(θ) for i, j = 1, . . . , t by

using a fast summation method with 1 ≤ α ≤ 2 is bounded by O(γi,jp2
i(2t−j+1p +

2t−i+1p)α + 2p2t).

5 Multilevel estimator and predictor

The multilevel decomposition, kd-tree and basis can be exploited in such a way
to significantly reduce the computational burden and to further increase the
numerical stability of the estimation and prediction steps. This is an extension
of the multilevel estimator and predictor formulated in [16] to binary trees
in higher dimensions. The former is based on Oct-tree decompositions, thus
making it unsuitable for higher dimensional problems.

5.1 Estimator

The multilevel likelihood function, lW(θ) (see equation (5)), has the clear
advantage of being decoupled from the vector β. Furthermore, the multilevel
covariance matrix CW(θ) will be more numerically stable than C(θ) thus
making it easier to invert and to compute the determinant. However, it is
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Fig. 2 Multilevel matrix and Neighborhood identification from source cell on a random kD-
tree decomposition of observation locations in R2. (a) Multilevel covariance matrix where

GW := C0,0
W (θ). (b) Cartoon example of axis wise distance criterion τi,j using Algorithms

4, 5, and 6. The orange observations knots correspond to the source cell. The blue knots
correspond to all the target nodes. The gray knots are not included in the list of target
nodes. (c) Example of local neighborhood contained in the axis wise distance τi,j . The
orange nodes are contained in the source cell. The blue nodes are are contained in the local
neighborhood cells. The grey dots are all the observations that are not part of the source or
local neighborhood cells.

not necessary to perform the MLE estimation on the full covariance matrix
CW(θ), instead construct a series of multilevel likelihood functions ℓ̃

n

W(θ), for
n = 0, . . . t− 1, by applying the partial transform [WT

t , . . . ,W
T
n ]

T to the data
Z. The following likelihood functions are obtained: For n = 0, . . . , t− 1

ℓ̃
n

W(θ) = −Ñ

2
log(2π)− 1

2
log det{C̃n

W(θ)} − 1

2
(ZnW)TC̃

n

W(θ)−1ZnW, (7)

where ZnW := [WT
t , . . . ,W

T
n ]

TZ, Ñ is the length of ZnW, C̃
n

W(θ) is the Ñ × Ñ
upper-left sub-matrix of C̃W(θ) andCn

W(θ) is the Ñ×Ñ upper-left sub-matrix
of CW(θ). For the case that n = t then

ℓ̃
t

W(θ) = −Ñ

2
log(2π)− 1

2
log det{C̃t

W(θ)} − 1

2
(ZtW)TC̃

t

W(θ)−1ZtW, (8)
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where ZtW := WtZ, Ñ is the length of ZtW, C̃
t

W(θ) is the Ñ × Ñ upper-
left sub-matrix of C̃W(θ) and Ct

W(θ) is the Ñ × Ñ upper-left sub-matrix of
CW(θ).

A consequence of this approach is that for n = 0, . . . , t the matrices Cn
W(θ)

are increasingly more stable, thus easier to solve computationally, as shown in
the following theorem.

Proposition 5 Let κ(A) → R be the condition number of the matrix A ∈ RN×N
then κ(CtW(θ)) ≤ κ(Ct−1W (θ)) ≤ · · · ≤ κ(CW(θ)) ≤ κ(C(θ)).

Remark 6 If C(θ) is symmetric positive definite then for n = 0, . . . , t the matrices
CnW(θ) are symmetric positive definite. The proof is immediate. Furthermore, for

n = 1, . . . , t, if the matrix C̃
n
W(θ) is close to CnW(θ), in some matrix norm sense,

then the condition number of C̃
n
W(θ) will be close to CnW(θ). Full error bounds will

be derived in a future publication.

5.2 Predictor

In this section, we demonstrate how to construct a multilevel BLUP with
a well-conditioned multilevel covariance matrix. Furthermore, the multilevel
predictor is exact, implying that the solutions of the multilevel predictor and
the BLUP equations (3) and (4) are identical. The key insight is to recognize
that the BLUP arises from a constrained optimization problem (see Section 2).
By seeking the solution within the constrained space, it becomes possible to
formulate a set of equations that are numerically more stable. The multilevel
approach bypasses the need to invert the covariance matrix C(θ), thereby
avoiding the challenges posed by ill-conditioned matrices. It’s important to
note that ill-conditioned matrices offer no guarantees of numerical accuracy,
as previously discussed in [8].

Consider the following system of equations(︃
C(θ) X
XT 0

)︃(︃
γ̂

β̂

)︃
=

(︃
Z
0

)︃
. (9)

From the argument given in [30] it is not hard to show that the solution of this

problem leads to equation (3) and γ̂(θ) = C−1(θ)(Z − Xβ̂(θ)). The BLUP
can be evaluated as

Ẑ(x0) = k(x0)
Tβ̂(θ) + c(θ)Tγ̂(θ) (10)

and the Mean Squared Error (MSE) at the target point x0 is given by
1 + ũT(XTC(θ)−1X)−1ũ −c(θ)TC−1(θ)c(θ) where ũT := (XC−1(θ)c(θ) −
k(x0)).

From (9) it is observed that XTγ̂(θ) = 0. This implies that γ̂ ∈ Rn\Pp(S)
i.e. the solution for γ̂ lives in a lower dimensional space, and can be written as
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γ̂ = WTγW for some γW ∈ RN−p. From equation (9), rewrite C(θ)γ̂+Xβ̂ =
Z as

C(θ)WTγW +Xβ̂ = Z. (11)

Now apply the matrix W to equation (11) and obtain W{C(θ)WTγW +

Xβ̂} = WZ. Since the columns of X belong to Pp(S) then WX = 0 and
therefore

CW(θ)γW = ZW. (12)

Solving these set of equations leads to the unique solution γ̂W and the vector
γ̂ can be obtained by applying the inverse transform WT i.e. γ̂ = WTγW.
From (9) the GLS β̂ can now be computed as

β̂ = (XTX)−1XT(Z−C(θ)γ̂). (13)

Thus γ̂(θ) are β(θ)) obtained by solving the multilevel equations (12) and
(13), which also solves the system of equations (9). Thus the BLUP is solved
exactly.

Remark 7 Solving for Ẑ(x0), γ̂(θ), β(θ) only requires the indirect inversion of the
covariance matrix CW in equation (13). This is in contrast to the classical BLUP
method (See Remark 1).

Remark 8 Notice that to solve the GLS estimate β̂ it is not necessary to compute
the full GLS of equation (3), but a least squares is all that is required. This is in
contrast to the GLS estimate of equation (3) where if an iterative method is used the
covariance matrix C(θ) has to be inverted for each of the columns of X i.e. p times.

Remark 9 A simple preconditioner PW can be formed from the diagonal entries of
the matrix CW i.e. PW = diag(CW) leading to the following system of equations
P−1WCW(θ)γW = P−1WZW. Note that in some cases CW(θ) will have very small
condition numbers. For this case we can set PW := I, i.e. no preconditioner.

Theorem 6 If the covariance function ϕ : Γd×Γd → R is positive definite, then the
matrix PW(θ) is always symmetric positive definite.
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6 Numerical computation of multilevel
estimator and predictor

6.1 Estimator: Computation of log det{C̃n

W} and

(Zn
W)T(C̃

n

W)−1Zn
W

An approach to computing the determinant of C̃
n

W(θ) is to apply a sparse

Cholesky factorization technique such that GGT = C̃
n

W(θ), where G is a
lower triangular matrix. Notice that the eigenvalues of G are located on the

diagonal. This leads to log det{C̃n

W(θ)} = 2
∑︁Ñ

i=1 logGii.
The direct application of the sparse Cholesky algorithm can lead to signifi-

cant fill-in of the factorization matrix G. To alleviate this problem it is typical
to use matrix reordering techniques. In particular, the fill-in are reduced by
using the sparse Cholesky factorization chol from the Suite Sparse 4.2.1 pack-
age ([31–35]) coupled with Nested Dissection (NESDIS) function package. In
practice, this approach leads to a significant reduction of fill-in. A theoretical
worse case complexity bounded exists for d = 2, 3 dimensions (see [16]).

