
Unde
erupt
Insigh

K.J.  Wa
a Middlebur
b University
c University 

d United Sta
e University

a  r  t  i  c

Article histo
Received 1 

Received  in
Accepted 19
Available  on

Keywords:
Cinder cone
Scoria  cone
Melt  inclus
Geochemist
Tephra
Lassen
Magma
Volcano

1. Introd

Scoria
landform
ically ma
processes
Leeman e
2016). Th
or years; 

involve a

∗ Corresp
bury,  VT 05

E-mail  a

https://doi.
0377-0273/
Journal of Volcanology and Geothermal Research 387 (2019) 106665

Contents lists available at ScienceDirect

Journal  of  Volcanology  and  Geothermal  Research

journa l homepage: www.e lsev ier .com/ locate / jvo lgeores

rstanding  melt  evolution  and  eruption  dynamics  of  the  1666  C.E.
ion  of  Cinder  Cone,  Lassen  Volcanic  National  Park,  California:
ts  from  olivine-hosted  melt  inclusions

lowskia,b,∗,  P.J.  Wallaceb, K.V.  Cashmanc,  J.K.  Marksb,  M.A.  Clynned,  P.  Ruprechte

y College, Department of Geology, Middlebury, VT 05753, USA
 of Oregon, Department of Earth Sciences, Eugene, OR 97403, USA
of Bristol, Department of Earth Sciences, Bristol, United Kingdom
tes Geological Survey, Volcano Science Center, Menlo Park, CA, USA

 of Nevada, Reno, NV, USA

 l  e  i  n  f  o

ry:
February 2019

 revised form 15 August 2019
 August 2019
line 27 August 2019

ions
ry

a  b  s  t  r  a  c  t

Cinder  Cone  is the  youngest  scoria  cone  volcano  in  the  continental  United  States.  Erupted  in  1666  C.E.
within  what  is  now  Lassen  Volcanic  National  Park,  Cinder  Cone  is an  un-vegetated  scoria  cone  with  well-
preserved  lava flows  and  tephra  deposits  that  display  complex  geochemical  variability.  In  this  study,  we
utilize  the volatile  (H2O,  CO2, Cl),  major,  and  trace  element  chemistry  of  olivine-hosted  melt  inclusions
from  the tephra  deposit  of Cinder  Cone  to  better  understand  the sub-surface  evolution  of  magmas  that
erupt  to produce  scoria  cones.  High-Fo  olivine  phenocrysts  from  all  erupted  units  contain  melt  inclusions
that  are  more  primitive  in composition  than  the erupted  material.  The  evolved  compositions  of  the  lava
and  bulk  tephra  and  the  abundance  of quartz xenocrysts  within  the  deposits  suggest  the basaltic  parental
magmas  were  rapidly  contaminated  by  granitic  material  in the  middle  to  upper  crust,  after  melt  inclu-
sion  entrapment.  Distinct  compositional  variability  between  early  and  late  erupted  units  suggests  two
different  mantle-derived  basaltic  magmas  were  tapped  and erupted  sequentially  as  two  distinct  eruptive
phases.  The  CO2 concentrations  in  the  melt  inclusions,  after  correction  for the  presence  of  vapor  bubbles,
suggest  minimum  entrapment  depths  of  ∼9.5–20 km and  show  no  resolvable  differences  between  early
and  late  erupted  units  at the  time  of  olivine  crystallization.  Diffusion  modeling  of Ni and  Fo  gradients

in  olivine  rims  indicates  that  olivine  residence  times  in an evolving  magma  were  on  the order  of  weeks
to  years,  similar  to those  calculated  for longer-lived  scoria  cone  eruptions,  such  as  Jorullo,  in Mexico.
Additionally,  geochemical  evidence  suggests  that  the  evolution  of parental  magmas  was  likely  driven  by
the  partial  melting,  disaggregation,  and assimilation  of  granitic  material  in the  upper  crust.  Our  combined
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 cone volcanoes are the most abundant subaerial volcanic
s on Earth (Wood, 1980). In the Cascade Arc, they are typ-
fic, and have been previously exploited to study mantle

 such as arc magma  genesis (e.g., Borg et al., 1997, 2002;
t al., 2004; Ruscitto et al., 2010; Walowski et al., 2015,
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nes, however, produce evolved compositions that sug-
development of complex subvolcanic plumbing systems.
tin, Mexico, for example, magmas evolved from basalt to
over the course of an eruption that lasted ∼9 years (Wilcox,
Birney et al., 1987; Luhr and Carmichael, 1985; Luhr, 2001;

 al., 2010). This compositional evolution was accompanied
ease in both explosivity and magmatic volatile contents,

 insight into shallow storage reservoirs beneath cones in
exico (Pioli et al., 2008; Johnson et al., 2008; Rowe et al.,

der Cone, in Lassen Volcanic National Park, CA, the compo-
 the erupted magmas also changed over the course of the
 although these changes are not systematic as observed at
 (Clynne et al., 2000). The eruptive history of Cinder Cone
mmarized by three key observations: (1) The eruption
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y short (<5 years; Sheppard et al., 2009), (2) the erup-
lved two main phases of explosive activity which differ
nd intensity, both accompanied by lava flows (Heiken,
rks, 2012), and (3) the erupted materials are ubiquitously
ated by crustal rocks of granitic composition (Clynne and
010). What are the timescales associated with the storage
t of these magmas? With a complicated inter-fingering

 and lava flows, can we connect pre-eruptive changes in
hemistry to changes in eruption dynamics? How does the

 crustal contamination occur?
estigate these questions, we analyzed the compositions of
osted melt inclusions (MI) sampled from the entire erup-
ence at Cinder Cone and their primitive olivine hosts.
usions are small volumes of melt trapped inside phe-
t depth, and as such, they can provide unique insights that
terpretations based on traditional methods of bulk rock
ral chemistry. Melt inclusions trapped in early crystalliz-
s, such as olivine, can provide snapshots of melt chemistry
ditional magmatic evolution by fractional crystalliza-

