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Abstract—Timing-based side and covert channels in processor caches continue to be a threat to modern computers. This work shows

for the first time, a systematic, large-scale analysis of Arm devices and the detailed results of attacks the processors are vulnerable to.

Compared to x86, Arm uses different architectures, microarchitectural implementations, cache replacement policies, etc., which affects

how attacks can be launched, and how security testing for the vulnerabilities should be done. To evaluate security, this paper presents

security benchmarks specifically developed for testing Arm processors and their caches. The benchmarks are evaluated with

sensitivity tests, which examine how sensitive the benchmarks are to having a correct configuration in the testing phase. Further, to

evaluate a large number of devices, this work leverages a novel approach of using a cloud-based Arm device testbed for architectural

and security research on timing channels and runs the benchmarks on 34 different physical devices. In parallel, there has been much

interest in secure caches to defend the various attacks. Consequently, this paper also investigates secure cache architectures using

proposed benchmarks. Especially, this paper implements and evaluates secure PL and RF caches, showing the security of PL and RF

caches, but also uncovers new weaknesses.

Index Terms—Processor caches, side channels, covert channels, security, Arm, secure caches
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1 INTRODUCTION

OVER the last two decades, many timing-based attacks in
processor caches have been exploited to show that it is

possible to extract sensitive information across the logic
boundaries established by the software and even hardware
protection mechanisms, e.g., [1], [2], [3], [4], [5], [6]. Even
though a variety of secure processor architectures have
been proposed [7], the caches in the proposals are still
vulnerable to timing channel attacks. Further, most recently,
Spectre [8] and Meltdown [9] attacks have been presented,
which attack commercial processors. Many of their variants
depend on cache timing covert channels to extract informa-
tion. They exploit speculative execution to access sensitive
data and then make use of cache covert channels to actually
extract the data. In most of the attacks, cache channels are
thus critical to actually make the attacks work.

Despite cache timing channel threats, most of the
research has previously focused on x86 processors.

Specifically, there is no previous, systematic evaluation
of Arm devices, despite over 100 billion Arm processors
being sold [10].

Consequently, this work fills the research gap by ana-
lyzing the security of Arm processors through new secu-
rity benchmarks developed for testing timing channels in
Arm processor caches. The benchmarks are built to evalu-
ate 88 types of vulnerabilities previously categorized for
processor caches in our conference paper [11]. To gain an
understanding of the scope of the vulnerabilities in Arm,
this work provides the first, large-scale study of Arm
processors, by testing over 34 different physical devices
through three cloud-based device farms: the Visual Studio
App Center [12], the Amazon AWS Device Farm [13], and
the Firebase Test Lab [14]. For the three cloud-based
device farms, we develop the first cloud-based cache security
testing platform. We further develop and perform sensitiv-
ity tests to evaluate how incorrect cache configuration
information (resulting from misconfiguration or a mali-
cious misinformation) affects the results of the bench-
marks, and which types of tests are most affected by
incorrect cache configurations. As a result, we demon-
strate that many of the tests (and attacks), especially for
address-only-based and set-or-address-based vulnerabil-
ities (explained in Section 7), do not require precise
knowledge of the cache configuration. On the other hand,
this means that attackers can attack the system even when
the cache configuration is unknown – hiding or inten-
tionally misleading an attacker about the cache configura-
tion is not a useful defense that one can use.

Compared to our prior conference paper [11], the bench-
marking effort in this paper presents new insights and a
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number of new solutions we developed to effectively ana-
lyze the Arm processors. Arm uses the big.LITTLE architec-
ture, which has heterogeneous caches and CPUs; we are the
first to consider this aspect (Section 4.1) and the first to
show the big.LITTLE architectures provide a larger attack
surface by systematically evaluating different cross-core
and cross-CPU vulnerabilities in these devices (Section 6.2).
Our work further considers the pseudo-random replace-
ment policy for caches used by Arm, while our prior
paper [11] only considered LRU on x86. The replacement
policy affects the eviction and probing steps used for 48 out
of the 88 types of vulnerabilities and requires new
approaches for testing.

Understanding the threats on Arm further requires over-
coming a number of challenges. Cycle-accurate timings are
not accessible without root access on Arm, while x86 pro-
vides accurate assembly instructions to record timing (e.g.,
rdtscp). Our benchmarks closely resemble real attacks by,
for example, not assuming root privileges, but using code
that can get reliable timing in user-level programs. Our
cache timing attack benchmarks use automatically-com-
posed assembly code sequences specialized for Arm. This
allows for testing different implementations of the assembly
for the use in specific attack steps, and to obtain the final,
more accurate vulnerability tests. We propose the first Arm
benchmarks that utilize statistical tests to differentiate dis-
tributions of timings to check if vulnerabilities can result in
attacks, with each benchmark run 30,000 times to better
understand the timing distributions and minimize potential
noise in the measurements.

We also found specific new insights about CPU features
affecting security (Section 6.1). For example, we show that
the Snoop Control Unit (SCU) in Cortex A53 contains buf-
fers that handle direct cache-to-cache transfers; conse-
quently, vulnerabilities related to differentiating cross-core
invalidation timing occur much less frequently on Cortex
A53 than on the other cores. Meanwhile, the Store Buffer
(STB) implemented in Kryo 360 Gold/Silver core pushes
the write accesses into a buffer, resulting in different tim-
ings of accesses to clean and dirty L1 data and resulting in
more vulnerabilities. These are examples of units that help
security, e.g., SCU, and hurt security, e.g., STB. Only
through benchmarking of real devices can such insights
be discovered.

Given the existing threats due to cache timing attacks,
there has already been a number of works on secure caches.
However, none of the cache designs have been systemati-
cally evaluated using benchmarks, such as ours. Conse-
quently, having developed the benchmarks, we further
analyze secure cache designs to understand if they can
enhance security of Arm devices. This work shows the secu-
rity of PL [15] and RF [16] caches, but also uncovers new
weaknesses. Especially, we find a new attack related to evic-
tion-based attacks in the PL cache because it fails to consider
write buffer impacts when locking data in the cache. Fur-
ther, we found that the RF cache is secure when setting a
large neighborhood window (for selecting the randomly
fetched cache line). A small random-fill neighborhood win-
dow, however, may be better for the performance, but with
high probability can leak information about the victim’s
cache access.

1.1 Contributions

In summary, the contributions of this work compared to our
prior conference paper [11] are as follows:

� Design of the first security benchmark suite and
evaluation framework specifically for Arm, to sys-
tematically explore cache timing-based vulnerabil-
ities in Arm devices (considering the big.LITTLE
architecture, pseudo-random cache replacement pol-
icy, etc.)

� Use of a new sensitivity testing approach to evaluate
how incorrect cache configuration information can
affect the benchmarks, and consequently which vul-
nerability types can still be successful if the cache
configuration is incorrect or unknown.

� The first large-scale cloud-based test platform allow-
ing to uncover the security characteristics of a large
number of different Arm devices.

� The first set of cache security benchmarks which can
run on the gem5 simulator. This allows to test micro-
architectural features, such as write buffer and
MSHR sizes, which cannot be changed on real devi-
ces, and provides an understanding of how they
affect the security of the system.

� Implementation of secure caches in gem5 simulation,
and use of the benchmarks to find a new write-based
attack on the PL cache and problems with the RF
cache if the random-fill neighborhood window is not
sufficiently large.

1.2 Open-Source Benchmarks

The Arm benchmarks and the code for the cloud-based
framework will be released under open-source license and
made available at https://caslab.csl.yale.edu/code/arm-
cache-security-benchmarks/.