There are two choices for the computation of (ZnW)TC̃
n

W(θ)−1: i) a

Cholesky factorization of C̃
n

W(θ), or ii) a Preconditioned Conjugate Gradient
(PCG). The PCG choice requires significantly less memory and allows more

control of the error. However, the sparse Cholesky factorization of C̃
n

W(θ) has
already been used to compute the determinant. Thus we can use the same
factors to compute (Z̃

n

W)TC̃
n

W(θ)−1Z̃
n

W. The PCG avenue will be explored
further in Section 6.2.

6.2 Predictor computation

For the predictor stage a different approach is used. Instead of inverting the
sparse matrix C̃W(θ) a Preconditioned Conjugate Gradient (PCG) method is
employed to compute γ̂W = CW(θ)−1ZW.

Recall that CW = WC(θ)WT, γ̂W = Wγ̂ and ZW = WZ. Thus the
matrix vector products CW(θ)γnW in the PCG iteration are computed within

three steps: γnW
WTγn

W−−−−−→
(1)

an
C(θ)an−−−−−→

(2)
bn

Wbn−−−→
(3)

CW(θ)γnW, where γ0
W is the

initial guess and γnW is the nth iteration of the PCG. (1) Transformation from
multilevel representation to single level. This is done in at most O(Nt) steps.
(2) Perform matrix vector product using a summation method. For d = 2, 3 a
KIFMM is used to compute the matrix vector products with α ≈ 1. For d > 3
to my knowledge there is no reliable fast summation method. (3) Convert back
to multilevel representation.

The matrix-vector products CW(θ)γnW, where γnW ∈ RN−p, are computed
in O(Nα + 2Nt) computational steps to a fixed accuracy εFMM > 0. Note
that α ≥ 1 is dependent on the efficiency of the fast summation method. The
total computational cost is O(kNα+2Nt), where k is the number of iterations
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needed to solve P−1WCW(θ)γ̄W(θ) = P−1W Z̄W to a predetermined accuracy
εPCG > 0.

Remark 10 The introduction of a preconditioner can degrade the accuracy for com-
puting γ̂W = CW(θ)−1ZW with the PCG method. The residual accuracy εPCG
of the PCG iteration has to be set such that the residual of the unpreconditioned
system ∥CW(θ)γW(θ)− ZW∥l2 < ε for a user given tolerance ε > 0.

Now compute γ̂ = WTγ̂W and β̂ = (XTX)−1XT(Z−C(θ)γ̂) in at most
O(Nα+Np+ p3) computational steps. The matrix vector product c(θ)Tγ̂(θ)
is computed in O(N) steps. Finally, the total cost for computing the estimate
Ẑ(x0) from (10) is O(p3 + (k + 1)Nα + 2Nt).

7 Multilevel covariance matrix decay

We derive decay estimates of the multilevel covariance matrix. This section is
somewhat technical and can be skipped on a first read of the paper. It can be
shown that most of the coefficients are small and thus it is not necessary to
compute all of them. The final objective is to build a posteriori error estimates
for xW = Cn

W(θ)−1ZnW and log det(Cn
W(θ)) that are needed for solving the

multilevel estimator MLE. However, the full analysis is extensive and will be
completed in a future publication. As a first step we show the decay of the
multilevel covariance matrix. Note that this is not trivial and uses the results
derived in the supplement. We recommend to first read the appendix since
part of the notation used in this section is defined there. However, some of the
notation and definitions will be included in this section so as to make it more
self contained.

In the paper [16] the authors derive the decay rates of the entries of the
covariance matrix for multilevel matrices in Rd based on Taylor’s theorem.
This approach is well suited for a small number of dimensions d. However, as
d increases the number of derivatives in the Taylor’s theorem increases com-
binatorially. Furthermore, the dimension of the domain of these derivatives
increases with respect to d. For large dimensional problems it becomes increas-
ingly difficult to compute the constants that depend on the derivatives in the
bounds derived in [16]. In contrast, by using the complex analytic approach
the constants can be uniformly bounded and depend on the region of the
analytic extension. This is the reason that in the field of uncertainty quan-
tification for stochastic Partial Differential Equations with high dimensional
random parameters complex analyticity is used instead [20–24]. We follow this
approach.

The decay of the coefficients of the matrix CW(θ) will depend directly on
the choice of the multivariate index set Qdw and the complex analytic regularity
extension of the covariance function. In general, the Matérn covariance function
will be analytic except for a derivative discontinuity at the origin. However,
with the application of the distance criterion τi,j > 0 a minimal distance can



Springer Nature 2021 LATEX template

20 Spatial best linear unbiased prediction for massive datasets

be guaranteed and the origin can be avoided all together. In the following
theorem, without loss of generality, it is assumed that the covariance function
ϕ is defined on the domain Γd×Γd for on any two cells Bi

m ∈ Bi and Bj
q ∈ Bj .

This is achieved by using a pullback that we shall explain shortly. Furthermore,
we restrict our attention to any two cells Bi

m and Bj
q that do not overlap. This

will guarantee that the center of the covariance function is avoided and the
existence of complex analytic extension as shown in Theorem 8.

Suppose that σ > 0 and denote by

Eσ :=
{︂
z ∈ C, σ ≥ δ ≥ 0 : Re z =

eδ + e−δ

2
cos(θ), Im z =

eδ − e−δ

2
sin(θ),

θ ∈ [0, 2π)
}︂

as the region bounded by a Bernstein ellipse. Thus Eσ is an extension into the
complex plane from the domain Γ ≡ [−1, 1] (see Figure A1). Let Eσ,n ⊂ Cd a
complex region bounded by a Bernstein ellipse such that the restriction on Γd
is along the nth dimension and form the polyellipse Edσ :=

∏︁d
n=1 Eσ,n.

Theorem 7 Suppose that 0 < δ < 1, σ̂ := σ(1−δ), and ϕ(α,γ; θ) ∈ C0(Γd×Γd; R),
where α,γ ∈ Γd, can be analytically extended on Edσ×Edσ and is bounded by M̃(ϕ). Let
Pp(S)⊥ be the subspace in RN generated by the index set Qdw for some w ∈ N+. For
i, j = 0, . . . , t consider any multilevel vector ψim ∈ Pp(S)⊥, with nm non-zero entries,
from the cell Bim ∈ Bi and any multilevel vector ψjq ∈ Pp(S)⊥, with nq non-zero

entries, from the cell Bjq ∈ Bj . If Bim and Bjq do not overlap, and p(d,w) ≥
(︂

2d
κ(d)

)︂d
then |

∑︁N
k=1

∑︁N
h=1 ϕ(xk,yh; θ)ψ

i
m[h]ψjq[k]| is less or equal to

√
nmnq

(︄
C(M̃, σ)ded−σ(1−δ)+1σ̂d

(σδ)d

)︄2(︄
eσ̂

1− e−σ̂

)︄2d

exp

(︃
−2d

e
σ̂p

1
d

)︃
p2(

d−1
d ).

In Figure 3 a plot of the validity of the bound given by Theorem 7 is shown.
For example, for w = 20 Theorem 7 will be valid for problems of up to d = 60
dimensions. For a small number of dimensions d the bounds derived in [16] are
sufficient. However, as the number of dimensions increases it is preferable to
use complex analyticity and the bound from Theorem 7.

Remark 11 Recall that the restriction p(d,w) ≥
(︂

2d
κ(d)

)︂d
is not strict and can be

relaxed such that sub-exponential convergence is still obtained. See Remark 15.

Remark 12 Note that the bounded given by Theorem 7 does not give an explicit
bound with respect to the distance criterion τi,j . However, the size of the polyellipse

Ed and magnitude of M̃(ϕ) on Ed will depend on τi,J . In Theorem 8 this dependence
is shown explicitly.
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Fig. 3 Validity of Theorem 7 maximum dimensionality with respect to the degree w given

by the bound p(d,w) ≥
(︂

2d
κ(d)

)︂d
.

Remark 13 The decay of the coefficients of Ci,jW is sub-exponential with respect to
p. Even for a moderate magnitude for σ̂ > 0, p > 0 and d ≥ 1 the entries of the
multilevel matrix Ci,jW that do not correspond to the cells given by the distance
criterion parameter τi,j ≥ 0 will be close to zero.