ing, and/or contamination. In this way, MI  may  constrain
melt compositions and magma  generation, storage, and
. Melt inclusions also provide estimates of pre-eruptive
tions of volatiles such as H2O, CO2, S, Cl (e.g., Métrich

ace, 2008) that are key to understanding mantle melt-
tani and Grove, 1998; Grove et al., 2006; Hirschmann
09) and magma  ascent and eruption (e.g., Roggensack
7; Métrich and Wallace, 2008). Magmatic volatile contents
ult to measure directly because they decrease in solu-
ressure decreases and therefore degas from the magma

 during ascent, driving eruptions, and leaving the erupted
with only a fraction of the volatile contents with which
(Holloway and Blank, 1994). Melt inclusions are one of
ools currently available to directly measure pre-eruptive
oncentrations, because they are trapped at depth, often
nificant degassing occurs. Because the solubility of H2O
in magmas is sensitive to pressure and experimentally
trained (Newman and Lowenstern, 2002; Papale et al.,
ono-Marziano et al., 2012; Ghiorso and Gualda, 2015),
centrations within MI  can provide estimates of entrap-
ssures, and therefore, magma  storage depths (e.g., Johnson
08; Pioli et al., 2008). Although recent work has shown
re not perfect storage containers and can lose H+ (pro-
diffusion through the host and CO2 due to formation of
ubble in the inclusion post entrapment, there are meth-
stinguishing and correcting for these effects (e.g., Bucholz
3; Lloyd et al., 2013; Moore et al., 2014; Wallace et al.,
er et al., 2016).
imitive olivine hosts also keep a record of deep and early
volution. Trace element compositions in high-Fo olivine
dicative of crystal fractionation prior to significant crustal
ent and may  also track source variations in the man-
Sobolev et al., 2005; Le Roux et al., 2011; Straub et al.,
precht and Plank, 2013). In addition, studies on the dif-
f major and trace elements in olivine have shown the

tility to record the timescales of magmatic processes oper-
r months to decades (e.g. Petry et al., 2004; Dohmen and
rty, 2007; Costa and Morgan, 2011). Thus, the informa-
ided by the olivine hosts complements constraints from
ord to develop an integrated spatial-temporal view of the
lumbing system.

 study, we analyze major, trace, and volatile element con-
ns in olivine-hosted MI  and their crystal hosts from the
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asts (Marks, 2012). We  use these results to shed light on
sses that led to compositional evolution of the magmas

mpanying changes in eruptive dynamics. We  show that
ile contents of MI  can provide insight into the minimum

 which these magmatic processes occur. We also demon-
 usefulness of MI  for determining the composition of the
urce, even when the erupted magma is contaminated by
aterial. Lastly, we  compare olivine residence and eruption
s. Together these results allow us to construct a spatial-

 schematic model for the plumbing system that fed the
of Cinder Cone. The combined results provide new insights
mplexities and mechanisms that drive scoria cone erup-

 will help to better inform future hazard models of scoria
inated volcanic fields globally.

gic setting

r  Cone is a basaltic andesite scoria cone located in the
t corner of Lassen Volcanic National Park, northern Cali-
g. 1). The tallest point in the park is Lassen Peak, a dacite
mplex that last erupted from 1914 to 1917 (Clynne and
010). Tectonically, volcanism within the Lassen Segment
cades is caused by oblique subduction of the Gorda micro-
eath the North American plate, and is characterized by

t calc-alkaline magmas (e.g., Clynne and Muffler, 2010).
 magmas are also common in this region, however, and are
ociated with extensional faulting, the result of westward
n of the Basin and Range province impinging on the south-
de arc. The Quaternary volcanics in the Lassen region sit on
er mafic to intermediate volcanoes and volcanic products

hick (Berge and Stauber, 1987). This volcanic basement is
 by plutonic Sierran and metamorphic Klamath terrain

t rocks, as suggested by mapped outcropping units (e.g.
t al., 1989; Cecil et al., 2012) and constant modeled seis-
ities across the Sierra Nevada-Cascade Range boundary
d Stauber, 1987).
uption date of 1666 CE was established by dendrochem-

 ring-width analyses of living trees (Sheppard et al., 2009)
pported initial ages constrained by radiocarbon dates of
d by the lava flows (1650 ± 20 years; Clynne et al., 2000).

ximately 350 years old, it is the youngest scoria cone in
de Arc; it has remained un-vegetated and thus provides

 exposure of the lava flows and tephra deposit (Clynne
er, 2010). The eruptive material comprises a ∼200-m-

 cone, a tephra deposit ≤3 m in thickness that covers an
200 km2, and five lava flows separated into three phases
nch, Painted Dunes, and Fantastic Lava (OB, PD, and FL,
ely; Clynne and Muffler, 2010; Fig. 1).

le descriptions and tephra stratigraphy

phra deposit was  first described in detail by Heiken (1978)
tified three eruptive phases that produced tephra Units 1,
hich, based on geochemical data (Clynne, 2011), are now

o correspond with the three phases of lava flow emplace-
, PD, and FL, respectively. This previous work supports
f compositional evolution at Cinder Cone, one associated
h of the lava flow and tephra unit. Unit 1 is the least
ad, rare and difficult to identify, and associated with the
minous lava flow: OB. It is difficult to determine whether
as  volumetrically insignificant, experienced erosion (the
nterpretation of Heiken, 1978), or both. Unit 3 is the most
us and widespread of the three tephra units.