1.3 Additional Data and Results

An arXiv version of this paper is available at https://arxiv.
org/abs/2106.14054. It contains pvalue data evaluation
results of Fig. 9 added in an appendix, which is not present
in this version.

2 RELATED WORK AND BACKGROUND

This section provides background on prior cache timing-
based side-channel attacks in Arm devices, and gives an
introduction to our three-step model used as foundation
for the benchmarks and the evaluation given in this
paper.

2.1 Cache Timing-Based Attacks on Arm

Most of the existing work so far has focused on x86 pro-
cessors. For Arm, we are aware of six papers [17], [18],
[19], [20], [21], [22] that specifically explore security of
caches. Table 1 lists the related work and compares it to
this paper. AutoLock [18] explores how the AutoLock fea-
ture found in some Arm processors could be used to
thwart some cache timing attacks; the paper also shows
how attackers can overcome the feature and perform tim-
ing attacks. This work explores previously proposed Evict
+Time [3], Prime+Probe [3], and Evict+Reload [23] attacks.
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ARMageddon [17] focuses on cross-core cache timing
attacks using Prime+Probe [3], Flush+Reload [24], Evict
+Reload [23], and Flush+Flush [25] strategies on non-
rooted Arm-based devices. TruSpy [19] analyzes timing
cache side-channel attacks on Arm TrustZone. It exploits
cache contention between the normal world and the secure
world to leak secret information from TrustZone protected
code. The work only considers the Prime+Probe [3] attack
strategy. Zhang et al. [20] give a systematic exploration of
vectors for Flush+Reload [24] attacks on Arm processors
and Lee et al. [22] explore Flush+Reload [24] attacks on the
Armv8 system. iTimed [21] makes use of Prime+Probe [3],
Flush+Reload [24], and Flush+Flush [25] to attack Apple
A10 Fusion SoC.

While existing works do a good job testing a few vulner-
abilities, they fail to systematically analyze all possible
types of cache timing attacks in Arm processors, as does
this work.

2.2 Three-Step Model for Cache Attacks

Based on the observation that all existing cache timing-
based side and covert channel attacks have three steps, a
three-step model has been proposed previously by the
authors [11]. In the three-step model, each step represents
the state of the cache line after a memory-related operation
is performed. First, there is an initial step (Step1) that sets
the cache line into a known state. Second, there is a step
(Step2) that modifies the state of the cache line. Finally, in
the last step (Step3), based on the timing, the change in the
state of the cache line is observed. Among the three steps,
one or more steps comprise the victim’s access to an
address that is protected from the attacker (denoted by Vu),
and timing is observed in Step3. In the model, there are
three possible cases for the address of Vu: (1) a, which rep-
resents an address known to the attacker, (2) aalias, which
refers to an address that maps to the same cache set as a,
but is different from a, and (3) Not In Block (NIB), which
refers to an address that does not map to the same cache
set as a. If a vulnerability is effective, the attacker can infer
whether Vu is the same as a, aalias, or NIB based on the
access timing observations. The soundness analysis of
the three-step model in our prior work [26] showed that it
covers all possible timing-based attacks in set-associative
caches. Our recent conference paper [11], upon which this
journal paper improves, presented a benchmark suite
based on the three-step model to evaluate vulnerabilities in
x86 processors – it did not evaluate Arm processors nor
secure cache designs.

2.3 Cache Vulnerability Types

We previously identified 88 vulnerability types in
caches [11]. To better summarize them, this work catego-
rizes them into different attack types, as shown in
Table 2. AO-Type (address-only-based), SO-Type (set-
only-based), and SA-Type (set-or-address-based) catego-
rize the vulnerabilities based on the information that the
attacker can gain from the timing observation. Note that
our prior work [11] defined the three types as A-Type,
S-Type, and SA-Type, respectively; we rename the types
in this paper to better convey their meanings. Further-
more, we also categorize them as I-Type (internal-based)
and E-Type (external-based) based on whether the inter-
ference is within the victim process or between the
victim process and the attacker process. These two types
of categories are orthogonal to each other. One specific
vulnerability can be both one of AO-Type, SO-Type, or
SA-Type, and one of I-Type or E-Type. For example,
vulnerability #43 (see Fig. 3) belongs to the E-SO-Type.
Here the E-Type and SO-Type are merged into a com-
bined vulnerability E-SO-Type.

3 THREAT MODEL AND ASSUMPTIONS

We assume that there is a victim that has secret data which
the attacker tries to extract through timing of memory-
related operations. The victim performs some secret-depen-
dent memory accesses (Vu) and the goal for the attacker is to
determine a particular memory address (or cache index)
accessed by the victim. The attacker is assumed to have
some additional information, e.g., he or she knows the algo-
rithm used by the victim, to correlate the memory address
or index to values of secret data.

In addition to regular reads, writes, and flush operations,
we assume that the attacker can make use of cache coher-
ence protocol to invalidate other core’s data, by triggering
read or write operations on the remote core as one of the
steps of the that attack.

A negative result of a benchmark means there is likely
no such timing channel in the cache or the channel is too
noisy to be observable. Meanwhile, a positive result may
be due to structures other than cache, such as prefetch-
ers, Miss Status Handling Registers (MSHRs), load and
store buffers between processor and caches, or line fill
buffers between cache levels. Our benchmarks focuses
on L1 data caches, but we consider that timing results
could be due to all the different structures. Detailed
benchmarks for these structures or other levels of caches
are left for future work.

TABLE 1
Comparison to Related Work Exploring Arm Processors and Cache Timing Attacks

Num. Vuln. Explored Num. Devices Cloud-Based Framework gem5 Testing Secure Cache Testing

AutoLock [18] 3 4 ✗ ✗ ✗

ARMageddon [17] 4 4 ✗ ✗ ✗

TruSpy [19] 1 1 ✗ ✗ ✗

Zhang et al. [20] 1 5 ✗ ✗ ✗

Lee et al. [22] 1 1 ✗ ✗ ✗

iTimed [21] 3 1 ✗ ✗ ✗

This Work 88 34 ✓ ✓ ✓
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4 ARM SECURITY BENCHMARKS

In this section, we present the first set of benchmarks which
is used to evaluate L1 cache timing-based vulnerabilities
of Arm processors. To implement the security benchmarks
on Arm, as listed below, we developed solutions to key
challenges accordingly.

4.1 Heterogeneous CPU Architectures

Arm processors implement the big.LITTLE architecture with
big and little processor cores having different cache sizes.
This presents a new challenge, as the architecture is funda-
mentally different from multi-core systems where all cores
have identical cache sizes and configurations. This was not
considered in our previous work [11] which only dealt with
x86, nor in previous studies [17], [18], [19], [20] which only
tested attacks on one core type.

The local core is the one wherein is located the target
cache line that the attacker wants to learn. Meanwhile, the
remote core is a different core where the target cache line is
not located, but which could affect the local core and its
caches, e.g., via cache coherence protocol. Thus, both cross-
core and cross-CPU vulnerabilities are considered in our
work by testing the victim and attacker operations on dif-
ferent combinations of local and remote cores. Especially,
with different big and little processor cores, a local or remote
core can be either of big or little core type, resulting in four
combinations.

Because we consider different core types, unlike
prior work, and caches are not even between the big and
little cores, we define how to correctly specify the cache
configurations for the benchmarks when running the
tests:

� If the first two steps of the three-step model describ-
ing a particular vulnerability both occur in the remote
core, use the remote core’s cache configuration.

� In all other cases, use the local core’s cache
configuration.

In the three-step model, when testing for vulnerabilities,
main interference (leading to potential timing differences)
occurs within the first two steps, while the final, third step
is used for the timing observation used to determine if there
is possible attack or not. Therefore, the above method of
choosing the cache configuration focuses on where the main
interference is occurring in the three steps.