Theorem 7 provides a mechanism to control the decay of the coefficients
of the multilevel covariance matrix CW. To apply Theorem 7 we need to
show that there exists a complex analytic extension of the Matérn covariance
function

ϕ(r; θ) :=
1

Γ(ν)2ν−1

(︂√
2νr(θ)

)︂ν
Kν

(︂√
2νr(θ)

)︂
and a uniform bound M̃(ϕ) ≤ ∞ on a subdomain in Cd × Cd, where r(θ) =
((x− y)T diag(θ)(x− y))

1
2 , θ = [θ1, . . . , θd] ∈ Rd+ are positive constants, and

diag(θ) ∈ Rd×d is a diagonal matrix with the vector θ on the diagonal for all
x,y ∈ Rd.

Due to the low regularity at the center of the covariance function ϕ(r; θ)
a complex analytic extension will not exist. However, if we avoid the center
then such extension is possible. Consider any multilevel vector ψim ∈ Pp(S)⊥,
with nm non-zero entries, from the cell Bi

m ∈ Bi and any multilevel vector
ψjq ∈ Pp(S)⊥, with nq non-zero entries, from the cell Bj

q ∈ Bj . By placing the

restriction that τi,j > 0 and the cells Bi
m and Bj

q do not intersect then the

covariance function on each of the locations in Bi
m will not cross the cell in

Bj
q . Thus the low regularity center is avoided.
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Our first step is to construct a pullback of the covariance function defined
on the region covered by the cells Bi

m and Bj
q onto the region Γd ≡ [−1, 1]d.

The rational behind this is that the interpolation theory in Appendix A and
in [36] is defined on the domain Γd, thus we need to re-scale the covariance
function on each of the cells Bi

m and Bj
q .

For k = 1, . . . , d let xmink := minx∗
k∈Bi

m
x∗k, xmaxk := maxx∗

k∈Bi
m
x∗k,

ymink := miny∗k∈Bi
m
y∗k, y

max
k := maxy∗k∈Bi

m
y∗k and αk, γk ∈ [−1, 1]. Define the

region X im := [xmin1 , xmax1 ]× · · · × [xmind , xmaxd ] and Yjq := [ymin1 , ymax1 ]× · · · ×
[ymind , ymaxd ].

The next step is to redefine ϕ(x,y; θ) : X im × Yiq → R as ϕ(α,γ; θ) :

Γd×Γd → R through a pullback. For k = 1, . . . , d, let xk =
(︁
αk+1

2

)︁
ak+bk and

yk =
(︁
γk+1

2

)︁
ck+dk, where ak = xmaxk −xmink , bk = xmink , ck = ymaxk −ymink and

dk = ymink . Thus, all of the locations S in Bi
m and Bj

q will be contained in the

hyperectangles X im and Yjq respectively Furthermore, we have also obtained

the pullback from X im and Yjq onto Γd.
We now set certain parameters that insures the existence of the analytic

extension from the dimensions of the hyperectangles X im and Yjq . The Matérn
function consists of polynomial and Bessel components. The polynomial is an
entire function, thus we do not have to worry about it. However, the function
Kν(ϑ) and ϑ

1
2 are analytic for all ϑ ∈ C except at the branch cut (−∞, 0]. Thus

it is sufficient to check the analytic extension of r(θ) =
(︂∑︁d

k=1 θk(xk−yk)2
)︂ 1

2

.

The choice of these parameters will allow us to construct a complex analytic
extension that avoids the branch cut at (−∞, 0]. Please read the proof of
Theorem 8 for more details. Now, for all k = 1, . . . , d pick δk > 0 be such that

δk ≤
√

32 τ2
i,j+8 τi,j+1−1−4 τi,j

4 τi,j
. Let δ := [δ1, . . . , δk] and

ξ(θ, δ, τi,j) := tan−1

⎛⎝ ∑︁d
k=1 2τi,jδk + 4τ2i,jδ

2
k∑︁d

k=1 θk

(︂
τ2i,j(1− 4δ2k)−

τi,jδk
2

)︂
⎞⎠ .

For k = 1, . . . , d let σαk := cosh−1
(︂
1 +

τi,jδk
ak

)︂
and σγk :=

cosh−1
(︂
1 +

τi,jδk
ck

)︂
. From these parameters we can form the polyellipses Edα :=∏︁d

k=1 Eσα
k
and Edγ :=

∏︁d
k=1 Eσγ

k
Note that each of the Bernstein ellipses will

contain the closed interval [−1, 1], thus they are an extension of Γ into the com-
plex plane. From the choice of these parameters it is shown that there exists an
analytic extension r(θ) onto Edα × Edγ . The following result gives the existence

of a complex extension of the Matérn kernel onto the polyellipses Edα × Edγ .

Theorem 8 For any two cells Bim and Bjq that do not overlap with the associated

distance criterion parameter τi,j > 0 let ϕ(α,γ; θ) : Γd × Γd → R be the pullback

of the Matérn covariance function ϕ(x,y; θ) : X i
m × Yjq → R. Then there exists an
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analytic extension of ϕ(α,γ; θ) : Γd × Γd → R onto the polyellipse Edα × Edγ and

|ϕ(·, ·; θ)| ≤ (2ν
∑︁d

k=1 θkR(δk,τi,j))
ν
2 |Kν(Ξ(θ,δ,τi,j))|

Ξ(θ,δ,τi,j)ν
on Edα × Edγ , where

Ξ(θ, δ, τi,j) := |Kν

(︂√︃ν

2
cos(ξ(θ, δ, τi,j)/2)

d∑︂
k=1

θk

(︂
τ2i,j(1− 4δ2k)−

τi,jδk
2

)︂)︂
|

and R(δk, τi,j) := 1 + 9
2τi,jδk + 5τ2i,jδ

2
k.

We can now apply Theorem 8 to Theorem 7 to obtain a bound on the
coefficients of CW(θ).

8 Numerical results

The performance of the multilevel solver for estimation and prediction formed
from random datasets is tested. The results show that the computational bur-
den is significantly reduced while retaining good accuracy. In particular, it
is possible to now solve ill-conditioned problems efficiently. The experimental
setup is described in Section B.

8.1 Condition numbers and sparsity of the covariance
multilevel matrix

For many practical cases the covariance matrix C(θ) becomes increasingly ill-
conditioned for the Matérn covariance function as ρ, ν and the number of
observations are increased. This leads to instability of the numerical solver.
It is now shown how effective Theorem 1 becomes in practice. In Figure 4
the condition number of the multilevel covariance matrix CW(θ) is plotted
with respect to the cardinality p(w, d) of Qdw for different w levels. The multi-
level covariance matrix CW(θ) is built from the random cube Cd

4 or n-sphere
Sd4 observations. The covariance function is set to Matérn with ν = 1 and
ρ = 1, 10. As the plots confirm the covariance matrix condition number sig-
nificantly improves with increasing level w. This is in contrast with the large
condition numbers of the original covariance matrix C(θ). This is consistent
with Theorem 1.

In Table 1 sparsity and construction wall clock times of the sparse matrices

C̃
i

W(θ), i = t, t−1, . . . , for various values of i are shown. The polynomial space
of the index set Qdw is restricted to TD on a n-Sphere with d = 10 dimensions.
The domain decomposition is formed with a kD-tree. The level of the index
set is set to w = 7, which corresponds p = 1001. The covariance function is
Matérn with ν = 3/4, ρ = 3/4. The distance criterion for each (i, j) multilevel
covariance matrix block is set to τi,j := 2(t−i)/22(t−j)/2τ , for i = 1, . . . , t and
j = 1 . . . , t, where τ = 3× 10−6.

The first observation to notice is that all the sparse matrices C̃
i

W(θ), i =
t, t−1, . . . are very well conditioned, thus numerically stable. This is in contrast
to the original covariance matrices that are in general poorly conditioned. The
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Fig. 4 Condition number of the multilevel covariance matrix CW(θ) with respect to the
size p of the Total Degree (TD) polynomial space. The number of observations corresponds
to 16,000 nodes generated on a hypercube or n-sphere of dimension d = 5. The covariance
function is chosen to be Matérn with ν = 1 and ρ = 1, 10. The condition number of the
covariance matrix C(θ) is placed on the top of each subplot for comparison. The MB is
constructed from a kD-tree. As expected, as p increases with w the condition number of
CW(θ) decreases significantly. This is consistent with Theorem 1.

sparsity of C̃
i

W(θ) and the Cholesky factor G are shown in columns 7 and 9.