a samples used in this study were collected from a ∼1.2-m-
o the north of Cinder Cone that includes the volumetrically
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Fig. 1. Geologic (adapted from Clynne and Muffler, 2010) and isopach map (Heiken, 1978) of Cinder Cone showing the location of the cone, lava flows, and the whole-deposit
tephra deposits. The location of the main tephra pit from which tephra was sampled for this study (LCC-1) is indicated by the yellow star. The legend shows geologic units in
order  of em n). Th
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t tephra Units 2 and 3 (Fig. 2; yellow star in Fig. 1). Ten
mples were collected from distinctive layers throughout
n. Field descriptions of each sample and a correspond-

photo are labeled in Fig. 2. The lowermost sample from
n is LCC-1-9, and is interpreted to be ∼10 cm from the

nit 2, the first main explosive phase of the eruption. In
 early erupted units LCC-1-9, LCC-1-8, LCC-1-7, LCC-1-6
d with Heiken’s Unit 2), are easily distinguished from
erupted units (LCC-1-5, LCC-1-4, LCC-1-3, LCC-1-2, and
associated with Heiken’s Unit 3) because they are domi-
elatively large, highly vesicular golden tephra clasts. Early
nits (LCC-1-9 through LCC-1-6) also have a restricted area
for the 5-cm isopach) and both the deposit and tephra
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istics suggest the eruption was primarily Strombolian in
style (Marks, 2012). These four lower tephra layers are
by a dark fine ash layer (LCC-1-5), interpreted as a tran-
nit. The upper tephra units (LCC-1-4 through LCC-1-1)

flows and
(Clynne, 

tephra va
ilar to the
e three main lava flows are colored Purple = Old Bench (OB; tephra Unit
erpretation of the references to color in this figure legend, the reader is

edly finer grained, and the lowermost unit (LCC-1-4), in
r, is composed of dense microcrystalline clasts. Together
larger areal extent (∼100 km2 for the 5-cm isopach) and
hese characteristics were interpreted by Marks (2012) to

 more explosive eruptive style for the later erupted units.
rmost layer, LCC-1-1, is overlain by a soil with scattered

sen Peak pumice lapilli (Fig. 2).
 are several curious aspects of the Cinder Cone deposits and
ion, both the underlying magmatic system and the erup-

ence. First, there are ubiquitous quartz xenocrysts in all of
tic andesite-andesite lava flows and tephra layers (Clynne
0). Second, the bulk composition of lava changed over time
sition from 53.5 to 59 wt%  SiO2 through the OB and PD
 subsequently from 55 to 58 wt%  SiO2 through the FL flows
2011). The tephra mimic  these changes: early erupted
ry compositionally through stratigraphy in a manner sim-

 PD flows, and late erupted tephra varies compositionally
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Fig. 2. Field photo of the cone proximal ∼1 m tephra section (LCC-1) from which samples are derived (Location indicated in Fig. 1). The associated table provides unit
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 and 1435 cm−1 for CO2), � is the glass density at room
ure (calculated with major element compositions deter-
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tting program (S. Newman, unpublished). This method
lues for experimental glasses (Dixon et al., 1995) that
arable to the reference-glass subtraction and hand drawn
nd method upon which the CO2 solubility relations and
orption coefficient calibration were established (J. Dixon,
mun.). Raw and corrected MI  H2O and CO2 compositions

und in Supplementary Table ST1 and ST2.

A
nclusions and host olivine were analyzed for major ele-

 and Cl on the Cameca SX-100 electron microprobe at the
y of Oregon CAMCOR MicroAnalytical Facility. MI  glass
ions and host olivine were analyzed with a 10 nA or 50 nA,
ameter beam and 15 kV accelerating voltage for major ele-
me dependent intensity corrections were made for Na, K,
, and these elements were analyzed first at 10 nA. Subse-
the beam current was increased to 50 nA for analysis of
a, Ti, P, S, and Cl. Individual inclusion analyses are aver-
ree point analyses. Olivine compositions are also averages
oint analyses taken ∼100 �m from inclusion and crys-

 to ensure analysis of olivine unaffected by later stage
. Raw and corrected MI  compositions can be found in Sup-
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Table  1
Corrected melt inclusion compositions.
Each row represents the composition of an individual melt inclusions corrected for post-entrapment crystallization, as described in Section 4. Methods.
Samples  are named LCC-1-X-Y-Z where LCC-1 refers to the tephra pit (as described in Fig. 2) X refers to the sampled tephra units (Fig. 2), Y refers to the individual olivine
phenocrysts and Y refers to an individual melt inclusion (e.g., an individual olivine phenocryst may  host 2 melt inclusions).
*Reported CO2max values represent the composition corrected for CO2-loss to vapor bubbles. V Indicates melt inclusions that do not have vapor bubbles, and thus were not
corrected for CO2-loss to vapor bubbles.
Fo  host values refer to the forsterite content of the olivine hosting the analyzed melt inclusion.

Sample SiO2 TiO2 Al2O3 MgO CaO Na2O K2O H2O *CO2 (ppm) FO Host Pb Li Sc Th La Sr/Nd Zr/Nb