4.2 Random Replacement Policy in Arm

Modern Arm cores use the random replacement policy in
the L1 cache [17]. This policy is significantly different from
the Least Recently Used (LRU) replacement policy, and
poses fundamental challenges for eviction and probing
steps in 48 out of 88 vulnerability types.

In particular, this makes the set-only-based vulnerabilities
(SO-Type) harder to implement. The reason is that occupying
a cache set in caches using a random replacement policy is not
as easy as in caches using LRU or similar policies, where
accessing a certain number of ways (denoted as cache_as-
sociativity_num) of cache lines in a cache set is able to
evict all data in the set. In caches using the random replace-
ment policy, the cache set thrashing problem [27], referring to
self-evictions within the eviction set, which affects accessing
all the ways of the cache set in eviction-based vulnerabilities.
To avoid this problem, we use a smaller set size to avoid set
thrashing in our benchmarks. We set the eviction set size to
cache_associativity_num-1 and then repeat each step’s
memory operations 10 times. Using this technique,we are able

TABLE 2
Attack Vulnerability Types, Following [11]

Attack Type Description

AO-Type (address-only-based) In vulnerabilities of this type, the attacker can observe that the timing for victim’s access
Vu ¼ a is different from the timing for victim’s accesses Vu ¼ aalias or Vu ¼ NIB, so the
attacker can infer if the address of Vu is equal to a known address a or not. Vulnerabilities of
this type usually differentiate timing between L1 cache hit and DRAM access, which is
usually large and distinguishable. Sample vulnerabilities of this type are Flush+Reload
(vulnerability benchmarks #5-#8 shown in Fig. 3).

SO-Type (set-only-based) In vulnerabilities of this type, the attacker can observe that the timing for victim’s access
Vu ¼ a or aalias is different from the timing for victim’s access Vu ¼ NIB, or the attacker can
observe that the timing for victim’s access Vu ¼ aalias is different from the timing for victim’s
accesses Vu ¼ NIB or Vu ¼ a. In this case, the attacker can infer the cache set of the address
of Vu. Vulnerabilities of this type usually differentiate timing between L1 cache hit and L2
cache hit, which is usually small. Sample vulnerabilities of this type are Evict+Time
(vulnerability benchmark #41 shown in Fig. 3).

SA-Type (set-or-address-based) In vulnerabilities of this type, the attacker can observe different timing for victim’s accesses
Vu ¼ a, Vu ¼ aalias, and Vu ¼ NIB. For example, in Prime+Probe (vulnerability #44), if in
Step1, attacker reads data in address a; then in Step2, the victim writes to Vu; and then in
Step3, the attacker tries to read data in address a, data can be read from the write buffer (due
to the write in the second step if Vu ¼ a) instead of being read directly from the L1 cache (if
Vu ¼ NIB or Vu ¼ aalias) and attacker can observe the timing difference of the two cases.

I-Type (internal-based) Vulnerabilities of this type only involve the victim’s behavior in Step2 and Step3 of the three-
step model. One example of this attack is the Bernstein’s Attack (vulnerabilities #33-#36).

E-Type (external-based) Vulnerabilities of this type are the ones where there is at least one access by the attacker in
the second or third step, e.g., Flush+Reload (vulnerabilities #5-#8).

DENG ETAL.: EVALUATION OF CACHE ATTACKS ON ARM PROCESSORS AND SECURE CACHES 2251



to reduce set thrashing significantly given the random replace-
ment policy. However, in this case, exactly onewaywill not be
occupied after the repeated memory operations. This will
cause victim’s access in one out of cache_associativi-
ty_numways to be not detectable, but this is acceptable as vul-
nerabilities can still be detected aswe show in our evaluation.

4.3 Measuring and Differentiating Timing

For benchmarking Arm cache timing-based vulnerabilities,
this work is the first to utilize statistical tests – Welch’s t-
test [28] – to differentiate distributions of timings to check if
vulnerabilities can result in attacks. The pvalue is the thresh-
old used to judge the effectiveness of the vulnerabilities.
Based on our evaluation, we select 0.00049 for the pvalue in
our tests, improved from our previous work on x86 [11],
and use this to determine if different timing distributions
are distinguishable. We chose Welch’s t-test since it is gener-
ally used in attack evaluations [29], [30], [31]. There is also
Kolmogorov-Smirnov’s two-sample test [32] that can be
used to differentiate distributions. However, in the case of
cache timing side channel, there is only two possible timing
observations (i.e., hit or miss), t-test is sensitive to the mean
of distributions, and thus fit in this case.

Algorithm 1. Read/Write Access Code Sequence

1: asm __volatile__ (
2: “DSB SY \n”
3: “ISB \n”
4: “LDR/STR %0, [%1] \n”
5: “DSB SY \n”
6: “ISB \n”
7: : “=r” (destination)
8: : “r” (array[i]));

The statistical tests are used to differentiate timings of
memory related operations. However, cycle-accurate tim-
ings are not accessible without root access on Arm, while
x86 provides accurate assembly instructions to record tim-
ing (e.g., rdtsc). Consequently, we developed code that
can get reliable timing measurements in user-level applica-
tions using the clock_gettime() system call. We experi-
mented with other different performance counters and
thread timers, but these proved not to be applicable or accu-
rate enough for our benchmarks.

When performing timing measurements, in our experi-
ence, Arm devices further exhibit a lot of system noise
when running the tests on real devices in the cloud-based
device farms, possibly due to OS activity, or other

background services. Therefore, we set the benchmarks to
run more than 30,000 repetitions for each benchmark for
each device to average out the noise. Further, when running
each step operated by either the victim or the attacker, we
isolate the core to avoid influence of other application pro-
cesses from user-level applications.

Algorithm 2. Flush Code Sequence

1: asm __volatile__ (
2: “DSB ISH \n”
3: “ISB \n”
4: “DC CIVAC, %0 \n”
5: “DSB ISH \n”
6: “ISB \n”
7: : : “r” (array[i]));

4.4 Summary of Benchmark Structure

Following the above features, we developed benchmarks for
all 88 vulnerabilities. As shown in Fig. 1, there are three
steps for each vulnerability, and each step is realized by a
sequence of instructions. The instruction sequences from
each step can execute on local or remote cores. When per-
forming the steps, there are two possible cases for the vic-
tim’s or attacker’s memory related operation: read or write
access for a memory access operation; and flush or write in
the remote core for an invalidation-related operation. Thus,
for each vulnerability, there are in total of 23 ¼ 8 types con-
sidering different cases of each step’s operation. Further, if
a vulnerability being tested has both the victim and the
attacker running on one core, these two parties can run
either time-slicing or multi-threading. Consequently, the 8
cases are doubled to account for both time-slicing and
multi-threading execution. Thus, for each vulnerability
being tested, there are correspondingly 8-16 cases depend-
ing on the specific vulnerability. Each vulnerability is real-
ized as a single benchmark program. In total there are 1094
benchmarks for all 88 types of vulnerabilities.

The 1094 benchmarks are automatically generated. The
basic code sequences, e.g., Algorithms 1 and 2, are com-
posed into programs, with one program for each bench-
mark. Additional instructions are used in the benchmarks
to pin execution of the code to different processor cores
when testing different configurations. The resulting 1094
programs are compiled and executed on the devices under
test as detailed in the next section.

5 CLOUD-BASED FRAMEWORK

In this section, we report on the first cloud-based platform
for testing cache channels on Arm devices. Our prior work
only considered x86 [11] with several processors manually
set to test, and work by others only manually tested only
few Arm devices [17], [18], [19], [20].