The construction time tcon of the C̃
i

W(θ) is shown in column 9. In column
5 tML is the time required to build the multilevel basis. We observe that for

large matrices the sparse matrix C̃
i

W(θ) are built efficiently. It is noted that
the sparse matrices in Table 1 are built with a direct summation method due
to the dimensionality.

Table 1 Sparsity test on the matrices C̃
i
W, i = t, t− 1, . . . . The polynomial space of the

index set Qd
w is restricted to TD on a n-Sphere with d = 10 dimensions. The domain

decomposition is formed from a kD-tree. The level of the index set is w = 7, which
corresponds p = 1001. The kernel function is Matérn with ν = 3/4, ρ = 3/4 and
τ := 3× 10−6. The first column is the number of random n-Sphere nodes. The second is

the maximum level of the kD tree and i is the level of the sparse matrix C̃
i
W. The fourth

column is the condition number of C̃
i
W, which is excellent. The fifth column is the size of

the matrix C̃
i
W. The seventh column, tML, is the total time for the construction of the

multilevel basis. The eighth column is the sparsity of C̃
i
W. The ninth column, tcon is the

total time for the construction of the matrix C̃
i
W. The tenth column is the sparsity of the

Cholesky factor G (with nested dissection reordering) of the sparse matrix C̃
i
W. The last

column is the total time to compute the Cholesky factor G.

N t i κ(C̃
i
W) Size tML nz tcon nz(G) tsol

32,000 4 4 5 15,984 46 6.3% 11 3.1% 1
32,000 4 3 8 23,992 46 10.4% 30 5.2% 3
32,000 4 2 13 27,996 46 15.6% 82 7.8% 7
32,000 4 1 19 29,998 46 20.1% 190 10.4% 16
32,000 4 0 23 30,999 46 25.7% 310 13.0% 17
64,000 5 5 6 31,968 104 3.5% 21 1.8% 3
64,000 5 4 11 47,984 105 6.3% 90 3.1% 12
64,000 5 3 18 55,992 106 9.6% 270 5.0% 18
64,000 5 2 121 59,996 121 13.4% 624 6.7% 34

128,000 6 6 8 63,936 237 4.0 % 120 2.1 % 15
128,000 6 5 17 95,968 237 5.5 % 378 6.7 % 140
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8.2 Prediction numerical accuracy under ill-conditioning

In this section the numerical accuracy of the ML BLUP solver is tested for
a series of highly ill-conditioned matrices and compared with the traditional
formulae. Due to the ill-conditioning of the covariance matrices we will see in
general that the traditional formulae cannot solve the BLUP with accuracy.
Recall the relationship between accuracy and ill-conditioning [8]. This problem
is circumvented by using the multilevel approach. For the covariance function

the Gaussian kernel ϕ(r, θ) = exp(− r2

2θ2 ) is used, where θ controls the width
of the kernel. This kernel is notorious for leading to covariance matrices with
large condition numbers. The observation locations {x1, . . . ,xN} are randomly
sampled on a unit disk (2D) with N = 200. The multilevel basis is constructed
with degree w = 8, i.e. p = 45. Let xk := [xk1 , x

k
2 , . . . x

k
N ], then observations

for n = 1, . . . N are formed as Zn = 1 + sin(αxn1 ) sin(αx
n
2 ), where α ∈ R.

The BLUP target nodes are be computed on NT = 200 randomly sampled
locations {g1, . . .gNT

} on the unit disk. The BLUP is computed for each of

the target points as Ẑ(gk) = k(gk)
Tβ̂+ c(θ)TC(θ)−1(Z−Xβ̂), where c(θ) =

cov{Z, Z(gk)} ∈ Rn and k = 1, . . . NT .

Suppose the BLUP is computed using the traditional formulae i.e. β̂(θ) =

(XTC(θ)−1 X)−1 XTC(θ)−1Z and γ̂(θ) = C−1(θ)(Z −Xβ̂(θ)). Let β̂D be
the GLS coefficients and ẐD ∈ RNT the BLUP at the target nodes using a
traditional double precision computer. Conversely β̂52 and Ẑ52 are computed
using the symbolic toolbox of MATLAB with 52 digits accuracy. Note that the
symbolic toolbox direct inversion methods are very slow and cannot be used
for large matrices. Now, the BLUP is computed using the multilevel method.

Let β̂W be the GLS coefficients and Ẑ
W

D be the BLUP at the target nodes with
a double precision computer. The relative errors are computed with respect

to the 52 digit solution as ϵβ̂W
:= ∥β̂W−β̂52∥

∥β̂52∥
, ϵ

Ẑ
W
D

:= ∥Ẑ
W

D − Ẑ52∥∥Ẑ52∥−1,

ϵβ̂D
:= ∥β̂D − β̂52∥∥β̂52∥−1, and ϵẐD

:= ∥ẐD − Ẑ52∥∥Ẑ52∥−1.
In Table 2 the accuracy results for the traditional formulae and the mul-

tilevel BLUP are tabulated. Observe that the original covariance matrices are
very ill-conditioned and is reflected with high errors in the computation of the
BLUP. This is in contrast to the multilevel approach, which leads to much
higher accuracies and lower condition numbers of the covariance matrices.
Notice that some round off errors still affect the overall accuracy. However,
the multilevel method is significantly more robust that the traditional BLUP
formulae.

8.3 Estimation

In this section estimation results are presented for the Matérn covariance
matrix on high dimensional n-Sphere random locations by solving multilevel

log-likelihood θ̂ := argmaxθ ℓ̃
i

W(Zi,k,dW ; θ), where Zi,k,dW := [WT
t , . . . ,W

T
i ]

TZdk,
for i = t, t− 1, . . . . The observation data Zdk is built from the n-Sphere Sdk for
d = 3, 10, k = 6 (N = 64, 000) and k = 7 (N = 128, 000). The covariance
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α θ κ(C) κ(CW) ϵβ̂W
ϵẐw

D
ϵβ̂D

ϵẐD

1 10 1.62× 1019 9.55× 103 1.15× 10−4 1.96× 10−6 1.38× 102 3.00× 102

0.5 10 1.62× 1019 9.55× 103 1.67× 10−9 1.91× 10−9 2.71× 100 4.39× 100

2 10 1.62× 1019 9.55× 102 2.77× 10−2 1.60× 10−3 1.41× 103 1.66× 104

2 3 7.92× 1019 9.18× 102 2.35× 100 5.79× 10−4 1.37× 103 1.47× 100

0.5 3 7.92× 1019 9.18× 102 2.81× 10−4 7.48× 10−10 5.23× 100 6.30× 10−5

Table 2 BLUP relative accuracy errors. For different parameters of the test, the
condition numbers of the multilevel approach improve significantly over the traditional
BLUP formulae. The multilevel approach leads to high accuracy results. This is in contrast
to the traditional BLUP formulae, which struggle to achieve reasonable accuracy.

function is Matérn for several values of ν and ρ. To test the performance of
the multilevel estimator, M = 100 realizations are generated

The optimization problem of the log-likelihood function (7) (and (8)) is
solved using a fmincon iteration search for the estimates ν̂ and ρ̂ from the
optimization toolbox in MATLAB [37]. The tolerance level is set to 10−6. In
Table 3 the mean and standard deviation of the Matérn covariance parameter
estimates ν̂ and ρ̂ are presented. The mean estimate EM [ν̂] refers to the mean
of M estimates ν̂ for the M realizations of the stochastic model. Similarly,
stdM [ν̂] refers to the standard deviation of the M realizations. For case (a)
(d = 3) the error mean and std is ≈ 1%. For case (b) (d = 10) the error of the
mean increase to ≈ 10%. In general, as i is reduced from t there is a tendency
of a drop in the standard deviation stdM [ν̂] of the estimator ν̂. However, there
is also a tendency for the accuracy of the mean to degrade somewhat, except
for (a) N = 128, 000, i = 12→ 11.