LCC-1-9-01 50.64 0.84 16.06 8.93 9.74 3.13 0.83 2.48 1946 89.70 – – – – – – –
LCC-1-9-02  49.76 0.91 17.37 8.42 9.10 3.32 0.81 2.94 994 89.20 – – – – – – –
LCC-1-9-06  49.47 0.83 15.94 9.47 10.27 2.78 0.69 3.19 2913 90.20 2.40 5.84 30 1.29 8.38 31.70 18.14
LCC-1-9-07  50.23 0.80 16.03 9.41 9.76 2.67 0.79 2.97 1252 90.00 2.91 9.69 31 1.65 7.83 35.83 17.46
LCC-1-09-09 50.28 0.77 15.88 9.51 9.37 2.74 0.79 2.72 1781 90.10 2.87 15.76 31 1.66 8.08 24.43 22.16
LCC-1-9-04-1 50.17 0.82 16.23 8.86 9.85 3.06 0.78 2.89 1162 89.60 2.90 7.24 27 1.66 7.59 30.53 17.78
LCC-1-9-04-2 50.41 0.80 16.00 8.94 9.55 2.92 0.85 3.18 1453 89.60 2.80 7.60 27 1.53 7.03 32.37 17.35
LCC-1-9-10  50.29 0.78 16.21 9.29 9.75 2.92 0.79 2.63 2631 90.00 – – – – – – –
LCC-1-9-16-1 49.53 0.80 15.88 9.26 10.30 2.87 0.66 3.35 2696 90.00 1.66 4.84 29 1.12 6.57 34.84 16.27
LCC-1-9-16-2 49.43 0.81 15.93 9.28 10.34 2.82 0.66 3.38 2766 90.00 2.13 7.55 29 0.99 6.44 34.30 15.46
LCC-1-9-18  50.40 0.80 15.85 9.20 9.81 2.96 0.76 2.88 2514 89.90 – – – – – – –
LCC-1-7-02  50.23 0.76 16.05 9.73 10.47 2.59 0.60 2.25 2574 90.30 – – – – – – –
LCC-1-7-03  50.78 0.76 15.86 9.50 10.22 2.95 0.65 1.95 2194 90.20 – – – – – – –
VLCC-1-7-04 50.48 0.78 15.84 9.77 10.63 2.89 0.61 1.68 892 90.50 – – – – – – –
LCC-1-7-05  50.75 0.77 15.49 9.70 9.41 2.60 0.77 3.19 1325 90.20 3.95 17.02 29 1.27 7.39 35.32 17.52
LCC-1-7-08  50.24 0.77 15.86 9.03 10.06 2.92 0.69 3.10 1782 89.70 2.82 7.11 29 1.18 7.07 36.65 16.95
LCC-1-7-10  50.27 0.78 15.68 9.25 10.18 2.84 0.66 3.02 2196 89.90 2.42 7.32 26 1.01 6.34 36.50 15.21
LCC-1-6-01  49.92 0.82 16.14 9.57 9.87 2.90 0.70 2.74 2598 90.30 2.88 9.04 25 1.08 7.05 34.24 13.48
LCC-1-6-02  51.00 0.81 16.08 8.83 9.48 2.95 0.78 2.73 1540 89.40 3.02 7.04 25 1.58 7.86 36.79 15.57
LCC-1-6-06  50.05 0.85 16.38 9.16 9.70 2.82 0.75 2.91 2022 89.80 2.80 9.05 26 1.44 7.32 34.06 15.23
LCC-1-6-07  50.57 0.84 16.02 8.87 9.61 2.94 0.78 3.00 2735 89.50 – – – – – – –
LCC-1-6-08  50.29 0.82 16.94 9.02 9.89 2.91 0.77 2.02 1392 89.70 – – – – – – –
VLCC-1-6-10 53.65 0.70 15.67 9.02 7.24 3.15 1.45 1.76 1122 89.70 8.29 35.27 21 3.26 9.51 28.38 14.58
LCC-1-5-01–1 50.83 0.81 16.13 8.56 9.81 3.20 0.85 2.43 2347 89.30 – – – – – – –
LCC-1-5-01–2 50.94 0.81 15.76 8.56 9.72 3.25 0.82 2.78 2419 89.30 – – – – – – –
VLCC-1-5-03 52.20 0.87 15.90 8.38 9.60 3.55 0.91 1.24 738 89.20 3.14 9.17 26 1.60 8.41 35.35 16.01
LCC-1-5-04  54.25 0.77 15.86 8.37 7.52 3.43 1.46 0.96 897 89.10 9.74 33.23 19 2.69 10.56 28.70 14.65
LCC-1-5-05  51.45 0.89 15.87 8.61 9.73 3.54 0.82 1.72 2525 89.50 – – – – – – –
LCC-1-5-07  51.84 0.85 16.29 8.60 10.04 3.21 0.85 0.99 2827 89.30 – – – – – – –
VLCC-1-5-11-1 53.89 0.67 15.11 8.30 6.92 3.69 1.77 2.29 1305 89.30 9.82 51.64 18 2.84 9.30 29.04 14.59
VLCC-1-5-11-3 55.30 0.67 15.28 9.28 6.97 1.94 1.72 1.49 0 89.30 – – – – – – –
LCC-1-5-12  51.46 0.78 16.57 7.87 9.56 3.41 1.03 1.93 1883 88.50 3.81 11.13 21 1.46 8.75 36.31 15.04
LCC-1-4-05  52.66 0.93 16.64 8.56 8.33 3.25 1.56 0.68 1637 89.40 2.62 6.24 20 1.24 6.47 35.31 13.85
LCC-1-4-06  52.08 0.94 17.25 7.57 9.60 3.45 1.00 0.71 0 88.00 14.00 68.95 28 4.78 14.92 29.67 13.37
VLCC-1-4-13 50.73 0.92 16.28 8.65 9.54 3.38 0.84 1.97 1240 89.50 – – – – – – –
LCC-1-2-01  50.98 0.96 16.54 7.94 9.53 3.58 0.89 2.19 1402 88.70 3.91 10.53 26 1.70 9.13 32.56 12.15
LCC-1-2-02  50.96 0.94 16.66 8.32 9.07 2.91 0.95 2.82 1692 88.80 – – – – – – –
LCC-1-2-04  50.60 0.95 16.57 8.24 9.24 3.22 0.90 2.89 2645 88.90 2.95 7.71 24 1.43 8.99 32.40 14.14
LCC-1-2-05  50.55 0.97 17.04 8.20 9.39 3.42 0.92 2.11 1950 89.00 – – – – – – –
LCC-1-2-07  50.57 0.95 16.85 8.18 9.47 3.49 0.91 2.20 1843 89.00 2.97 9.59 27 1.61 9.36 31.26 12.97
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Fig. 6. Melt inclusion corrected H2O (wt%) vs. CO2 (ppm). Open colored symbols in Panels a) and b) are PEC-corrected-only values. Filled colored symbols in Panel a) represent
PEC-corrected H2O (wt%) values with CO2 (ppm) corrected for loss to vapor bubbles. Filled colored symbols in Panel b) represent melt inclusions corrected with H2O (wt%)
values corrected for hydrogen diffusive loss and CO2 (ppm) corrected for loss to vapor bubbles. Solid grey bars are vapor saturation isobars calculated using rhyolite-MELTS
(Ghiorso and Gualda, 2015). Open and closed system degassing paths (dashed lines), were calculated using VolatileCalc (Newman and Lowenstern, 2002) and the composition
of  melt inclusion LCC-1-9-16-1. Melt inclusions that do not have a vapor bubble were not corrected for CO -loss, and are highlighted by yellow dashed circles in panel a).
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Fig. 7. Spider diagram showing the average melt inclusion composition from each tephra unit. MI  trace element compositions corrected for PEC and normalized to Primitive
Mantle (PM; Sun and McDonough, 1989). Individual lines represent the trace element compositions of an individual melt inclusion from transitional units (green lines;
LCC-1-5 and LCC-1-4), early erupted units (red; LCC-1-6, LCC-1-7, and LCC-1-9), late erupted units (blue; LCC-2). Note that transitional units have more melt inclusion with
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 late erupted units have higher concentrations of highly
ible elements than early erupted MIs. MIs  from transi-
its with elevated SiO2 and alkalis are even more enriched
incompatible elements such as Sr, Ba, U, and Pb.