5.1 Android Device Testbeds

We build our evaluation framework using testing platforms
for mobile devices, namely the Visual Studio AppCenter [12],
the Amazon AWS Device Farm [13], and the Firebase Test
Lab [14]. We developed a framework which allows us to run
custom binary benchmarks and retrieve the results in an auto-
matedmanner.

Fig. 1. Relationship of the 88 vulnerabilities, each of which is described
using three steps from the three-step model. The steps are further trans-
lated into sets of assembly instructions for the benchmarks, and the
code can be run on either big or small cores in the tested systems.
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In these cloud deployments, it is not possible to execute
benchmark files through a remote shell and download the
results. Instead, the entire functionality must be imple-
mented as a user-level native Android application. Conse-
quently, the benchmark executables are inserted into the
application package (APK) of a custom Android application
we developed. Fig. 2 illustrates the resulting test setup,
which will be open-sourced.

5.2 Extracting Cache Configurations

To build the benchmark, cache and CPU configuration
information are needed. The configuration can be automati-
cally identified by reading the corresponding system infor-
mation located at /sys/devices/system/cpu/cpux/ (where x
stands for the CPU core number) on each tested device.
However, depending on the SELinux policies applied by
the vendor and Android version, access to these files is
restricted on some devices [33]. For these device models, we
manually identify and verify their cache configurations
from public resources. Finally, we store both automatically-
and manually-extracted cache configuration parameters in
a single database, and include this database into the APK,
so that it can be used when running the benchmarks.

5.3 Packaging Security Benchmarks

Starting from Android 9, the operating system does not
allow to execute files from an arbitrary writeable location
on the filesystem [34]. Instead, only native library depen-
dencies within an Android application can be executed.
Consequently, we pre-compile and place the benchmark
files in the resource subfolder of the APK package which
contains native libraries (src/main/resources/lib/arm64-v8a), as
the OS grants read-and-execute permissions for all binary
files in this subfolder.

5.4 Running Benchmarks

We give an overview of our evaluation framework in Fig. 2.
Once the cache configuration is extracted (step 1), the
corresponding benchmarks are precompiled (step 2) and
packaged (step 3), we upload the application package to
the cloud testing platforms (step 4). The implemented
application does not require any user interaction. Instead, it
contains an instrumented unit test which automates the
execution of benchmarks. The tests can be run simulta-
neously on multiple devices (step 5). The process of upload-
ing and running the application is automated using the
APIs provided by the cloud platform provider.

On each device, the application first identifies the device
model by accessing the Build.MODEL property. This infor-
mation is used to look up the corresponding cache configura-
tion parameters in the database. Afterwards, the application
executes the precompiled benchmarks one by one, using the
corresponding parameters. In order to automatically retrieve
the results of benchmarks from multiple devices, we imple-
ment an HTTP server which can receive POST requests from
Android applications. Each request contains the results in
textual or binary format. As the execution time of the whole
set of benchmarks on a device can take several hours, the
application periodically sends the intermediate results to the
server. In thisway,we can preciselymonitor the current state
of the execution on each device. Finally, the results are col-
lected from the server (step 6) for further analysis (step 7).

6 EVALUATION

We tested a total of 34 different devices. The corresponding
processor core types are shown in Table 3 – note that some
devices use the same processor or SoC configuration so there
are less than 34 processors in Table 3. The results of the tests
are shown in Fig. 3, which shows the vulnerabilities that can
possibly be exploited on the device, based on sufficient tim-
ing differences in the memory operations corresponding to
each three-step attack. Fig. 3 consists of 88 columns, each cor-
responding to one of the three-step vulnerabilities. The vul-
nerabilities are colored based on the different types.

In addition to smartphones, we further tested other Arm
cores, leveraging Amazon EC2 [35] with an X-Gene 2 core
and Chameleon cloud [36] with a Neoverse core to test Arm
processors on servers. Arm server chip results generally
have similar patterns as the mobile devices. Therefore, in
this work, we show only results for the mobile devices from
the cloud-based testbeds.

6.1 Microarchitectures’ Impacts on the
Vulnerabilities

Belowwe list some of the observations gained from our eval-
uation. Only through the extensive benchmarking of caches
on a large set of devices, can such insights be discovered.

6.1.1 Store Buffer

The STB (STore Buffer) is used during write accesses to hold
store operations. This structure makes clean and dirty L1
data access timing easier to be distinguished. For example,
I � SA-Type vulnerability #33 differentiates timing between
reads of dirty L1 data and reads of clean L1 data, or between
writes of dirty L1 data and writes of clean L1 data, which is
a typical vulnerability that allows STB to make it more effec-
tive. From the evaluation results, Kryo 360 Gold/Silver
cores are more susceptible to vulnerabilities such as #33,
compared to Cortex A53 core, which confirms the fact that
the STB is presented in Kryo 360 Gold/Silver cores but not
in Cortex A53 core, based on reference manuals.

6.1.2 Snoop Control Unit

The SnoopControl Unit (SCU) contains buffers that can handle
direct cache-to-cache transfers between cores without having
to read or write any data to the lower cache by maintaining a

Fig. 2. Overview of the evaluation framework using the cloud-based
testing platforms for Android mobile devices.
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set of duplicate tags that permit each coherent data request to
be checked against the contents of the other caches in the clus-
ter.With the SCU,when comparing the timing between remote
writes to invalidate local L1 data and remote writes to invali-
date local L2 data, the SCUwill accelerate the coherence opera-
tions. This makes the different cache coherence influence non-
differentiable in timing on the cores that have the SCU.

For example, I � SO-Type vulnerabilities #78-#79 mainly
use timing differences between flushing of L1 data and

flushing of L2 data, or between remote writes to invalidate
local L1 data and remote writes to invalidate local L2 data.
From the evaluation results, vulnerabilities #78-#79 occur
much less frequently on Kryo 280 Gold/Silver cores and Cor-
tex A53 cores compared to Kryo 360 and Kryo 385 Gold/Silver
cores. This supports the observation that the Kryo 280 Gold/
Silver cores and Cortex A53 cores have a Snoop Control Unit
(SCU), which helps prevent these types of vulnerabilities,
while Kryo 360 andKryo 385Gold/Silver cores do not have it.

TABLE 3
CPUs and SoC Types Found in the Evaluated Devices

Core Name Core Frequency L1 Cache
Config

SoC Name Vul. Num.

Kryo 585f1g Gold/ Silver 2.42-2.84/ 1.8 64 KB 16-way/
32 KB 4-way

Qualcomm Snapdragon 865 88

Kryo 385f2g Gold/ Silver 2.5-2.8/ 1.6-1.7 64 KB 16-way/
32 KB 4-way

Qualcomm Snapdragon 845 87

Kryo 360f3g Gold/ Silver 2.0-2.2/ 1.7 64 KB 16-way/
32 KB 4-way

Qualcomm Snapdragon 670/ 710 87

Cortex A53f4g 1.9-2.2 32 KB 4-way Nvidia Tegra X1/ Qualcomm
Snapdragon 625/ 630

81

Kryo 280f5g Gold/ Silver 2.35-2.5/ 1.8-1.9 64 KB 16-way/
32 KB 4-way

Qualcomm Snapdragon 835 79

Kryo 260f6g Gold/ Silver 1.8-2.2/ 1.6-1.8 64 KB 16-way/
32 KB 4-way

Qualcomm Snapdragon 636/ 660 76

The Core Name (with corresponding number used in Fig. 3), Core Freq., and L1 Cache Config. columns show the processor core names, their frequency
ranges, and typical cache configurations. The Vul. Num. column shows the average number (out of 88) of vulnerabilities that show up during tests; smaller value
is better.