Table 3 Estimation of parameters ν̂ and ρ̂ with: Total Degree polynomial index set Qd
w,

kD tree, and n-Sphere with for d = 3 and d = 10. The observation data Zd
k are formed

from the Matérn covariance function. The number of realizations of the Gaussian random
field model is set to M = 100. Several cases are tested and are given by the individual
tables (a) and (b). The first to fourth columns are self-explanatory. The fifth column is the
mean error of ν̂ with M realization. The sixth column is the mean error of ρ̂. The last two
columns are the standard deviation of M realizations of the parameters ν̂ and ρ̂.

(a) TD, kD tree, n-Sphere, d = 3, M = 100, ν = 3/4, ρ = 1/6, τ = 5× 10−2

N w t i EM [ν̂ − ν] EM [ρ̂− ρ] stdM [ν̂] stdM [ρ̂]
64000 3 11 11 -1.92e-04 4.52e-04 1.36e-02 8.17e-03
64000 3 11 10 1.17e-03 -5.90e-04 7.08e-03 4.04e-03

128000 3 12 12 -2.51e-03 1.81e-03 8.54e-03 6.11e-03
128000 3 12 11 -6.90e-04 5.02e-04 4.17e-03 2.84e-03

(b) TD, kD tree, n-Sphere, d = 10, M = 100, ν = 3/4, ρ = 3/4, τ = 1× 10−5

N w t i EM [ν̂ − ν] EM [ρ̂− ρ] stdM [ν̂] stdM [ρ̂]
64000 4 5 5 8.70e-03 -1.12e-02 1.55e-02 1.85e-02
64000 4 5 4 -9.31e-02 8.02e-02 1.67e-02 1.97e-02

128000 4 6 6 -6.36e-03 5.51e-03 2.10e-02 1.72e-02
128000 4 6 5 -7.18e-02 6.27e-02 1.32e-02 1.46e-02
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9 Prediction

In this section the computational performance of the multilevel solver is ana-
lyzed. Given a fixed Matérn parameters (ν, ρ) the BLUP vectors γ̂ and β̂ are
computed. This involves solving the system of equations P−1WCW(θ)γW =

P−1WZW and β̂ = (XTX)−1 XT(Z − Cγ̂). Results for computing γ̂ and β̂
for the hypercube data set with d = 3 dimensions, kD tree, and the Total
Degree index set Qdw are shown in Table 4. The Matérn covariance coefficients
θ = (ν, ρ) are set to (3/4,1). The relative error of the residual of PCG method
for the unpreconditioned system is set to ε = 10−3. The KIFMM is set to high
accuracy.

For computing the matrix vector products of the PCG iterations, the com-
putational break even point of the KIFMM solver is reached for N ≈ 2, 500
compared to using the direct approach (with CPU and GPU). The increase
in computational complexity is linear with respect to N . Thus all the matrix
vector products for the PCG iterations are calculated using the KIFMM. The
preconditioner PW is built using a combination of the GPU and CPU. This
leads to a quadratic increase in computational cost with respect to the number
of observations N . However, due to the high efficiency of the implementation
and p = 120, the break even point for the use of the KIFMM solver is not
reached, even for N = 512, 000 observation points. From Table 4 observe that
condition number of the covariance matrix C is much larger compared to CW.
This is already a good indication that solving the prediction problem will be
more efficient using the multilevel approach.

The number of iterations needed to reach the same accuracy for both
approaches are significantly better with the multilevel approach i.e. ≈ 70 times
less iterations. However, the computation of β with the single level method
requires solving p = 121 matrix inversions of C. This is in contrast with a
single matrix inversion of CW with the multilevel method. In practice, we
did not solve all p matrix inversions for the single level approach, but mea-
sure the time required to compute a single matrix inversion and multiplied it
121 to obtain the estimated time complexity. For N = 64, 000 observations we
observe efficiencies of ≈ 7, 000 compared to the single level iterative approach.
The multilevel approach is now tested on d = 20, 25 dimensional problems.
Due to the high dimensionality of these problems, a fast summation approach
is not an option. The matrix-vector products of each iteration are computed
with the direct approach using the GPU and CPU. In Table 5(a) the numer-
ical results for computing γ and β for d = 20 and θ = (5/4, 10). Compared
to the single level iterative approach the multilevel method is approximately
42,000 faster for N = 64, 000 observations. Similar results are obtained shown
in Table 5(b). for d = 25 and θ = (5/4, 10).

10 Conclusions

In this paper a multilevel method is developed that scales well with high dimen-
sions for solving the spatial BLUP. A multilevel basis is constructed from a
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Table 4 Numerical results for computing P−1
WCW(θ)γW = P−1

WZW and

β̂ = (XTX)−1XT(Z−Cγ̂) for the hypercube data set with d = 3 and the Total Degree
index set Qd

w. The Matérn covariance coefficients θ = (ν, ρ) are set to (3/4,1). The relative
error of the residual of PCG method for the unpreconditioned system is set to ε = 10−3.
The KIFMM is set to high accuracy. (a) The second column of is the condition number of
the covariance matrix C, up to N = 64, 000 observations, and is compared with the third
column which corresponds to the condition number of CW . The third column is the
number of CG iterations needed for convergence for 10−3 residual accuracy. The fourth
column is the number of iterations need to achieve the residual error 10−3 for the
unpreconditioned system with the preconditioner PW. (b) The sixth column corresponds
to the wall clock times in seconds for the preconditioner computation. The PCG iteration
wall clock timings for CW, by using a KIFMM, are given in the seventh column. The
eighth column is the total time to compute γW, β and the multilevel basis construction.
The eighth column is the computational efficiency for computing γW vs C−1Z to same
residual accuracy with respect to the number of iterations. The last column is the
estimated efficiency of computing γ̂ and β̂ with the multilevel BLUP compared to the
single level approach, equation (10), to approximately the same accuracy using a CG
iteration with the KIFMM. We observe the significant speed ups (≈ 7, 000 for N = 64, 000)
for calculating the BLUP by using the multilevel approach.

θ = (3/4, 1), d = 3, w = 7 (p = 120)
N κ(C) κ(CW) itr(C) itr(CW) PW (s) Itr (s) Total (s) Effγ Effγ,β

8,000 3.2× 107 1.8× 104 1,985 52 4 29 38 38 3,600
16,000 1.1× 108 6.0× 104 3,511 67 13 98 118 52 5,000
32,000 5.6× 108 3.1× 105 8,259 116 45 260 317 71 7,250
64,000 1.8× 109 9.5× 105 12,680 165 178 798 997 76 7,380

128,000 - - - 308 713 3,934 4,687 - -
256,000 - - - 292 2,837 5,745 8,663 - -
512,000 - - - 484 11,392 20,637 32,202 - -

Table 5 Computing BLUP for the n-sphere data set with d = 20 and d = 25 dimensions,
TD index set, and Matérn covariance function without pre-conditioner. The residual
accuracy is set to ε = 10−3. Since the dimension is greater than 3, the matrix vector
products are computed directly with the GPU and CPU. The description of the columns of
tables (a) and (b) are the same as for Table 4. In addition, column 6 corresponds to the
wall clock time for computing the multilevel basis. (a) Computational times for solving the
prediction for d = 20 and θ = (5/4, 10). The growth in computational cost is slightly faster
than quadratic due to the lack of fast summation method in higher dimensions. However,
compared to the single level iterative approach it is approximately 42,000 faster for
N = 64, 000 observations. (b) BLUP prediction for d = 25 and θ = (5/4, 10). The growth in
computational cost is similar. The efficiency of this method is about 2,840 times faster.