ssion

tal contamination

MIs  have distinctly lower SiO2 than the lavas and bulk
ig. 4), which suggests that the Cinder Cone magmas were
ated by evolved crustal material after most olivine growth
trapment. Furthermore, most olivine crystals (Fo88.5–90.5)
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volution was caused primarily by crustal contamination.
n, rare partially melted and/or vesiculated granitic clasts
as likely represent the source of both the abundant quartz
K-feldspar xenocrysts.
lculate the extent of mixing between the low-SiO2 MI
ions and high-SiO2 compositions of the granitic xenoliths
ulk tephra and lava compositions fall along mixing lines
magma  batch 1 (early erupted MI)  or magma  batch 2 (late
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as shown
mentary 
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ferences to color in this figure legend, the reader is referred to the web

the LCC-1-2 MIs, providing further evidence that the MI
t the parental magma  compositions.
nclusions from transitional sample LCC-1-5 have TiO2 val-
all along mixing lines with the early erupted units. The MI
-1-4, conversely, have TiO2 contents that fall along mixing

 the late erupted tephra. These associations are consistent
interpretations of the tephra stratigraphy, which suggest
1-5 represents the transitional, waning explosive phase of
hich is followed by the effusive phase that produced PD2
sequently, LCC-1-4 represents the first-erupted material

 explosive phase that produced Unit 3 (Fig. 2). LCC-1-5
the largest number of MIs  that have contaminated com-
, and which are similar to the lava flows and bulk tephra.
lation suggests that change in eruptive style from explo-

fusive accompanied increased magma  residence time at
evel to allow time for the observed assimilation and shal-
allization. This scenario is similar to that suggested for
ositional variation at Parícutin (e.g., Erlund et al., 2010),

 it must have occurred over a shorter time scale (<5 years
ed to 10 years). Evidence for temporary shallow magma
s also provided by the high groundmass crystallinity of
m the transitional samples (particularly LCC-1-4; Marks,

r evidence for assimilation of granitic basement is pro-
the trace element compositions of MI.  Fig. 8 shows that
ted SiO2 values of MIs  in the transitional units are accom-

 high concentrations of incompatible trace elements, such
Ba, U. These incompatible trace elements are also found

oncentrations in typical Sierran granites (e.g., Cecil et al.,
hich are the hypothesized basement rocks in the region
ikely source of the xenoliths. The Li concentrations of the
r to be particularly sensitive to the granitic contaminant,
 by an observed linear correlation of Li with Pb (Supple-
Fig. 3) that clearly separates MIs  that have experienced
ation from those that did not.
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Fig. 8. The SiO2 vs. a) TiO2 and b) MgO  compositions of MI  (corrected for PEC; normalized on a volatile-free basis; filled symbols) lava, bulk tephra, and quenched mafic
enclaves (M.  Clynne, unpublished data). Curves represent bulk mixing between granitic xenolith compositions (M.  Clynne, unpublished data) and average composition of
batch  1 (ea urve) 
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ntal melt compositions

ivine phenocrysts in the Cinder Cone tephra have com-
 of Fo88.0–90.5 and the host crystals for the MI  range up

refra
>Fo9

M
feren
. The upper end of the range of olivine compositions
with olivine that would be in equilibrium with mantle
, suggesting the magmas either experienced little to no

tion prior to MI  entrapment, or that there is a relatively

hosted in
that they
fractiona
2002) to
parental magmas, see text for details. Tick marks represent increments
of each panel (see Supplementary Table ST1). (For interpretation of the

y  mantle source beneath the Lassen region, with olivine

om late erupted LCC-2 show distinct compositional dif-
relative to early erupted MI  (Figs. 5 and 7); they are also
 slightly less-magnesian olivine (Fo88; Fig. 3), indicating
 could be related to the early erupted magmas via crystal
tion. We  used Petrolog 3.1 and pMELTS (Ghiorso et al.,

 model equilibrium crystallization of the early erupted
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Fig. 9. Melt inclusion MgO  vs. trace elements. MgO  (normalized on a volatile-free basis) vs. a) Sc, b) Th c) La and d) Nb (PEC corrected) compared with lava and bulk tephra
(blue shaded region; Clynne, 2011). Panels c) and d) exclude MI with elevated Li and Pb (Supplementary Fig. 3), enrichments indicative of crustal contamination. Fractionation
curves calculated using Petrolog 3.1. for MgO  and the modal batch melting equation for trace elements for olivine (Ol, solid grey line) and clinopyroxene (CPX, dashed black
line)  with tick marks which represent 1% fractionation. Partition coefficients were taken from Paster et al. (1974); Sc, CPX-basalt), Beattie, 1994 (Sc, basalt-Ol, La, basalt-Ol),
Hauri et al. ions (
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mated from the corrected CO2 and H2O contents (Fig. 6).

 predicted to be the liquidus phase for the primitive batch
ition, but olivine crystallization alone cannot account for
ved decrease in CaO with decreasing MgO (Fig. 5). Because
altic magmas are ultimately derived from the mantle,

 have fractionated olivine and clinopyroxene prior to
essures near the Moho beneath the southern Cascades are