Fig. 3. Evaluation of the 88 types of vulnerabilities on different Arm devices.a A solid dot means the corresponding processor is found to be vulnerable
to the vulnerability type. The “I-SO” (colored by dark red) and “E-SO” (colored by light red) are internal-interference set-only-based and external-
interference set-only-based vulnerabilities, respectively. The “I-AO” (colored by dark red) and “E-AO” (colored by light red) are internal-interference
address-only-based and external-interference address-only-based vulnerabilities, respectively. The “I-SA” (colored by dark red) and “E-SA” (colored
by light red) are internal-interference set-or-address-based and external-interference set-or-address-based vulnerabilities, respectively. The devices
are grouped according to their core types. Each device’s core is labeled by a number shown after the device name, with corresponding cores shown
in Table 3. The order is from the most vulnerable core to least vulnerable among the cores. The last line shows gem5 testing results of default gem5,
to show that gem5 simulation gives similar results to real devices. a We further tested other Arm cores, including an X-Gene 2 core and a Neoverse
core to test Arm processors on servers. The results generally have similar patterns as the mobile devices so we show only results for the mobile devi-
ces from the cloud-based testbeds.
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6.1.3 Transient Memory Region

Transient Memory Region allows for setting a memory
region as transient. Data from this region, when brought
into L1 cache, will be marked as transient. As result, during
eviction, if this cache line is clean, it will be marked as
invalid instead of being allocated in the L2 cache.

Although this may help avoid polluting the cache with
unnecessary data, internal and external SO-Type vulner-
abilities #33-#44 that we are able to differentiate between L1
and L2 cache hits can now differentiate between an L1 cache
hit and a data access from DRAM. This makes this type of
vulnerability more effective on cores that support this fea-
ture, which are Kryo 360/385 Gold/Silver cores, compared
to other cores, such as Cortex A53.

6.2 Heterogeneous Caches’ Impact on
Vulnerabilities

We also evaluated how Arm’s big.LITTLE architecture
impacts the attacks, where we set local and remote core to
be either big or little processor core. In Fig. 4, we present
evaluation results for one example device, Google Pixel
2. A similar pattern was observed for all other tested
devices.

SO-Type and SA-Type vulnerabilities which differentiate
L1 and L2 cache hit timings (#41-#44) are mostly vulnerable
to the case when the local core uses the big core. This is
mainly because the bigger cache (e.g., 64K 16-way versus
32K 4-way) of the big core results in larger timing differen-
ces for the vulnerabilities that require priming each cache
set, reducing the proportion of system noise at the same
time. SO-Type and SA-Type vulnerabilities which differen-
tiate writing to remote dirty L1 and L2 cache data (#73-#76)
are successful when local and remote core both use the little
core. Dirty data are usually not stored in the cache line but
stored in other locations such as write buffer. Write buffer is
possibly processed in an out-of-order way. Therefore, fewer
number of writes due to fewer number of ways in little core
are more likely to have relatively differentiable timing.
SO-Type and SA-Type vulnerabilities which differentiate
writing remote L1 and remote L2 cache data (#77-#88) are
mostly successful when local and remote cores use different
core types (big or little). This is due to the fact that big and lit-
tle cores are often in different quad-core clusters in the SoC,
where coherence time across quad-core cluster results in
higher timing differences when accessing data located in
the remote cluster.

6.3 Core Frequency’s Impact on Vulnerabilities

High clock frequency tends to make long memory opera-
tions more differentiable, and will make timing attacks

easier to exploit the difference. From the evaluation results,
we found that devices with higher clock frequency will
likely have more effective timing-channel vulnerabilities.

This is especially visible in SO-Type vulnerabilities, most
of which differentiate between L1 and L2 cache hits, which
have a relatively small cycle difference, e.g., less than 10
cycles. However, if the core’s frequency increases, the tim-
ing difference is also increased, which makes cycle distribu-
tions more differentiable and an attack possibly easier to
execute.

6.4 Influence of Write Buffer and MSHR Sizes

We design our benchmarks so they can also be used in
simulation. We use the Arm big.LITTLE configuration to
run the benchmarks in Full System (FS) mode or Syscall
Emulation (SE) mode on gem5. The simulator is config-
ured to use the Exynos [37] configuration to model real
Android devices and uses the O3CPU model with a 5-
stage pipeline. The last line of Fig. 3 shows the benchmark
results when using the default configuration on the gem5

simulator. Overall, we find that baseline gem5 results have
good correspondence with real CPUs in terms of the cache
timing vulnerabilities.

Next, we evaluate different configurations of the Miss
Status Holding Register (MSHR) and the write buffer (WB),
both tested on gem5. Results are shown in Fig. 6: A larger
MSHR size leads to more vulnerabilities to be observed.
MSHR is a hardware structure for tracking outstanding
misses. Larger MSHR sizes lead to more outstanding misses
that can be handled, which may stabilize the memory access
timings and give more consistent results.

Changing the size of WB does not have an explicit influ-
ence on the vulnerability results. WB stores the write
request, which frees the cache to service read requests while
the write is taking place. It is especially useful for very slow
main memory, where subsequent reads are able to proceed
without waiting. We use the “SimpleMemory” option of
gem5, which is relatively simple compared with the imple-
mentation of real devices and may not have the same slow
memory timing in this case. As the result shows, bigger WB
may improve performance and can be added without
degrading security, while bigger MSHR may improve per-
formance but at some cost to security.

6.5 Patterns in Vulnerability Types

It can clearly be observed from the colored dots in Fig. 3
that AO-Type vulnerabilities are observable in almost all
devices and in the simulation, because these types of vul-
nerabilities, e.g., differentiate L1 cache hits and DRAM
hits, which have large timing differences. Such timing

Fig. 4. Evaluation of the 88 types of vulnerabilities on different cores of Google Pixel 2. “big_big” means running both local and remote core on big
cores, “big_little” means running local core on the big core, remote core on the little core. Same naming is applied to “little_big” and “little_little”. Dot
coloring is the same as in Fig. 3.
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distribution results can be observed in Fig. 5a. SA-Type
vulnerabilities also occur relatively often, but are much
more unstable compared with AO-Type vulnerabilities,
which shows that different devices have large but quite
variable timing differences among different memory oper-
ations, e.g., between clean abd dirty L1 data invalidation
or between local access of remote clean and dirty L1 data.
SO-Type vulnerabilities are least effective. This is because
the timing differences between the observations such as L1
and L2 cache hits are so small that they are sometimes
indistinguishable due to system noise. For example, timing
distribution evaluation result shown in Fig. 5b have small
timing difference.

I-Type and E-Type vulnerabilities do not show
explicit evaluation differences. In this case, another take-
away message is that protecting only the external-inter-
ference vulnerabilities is not enough at all. Internal-inter-
ference vulnerabilities can be as effective as the external-
interference vulnerabilities for attacks.

6.6 Estimating the Real Attack Difficulty

To estimate the real attack difficulty, we can leverage the
distance and likelihood (using p-value) of different timing
measurement distributions. As is shown in Fig. 5 in Sec-
tion 6.5, AO-Type or SA-Type vulnerabilities are easier to
exploit since they depend on timing differences of L1 cache
hits versus DRAM accesses; meanwhile SO-Type vulner-
abilities are more difficult to exploit, since they depend on
the timing differences between L1 and L2 cache hits, which
are much smaller compared to the former.

Further, our benchmarks show the overall attack sur-
face. If a motivated attacker only needs to use one attack
to derive sensitive information, he or she will likely start
with AO-Type or SA-Type vulnerabilities. However, the
bigger the attack surface is, the more options he or she
has, and if there are defenses for AO-Type or SA-Type
types of vulnerabilities, attackers could still leverage
SO-Type vulnerabilities. The goal of this work is to
show the whole attack surface on Arm devices, including
vulnerabilities and attack types that are not previously
presented in the literature. Which attack could be used
in practice depends on the attacker’s motivation and
resources, but thanks to this work, the overall attack sur-
face is better understood.