(a) θ = (ν, ρ) = (5/4, 10), d = 20, w = 3 (p = 1771), No precond., Direct
N κ(C) κ(CW) itr(C) itr(CW) MB(s) Itr(s) Total(s) Effγ,β

16,000 5× 107 7 238 10 52 97 153 26,700
32,000 1× 108 11 324 13 121 500 628 35,160
64,000 2× 108 17 444 17 284 2,600 2,898 42,050

128,000 - - - 22 628 13,494 14,153 -

(b) θ = (ν, ρ) = (3/4, 10), d = 25, w = 2 (p = 351), No precond., Direct
N κ(C) κ(CW) itr(C) itr(CW) MB(s) Itr(s) Total(s) Effγ,β

16,000 2× 106 7 86 12 5 116 122 2,400
32,000 4× 106 12 109 15 13 582 599 2,490
64,000 9× 106 21 147 18 30 2,788 2,821 2,840

128,000 - - - 25 79 15,557 15,641 -
256,000 - - - 33 157 83,163 83,337 -
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kD-tree and for the choice of Total Degree polynomial basis Qdw. The approach
described in the paper has the following characteristics and advantages:

i) The multilevel method is numerically stable. Hard estimation and predic-
tion of large dimensional problems are now feasible. ii) The method is efficiently
implemented by using a combination of MATLAB, c++ software packages and
dynamic libraries. iii) Sub-exponential decay of multilevel covariance matrix
CW is proven based on complex analytic extensions. iv) Numerical results of
up to 25 dimensional problems. These problems are difficult to solve with tra-
ditional methods due to the large condition numbers, but feasible with the
multilevel method. v) The multilevel prediction approach is proven to be exact,
in the sense that single level and multilevel prediction formulations are shown
to be equivalent. vi) The efficiency of this approach will be further improved as
high dimensional fast summation methods are developed. vii) An A-posteriori
scheme and estimates for constructing the sparse covariance matrix C̃ will be
developed in a future paper. This will be possible with the error bounds for
the entries of C derived in this paper since all the constants can be estimated.
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Appendix A Polynomial Interpolation

In this section we provide some background on polynomial interpolation in
high dimensions. This will be critical to estimate the decay rates of the entries
of the multilevel covariance matrix for high dimensional problems.

The decay of the coefficients will directly depend on the analytic properties
of the covariance function. The traditional error estimates of polynomial inter-
polation are based on multi-variate mth order derivatives. However, for many
cases, such as the Matérn covariance function, the derivatives are too complex
or expensive to manipulate for even a moderate number of dimensions. This
motivates the study of polynomial numerical approximations based on complex
analytic extensions, which are much better suited for high dimensions. Much
of the discussion that follows has it roots in the field of uncertainty quantifi-
cation and high dimensional interpolation [20, 22, 36] for partial differential
equations.

Consider the problem of approximating a function v : Γd → R on the
domain Γd. Without loss of generality let Γ ≡ [−1, 1] and Γd ≡

∏︁d
n=1 Γ.

Suppose that G ⊂ Γd, then define the following spaces

Lq(G) := {v(y) :

∫︂
G
v(y)qdy <∞} and L∞(G) := {v(y) : sup

y∈G
|v(y)| <∞}.
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Suppose that Pq(Γ) := span{yk, k = 0, . . . , q} i.e. the space of polyno-
mials of degree at most q. Let Im : C0(Γ) → Pm−1(Γ) be the univariate
Lagrange interpolant Im(v(y)) :=

∑︁m
k=1 v(y

(k))lm,k(y
(k)), where y(1), . . . , y(m)

is a set of distinct knots on Γ and {ln,k}mk=0 is a Lagrange basis of the space
Pm−1(Γ). The variable m ∈ N0 corresponds to the order of approximation of
the Lagrange interpolant. However, for the case of the zero order interpolation
m = 0 corresponds to I0 = 0.

Remark 14 For high dimensional interpolation the particular set of points y(1), . . . ,
y(m) that we will use is the Clenshaw-Curtis abscissas. This is further discussed in
this section. However, for now, we assume that the points are only distinct.

For m ≥ 1 let ∆m := Im−Im−1. From the difference operator ∆m we can
readily observe that Im =

∑︁m
k=1 ∆k, which is reminiscent of multi resolution

wavelet decompositions. The idea is to represent multivariate approximation
as a summation of the difference operators.

Consider the multi-index tupple m = (m1, . . . ,md), where m ∈ Nd0, and
form the tensor product operator Sw,d : Γ→ R as

Sw,d[v(y)] :=
∑︂

m∈Nd:
∑︁d

i=1mi−1≤w

d⨂︂
n=1

∆n
mn

(v(y)). (A1)

Note that by ∆n
mn

(v(y)) we mean that the difference operator ∆mn
is applied

along the nth dimension in Γ.
Let C0(Γd; R) := {v : Γd → R is continuous on Γd and maxy∈Γd |v(y)| <

∞}. From Proposition 1 in [38] it is shown that for any v ∈ C0(Γd; R), we
have Sw,d[v] ∈ Qdw. Moreover, Sw,d[v] = v, for all v ∈ Qdw. The key observation
to take away is that the operator Sw,d[v] is exact in the space of polynomials
Qdw. This will be useful in connecting the Lagrange interpolant with Chebyshev
polynomials.

Let Tk : Γ → R, k = 0, 1, . . . , be a Chebyshev polynomial over Γ, which
are defined recursively as follows: T0(y) = 1, T1(y) = y, . . . , Tk+1(y) =
2yTk(y)−Tk−1(y), . . . , where y ∈ Γ. Chebyshev polynomials are well suited for
the approximation of functions with analytic extensions on a complex region
bounded by a Bernstein ellipse. They bypassing the need of using derivative
information and sharp bounds on the error are readily available. Suppose that
σ > 0 and denote by

Eσ :=
{︂
z ∈ C, σ ≥ δ ≥ 0 : Re z =

eδ + e−δ

2
cos(θ), Im z =

eδ − e−δ

2
sin(θ),

θ ∈ [0, 2π)
}︂
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as the region bounded by a Bernstein ellipse (see Figure A1). The following
theorem is based on complex analytic extensions on Eσ and provides a control
for the Chebyshev polynomial approximation.

Theorem 9 Suppose that for u : Γ → R there exists an analytic extension on Eσ. If
u ≤ M < ∞ on Eσ then there exists a sequence of coefficients |αk| ≤ M/ekσ such that
u ≡ α0+2

∑︁∞
k=1 αkTk on Eσ. Moreover, if y ∈ Γ then |q(y)−α0−2

∑︁n
k=1 αkTk(y)| ≤

2M
eσ−1e

−nσ.

Proof See Theorem 2.25 in [39] □

i

1−1

Eσ
eσ−e−σ

2

eσ+e−σ

2

Fig. A1 Complex region bounded by the Bernstein ellipse.

We can now connect the error due to the Lagrange interpolation with
Chebyshev expansions. It is known that if u ∈ C(Γ,R) then ∥(I −
Im)u∥L∞(Γ) ≤ (1 + Λm)minh∈Pm−1 ∥u − h∥L∞(Γ), where Λm is the Lebesgue

constant (See Lemma 7 in [40]). Note that I : Cd(Ξ; R) → Cd(Ξ; R) refers
to the identity operator and the domain Ξ is taken from context. For the
previous case Ξ = Γ. Bounds on Λm are known in the context of the loca-
tion of the knots y(1), . . . , y(m) ∈ Γ. In this article we restrict our attention

to Clenshaw-Curtis abscissas y(j) = − cos
(︂
π(j−1)
m−1

)︂
, j = 1, . . . ,m and Λm is

bounded by 2π−1(log (m− 1)+ 1) ≤ 2m− 1 (see [40]). Since the interpolation
operator Im is exact on Pm−1, then if u : Γ → R has an analytic extension
in Eσ we have from Theorem 9 (following a similar approach as in [40]) that
∥(I − Im)u∥L∞(Γn) ≤ (1 + Λm) 2M

eσ−1e
−σ(m−1) ≤ 2C(M,σ)me−σ(m−1), where

C(M,σn) :=
2M

(eσ−1) . We then conclude that for all k = 1, . . . ,m

∥∆k(u)∥L∞(Γ) = ∥Im(u)− Im−1(u)∥L∞(Γ) ≤ ∥(I − Im)u∥L∞(Γ)

+ ∥(I − Im−1)u∥L∞(Γ) ≤ e2σC(M,σ)me−σm.
(A2)

Let Eσ,n ⊂ Cd a complex region bounded by a Bernstein ellipse such that the
restriction on Γd is along the nth dimension and form the polyellipse Edσ :=∏︁d
n=1 Eσ,n. Suppose that v : Edσ → C is analytic on Edσ and let M̃(v) :=

maxz∈Edσ |v(z)|.
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Note we refer to Inm as the Lagrange operator of order m along the nth

dimension and similarly Pnm−1 is the space of the span of univariate polyno-
mials up to degree m − 1 along the nth dimension. Form the tensor product
Idm := I1m × · · · × Idm, thus I : C(Γ,R) → P where P := P1

m−1 × · · · × Pdm−1.
From Theorem 2.27 in [39] we can conclude that for a finite dimension d, as
m→∞ then Idm[v]→ v.