 (∼38 km;  Mooney and Weaver, 1989), a pressure above
nopyroxene may  replace olivine as the liquidus phase in
primitive basalts (e.g., Blatter et al., 2013). Mass balance

 suggests that ∼5% high-pressure clinopyroxene fraction-
 explain the observed major element differences between

nits (Fig. 5). However, phase equilibrium calculations with
t 10 kbar for the composition of the early erupted mag-

ot predict clinopyroxene as the liquidus phase, so we test
bility further using the trace element compositions of the
inated MI.  Using equilibrium crystallization and parti-

ficients between clinopyroxene and basaltic melt for La,
d Th, we model the change in melt composition as the
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bility in Sc and the relatively constant Th concentrations
nd late erupted units (Fig. 9a). However, the magnitude

 La increases with decreasing MgO  cannot be explained
nation alone. Although small amounts of high-pressure
xene fractionation could have affected the compositions
2 parental magmas, even this process cannot account

or the differences in trace element abundances. Our  inabil-
lain the entire trace element variation by fractionation,

the mantle or in the crust, suggests that their differences
e result of mantle processes, such as variability in mantle
mposition or the degree of partial melting.
ositional variability among olivine phenocrysts can fur-
ed to distinguish between early and late erupted parental

 Fig. 3 compares olivine Ni and Fo core compositions
early and late erupted units. Early erupted LCC-9 has

henocryst cores with high Fo and a restricted range in Ni
ires <1% olivine fractionation. Late erupted olivine cores,
st, follow a steep fractionation path (∼2–3% olivine frac-
) starting from higher Ni, which may be explained by a
ore refractory mantle source (e.g., Ruprecht and Plank,
portant to note that although magma  batches 1 and 2
emically distinct, they are more similar to each other
ost other primitive basaltic magmas in the Lassen region
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Fig. 10. Comparison of Cinder Cone to Lassen region magmas. PEC corrected MI com-
positions of Sr/Nd and Nb/Zr (filled colored symbols) compared with other primitive
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Clynne, 1993; Borg, 1995; Walowski et al., 2015, 2016).
itive magmas in the Lassen region are formed by vari-

tions of slab components to a relatively heterogeneous
edge (Walowski et al., 2015, 2016). Fig. 10 shows simi-

 of Sr/Nd in early and late erupted magmas that suggest
ounts of a subduction component. Differences in Nb/Zr,

 suggest that late erupted magma  batch 2 may  be derived
lightly less depleted mantle source (Fig. 10). It is also
that both batches were derived from the same man-
e, but experienced different paths (down-temperature)
he upper-most lithospheric mantle. For example, magma
ay  have reacted with lithospheric pyroxenite veins, which

plain the elevated Ni contents in olivine compared to
atch 1. Regardless of their origin, our data support pre-
ervations that monogenetic cones tap different batches of
erived melts during a single, short-lived eruption (Brenna
10, 2011; McGee et al., 2011; Rowe et al., 2011). In the
gion, specifically, the markedly different mafic composi-
pted (10 different groups of magma) over a short time
≤10 ka) at Poison Lake, indicate that mafic magmas can
om depth (probably along faults) without much interac-

 the crust or each other (Muffler et al., 2011).

scales of storage, mixing and ascent

e phenocrysts from all units have broad, homogeneous
 Fe-enriched rims (Fig. 11). Nickel concentrations show

 pattern – homogenous throughout the core, with nor-
g near the rim. While equilibrium between olivine cores
elt inclusions they host provide evidence that olivine

necessarily grow as zoned crystals (Danyushevsky et al.,
her studies suggest that even small amounts of olivine
ation lead to measurable changes in surrounding melt
ion such that Ni and Fo of the olivine should be normally
g., Fig. 11; Straub et al., 2011, Ruprecht and Plank, 2013;

 and Maclennan, 2012). Flat cores require some other or
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tant Mg/Fe conditions, such as during crystallization in the
uprecht and Plank, 2013). Alternatively, flat cores could

sult of prolonged diffusion that flattens out initial growth
homson and Maclennan, 2012). Two  different models of

owth prior to diffusion have emerged, affecting length-
mates for potential diffusive equilibration. In addition to
ntional view where crystals grow quasi-concentric from

e-out with the cores being old and rims young, dendritic
wth followed by back-filling and textural equilibration
ly shortens diffusive length-scales (Welsch et al., 2012;
l., 2015).

-eruptive storage timescales
ailed growth sequence for the Cinder Cone olivine is

 and therefore one can only calculate a conservative
for potential diffusion-related equilibration timescales
ld produce flat compositions in olivine cores. Using
g relationship t ∼x2/D derived from Fick’s second law,

scribes the change in composition with time over a one-
nal system,

2C
x2

(2)

stimate to a first order the timescales of olivine residence
 Mg-Fe melt that equilibrates the entire core. Here C is
ation, t is time, and D is the diffusivity. The above expres-
ck’s law assumes a constant diffusion coefficient, D, which
natural systems is an approximation. The diffusion coeffi-
Fe-Mg and Ni in natural olivine, for example, varies with
ure, pressure, oxygen fugacity, composition, and crystal-

 orientation (Petry et al., 2004; Dohmen and Chakraborty,
e  take the diffusion coefficient along the c-axis, the fast
, for Ni in olivine as 1.3 × 10−5 �m2/s and for Fe-Mg as
−5 �m2/s, both calculated for a temperature of 1150 ◦C
al., 2004; Dohmen and Chakraborty, 2007, respectively).

 range in size, but are commonly ∼300 �m from the center
the rim (Fig. 11). Applying the scaling relationship to such
s, we find that cores would need centuries (t ∼ x2/DNi;
at high temperature and constant Mg/Fe melt ratios to
ilibrate. Such storage conditions could occur in either the
uprecht and Plank, 2013; Gordeychik et al., 2018) or the

omson and Maclennan, 2012), as suggested by calculated
ment pressures for the Cinder Cone olivine.