6.7 Results Compared With Other Work

For our benchmark results shown in Fig. 3, strategies
exploited by existing Arm attacks – Evict+ Time (#41-#42 in
the Figure), Prime+Probe (#43-#44 in the Figure), Flush
+Reload1 (#5-#8 in the Figure), and Flush+Flush (#47-#50 in
the Figure) – all indeed show up as effective vulnerabilities
for 30 out of the 34 mobile devices tested. This confirms
that our benchmarks can cover existing work. Note that the
5 types of vulnerabilities explored by prior work, e.g., the
Evict+ Time, etc., can be realized using more than one vul-
nerability from the 88 types, thus prior work covers 12
types, leaving 76 types not considered, for the total of 88
vulnerabilities that are possible.

6.8 Summary of Vulnerability Trends

To summarize, the patterns of the vulnerabilities uncovered
thanks to the systematic benchmarking on 34 devices are:

� Microarchitectural features: performance increasing
features such as the store buffer can degrade secu-
rity, while features such as the snoop control unit
can be helpful, indicating that security and perfor-
mance are not always at odds with each other, and
some features can help both.

� Heterogeneous cache size: larger coherence timing
for accesses involving cores in different clusters,
compared to within same cluster, may lead to more
vulnerabilities being effective.

� Core frequency: larger core frequency generally cor-
relates with more vulnerabilities.

� WB and MSHR sizes: WB size does not impact secu-
rity, while larger MSHR may allow more vulnerabil-
ities to be effective.

� Vulnerability type effectiveness: relations of number
of effective vulnerabilities showed are: AO-Type >
SA-Type> SO-Type; meanwhile, I-Type andE-Type
vulnerabilities are similarly effective on the tested
devices.

� Tested device results: relations of number of effec-
tive vulnerabilities showed are: Kryo 585 > Kryo
385� Kryo 360 > Core A53 > Kryo 280 > Kryo 260.

7 SENSITIVITY TESTING OF BENCHMARKS

To understand how the benchmarks are affected by possible
misconfigurations, we performed a number of sensitivity
tests. In addition to evaluating how the benchmarks behave,
the sensitivity study allows us to understand how knowl-
edge (or lack of knowledge) of the correct cache configura-
tion affects the attacker’s ability to attack the system.

7.1 Analysis of Sensitivity Testing

The most important cache parameters for sensitivity tests
are: associativity, line size, and total cache size. We use assod,
lined, and totd to respectively denote the value of the param-
eters of the actual target device. Meanwhile, assob, lineb, and
totb denote the cache parameters used by the benchmarks.
The parameters used in the tests are varied and are different

Fig. 5. Samples of different types of vulnerabilities’ timing histograms for
different candidate values for Vu.

1. Our Flush+Reload benchmarks test for a stronger variant of the
Evict+Reload vulnerability shown in [17], [18].
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from the actual, correct parameters to test the sensitivity of
the results to misconfiguration. As we show, setting the con-
figuration incorrectly in the benchmarks changes the map-
ping of the addresses used by the benchmarks, and
influences the number of vulnerabilities judged to be effec-
tive on a device.

We implement the sensitivity tests in the following way.
A large array is maintained to locate three different candi-
dates of the secret value (a, aalias, or NIB). We consider two
addresses that only differ in the low log2ðlinebÞ bits to
belong to the same cache line, and two addresses that are a
distance of C � totb=assob (C is a integer) apart to map to
the same cache set. For each step, we access assob number of
addresses for each cache set to occupy or cause collision in
the whole cache set. To increase the signal to noise ratio in
our measurements, rep cache sets are accessed in each of the
steps of a benchmark (in our setting this number is 8).

When assob, lineb, or totb deviates from assod, lined, or
totd, the following situations could happen:�1 the number of
addresses being accessed in one cache set is less than assod,
so interferences that should happen are not observed; �2 the
addresses that should map to a target cache set actually map
to several cache sets, and contention in the target cache set
might not happen or will become contention in several sets;
and �3 the addresses that should map to different cache sets
actually map to the same cache set, introducing noise to the
channel. We show later that the total number of attacks
judged to be effective is less when an incorrect configuration
is used – however, there are still attacks that are effectively
independent of the configuration setting.

In the following, we denote one L1 cache hit timing as tL1
and one L2 cache hit timing as tL2. When the configuration
of the benchmark is correct, if the secret maps to the same
cache set as some known address that was accessed, tL2 will
be observed, while if they are not mapped, tL1 will be
observed. In this case, timing observations for mapped and
unmapped cases are assod � tL2 and assod � tL1.

7.1.1 Cache Associativity

Associativity usually influences the number of accesses that
map to a target cache set. We distinguish two cases:

� assob < assod : In this case, due to smaller number of
ways accessed in each step, fewer evictions will
occur (situation �1 ). If a data address maps to the
same set as the secret data, timing observation will

be n� tL2 þ ðassod � nÞ � tL1 instead of assod � tL2.
Here, 0 < n < assob. Due to the random replace-
ment policy, only n (not all assob) cache lines will be
evicted. This will make the timing less distinguish-
able compared with the unmapped case, in which
timing should be equal to assod � tL1.

� assob > assod: When totb ¼ totd, this setting will lead
to accesses that should map to one cache set actually
mapping to several cache sets (situation �2 ). This will
result in measuring more than rep of cache sets for
one step, which possibly introducesmore noise.

7.1.2 Cache Line Size

Line size generally influences which cache set is chosen
within an attack (benchmark) step. Again, we distinguish
two cases:

noitemsep

� lineb < lined : In this setting, the accesses that should
map to different cache sets in the benchmark actually
map to the same cache set (situation�3 ). This will lead
to the result that the benchmark measures less than
rep cache sets effectively, causing a reduced signal to
noise ratio. For example, when choosing lineb ¼
lined=2, then two addresses that differ in lineb will
map to the same cache line instead of different lines in
difference sets. This results in having more L1 cache
hits, from assod � tL2 to assod=2� tL2 þ assod=2�
tL1, which makes it less distinguishable compared
with unmapped casewhere timing is assod � tL1.

� lineb > lined : In this setting, since we always access
the first 64 bits in a cache line, the addresses that
should map to the same sets in the benchmark (with
the incorrect configuration) still map to the same set
(if the correct configuration was used). However,
when lineb is larger or equal to cache set=rep2 times
of lined, the address for NIB in the benchmark will
wrap back and map to the same cache set as a and
aalias (situation�3 ), causing a false negative result.

7.1.3 Total Cache Size

Cache size mainly influences the data addresses accessed in
each step of an attack (benchmark).

Fig. 6. Evaluation of 88 types of vulnerabilities on different number of write buffer (WB) and MSHR sizes. A solid dot means the corresponding pro-
cessor is found to be vulnerable to the vulnerability type. The “SO” (colored red) and “AO” (colored green) are set-only-based and address-only-
based vulnerabilities, respectively. “SA” (colored blue) are the ones that are set-or-address-based. The “E” (colored in lighter color) and “I” (colored
in darker color) are internal- and external-interference vulnerabilities, respectively.

2. In the example of Section 7.2, this number is equal to 128=8 ¼ 16.
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� totb < totd : In this setting, the accesses that should
map to one cache set in the benchmark actually
map to several cache sets (situation �2 ), because
totb=assod < totd=assod. This further causes the
number of data accesses in each set to be less
than the number of ways being accessed in the
target cache set, i.e., assod (situation �1 ). Thus, for
the mapped case, it is equivalent to observing n�
tL2 timing instead of assod � tL2 timing for this
cache set, where 0 < n < totb=totd � assod due to
the random replacement policy. This could
decrease the signal to noise ratio.