Applying equation (A2) to equation (A1) we have that

∥(I − Sw,d)v(y)∥L∞(Γd) ≤

⃦⃦⃦⃦
⃦⃦ ∑︂
m∈Nd:

∑︁d
i=1mi−1>w

d⨂︂
n=1

∆n
mn

(v(y))

⃦⃦⃦⃦
⃦⃦
L∞(Γd)

≤
∑︂

m∈Nd:
∑︁d

i=1mi−1>w

d⨂︂
n=1

∥∆n
mn

(v(y))∥L∞(Γd)

≤
∑︂

m∈Nd:
∑︁d

i=1mi−1>w

e2dC(M,σ)d

(︄
d∏︂

n=1

mn

)︄
exp

(︄
−

d∑︂
n=1

σmn

)︄
.

(A3)

By applying Theorem 2.10 and Corollary 2.11 in [36] if w ≥ d and p(d,w) ≥(︂
2d
κ(d)

)︂d
, where κ(d) :=

d√
d! > d/e (Sterling approximation), then for any

σ̂ ∈ R+

∑︂
k∈Nd

0 :
∑︁d

i=1 ki>w

exp

(︄
−

d∑︂
n=1

σ̂kn

)︄
≤

∑︂
k∈Nd

0 :σ̂
∑︁d

i=1 ki≥wσ̂

exp

(︄
−

d∑︂
n=1

σ̂kn

)︄

≤ σ̂de

(︃
eσ̂

1− e−σ̂

)︃d
exp

(︃
−d

e
σ̂p

1
d

)︃
p

d−1
d .

(A4)

where k ∈ Nd0 and k := (k1, . . . , kd).
Following the same approach as in [36] observe that for 0 < δ < 1 we can

obtain a bounded constant cn,δ ≤ (eσδ)−1 such thatmn exp(−σmn) ≤ (eσδ)−1

exp(−σmn(1 − δ)). Set σ̂ := σ(1 − δ) and by combining equations (A3) and
(A4) we have proven the following result.

Lemma 10 Suppose that 0 < δ < 1, σ̂ := σ(1 − δ), and p(d,w) ≥
(︂

2d
κ(d)

)︂d
then

∥(I − Sw,d)v(y)∥L∞(Γd) ≤
C(M̃,σ)ded−σ(1−δ)+1σ̂d

(σδ)d

(︂
eσ̂

1−e−σ̂

)︂d
exp

(︂
−d
e σ̂p

1
d

)︂
p

d−1
d .

Remark 15 The restriction p(d,w) ≥
(︂

2d
κ(d)

)︂d
is not strict and can be relaxed such

that sub-exponential convergence is still obtained. We refer the reader to the bound
of the Gamma function in Lemma 2.5 ([36]) and it’s application in the proofs of
Theorem 2.10 and Corollary 2.11.
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Appendix B Experimental setup

1. Matlab, C/C++ and MKL: The binary tree, multilevel basis con-
struction, formation of the sparse matrix C̃W, estimation and prediction
components are written and executed on Matlab [37]. However, the com-
putational bottlenecks are executed by C/C++ software packages, Intel
MKL [41], and the highly optimized BLAS and LAPACK packages con-
tained in MATLAB. The C/C++ interfaces to matlab are constructed as
dynamic shared libraries.

2. Direct and fast summation: The matlab code estimates the computa-
tional cost between the direct and fast summation methods and chooses
the most efficient approach. For the direct method a combination of
Graphic Processing Unit (GPU) and MKL intel libraries are used. For
the fast summation method the KIFMM (d = 3) c++ code is used. The
KIFMM is modified to include a Hermite interpolant approximation of
the Matérn covariance function, which is implemented with the intel MKL
package [41] (see [16] for details).

3. Dynamic shared libraries: These are produced with the GNU gcc/g++
packages. These libraries implement the Hermite interpolant with the intel
MKL package (about 10 times faster than Matlab Matérn interpolant)
and link the MATLAB code to the KIFMM.

4. Cholesky and determinant computation: The Suite Sparse 4.2.1
package ([31–35]) is used for the determinant computation of the sparse
matrix C̃W(θ).

The code is tested on a single CPU (4 core Intel i7-3770 CPU @ 3.40GHz.),
one Nvidia 970 GTX GPU, with Linux Ubuntu 18.04 and 32 GB memory. In
addition, the Boston University Shared Computing Cluster was used to gen-
erate test data. To test the effectiveness of the Multilevel solver the following
data sets are generated:
1. Random n-sphere data set: The set of nested random observation

Sd0 ⊂ · · · ⊂ Sd9 vary from 1,000, 2000, 4000 to 256,000 knots generated on
the n-sphere Sd−1 := {x ∈ Rd : ∥x∥2 = 1}.

2. Random hypercube data set: The set of random observation locations
Cd

0, . . . ,C
d
10 vary from 1,000, 2000, 4,000 to 512,000 knots generated on

the hypercube [−1, 1]d for d dimensions. The observations locations are
also nested, i.e. Cd

0 ⊂ · · · ⊂ Cd
10.

3. Normal test data set The set of observations values Zd0, Z
d
1, . . .Z

d
5 are

formed from the Gaussian random field model (1) for 1,000, 2,000, . . .
256, 000 observation locations. The data set Zdn is generated from the set
of nodes Sdn, with the covariance parameters (ν, ρ) and the corresponding
set of monomials Qdw. The Boston University Shared Computing Cluster
was used to generate the normal test data.

Remark 16 All the timings for the numerical tests are given in wall clock times i.e.
the actual time that is needed to solve a problem. This is to distinguish it from CPU
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time, which can be significantly smaller and may not accurately reflect the real-world
time taken for solving a problem.

Appendix C Proofs

Proof of proposition 1
The proof is immediate.

Proof of lemma 2
Starting at the finest level t, for each cell Bt

k ∈ Bt there is at most p
multilevel vectors. Since there is at most 2t cells then there is at most 2tp
multilevel vectors.

Now, for each pair of left and right (siblings) cells at level t the parent cell
at level t− 1 will have at most 2p scaling functions. Thus at most p multilevel
vectors and p scaling vectors are obtained that are to be used for the next
level. Now, the rest of the cells at level t are leafs and will have at most p
multilevel vectors and p scaling vectors that are to be used for the next level.
Since there is at most 2t−1 cells at level t−1, there is at most 2t−1p multilevel
vectors. Now, follow an inductive argument until q = 0 and the proof is done.

Proof of lemma 3
For any leaf cell at the bottom of the tree (level t) there is at most 2p

observations. cell has at most 4p observations, thus the associated multilevel
vectors has 4p non zero entries. By induction at any level l the number of
nonzero entries is at most 2t−q+1p. Now for any leaf cell at any other level l < t
the number of nonzero entries is at most 2p. Following an inductive argument
the result is obtained.

Proof of proposition 4
Let us look at the cost of computing all the interactions between any two

cells Bi
k ∈ Bi and Bj

l ∈ Bj . Without loss of generality assume that i ≤ j. For
the cell Bl

k there is at most p multilevel vectors and from Lemma 3 2t−i+1p

non zero entries. Similarly for Bj
l . All the interactions (ψi

k̃
)TC(θ)ψj

l̃
now have

to be computed, where ψi
k̃
∈ Bi

k and ψj
l̃
∈ Bj

l .

The term C(θ)ψj
l̃
is computed using a FMM with 2t−j+1p sources and

2t−i+1p targets at a cost of O( (2t−j+1p+2t−i+1p̃)α). Since there is at most p
multilevel vectors in Bi

k and Bj
l then the cost for computing all the interactions

(ψi
k̃
)TC(θ)ψj

l̃
is O(p(2t−j+1p+ 2t−i+1p)α + 2t−i+1p).

Now, at any level i there is at most 2i cells, thus the result follows.

Proof of proposition 5
A simple extension of the proof in Proposition 1.

Proof of theorem 6
Immediate.