escales of mixing and ascent
respect to the normal zoning near the olivine rims, cor-
e-Mg and Ni zoning can either reflect new olivine rim
e.g. see Fig. 11) or diffusive exchange as a result of mix-
een primitive olivine-phyric magmas with more evolved
ions. Ni is compatible in olivine and has a similar dif-
o Fe-Mg interdiffusion (Petry et al., 2004; Dohmen and
rty, 2007), and therefore follows Fe/Mg in the Cinder Cone
henocrysts (Fig. 11). The Fe-rich and Ni-poor rims were
eloped at the same time as crustal contamination, magma

nd/or entrainment of olivine in new batches of melt, pro-
at could lower the Mg  and Ni content of the bulk magma. If
e that the olivine crystals reacted to this change by diffu-
uilibration, we  can use the diffusion time scales of Ni and

 estimate a residence time of olivine in the evolved magma.
 the observed geochemical gradient may  be related to new
owth, and despite uncertainties related to diffusion coeffi-
d anisotropy (e.g., Oeser et al., 2018), we aim to utilize the
 relationships to place maximum constraints on mixing
ence timescales and compare with previous studies.

 strong diffusion anisotropy in olivine (e.g., Dohmen and
rty, 2007; Shea et al., 2015) we  consider only the fast
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Fig. 11. Complete diffusion model timescale results for Ni (open symbols) and Fo (filled symbols). Points in panel a) representative example of measured core-rim Ni and
Fo  contents measured by LA-ICP-MS. Panel b) shows a backscatter image of a representative olivine with the location of the laser ablation transect along the c-axis. Panel
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 along the c-axis, although a rigorous determination of
raphic axes was not performed, and acknowledge that

 along the a and b axes would result in timescales ∼6 times
or the boundary condition, we assume that the measured
g content at the olivine rim is the equilibrium Ni and Mg
f the olivine coexisting with the melt surrounding each
ystal. We  also assume that the average core composi-
resentative of the initial olivine core composition before

c evolution (Fig. 11).
this simple method, we find the olivine phenocrysts
sidence times of 0.4–6.3 years (Fig. 11). The average Ni
g diffusion timescales for early and late erupted units

ar at ∼500 days (∼16 months), and most crystals record
<∼1000 days (Fig. 11c). The uncertainty in these results
d from choice in temperature, and thus, diffusivity, as
n inability to determine growth vs. diffusion processes.
3.1 estimates average trapping temperatures of ∼1150 ◦C
eruptive temperatures of ∼1050 ◦C. This indicates that
ures were decreasing during mixing and ascent, which is
red by our model of the rim zones. Decreasing the tem-
would cause an increase in estimated times; however,
ous olivine growth would act to significantly decrease
ated timescale.
e  the inherent uncertainties and limits of the diffusion
etry performed here, the calculated olivine residence
Cinder Cone recorded in the crystal rims are similar to
ulated for olivine from the 18th century eruption of Vól-

lo in central Mexico utilizing similar modeling methods
1000 days; Johnson et al., 2008). This similarity is inter-
en the total length of the Jorullo eruption (≤15 years;

Carmichael, 1985) was longer than the eruption of Cinder
 years; Sheppard et al., 2009). Similarities in the esti-
escales between mixing and storage durations at Cinder

 Jorullo emphasize the difference between pre-eruptive
s of magma  assembly compared to the timescales of syn-
magma  migration and eruption.

tion dynamics

ratigraphic record and physical characteristics of the same
ne tephra sample locality from which the olivine-hosted
sions are derived shows that the eruption exhibited two
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 distinct eruptive phases (Marks, 2012). Early erupted
-1-9, LCC-1-8, LCC-1-7, LCC-1-6, are dominated by rel-
rge, highly vesicular golden tephra clasts (Fig. 2), have a

 area (∼40 km2 for the 5-cm isopach), and componentry

positiona
isolated f
magma  b
establish
ls) and Fo (filled symbols) from early from LCC-9 (early erupted; red),
tion. (For interpretation of the references to color in this figure legend,

istics suggestive of a primarily Strombolian eruptive style
012). The late erupted tephra units (LCC-1-4 through LCC-

arkedly finer grained (Fig. 2), have a larger areal extent
2 for the 5-cm isopach) and volume, and have tephra
ntry analogous to other violent Strombolian cinder cone

 (Marks, 2012). The tephra unit LCC-1-4, in particular, is
 dominated by dense microcrystalline clasts, and LCC-1-5
fine ash layer (Fig. 2), interpreted as a transitional unit.
I  compositions suggest that these two identified explosive
so correlate with the eruption of two  separate magmas

uring the eruption. This is perhaps surprising, because the
oncentrations of the two magmas are nearly indistinguish-
h only transitional magmas clearly sampling shallowly

 compositions. Thus, differences in volatiles alone cannot
he change in eruptive dynamics observed at Cinder Cone.
fore suggest that evolution of the subvolcanic magmatic
ust have contributed to the change in eruptive style.
ferred eruption dynamics at Cinder Cone may  be anal-
those observed during the April–October 2010 eruption
llajökull. During this Icelandic eruption, the locations of
ce seismic events suggest that magma  was tapped from
ge reservoirs located at progressively greater depths over
e of the eruption (Tarasewicz et al., 2012). Compositional
over the course of a single eruption are also observed at
ntain in the central Oregon Cascades, although in this case
n magma  composition were associated with vent migra-
se previous observations provide evidence that eruption
ial magma  batch can destabilize other local magma  stor-
voirs during a single eruptive episode. Such observations
hat individual ‘monogenetic’ eruptions could tap multiple
agma  lenses. We draw on this analogy to link the petro-

 from Cinder Cone tephra to the eruption dynamics. The
ortant observations are (1) the volatile contents of olivine-
Is  are similar in early and late erupted tephra, despite
positional differences, (2) olivine diffusion time scales

hat, on average, olivine crystals spent several months re-
ting with a cooler magma  prior to eruption and (3) the
ain eruptive phase (Unit 3) was  more voluminous and
losive (as measured by grain size and deposit extent) than
ain phase (Unit 2).