� totb > totd : Let C
0 ¼ totb=totd. In most cases, C0 will

be an integer, assuming a cache size (both totb and
totd) of 2

N bytes. In this setting, the cache addresses
that are different by totb=assod ¼ C0 � totd=assod in
the benchmark, will still map to a different cache set
in target device.3Further, if C0 is too large, this will
cause unexpected system noise if prefetching, copy-
on-write, etc., functions are enabled in the device.

7.1.4 Analysis by Vulnerabilities Types

For AO-Type and SA-Type Vulnerabilities, the timing
observation for Vu ¼ a is different from Vu ¼ aalias or Vu ¼
NIB. In these types of vulnerabilities, the attack does not
rely on the interference between different cache lines in a
cache set. How the addresses map to the cache set does not
affect the result, and the cache configurations will not influ-
ence the effectiveness of the vulnerabilities. Also, these
types usually rely on relatively larger timing differences, so
the signal to noise ratio is large.

SO-Type vulnerabilities usually derive the Vu informa-
tion by observing evictions of the originally accessed data in
a prior attack step. For SO-Type vulnerabilities, we need to
access all the assod ways to prime the whole cache set in
order to observe the timing difference, therefore, SO-Type
vulnerabilities will actually be influenced by the setting of
parameters including associativity, line size, and total cache
size.

7.1.5 Summary

Based on the above, we make three observations about the
configurations’ impact on the benchmarks and the corre-
sponding attacks and how easy they are to perform:

1. Attackers can still attack the system even when they
are uncertain about the cache configuration. This is
especially true for AO-Type or SA-Type attacks since
they are not impactedmuch by the (mis) configuration.

2. Most of the differences are due to SO-Type attacks,
which do not work well when incorrect setting is
selected.

3. Setting correct configurations causes more vulner-
abilities to be judged effective for a device. Incorrect
settings can cause an underestimation of the total
number of vulnerabilities.

7.2 Evaluation of Sensitivity Testing

We tested a wide range of devices and found similar trends
among the results. Here we give results for one example
phone, Google Pixel 2, to show how the sensitivity test is
implemented and evaluated.

The L1 cache configuration of small core of Google Pixel
2 is 32KB, 4-way set-associative with line size to be 64B. We
test this configuration by changing one of the three parame-
ters (associativity, line size or cache size), while keeping the
other two the same to avoid interference between different
parameters. The different configuration values we choose in
our evaluation are listed in Table 4.

In the example test case shown in Fig. 7, timing distribu-
tion differences between three candidates are larger for the
correct configuration, compared to the wrong configura-
tions. The vulnerability is effective under the correct config-
uration while it fails for the incorrect configuration.

As shown in Table 4, we found that differences between
the number of correct configuration and incorrect configura-
tion for all effective vulnerabilities and SO-Type only effec-
tive vulnerabilities are roughly the same. For example,
when changing the associativity, difference of all effective
vulnerability numbers between 4 (82) and 8 (75) is 7, which
is the same as difference of SO-Type numbers (between 4
(20) and 8 (13)). This also shows that wrong configurations
will still lead to AO-Type and SA-Type vulnerabilities to be
effective even if the configuration is wrong.

TABLE 4
Configuration Test Results for Cache Associativity, Line Size and Cache Size of Google Pixel 2

Config. Effective Vul. Num. for Diff. Config.

Associativity assob Value 1 2 4 8 16
Total Vul. Num. 75 78 82 75 75
SO-Type Num. 17 17 20 13 12

Line Size lineb Value 16 32 64 128 256
Total Vul. Num. 77 75 82 80 79
SO-Type Num. 14 12 18 17 17

Cache Size totb Value 8192 16384 32768 65536 98304
Total Vul. Num. 79 77 82 79 77
SO-Type Num. 16 15 20 16 14

Black bold numbers show the largest effective number of vulnerabilities for each category. Middle column shows the correct configuration values for this device,
other columns show smaller (left side) and bigger (left side) values that were tested for each parameter of the cache.

3. When C0 is not an integer, e.g., C0 ¼ 1:5, then the address to set
mapping will be different than the case when totb ¼ totd, which is
equivalent to having addresses mapped to other cache set, resulting in
fewer number of addresses mapped to the target cache set (situation�1 ).
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As shown in Table 4 as well, attacks are most effective
under the correct configuration. When setting the wrong
value for either one of the three cache configurations, the
number of vulnerabilities that are effective decreases. On
the other hand, this shows that hiding the cache architecture
information or giving wrong configurations on-purpose is
not a reliable defense.

8 EVALUATION OF SECURE CACHES

As shown in the previous sections, current commercial Arm
architectures are indeed vulnerable to most of the attack
types. A potential defense are secure caches. To help under-
stand if existing secure cache designs could help defend the
attacks in Arm processors, we implemented and evaluated
the Partition-Locked (PL) [15] and Random Fill (RF) [16]
caches together with our benchmarks in the gem5 simulator.
We show that they can defend many of the attacks, but we
also uncover new vulnerabilities in the secure cache
designs. In this section, we focus on the security analysis of
the secure cache designs. Performance evaluations of PL
cache and RF cache can be found in [15] and [16], where rea-
sonable overhead is shown.

8.1 PL Cache Design and Implementation

Cache replacement is considered as the root cause of many
cache side-channel attacks, and partitioned caches were
proposed to prevent the victim’s cache line from being
evicted by the attacker. PL cache [15] is a flexible cache par-
titioning design, where the victim can choose cache lines to
be partitioned. In the PL cache, each cache line is extended
with a lock bit to indicate if the line is locked in the cache.
When a cache line is locked, the line will not be evicted by
any cache replacement until it is unlocked. Fig. 8 shows the
replacement logic of the PL cache. If a locked cache line is
selected to be evicted, the eviction will not happen, and the
incoming cache line will be handled uncached. If the victim
locks the secret-related address properly and the cache is
big enough to hold all the locked cache lines, the PL cache is
secure against all types of timing-based vulnerabilities,
because the secret-related address will always be in the
cache.

To evaluate the PL cache against different vulnerabilities,
we implement it in the L1 data cache and add new instruc-
tions to lock (and unlock) cache lines in the gem5 simulator.

The evaluation in gem5 is run in SE mode using a single
O3CPU core, where each benchmark has an additional
lock step for locking the victim’s cache line.

8.2 Security Evaluation of the PL Cache

Fig. 9 shows the results of evaluation of the PL cache (and
the RF cache, as well as the baseline set-associative cache).
For the PL cache, AO-Type vulnerabilities such as Flush+
Reload fail, because the sensitive data is locked in the cache,
and cannot be evicted by the benchmark steps that simulate
the attacker. Without locking, a normal cache is vulnerable
to these attacks, as shown in Fig. 9.

For SO-Type or SA-Type vulnerabilities such as
Bernstein’s attack, theoretically the PL cache should prevent
all of them as well. However, from the experimental results
we find that when the steps are implemented using write
(store), some of the attacks will still be successful in the PL
cache. This is mainly due to the write buffer structure,
which is not considered in original design of the PL
cache [15]. These attack strategies all require conflicts of
known and unknown secret cache lines. Although being
locked before the attack runs, the secret cache lines may be
further brought into the write buffer due to a write access
and then leave the cache structure to “bypass” the locking
features, making the attack successful. On the other hand,
without the influence of the write buffer, we find that the
attack cases that have all three steps to be non-write accesses
to be always prevented on PL cache, as expected. The vul-
nerabilities leveraging the cache coherence states and multi-
ple cores were not considered in original PL cache design,
but can be tested in future.