Proof of theorem 7
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We first have that

N∑︂
k=1

N∑︂
l=1

ϕ(xk,yl; θ)ψ
i
m[k]ψjq[l] =

N∑︂
k=1

N∑︂
l=1

lim
g→∞

(Idg ⊗ Idg)[ϕ(xk,yl; θ)]ψ
i
m[k]ψjq[l]

=

N∑︂
k=1

N∑︂
l=1

(Id − Sw,d)⊗ (Id − Sw,d)[ϕ(xk,yl; θ)]ψim[k]ψjq[l].

The last equality follows from ψim,ψjq ∈ Pp(S)⊥. We now have that

N∑︂
k=1

N∑︂
l=1

∥(Id − Sw,d)⊗ (Id − Sw,d)[ϕ(xk,yl; θ)]∥L∞
ρ (Γd)|ψim[k]||ψjq[l]|

≤ ∥(Id − Sw,d))[ϕ(xk,yl; θ)]∥2L∞
ρ (Γd)

N∑︂
k=1

N∑︂
l=1

|ψim[k]||ψjq[l]|.

Since ψim and ψjq are orthonormal then
∑︁N

k=1

∑︁N
l=1|ψ

i
m[k]||ψjq[l]| ≤√

nmnq∥ψim[k]∥l2∥ψjq[l]∥l2 =
√
nmnq. From Lemma 10 the result follows.

Proof of theorem 8
The polynomial function is an entire function. However, the functionKν(ϑ)

and ϑ
1
2 are analytic for all ϑ ∈ C except at the branch cut (−∞, 0]. Thus it is

sufficient to check the analytic extension of r(θ) =
(︂∑︁d

k=1 θk(xk−yk)2
)︂ 1

2

. Let

z ∈ C be the complex extension of r ∈ R. More precisely, z =
(︂∑︁d

k=1 θkz
2
k

)︂ 1
2

,

where zk ∈ C is the complex extension of (xk − yk).

Let ϑ =
∑︁d

k=1 θkz
2
k, then by taking the appropriate branch Re z = rϑ

cos (θϑ/2), where r2ϑ = (Reϑ)2 + (Imϑ)2 and θϑ = tan−1 Imϑ
Reϑ . Due to the

branch cut at (−∞, 0] we impose the restriction that Reϑ > 0 as xk and yk are
extended in the complex plane. Consider any two cells Bi

m ∈ Bi and Bj
q ∈ Bj ,

at levels i and j with the associated distance criterion constant τi,j > 0. From
Algorithms 4, 5, 6 7, for any observations x∗ ∈ Bi

m and y∗ ∈ Bj
q we have

that (x∗k − y∗k)
2 ≥ τ2i,j for k = 1, . . . , d. For the rest of the discussion it is

assumed that complex extension is respect to each component k = 1, . . . , d
unless otherwise specified.

Extend αk → αk + vk and γk → γk + wk where vk := vRk + ivIk, wk :=
wRk +iwIk, and vRk , v

I
k, w

R
k , w

I
k ∈ R. Let x̃k be the extension of xk in the complex

plane and similarly for ỹk. It follows that x̃
R
k := Re x̃k = 1

2 (αk+1+vRk )ak+bk,

x̃Ik = Im x̃k =
vIk
2 ak, y

R
k := Re ỹk = 1

2 (γk + 1 + wRk )ck + dk, and yIk := Im ỹk =
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wI
k

2 ck. After some manipulation

Re z2k = (x̃Rk − ỹRk )
2 − (x̃Ik − ỹIk)

2 = (xk − yk)
2 +

1

4
(vRk ak − wRk ck)

+ (xk − yk)(v
R
k ak − wRck)−

1

4
(akv

I
k − ckw

I
k)

2.

(C5)

Recall that (xk − yk)
2 ≥ τ2i,j and suppose that there is a positive constant

δk > 0 such that

δk ≤

√︂
32 τ2i,j + 8 τi,j + 1− 1− 4 τi,j

4 τi,j
. (C6)

Assume that |vRk | ≤ τi,jδk/ak, |vIk| ≤ τi,jδk/ak, |wRk | ≤ τi,jδk/ck, and
|wIk| ≤ τi,jδk/ck. From equations (C5) and (C6) it follows that

Re z2k ≥ τ2i,j(1− 4δ2k)−
τi,jδk
2

> 0. (C7)

Furthermore,

|Re z2k| ≤ (max{|ymaxk − xmink |, |xmaxk − ymink |})2

+
1

2
τi,jδk +max{|ymaxk − xmink |, |xmaxk − ymink |}2τi.jδk + τ2i,jδ

2
k

≤ 1 +
5

2
τi,jδk + τ2i,jδ

2
k.

(C8)

Similarly,

|Im z2k| = |2(x̃Rk − ỹRk )(x
I
k − yIk)| ≤ 2τi.jδk + 4τ2i,jδ

2
k. (C9)

We now show how αk and γk can be extended into the Bernstein ellipses
Eσα

k
and Eσγ

k
, for some σαk > 0 and σγk > 0 such that Re z2k > 0. Recall that

|vRk | ≤ τi,jδk/ak, |vIk| ≤ τi,jδk/ak, |wRk | ≤ τi,jδk/ck, and |wIk| ≤ τi,jδk/ck.
These restrictions form a region in C×C and a Bernstein ellipse is embedded

(See Figure C2). This is done by solving the following equation: e
σα
k +e−σα

k

2 =

1 +
τi,jδk
ak

. The unique solution is σαk = cosh−1
(︂
1 +

τi,jδk
ak

)︂
with σαk > 0.

Following a similar argument we have that σγk = cosh−1
(︂
1 +

τi,jδk
ck

)︂
with

σγk > 0. Let Edα :=
∏︁d
k=1 Eσα

k
and Edγ :=

∏︁d
k=1 Eσγ

k
. It follows that

Reϑ ≥
d∑︂
k=1

θk Re z
2
k ≥

d∑︂
k=1

θk

(︃
τ2i,j(1− 4δ2k)−

τi,jδk
2

)︃
> 0. (C10)
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Re

Im

−11

τi,jδk
ak

τi,jδk
ak

(a) (b)

Re

Im

1 −1

Eσα
k

eσ
α
k +e−σα

k

2

Fig. C2 (a) Region of Complex extension of αk. (b) Embedding of Bernstein ellipse Eσα
k
.

Thus there exist an analytic extension of ϕ(r; θ) : Γd × Γd → R on Edα × Edγ .
The next step is to bound the absolute value of the Matérn covariance

function |ϕ(z; θ)| in Edα × Edγ . If ν > 1
2 and Re z > 0 then the modified

Bessel function of the second kind satisfies the following identity: Kν(
√
2νz) =

√
π(
√
2νz)ν

2νΓ(ν+ 1
2 )

∫︁∞
1

(t2−1)ν− 1
2 exp (−

√
2νzt) dt. It is not hard to show that for ν > 1

2

and Re z > 0, we have that |Kν(
√
2νz)| ≤ |

√
2νz|ν

(Re
√
2νz)ν

Kν(
√
2ν Re z). Note that

rϑ ≥ Reϑ > 0. From equation (C9) we have that Imϑ =
∑︁d

k=1 θk Im z2k ≤∑︁d
k=1 2τδk + 4τ2δ2k. From equation (C10) |θϑ| ≤ ξ(θ, δ, τi,j).
Since Kν(·) is strictly completely monotonic [42] then

|Kν(
√
2ν Re z)| = |Kν (

√
2νrϑ cos(θϑ/2))| ≤ |Kν

(︂√︃ν

2
cos(ξ(θ, δ, τ)/2)

d∑︂
k=1

θk

(︂
τ2i,j(1− 4δ2k)−

τi,jδk
2

)︂)︂
|.

(C11)

From equations (C8) (C9)

|zk|2 ≤ |Re z2k|+ |Im z2k| ≤ R(δk, τi,j) := 1 +
9

2
τi,jδk + 5τ2i,jδ

2
k

and therefore

|z| ≤ |
d∑︂
k=1

θkz
2
k|

1
2 ≤

(︄
d∑︂
k=1

θk|zk|2
)︄ 1

2

≤

(︄
d∑︂
k=1

θkR(δk, τi,j)

)︄ 1
2

. (C12)

By combining equations (C9), (C10), (C11), and (C12), we have now proven
the Theorem.
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