 data provide a framework in which to infer the
tive history of the Cinder Cone magmas. The distinct com-

l signatures of the two  magma  batches require them to be
rom each other. While the total erupted volume of the first
atch was small (∼0.06 km3), we suggest that it critically
ed a connection between the surface and a deeper magma
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egion. Magma  withdrawal could have depressurized this
gion, and ultimately destabilized an adjacent vertically

 magma  batch (Unit 3). In effect, we envision the initial
s acting like a siphon, such that a lateral pressure gradi-
th drives the second, more explosive, eruption. A similar
as seen at Parícutin, where arrival of a new magma  batch
first month of eruptive activity and the changes in cone
ure increased the explosivity and created the largest vol-
phra deposits (Pioli et al., 2008; Pioli et al., 2009). This

is also consistent with the hypothesis that the explosiv-
rous mafic magmas may  be more a reflection of driving

 which in part controls ascent rate, than of vesiculation
Cashman and Giordano, 2014).

anisms of crustal contamination and plumbing system

gh  the contribution of crustal contamination to the com-
f erupted magmas at Cinder Cone is clear, the mechanism

 this contamination occurred is more difficult to decipher.
ing how contamination occurred can provide constraints
he magmatic plumbing system evolved prior to and dur-
ion. We  suggest two main hypotheses may  be used to

he contamination of the Cinder Cone magmas: 1) A shal-
gly contaminated batch of magma, perhaps andesitic, was

 by and mixed with new batches of magma  coming from
 2) an initial batch of magma  thermally pre-conditioned
te, creating a zone of crystal-rich rhyolitic mush that was
corporated into the rising new primitive magma  batches.
esis (2), there is no intermediate magma.
mporal evolution of the SiO2 contents of the erupted
lynne, 2011) show that for both main eruptive phases,
mas are more evolved (basaltic andesite to andesite), and
rogressively less evolved over time. These temporal pat-
agma  composition are similar to those observed during

episodes 2–47 of Pu’u’O’o in Hawaii (Garcia et al., 1992;
nd Anderson Jr, 1998), and may  indicate that a shallow,
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 conduit system by the ascending mafic magma, support-
thesis 1. Mineralogical or textural evidence for a distinct
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ders
with
occu

T
Fo r
xeno
(Fig.
cont
obse
also
rary
none
lyze
be a
mag

S
both
betw
If, fo
the fi
mixi
mag

U
the f
First
crus
grat
prop
the 

crus
sepa
sills 

allow
as se
ping
may

W
erup
of ba
tially
1 ma
ne xenocrysts with lower-Fo cores may  be representative
allowly stored evolved magma. However, some of these
tic olivine display low-Fo cores and high-Fo shoulders
d Dungan, 2005), as well as low-Ni cores, high-Ni shoul-

by the ab
partial eq
became d
ily contam
-4 (transitional; green), and LCC-2 (late erupted; blue) tephra, measured
rmed on these xenocrysts. (For interpretation of the references to color

 normally zoned rims, that indicate partial equilibration
primitive parental magma  before crustal contamination

 (Fig. 12).
enocrysts from transitional unit LCC-4 do not have high-
and have significantly lower Fo contents than the other
ts, and may  be representative of the mixed magma

 However, it seems likely that these crystals grew in the
ated magma  during an eruptive pause: first, they are only

 in the transitional unit, LCC-4 and second, these samples
 abundant microlite crystallization indicative of tempo-

low magma  storage (Marks, 2012). In addition, although
he analyzed MI  have low-Fo olivine hosts, we did not ana-
ne crystals smaller than 250 �m in diameter; there could
ulation of low-Fo olivine derived from the contaminated

 this size fraction.
 support for hypothesis (2) lies in the observation that

 and bulk tephra compositions fall on mixing trajectories
 the granitic material and the two parental magma  batches.
mple, magma  batch 2 evolved as the result of mixing with
atch of contaminated erupted magma, one would expect
ajectories between magma  batch 2 and the contaminated
f early erupted units, which is not observed.

 the combined observations presented above, we suggest
ing model for plumbing system evolution at Cinder Cone.

 or several intrusions of batch 2 magma  enter the middle
 form a set of small sills, which may be partially inte-
er a range of depths. In a manner analogous to the model

 for Burnt Lava Flow (Medicine Lake, CA), which involves
ation of heat and mass transfer (Grove et al., 1988), the
lls quench on their margins, and become mechanically

 from the surrounding granitic basement. However, the
 transfer heat to the surrounding granitic wall rocks; this
riable degrees of melting, assimilation and contamination,

 the MI  with contaminated compositions and lower trap-
sures. Some of the low Fo, unzoned xenocrysts (Fig. 12)

ourced from various parts of this sill complex.
ggest that batch 1 magma  probably ascended to the pre-
storage region shortly after the formation of batch 2. Most

 magma probably stalled when it interacted with the par-
ted granite, mixing and developing zoned rims. That batch

 did not interact directly with batch 2 magma is indicated

sence of evidence for mixing. After mixing and at least
uilibration, it appears that the shallow part of the system
estabilized and eventually erupted, with the most heav-
inated magma  erupting first. The diffusion data suggest
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process occurred over less than one year, well within the
s often observed for pre-eruptive volcanic unrest. As a
e batch 2 sills also become destabilized, causing them to
teract with heated and partially molten granite, devel-
er Fo rims, and finally erupt in a similar manner to the

y erupted batch 1 magmas.
gh Unit 1 tephra was not sampled in this study, previous

gests that the Unit 1 eruptive cycle is similar to the others
d 3), but much less voluminous (Heiken, 1978). Thus, this
gma  batch may  have served as the trigger for the two  main
tive cycles, which progressed as described above.

usions

uption of Cinder Cone produced a series of tephra deposits
flows that display complex changes in chemistry over
e of the eruption. High-Fo olivine phenocrysts from all
nits contain MI  that are more primitive in composition
erupted material. The evolved compositions of the lava

 tephra and the abundance of quartz xenocrysts within
sits suggest the parental magmas were contaminated by
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sampled by the MI  crystallized at minimum depths of

 kbar, which equates to approximately 9–18 km below
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ted units suggest two different mantle-derived basaltic
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 correlate with the two main explosive phases of the
 and were separated by an eruptive slowing or pause
d by textural analyses of tephra clasts (Marks, 2012). Dif-
deling of Ni and Fe-Mg exchange gradients in olivine rims

that olivine residence times in an evolving magma  were
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bulk tephra compositions indicate that the granitic mate-
eterogeneously incorporated after olivine growth and MI
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