Fig. 7. Timing histogram of a vulnerability case when changing the cache
size. The error bar shows the range of timing distribution and the dot
shows the average timing cycles. “Succeed” under the configuration
means the vulnerability is effective while “Fail” means not. Three values
under “Succeed” or “Fail” are the pvalue for each two timing distributions
out of three. If it is smaller than 0.00049, we judge the two timing distribu-
tions to be differentiable, otherwise not.

Fig. 8. PL cache replacement logic flow-chart, as proposed in [15].

Fig. 9. Evaluation results of security benchmarks on PL cache, RF
cache, and a normal set-associative cache, for comparison. Solid dots,
half solid dots or empty dot mean all of the, part of the, or no vulnerability
cases are vulnerable to the cache, respectively.
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The PL cache evaluation highlights the need for system-
atic security evaluation using benchmarks. Thanks to the
approach, the original PL cache design is found to have a
new write-based attack. More importantly, our benchmarks
can be useful for designing future secure caches and testing
them in gem5.

8.3 RF Cache Design and Implementation

To prevent interference caused by cache replacement, Ran-
dom Fill (RF) cache [16] has been proposed to de-correlate
the cache fill that causes the cache replacement and the vic-
tim’s cache access. On a cache miss, the missing cache line
will be handled without being fetched in the cache, instead
a cache line in the neighborhood window ½addr�
RF start; addr�RF startþRF size� will be fetched, as
shown in Fig. 10. In this way, the memory access pattern is
de-correlated from the cache lines fetched in the cache.
Since fetching cache lines in the neighborhood window may
still carry information about the original addr, the security
of RF cache depends on the parameters RF start and
RF size.

We implement the RF cache in the L1 data cache, as sug-
gested by the work [16]. Note that here the cache line will
still be fetched into L2 cache, but vulnerabilities targeting
the L1 cache should be defended. Parameters RF start and
RF size can be configured in gem5. The benchmark suite
for evaluation is identical to the normal three-step bench-
marks, no additional step is required for the RF cache, e.g.,
no special locking step is needed.

8.4 Security Evaluation of the RF Cache

RF cache can potentially defend all attacks because the vic-
tim’s access to a secret address will not cause the corre-
sponding cache line to be fetched into cache, but a random
cache line in a neighborhood window will be fetched
instead. However, fetching a cache line in the neighborhood
window still can transfer information about the victim’s
cache access. We tested two different RF cache configura-
tions, one with small neighborhood window (5 cache lines)
and one with large neighborhood window (128 cache
lines4).

To reduce noise in the tests, the benchmarks test 8 contig-
uous cache lines and measure the total timing. When the
neighborhood window of the RF cache is small, the cache
line fetched into the cache will be not far from the address

being accessed, and can still be observed by the third step of
the benchmark with a high probability. As shown in Fig. 9,
for a small neighborhood window (S), a number of vulner-
abilities are still effective, such as Flush+Reload and Prime
+Probe.

For a large neighborhood window (L), no effective vul-
nerabilities are detected by the benchmark. For SO-Type
vulnerabilities, the large neighborhood window de-corre-
lates the memory access and the cache set to be accessed, so
that the vulnerabilities can be prevented. For AO-Type vul-
nerabilities, the channel capacity of the cache side channel
decreases with the window size due to the reduced proba-
bility of the desired cache line being fetched into cache, as
analyzed in [16]. The neighborhood window of 128 cache
lines is enough to mitigate the channel in our setting where
there are 128 cache sets.

The evaluation of the RF cache shows how the bench-
mark suite can be used to help choose the design parameter,
and the benchmark can quickly evaluate the design
prototypes.

8.5 Security Evaluation of Other Secure Caches

CEASER [38] is able to mitigate conflict-based LLC timing–
based side-channel attacks using address encryption and
dynamic remapping. The CEASER cache does not differen-
tiate whom the address belongs to and whether the address
is security critical. When a memory access tries to modify
the cache state, the address will first be encrypted using a
Low-Latency BlockCipher (LLBC) [39], which not only ran-
domizes the cache set it maps to, but also scatters the origi-
nal, possibly ordered, and location-intensive addresses to
different cache sets, decreasing the probability of conflict
misses. The encryption key will be periodically changed to
avoid key reconstruction. CEASER-S [40] allows CEASER to
divide the cache ways into multiple partitions of all the
cache ways and allows the line to be mapped to a different
set in each partition via principles of skewing. The modified
“skew” idea of CEASER-S cache assigns each partition a dif-
ferent multiple instance of CEASER to determine the set
mappings to strengthen the random mapping. These two
caches, focusing on randomizing cache set mapping, targets
SO-type or SA-type attacks and cannot prevent AO-type
vulnerabilities.

ScatterCache [41] uses cache set randomization to pre-
vent timing-based attacks. It builds upon two ideas. First, a
mapping function is used to translate memory addresses
and process information to cache set indices. The mapping
is different for each program or security domain. Second,
the mapping function also calculates a different index for
each cache way. The mapping function can be keyed hash
or keyed permutation derivation function – a different key
is used for each application or security domain resulting in
a different mapping from addresses to cache sets. Software
(e.g., the operating system) is responsible for managing the
security domains and process IDs, which are used to differ-
entiate the software processes and assign them with differ-
ent keys for the mapping. As hardware extension, a
cryptographic primitive such as hashing and an index
decoder for each scattered cache way is added. ScatterCache
is able to prevent SO-type or SA-type vulnerabilities by

Fig. 10. RF cache replacement logic flow-chart, as proposed in [16].

4. There are 128 cache sets in the evaluated L1 cache.
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assigning a different index for each cache way and security
domain. It encrypts both the cache address and process ID
when mapping into the cache index, therefore, ScatterCache
is able to prevent E-AO-type vulnerabilities such as Flush
+Reload, but not I-AO-type vulnerabilities such as Cache
Collision vulnerabilities.

Time-Predictable Secure Cache (TSCache) [42] relies on
random placement to exhibit randomized execution times. To
achieve side-channel attack robustness, random placement
must also decouple cache interference of the attacker from the
victim. Memory addresses from victim and attacker’s pro-
cesses must not contend systematically in the same cache set.
Instead, eachmemory address from each processmust be ran-
domly and independently placed in a set, thus randomizing
interference. This is achieved by operating the address
(tag and index bits) together with a random number called
random seed. Each task is forced to have a different seed so
that conflicts between attacker’s and victim’s cache lines
are random and independent across runs, thus defeating any
contention-based attacks. The same seed is given to allow the
communication between runnables of a given software com-
ponents of an application via shared memory. TSCache
exploits random placement to de-correlate set mapping with
the corresponding address index bits. Therefore, it can be
used to prevent SO-type or SA-type vulnerabilities but may
not be able to preventAO-type vulnerabilities.

9 CONCLUSION

This paper presented for the first time a large-scale evalua-
tion of 34 Arm devices against 88 types of vulnerabilities. In
total, three different cloud platforms were leveraged for the
evaluation, and gem5was used for further analysis of certain
microarchitectural features. Based on the evaluation results,
the work uncovered a number of components of the micro-
architectual design that influence the effectiveness of differ-
ent types of the vulnerabilities. Further, sensitivity tests were
used to understand impacts of possible misconfiguration on
the outcome of the benchmarks, and also showed that even
with uncertain cache configuration, number of attack types
can be successful. To help defend the attacks, the PL and RF
secure caches were implemented and evaluated on gem5.
Based on the benchmarking results of the secure caches, a
new attack on PL cache, and possible issues due to small
window size in the RF cachewere uncovered.
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